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Abstract: We present here a PAC-Bayesian point of view on adaptive
supervised classification. Using convex analysis on the set of posterior prob-
ability measures on the parameter space, we show how to get local measures
of the complexity of the classification model involving the relative entropy
of posterior distributions with respect to Gibbs posterior measures. We then
discuss relative bounds, comparing the generalization error of two classifica-
tion rules, showing how the margin assumption of Mammen and Tsybakov
can be replaced with some empirical measure of the covariance structure
of the classification model. We also show how to associate to any posterior
distribution an effective temperature relating it to the Gibbs prior distribu-
tion with the same level of expected error rate, and how to estimate this
effective temperature from data, resulting in an estimator whose expected
error rate converges according to the best possible power of the sample size
adaptively under any margin and parametric complexity assumptions. Then
we introduce a PAC-Bayesian point of view on transductive learning and use
it to improve on known Vapnik’s generalization bounds, extending them to
the case when the sample is made of independent non identically distributed
pairs of patterns and labels. Eventually we review briefly the construction
of Support Vector Machines and show how to derive generalization bounds
for them, measuring the complexity either through the number of support
vectors or through transductive or inductive margin estimates.
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Introduction

Among the possible approaches to pattern recognition, statistical learning
theory has received a lot of attention in the last few years. Although a
realistic pattern recognition scheme involves data pre-processing and post-
processing that need a theory of their own, a central role is often played by
some kind of supervised learning algorithm. This central piece of work is the
subject we are going to analyse in these notes.

Accordingly, we assume that we have prepared in some way or another a
sample of N labelled patterns (Xi, Yi)

N
i=1, where Xi ranges in some pattern

space X and Yi ranges in some finite label set Y. We also assume that we
have devised our experiment in such a way that the couples of random vari-
ables (Xi, Yi) are independent (but not necessarily equidistributed). Here,
randomness should be understood to come from the way the statistician
has planned his experiment. He may for instance have drawn the Xis at
random from some larger population of patterns the algorithm is meant to
be applied to in a second stage. The labels Yi may have been set with the
help of some external expertise (which may itself be faulty or contain some
amount of randomness, therefore we do not assume that Yi is a function of
Xi, and allow the couple of random variables (Xi, Yi) to follow any kind of
joint distribution). In practice, patterns will be extracted from some high
dimensional and highly structured data, like digital images, speech signals,
DNA sequences, etc. We will not discuss here this pre-processing stage (al-
though it poses crucial problems dealing with segmentation and the choice
of a representation).

To fix notations, let (Xi, Yi)
N
i=1 be the canonical process on Ω = (X×Y)N

(which means the coordinate process). Let the pattern space be provided
with a sigma-algebra B turning it into a measurable space (X,B). On the
finite label space Y, we will consider the trivial algebra B′ made of all its
subsets. Let M1

+

[
(K×Y)N , (B⊗B′)⊗N

]
be our notation for the set of prob-

ability measures (i.e. of positive measures of total mass equal to 1) on the
measurable space

[
(X × Y)N , (B × B′)⊗N

]
. Once some probability distribu-

tion P ∈ M1
+

[
(X × Y)N , (B ⊗ B′)⊗N

]
is chosen, it turns (Xi, Yi)

N
i=1 into the

canonical realization of a stochastic process modeling the observed sample
(also called the training set). We will assume that P =

⊗N
i=1 Pi, where for

each i = 1, . . . , N , Pi ∈ M1
+(X × Y,B ⊗ B′), to reflect the assumption that

we observe independent pairs of patterns and labels. We will also assume
that we are provided with some indexed set of possible classification rules

RΘ =
{
fθ : X → Y; θ ∈ Θ

}
,

Olivier Catoni May 28, 2006
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where (Θ,T) is some measurable index set. Assuming some indexation of
the classification rules is just a matter of presentation. Although it leads to
longer notations, it allows to integrate over the space of classification rules
as well as over Ω using the usual formalism of multiple integrals. For this
matter, we will assume that (θ, x) 7→ fθ(x) : (Θ × X,B ⊗ T) → (Y,B′) is a
measurable function.

In many cases Θ =
⋃
i∈I Θi will be a finite (or more generally countable)

union of subspaces, dividing the classification model RΘ =
⋃
i∈I RΘi into

a union of submodels. The importance of introducing such a structure has
been put forward by V. Vapnik, as a way to avoid making strong hypothe-
ses on the distribution P of the sample. If neither the distribution of the
sample nor the set of classification rules were constrained, it is well known
indeed that no kind of statistical inference would be possible. Considering
a family of submodels is a way to provide for adaptive classification where
the choice of the model depends on the observed sample. Restricting the
set of classification rules is more realistic than restricting the distribution of
patterns, since the classification rules are a processing tool left to the choice
of the statistician, whereas the distribution of the patterns is not fully under
his control, except for some planning of the learning experiment which may
enforce some weak properties like independence, but not the precise shapes
of the marginal distributions Pi which are as a rule unknown distributions
on some high dimensional space.

In these notes, we will concentrate on general issues concerned with a
natural measure of risk, namely the expected error rate of each classification
rule fθ, expressed as

R(θ) =
1

N

N∑

i=1

P[fθ(Xi) 6= Yi
]
.

As this quantity is unobserved, we will be led to work with the corresponding
empirical error rate

r(θ, ω) =
1

N

N∑

i=1

1[fθ(Xi) 6= Yi
]
.

This does not mean that pratical learning algorithms will always try to
minimize this criterion. They often on the contrary try to minimize some
other criterion which is linked with the structure of the problem and has
some nice additional properties (like smoothness and convexity, for exam-
ple). Nevertheless, and independently from the precise form of the estimator

May 28, 2006 Olivier Catoni
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θ̂ : Ω → Θ under study, the analysis of R(θ̂) is a natural question, and often
corresponds to what is required in practice.

Answering this question is not straightforward because, although R(θ) is
the expectation of r(θ), a sum of independent Bernoulli random variables,
R(θ̂) is not the expectation of r(θ̂), because of the dependence of θ̂ on
the sample, and neither is r(θ̂) a sum of independent random variables.
To circumvent this unfortunate situation, some uniform control over the
deviations of r with respect to R is needed.

The PAC-Bayesian approach to this problem, originated in the machine
learning community and pionneered by D. McAllester [25, 26], can be seen
as some variant of the more classical approach of M -estimators relying on
empirical process theory (as exposed for instance in [36]).

It is built on three corner stones:

• One idea is to embed the set of estimators of the type θ̂ : Ω → Θ
into the larger set of regular conditional probability measures ρ :(
Ω, (B ⊗ B′)⊗N

)
→ M1

+(Θ,T). We will call these conditional prob-
ability measures posterior distributions, to follow a usual terminology.

• A second idea is to measure the fluctuations of ρ with respect to the
sample, using some prior distribution π ∈ M1

+(Θ,T), and the Kullback
divergence function K(ρ, π). The expectation P{K(ρ, π)

}
measures the

randomness of ρ. The optimal choice of π would be P(ρ), resulting in
a measure of the randomness of ρ equal to the mutual information
between the sample and the estimated parameter drawn from ρ. Any-
how, since P(ρ) is as a rule no more observed than P, we will have
to be content with some less concentrated prior distribution π, result-
ing in some looser measure of randomness, as shown by the identityP[K(ρ, π)

]
= P{K[ρ,P(ρ)

]}
+ K

[P(ρ), π
]
.

• A third idea is to analyze the fluctuations of the random process θ 7→
r(θ) with respect to its mean process θ 7→ R(θ) through the log-Laplace
transform

−
1

λ
log

{∫∫
exp
[
−λr(θ, ω)

]
π(dθ)P(dω)

}
,

as a physicist prone to statistical mechanics (where this is called the
free energy) would do. This transform is well suited to relate minθ∈Θ r(θ)
to infθ∈ΘR(θ).

This monograph is devided into two sections. The first one deals with the
inductive setting presented in these lines, the second one with the trans-
ductive setting, where, following Vapnik’s seminal approach [37], a shadow

Olivier Catoni May 28, 2006
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sample is considered.
In the first section, two types of bounds are shown. Empirical bounds can

be used to choose between estimators or to build estimators. Non random
bounds can be used to assess the speed of convergence of estimators, relating
this speed to the speed of convergence of the Gibbs prior expected error
rate β 7→ πexp(−βR)(R) towards ess infπ R as β goes to infinity, and to other
quantities akin to the margin assumption of Mammen and Tsybakov in more
sophisticated cases. We will progress from the most straighforward bounds
to more elaborate ones, built to achieve a better asymptotic behaviour. We
will thus introduce local bounds and relative bounds. From an asymptotic
point of view, the culminating result of these notes is Theorem 1.39 (page
63). It is used in Proposition 1.40 to build a classification rule which is
proved to be adaptive in all the parameters of the Mammen and Tsybakov
margin assumption and of a parametric complexity assumption in Corollary
1.52 (page 78) of Theorem 1.50 (page 77). This opens the road to Theorem
1.59 (page 88) which performs two step localization on top of Theorem 1.39
in order to be able to achieve adaptive model selection with a decreased
influence of the number of empirically unefficient models included in the
comparison. The analysis of this bound is hinted at in subsequent pages,
but not fully developed, since we are not sure the amount of technicalities
it requires is worth it. Anyhow we would not like to induce the reader into
thinking that each result in the first section is actually an improvement on
the previous one, it is as a rule only an asymptotic improvement, and the
price to pay for being asymptotically tighter is to get looser bounds for
small sample sizes. What is a small sample size in practice is a question of
ratio between the number of examples and the complexity (roughly speaking
the number of parameters) of the model used to classify. Since our aim
here is to describe classification methods suitable for complex data (images,
speech, DNA, . . . ), we suspect that practitioners wanting to make use of
our proposals will be confronted with small sample sizes more often than
with large ones, and should try to make use of the simplest bounds first
and see only afterwards whether the asymptotically better ones can bring
them more for the size of samples their computers can handle and their
data bases can provide. Let us advocate also that the results of this first
section are not only of a theoretical nature for two reasons : the first one
is that posterior parameter distributions can be computed effectively, using
Monte Carlo techniques, there is a whole tradition about these computations
in Bayesian statistics, proving that what we call here Gibbs estimators are
not only a way to show that some optimal speeds of convergence can be
reached in some theoretically well understood situations, but that they can

May 28, 2006 Olivier Catoni



8 1 Inductive PAC-Bayesian learning

also be computed in practice. The second reason is that a traditional non
randomized estimator θ̂ ∈ Θ of the parameter can be approximated by a
posterior distribution ρ which is supported by a fairly narrow neighboorhood
of θ̂ ∈ Θ, without spoiling excessively our bounds, resulting in a classification
rule which is to provide a randomized answer only for a small amount of
dubious examples and will most of the time issue the same deterministic
answer as the classification rule indexed by θ̂ it is derived from. This is
explained on page 14.

In the second section, we show first how we can transport all the results
obtained in the inductive case to the transductive case, allowing to replace
prior distributions by partially exchangeable posterior distributions depend-
ing on an extended sample were unlabelled shadow examples are added, with
increased possibilities of adaptation to the data. We then focus on the small
sample case, where local and relative bounds are not expected to be of great
help. Using a fictitious (that is unobserved) shadow sample, we study Vap-
nik type generalization bounds, showing how to tighten and extend them
using some original ideas, like making no Gaussian approximation to the
log-Laplace of Bernoulli random variables, — using a shadow sample of ar-
bitrary size, — shrinking from the use of any symmetrization trick — and
using a subset of the group of permutations suitable to cover the case of
independent non identically distributed data. The culminating result of the
second section is Theorem 2.17 on page 114, subsequent bounds showing
the separate influence of the above ideas and providing an easier compari-
son with Vapnik’s original results. Vapnik type generalization bounds have a
broad applicability, not only through the concept of VC dimension, but also
through the use of compression schemes [24], which are briefly described on
page 105.

1. Inductive PAC-Bayesian learning

The setting of inductive inference (as opposed to transductive inference
to be discussed later) is the one described in the introduction.

When we will have to take the expectation of a random variable Z : Ω →R as well as of a function of the parameter h : Θ → R with respect to some
probability measure, we will as a rule use functional short notations instead
of resorting to the integral sign: thus we will write P(Z) for

∫
Ω Z(ω)P(dω)

and π(h) for
∫
Θ h(θ)π(dθ).

The PAC-Bayesian approach, in its simplest form, relies on some basic
upper bound for the Laplace transform of supρ∈M1

+(Θ)

[
ρ(R)−ρ(r)

]
, or more

Olivier Catoni May 28, 2006



1.1 Basic inequality 9

technically on some penalized variant of it, as will be seen. This will be
the subject of the next subsection, where we will start with the Laplace
transform of R(θ)− r(θ), for any θ ∈ Θ, before encompassing posterior dis-
tributions. As it is already easy to guess, the purpose of these preliminaries
is to gain some uniform control on the lower deviations of the empirical error
rate from the expected error rate under any posterior distribution.

1.1. Basic inequality. In the setting described in the introduction, let
us consider the Bernoulli random variables σi(θ) = 1[Yi 6= fθ(Xi)

]
. Using

independence and the concavity of the logarithm function, it is readily seen
that for any real constant λ

log
{P{exp

[
−λr(θ)

]}}
=

N∑

i=1

log
{P[exp

(
− λ
N σi

)]}

≤ N log

{
1

N

N∑

i=1

P[exp
(
− λ
N σi

)]}
.

The right-hand side of this inequality is the log Laplace transform of a
Bernoulli distribution with parameter 1

N

∑N
i=1P(σi) = R(θ). As any Bernoulli

distribution is fully defined by its parameter, this log Laplace transform is
necessarily a function of R(θ). It can be expressed with the help of the family
of functions

Φa(p) = −a−1 log
{
1 −

[
1 − exp(−a)

]
p
}
, a ∈ R, p ∈ (0, 1).

It is immediately seen that Φα is an increasing one to one mapping of the
unit interval unto itself, and that it is convex when a > 0, concave when
a < 0 and can be defined by continuity to be the identity when a = 0.
Moreover the inverse of Φa is given by the formula

Φ−1
a (q) =

1 − exp(−aq)

1 − exp(−a)
, a ∈ R, q ∈ (0, 1).

This formula may be used to extend Φ−1
a to q ∈ R, and we will use this

extension without further notice when required.
Using these notations, the previous inequality becomes

log
{P{exp

[
−λr(θ)

]}}
≤ −λΦ λ

N

[
R(θ)

]
, proving

May 28, 2006 Olivier Catoni



10 1 Inductive PAC-Bayesian learning

Lemma 1.1. For any real constant λ and any parameter θ ∈ Θ,P{exp
{
λ
[
Φ λ

N

[
R(θ)

]
− r(θ)

]}}
≤ 1.

In previous versions of this study, we had used some Bernstein bound, in-
stead of this lemma. Anyhow, as it will turn out, keeping the log Laplace of
a Bernoulli instead of approximating it provides simpler and tighter results.

Lemma 1.1 implies that for any constants λ ∈ R+ and ǫ ∈)0, 1),P[Φ λ
N

[
R(θ)

]
+

log(ǫ)

λ
≤ r(θ)

]
≥ 1 − ǫ.

Choosing λ ∈ arg maxR+

Φ λ
N

[
R(θ)

]
+

log(ǫ)

λ
, we deduce

Lemma 1.2. For any ǫ ∈)0, 1), any θ ∈ Θ,P{R(θ) ≤ inf
λ∈R+

Φ−1
λ
N

[
r(θ) −

log(ǫ)

λ

]}
≥ 1 − ǫ.

We will illustrate throughout these notes the bounds we prove with a small
numerical example: in the case where N = 1000, ǫ = 0.01 and r(θ) = 0.2,
we get with a confidence level of 0.99 that R(θ) ≤ .2402, this being obtained
for λ = 234.

Now, to proceed towards the analysis of posterior distributions, let us put

for short Uλ(θ, ω) = λ
[
Φ λ

N

[
R(θ)

]
− r(θ, ω)

]
, and let us consider

log
{P[π[exp(Uλ)

]]}
, where π ∈ M1

+(Θ,T) is some prior probability mea-

sure on the parameter space. Using Fubini’s theorem for non negative func-
tions, we see that

log
{P[π[exp(Uλ)

]]}
= log

{
π
[P[exp(Uλ)

]]}
≤ 0.

To relate this quantity to the expectation ρ(Uλ) with respect to any poste-
rior distribution ρ : Ω → M1

+(Θ), we will use the properties of the Kullback
divergence K(ρ, π) of ρ with respect to π, which is defined as

K(ρ, π) =

{∫
log( dρdπ )dρ, when ρ≪ π,

+∞, otherwise.

The following lemma shows in which sense the Kullback divergence function
can be thought of as the dual of the log Laplace transform.

Olivier Catoni May 28, 2006



1.2 Non local bounds 11

Lemma 1.3. For any bounded measurable function h : Θ → R, and any
probability distribution ρ ∈ M1

+(Θ) such that K(ρ, π) <∞,

log
{
π
[
exp(h)

]}
= ρ(h) − K(ρ, π) + K(ρ, πexp(h)),

where by definition
dπexp(h)

dπ
=

exp[h(θ)]

π[exp(h)]
. Consequently

log
{
π
[
exp(h)]

]}
= sup

ρ∈M1
+(Θ)

ρ(h) − K(ρ, π).

The proof is just a matter of writing down the definition of the quantities
involved and using the fact that the Kullback divergence function is non neg-
ative. It can be found in [17, page 160]. In the duality between measurable
functions and probability measures, we thus see that the log Laplace trans-
form with respect to π is the Legendre transform of the Kullback divergence
function with respect to π. Using this, we getP{exp

{
sup

ρ∈M1
+(Θ)

ρ[Uλ(θ)] − K(ρ, π)
}}

≤ 1,

which, combined with the convexity of λΦ λ
N

, proves the basic inequality we

were looking for.

Theorem 1.4. For any real constant λ,P{exp

[
sup

ρ∈M1
+(Θ)

λ
[
ρ
(
Φ λ

N
◦R
)
− ρ(r)

]
− K(ρ, π)

]}

≤ P{exp

[
sup

ρ∈M1
+(Θ)

λ
[
Φ λ

N

[
ρ(R)

]
− ρ(r)

]
− K(ρ, π)

]}
≤ 1.

The following sections will show how to use this theorem.

1.2. Non local bounds. At least three sorts of bounds can be deduced
from Theorem 1.4.

The most interesting ones to build estimators and tune parameters, as
well as the first that have been considered in the development of the PAC-
Bayesian approach, are deviation bounds. They provide an empirical upper
bound for ρ(R) — that is a bound which can be computed from observed
data — with some probability 1 − ǫ, where ǫ is a presumably small and
tunable confidence level.

May 28, 2006 Olivier Catoni



12 1 Inductive PAC-Bayesian learning

Anyhow, since most of the results about the convergence speed of es-
timators to be found in the statistical literature are concerned with the
expectation P[ρ(R)

]
, it is also enlightening to bound this quantity. In order

to know at which rate it may be approaching infΘR, a non random upper
bound is required, which will relate the average of the expected risk P[ρ(R)

]

with the properties of the contrast function θ 7→ R(θ).
Since the values of constants do matter a lot when a bound is to be used

to select between various estimators using classification models of various
complexities, a third kind of bound, related to the first, may be considered
for the sake of its hopefully better constants: we will call them unbiased
empirical bounds, to stress the fact that they provide some empirical quan-
tity whose expectation under P can be proved to be an upper bound forP[ρ(R)

]
, the average expected risk. The price to pay for these better con-

stants is of course the lack of formal guarantee given by the bound : two
random variables whose expectations are ordered in a certain way may very
well be ordered in the reverse way with a large probability, so that basing
the estimation of parameters or the selection of an estimator on some unbi-
ased empirical bound is a hazardous business. Anyhow, since it is common
practice to use the inequalities provided by mathematical statistical theory
while replacing the proven constants with smaller values showing a better
practical efficiency, considering unbiased empirical bounds akin to devia-
tion bounds provides an indication about how much the constants may be
decreased while not violating the theory too outrageously.

1.2.1. Unbiased empirical bounds. Let ρ : Ω → M1
+(Θ) be some fixed (and

arbitrary) posterior distribution, describing some randomized estimator of θ.
As we already mentioned, in these notes a posterior distribution will always
be a regular conditional probability measure. By this we mean that

• for any A ∈ T, the map ω 7→ ρ(ω,A) :
(
Ω, (B ⊗ B′)⊗N

)
→ R+ is

assumed to be measurable;
• for any ω ∈ Ω, the map A 7→ ρ(ω,A) : T → R+ is assumed to be a

probability measure.

We will also assume without further notice that the σ-algebras we deal
with are always countably generated. The technical implications of these
assumptions are standard and discussed for instance in [17, pages 50-54]
(where, among other things, a detailed proof of the decomposition of the
Kullback Liebler divergence is given).
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1.2 Non local bounds 13

Let us restrict to the case when the constant λ is positive. We get from
Theorem 1.4 that

exp

[
λ
{

Φ λ
N

[P[ρ(R)
]]

− P[ρ(r)]}− P[K(ρ, π)
]]

≤ 1, (1.1)

where we have used the convexity of the exp function and of Φ λ
N

. Since we

have restricted our attention to positive values of the constant λ, Equation
(1.1) can also be writtenP[ρ(R)

]
≤ Φ−1

λ
N

{P[ρ(r) + λ−1K(ρ, π)
]}
,

leading to

Theorem 1.5. For any posterior distribution ρ : Ω → M1
+(Θ), for any

positive parameter λ,P[ρ(R)
]
≤

1 − exp
[
−N−1P[λρ(r) + K(ρ, π)

]]

1 − exp(− λ
N )

≤ P{ λ

N
[
1 − exp(− λ

N )
]
[
ρ(r) +

K(ρ, π)

λ

]}
.

The last inequality provides the unbiased empirical upper bound for ρ(R) we
were looking for, meaning that the expectation of

λ

N
[
1−exp(− λ

N
)
]
[
ρ(r) + K(ρ,π)

λ

]
is larger than the expectation of ρ(R). Let us

notice that 1 ≤ λ

N
[
1−exp(− λ

N
)
] ≤

[
1 − λ

2N

]−1
and therefore that this coeffi-

cient is close to 1 when λ is significantly smaller than N .
If we are ready to believe in this bound (although this belief is not mathe-

matically well founded, as we already mentioned), we can use it to optimize
λ and to choose ρ. While the optimal choice of ρ when λ is fixed is to take it
equal to πexp(−λr), a Gibbs posterior distribution, as it is sometimes called,
we may for computational reasons be more interested in choosing ρ in some
other class of posterior distributions.

For instance, our real interest may be to select some deterministic es-
timator from a family θ̂m : Ω → Θm, m ∈ M , of possible ones, where
Θm are measurable subsets of Θ and where M is an arbitrary (non nec-
essarily countable) index set. We may for instance think of the case when
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14 1 Inductive PAC-Bayesian learning

θ̂m ∈ arg minΘm r. We may slightly randomize the estimators to start with,
considering for any θ ∈ Θm and any m ∈M ,

∆m(θ) =
{
θ′ ∈ Θm :

[
fθ′(Xi)

]N
i=1

=
[
fθ(Xi)

]N
i=1

}
,

and defining ρm by the formula

dρm
dπ

(θ) =
1[θ ∈ ∆m(θ̂m)

]

π
[
∆m(θ̂m)

] .

Our posterior is minimizing K(ρ, π) among those whose support is restricted
to the values of θ in Θm for which the classification rule fθ is identical to the
estimated one f

θ̂m
on the observed sample. Presumably, in many practical

situations, fθ(x) will be ρm almost surely identical to f
θ̂m

(x) when θ is drawn
from ρm, for the vast majority of the values of x ∈ X and all the submodels
Θm not plagued with too much overfitting (since this is by construction
the case when x ∈ {Xi : i = 1, . . . , N}). Therefore replacing θ̂m with ρm
can be expected to be a minor change in many situations. This change by
the way can be estimated in the (admittedly not so common) case when
the distribution of the patterns (Xi)

N
i=1 is known. Indeed, introducing the

pseudo distance

D(θ, θ′) =
1

N

N∑

i=1

P[fθ(Xi) 6= fθ′(Xi)
]
, θ, θ′ ∈ Θ, (1.2)

one immediately sees that R(θ′) ≤ R(θ) + D(θ, θ′), for any θ, θ′ ∈ Θ, and
therefore that

R(θ̂m) ≤ ρm(R) + ρm
[
D(·, θ̂m)

]
.

Let us notice also that in the case where Θm ⊂ Rdm , and R happens to
be convex on ∆m(θ̂m), then ρm(R) ≥ R

[∫
θρm(dθ)

]
, and we can replace

θ̂m with θ̃m =
∫
θρm(dθ), and obtain bounds for R(θ̃m). This is not a very

heavy assumption about R, in the case where we consider θ̂m ∈ arg minΘm r.
Indeed, θ̂m, and therefore ∆m(θ̂m), will be presumably close to arg minΘm R,
and requiring a function to be convex in the neighboorhood of its minima
is not a very strong assumption.

Since r(θ̂m) = ρm(r), and K(ρm, π) = − log
{
π
[
∆m(θ̂m)

]}
, our unbiased

empirical upper bound in this context reads as

λ

N
[
1 − exp(− λ

N )
]
{
r(θ̂m) −

log
{
π
[
∆m(θ̂m)

]}

λ

}
.

Olivier Catoni May 28, 2006



1.2 Non local bounds 15

Let us notice that we obtain a complexity factor − log
{
π
[
∆m(θ̂m)

]}
which

may be compared with the Vapnik Cervonenkis dimension. Indeed, in the
case of binary classification, when using a classification model with VC di-
mension not greater than hm, that is when any subset of X which can be
split in any arbitrary way by some classification rule fθ of the model Θm

has at most hm points, then

{
∆m(θ) : θ ∈ Θm

}

is a partition of Θm with at most
(
eN
h

)h
components. Therefore

inf
θ∈Θm

− log
{
π
[
∆m(θ)

]}
≤ hm log

(
eN

hm

)
− log

[
π(Θm)

]
.

Thus, if the model and prior distribution are well suited to the classification
task, in the sense that there is more “room” (where room is measured with
π) between the two clusters defined by θ̂m than between other partitions of
the sample of patterns (Xi)

N
i=1, then we will have

− log
{
π
[
∆m(θ̂)

]}
≤ hm log

(
eN

hm

)
− log

[
π(Θm)

]
.

An optimal value m̂ may be selected so that

m̂ ∈ arg min
m∈M

{
inf
λ∈R+

λ

N
[
1 − exp(− λ

N )
]
(
r(θ̂m) −

log
{
π
[
∆m(θ̂m)

]}

λ

)}
.

Since ρm̂ is still another posterior distribution, we can be sure thatP{R(θ̂m̂) − ρm̂
[
D(·, θ̂m̂)

]}
≤ P[ρm̂(R)

]

≤ inf
λ∈R+

P{ λ

N
[
1 − exp(− λ

N )
]
(
r(θ̂m̂) −

log
{
π
[
∆m̂(θ̂m̂)

]}

λ

)}
.

(Taking the infimum in λ inside the expectation with respect to P would
be possible at the price of some supplementary technicalities and a slight
increase of the bound that we prefer to postpone to the discussion of devia-
tion bounds, since they are the only ones to provide a rigorous mathematical
foundation to the adaptive selection of estimators.)
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16 1 Inductive PAC-Bayesian learning

1.2.2. Optimizing explicitly the exponential parameter λ. We would like
to deal in this section with some technical issue we think helpful to the
understanding of Theorem 1.5 (see page 13): namely to investigate how
the upper bound it provides could be optimized, or at least approximately
optimized, in λ. It turns out that this can be done quite explicitely.

So we will consider in this discussion the posterior distribution ρ : Ω →
M1

+(Θ) to be fixed, and our aim will be to eliminate the constant λ from
the bound by choosing its value in some nearly optimal way as a function ofP[ρ(r)], the average of the empirical risk, and of P[K(ρ, π)

]
, which controls

overfitting.
Let the bound be written as

ϕ(λ) =
[
1 − exp(− λ

N )
]−1

{
1 − exp

[
− λ
NP[ρ(r)]−N−1P[K(ρ, π)

]]}
.

We see that

N
∂

∂λ
log
[
ϕ(λ)

]
=

P[ρ(r)]
exp
[
λ
NP[ρ(r)]+N−1P[K(ρ, π)

]]
− 1

−
1

exp( λN ) − 1
.

Thus, the optimal value for λ is such that

[
exp( λN ) − 1

]P[ρ(r)] = exp
[
λ
NP[ρ(r)]+N−1P[K(ρ, π)

]]
− 1.

Assuming that 1 ≫ λ
NP[ρ(r)] ≫ P[K(ρ,π)]

N , and keeping only higher order
terms, we are led to choose

λ =

√
2NP[K(ρ, π)

]P[ρ(r)]{1 − P[ρ(r)]} ,
obtaining

Theorem 1.6. For any posterior distribution ρ : Ω → M1
+(Θ),P[ρ(R)

]
≤

1 − exp
{
−
√

2P[K(ρ,π)]P[ρ(r)]
N{1−P[ρ(r)]} − P[K(ρ,π)]

N

}

1 − exp
{
−
√

2P[K(ρ,π)]
NP[ρ(r)]{1−P[ρ(r)]}

} .

This result of course is not very useful in itself, since none of the two quan-
tities P[ρ(r)] and P[K(ρ, π)

]
are easy to evaluate. Anyhow it gives a hint

that replacing them boldly with ρ(r) and K(ρ, π) could produce something
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1.2 Non local bounds 17

close to a legitimate empirical upper bound for ρ(R). We will see in the
subsection about deviation bounds that this is indeed essentially true.

Let us remark that in the second section of these notes, we will see another
way of bounding

inf
λ∈R+

Φ−1
λ
N

(
q +

d

λ

)
, leading to

Theorem 1.7. For any prior distribution π ∈ M1
+(Θ), for any posterior

distribution ρ : Ω → M1
+(Θ),P[ρ(R)

]
≤

(
1 +

2P[K(ρ, π)
]

N

)−1{P[ρ(r)]+
P[K(ρ, π)

]

N

+

√
2P[K(ρ, π)

]P[ρ(r)]{1 − P[ρ(r)]}
N

+
P[K(ρ, π)

]2

N2

}
,

as soon as P[ρ(r)]+

√P[K(ρ, π)
]

2N
≤

1

2
,

and P[ρ(R)
]
≤ P[ρ(r)]+

√P[K(ρ, π)
]

2N
otherwise.

This theorem enlightens the influence of three terms on the average expected
risk :

• the average empirical risk, P[ρ(r)], which as a rule will decrease as the
size of the classification model increases, acts as a bias term, grasping the
ability of the model to account for the observed sample itself;

• a variance term P[ρ(r)]{1−P[ρ(r)]} is due to the random fluctuations
of ρ(r);

• a complexity term P[K(ρ, π)
]
, which as a rule will increase with the size

of the classification model, eventually acts as a multiplier of the variance
term.

We observed numerically that the bound provided by Theorem 1.6 is
better than the more classical Vapnik’s like bound of Theorem 1.7. For
instance, when N = 1000, P[ρ(r)] = 0.2 and P[K(ρ, π)

]
= 10, Theorem 1.6

gives a bound lower than 0.2604, whereas the more classical Vapnik’s like
approximation of Theorem 1.7 gives a bound larger than 0.2622. Numerical
simulations tend to suggest the two bounds are always ordered in the same
way, although this could be a little teadious to prove mathematically.
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18 1 Inductive PAC-Bayesian learning

1.2.3. Non random bounds. It is time now to come to less tentative results
and see how far is the average expected error rate P[ρ(R)

]
from its best

possible value infΘR.
Let us notice first that

λρ(r) + K(ρ, π) = K(ρ, πexp(−λr)) − log
{
π
[
exp(−λr)

]}
.

Let us remark moreover that r 7→ log
[
π
[
exp(−λr)

]]
is a convex functional,

a property which can be used in the following way:P{log
[
π
[
exp(−λr)

]]}
= P{ sup

ρ∈M1
+(Θ)

−λρ(r) − K(ρ, π)
}

≥ sup
ρ∈M1

+(Θ)

P{−λρ(r) − K(ρ, π)
}

= sup
ρ∈M1

+(Θ)

−λρ(R) − K(ρ, π)

= log
{
π
[
exp(−λR)

]}
= −

∫ λ

0
πexp(−βR)(R)dβ. (1.3)

These remarks applied to Theorem 1.5 lead to

Theorem 1.8. For any posterior distribution ρ : Ω → M1
+(Θ), for any

positive parameter λ,P[ρ(R)
]
≤

1 − exp
{
− 1
N

∫ λ
0 πexp(−βR)(R)dβ − 1

NP[K(ρ, πexp(−λr))
]}

1 − exp(− λ
N )

≤
1

N
[
1 − exp(− λ

N )
]
{∫ λ

0
πexp(−βR)(R)dβ + P[K(ρ, πexp(−λr))

]}
.

This theorem is particularly well fitted for the case of the Gibbs poste-
rior distribution ρ = πexp(−λr), where the entropy factor cancels and whereP[πexp(−λr)(R)

]
is shown to be bound to get close to infΘR when N goes

to ∞, as soon as λ/N goes to 0 while λ goes to +∞.
We can elaborate on Theorem 1.8 and define a notion of dimension of

(Θ, R), with margin η ≥ 0 putting

dη(Θ, R) = sup
β∈R+

β
[
πexp(−βR)(R) − ess inf

π
R− η

]

≤ − log
{
π
[
R ≤ ess inf

π
R+ η

]}
. (1.4)

This last inequality can be established by the chain of inequalities:
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βπexp(−βR)(R) ≤

∫ β

0
πexp(−γR)(R)dγ = − log

{
π
[
exp(−βR)

]}

≤ β
(
ess inf

π
R+ η

)
− log

[
π
(
R ≤ ess inf

π
R+ η

)]
,

where we have used successively the fact that λ 7→ πexp(−λR)(R) is decreasing
(because it is the derivative of the concave function λ 7→ − log

{
π
[
exp(−λR)

]}
)

and the fact that the exponential function takes positive values.
In typical “parametric” situations d0(Θ, R) will be finite, and in all cir-

cumstances dη(Θ, R) will be finite for any η > 0 (this is a direct consequence
of the definition of the essential infimum). Using this notion of dimension,
we see that
∫ λ

0
πexp(−βR)(R)dβ ≤ λ

(
ess inf

π
R+ η

)

+

∫ λ

0

[
dη
β

∧ (1 − ess inf
π
R− η)

]
dβ

= λ
(
ess inf

π
R+ η

)
+ dη(Θ, R) log

[
eλ

dη(Θ, R)

(
1 − ess inf

π
R− η

)]
.

This leads to

Corollary 1.9 With the above notations, for any margin η ∈ R+, for any
posterior distibution ρ : Ω → M1

+(Θ),P[ρ(R)
]
≤ inf

λ∈R+

Φ−1
λ
N

[
ess inf

π
R+ η +

dη
λ

log

(
eλ

dη

)
+
P{K[ρ, πexp(−λr)

]}

λ

]
.

If one is wanting a posterior distribution with a small support, the theorem
can also be applied to the case when ρ is obtained by truncating πexp(−λr)

to some level set to reduce its support: let Θp = {θ ∈ Θ : r(θ) ≤ p}, and let
us define for any q ∈)0, 1) the level pq = inf{p : πexp(−λr)(Θp) ≥ q}, let us
then define ρq by its density

dρq
dπexp(−λr)

(θ) =
1(θ ∈ Θpq)

πexp(−λr)(Θpq)
,

then ρ0 = πexp(−λr) and for any q ∈ (0, 1(,P[ρq(R)
]
≤

1 − exp
{
− 1
N

∫ λ
0 πexp(−βR)(R)dβ − log(q)

N

}

1 − exp(− λ
N )

≤
1

N
[
1 − exp(− λ

N )
]
{∫ λ

0
πexp(−βR)(R)dβ − log(q)

}
.
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1.2.4. Deviation bounds. They provide results holding under the distribu-
tion P of the sample with probability at least 1− ǫ, for any given confidence
level, set by the choice of ǫ ∈)0, 1(. Using them is the only way to be quite
(i.e. with probability 1 − ǫ) sure to do the right thing, although this right
thing may be overpessimistic, since deviation upper bounds are larger than
corresponding non biased bounds.

Starting again from Theorem 1.4, and using Markov’s inequalityP[exp(h) ≥ 1
]
≤ P[exp(h)

]
, we obtain

Theorem 1.10. For any positive parameter λ, with P probability at least
1 − ǫ, for any posterior distribution ρ : Ω → M1

+(Θ),

ρ(R) ≤ Φ−1
λ
N

{
ρ(r) +

K(ρ, π) − log(ǫ)

λ

}

=

1 − exp

{
−
λρ(r)

N
−

K(ρ, π) − log(ǫ)

N

}

1 − exp
(
− λ
N

)

≤
λ

N
[
1 − exp

(
− λ
N

)]
[
ρ(r) +

K(ρ, π) − log(ǫ)

λ

]
.

We see that for a fixed value of the parameter λ, the upper bound is
optimized when the posterior is chosen to be the Gibbs distribution ρ =
πexp(−λr).

Moreover we would like to be entitled to optimize the bound in λ. Gaining
the required uniformity in λ can be done in the following way. Let us notice
first that values of λ less than 1 are not interesting (because they provide
a bound larger than one, at least as soon as ǫ ≤ exp(−1)). Let us consider
some real parameter α > 1, and the set Λ = {αk; k ∈ N}. Let us put on
this set the probability measure ν(αk) = [(k + 1)(k + 2)]−1. Applying the
previous theorem to λ = αk at confidence level 1 − ǫ

(k+1)(k+2) , and using a
union bound, we see that with probability at least 1 − ǫ, for any posterior
distribution ρ,

ρ(R) ≤ inf
λ′∈Λ

Φ−1
λ′

N



ρ(r) +

K(ρ, π) − log(ǫ) + 2 log
[

log(α2λ′)
log(α)

]

λ′



 .

Now we can remark that for any λ ∈ (1,+∞(, there is λ′ ∈ Λ such that
α−1λ ≤ λ′ ≤ λ. Moreover, for any q ∈ (0, 1), β 7→ Φ−1

β (q) is increasing onR+. Thus with probability at least 1 − ǫ, for any posterior distribution ρ,

ρ(R) ≤ inf
λ∈(1,∞(

Φ−1
λ
N

{
ρ(r) +

α

λ

[
K(ρ, π) − log(ǫ) + 2 log

(
log(α2λ)
log(α)

)]}
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= inf
λ∈(1,∞(

1 − exp
{
− λ
N ρ(r) −

α
N

[
K(ρ, π) − log(ǫ) + 2 log

(
log(α2λ)
log(α)

)]}

1 − exp(− λ
N )

.

Taking the approximately optimal value

λ =

√
2Nα [K(ρ, π) − log(ǫ)]

ρ(r)[1 − ρ(r)]
,

we obtain

Theorem 1.11. With probability 1 − ǫ, for any posterior distribution ρ :
Ω → M1

+(Θ), putting d(ρ, ǫ) = K(ρ, π) − log(ǫ),

ρ(R) ≤ inf
k∈N 1 − exp

{
−
αk

N
ρ(r) −

1

N

[
d(ρ, ǫ) + log

[
(k + 1)(k + 2)

]]}

1 − exp

(
−
αk

N

)

≤

1 − exp

{
−

√
2αρ(r)d(ρ, ǫ)

N [1 − ρ(r)]
−
α

N

[
d(ρ, ǫ) + 2 log

(
log
(
α2
√

2Nαd(ρ,ǫ)
ρ(r)[1−ρ(r)]

)

log(α)

)]}

1 − exp

[
−

√
2αd(ρ, ǫ)

Nρ(r)[1 − ρ(r)]

] .

Moreover with probability at least 1− ǫ, for any posterior distribution ρ such
that ρ(r) = 0,

ρ(R) ≤ 1 − exp

[
−

K(ρ, π) − log(ǫ)

N

]
.

We can also elaborate on the results in an other direction by introducing
the empirical dimension

de = sup
β∈R+

β
[
πexp(−βr)(r) − ess inf

π
r
]
≤ − log

[
π
(
r = ess inf

π
r
)]
. (1.5)

(There is no need to introduce a margin in this definition, since r takes at
most N values, and therefore π

(
r = ess infπ r

)
will be strictly positive.) This

leads to

Corollary 1.12. For any positive real constant λ, with P probability at
least 1 − ǫ, for any posterior distribution ρ : Ω → M1

+(Θ),

ρ(R) ≤ Φ−1
λ
N

[
ess inf

π
r +

de
λ

log

(
eλ

de

)
+

K
[
ρ, πexp(−λr)

]
− log(ǫ)

λ

]
.
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We could then make the bound uniform in λ and optimize this parameter
in a way similar to what was done to obtain Theorem 1.11.

1.3. Local bounds. In this subsection, better bounds will be achieved
through a better choice of the prior distribution. This better prior distribu-
tion turns out to depend on the unknown sample distribution P, and some
work is required to circumvent this and obtain empirical bounds.

1.3.1. Choice of the prior. As mentioned in the introduction, if one is will-
ing to minimize the bound in expectation provided by Theorem 1.5 (page
13), one is led to consider the optimal choice π = P(ρ). However, this is
but an ideal choice, since P is in all conceivable situations unknown. Nev-
ertheless it shows that it is possible through Theorem 1.5 to measure the
complexity of the classification model with P{K[ρ,P(ρ)

]}
, which is nothing

but the mutual information between the random sample (Xi, Yi)
N
i=1 and the

estimated parameter θ̂, when the sample is drawn according to P and the
estimated parameter knowing the sample is drawn according to ρ.

In practice, since we cannot choose π = P(ρ), we have to be content
with a flat prior π, resulting in a bound measuring complexity according
to P[K(ρ, π)

]
= P{K[ρ,P(ρ)

]}
+ K

[P(ρ), π
]

larger by the entropy factor
K
[P(ρ), π

]
than the optimal one (we are still commenting on Theorem 1.5).

If we want to base the choice of π on Theorem 1.8 (page 18), and if we
choose ρ = πexp(−λr) to optimize this bound, we will be inclined to choose
some π such that

1

λ

∫ λ

0
πexp(−βR)(R)dβ = −

1

λ
log
{
π
[
exp(−λR)

]}

is as far as possible close to infθ∈ΘR(θ) in all circumstances. To give some
more specific example, in the case when the distribution of the design (Xi)

N
i=1

is known, one can introduce on the parameter space Θ the metric D already
defined by equation (1.2, page 14) (or some available upper bound for this
distance). In view of the fact that R(θ)−R(θ′) ≤ D(θ, θ′), for any θ, θ′ ∈ Θ,
it can be meaningful, at least theoretically, to choose π as

π =

∞∑

k=1

1

k(k + 1)
πk,

where πk is the uniform measure on some minimal (or close to minimal)
2−k-net N(Θ,D, 2−k) of the metric space (Θ,D). With this choice
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−
1

λ
log
{
π
[
exp(−λR)

]}
≤ inf

θ∈Θ
R(θ)

+ inf
k

{
2−k +

log(|N(Θ,D, 2−k)|) + log[k(k + 1)]

λ

}
.

Another possibility, when we have to deal with real valued parameters,
meaning that Θ ⊂ Rd, is to code each real component θi ∈ R of θ = (θi)

d
i=1

to some precision and to use a prior µ which is atomic on dyadic numbers.
More precisely let us parametrize the set of dyadic real numbers as

D =

{
r
[
s,m, p, (bj)

p
j=1

]
= s2m

(
1 +

p∑

j=1

bj2
−j

)

: s ∈ {−1,+1},m ∈ Z, p ∈ N, bj ∈ {0, 1}

}
,

where, as can be seen, s codes the sign, m the order of magnitude, p
the precision and (bj)

p
j=1 the binary representation of the dyadic number

r
[
s,m, p, (bj)

p
j=1

]
. We can for instance consider on D the probability distri-

bution

µ
{
r
[
s,m, p, (bj)

p
j=1

]}
=
[
3(|m| + 1)(|m| + 2)(p + 1)(p + 2)2p

]−1
, (1.6)

and define π ∈ M1
+(Rd) as π = µ⊗d. This kind of “coding” prior distribu-

tion can be used also to define a prior on the integers (by renormalizing
the restriction of µ to integers to get a probability distribution). Using µ
is somehow equivalent to picking up a representative of each dyadic inter-
val, and makes it possible to restrict to the case when the posterior ρ is
a Dirac mass without losing too much (when Θ = (0, 1), this approach is
somewhat equivalent to considering as prior distribution the Lebesgue mea-
sure and using as posterior distributions the uniform probability measures
on dyadic intervals, with the advantage of obtaining non randomized esti-
mators). When one uses in this way an atomic prior and Dirac masses as
posterior distributions, the bounds proven so far can be obtained through a
simpler union bound argument. This is so true that some of the detractors
of the PAC-Bayesian approach (which, as a newcomer, has sometimes re-
ceived a suspicious greeting among statisticians) have argued that it cannot
bring anything that elementary union bound arguments could not essentially
provide. We do not share of course this derogatory opinion, and while we
think that allowing for non atomic priors and posteriors is worthwhile, we
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24 1 Inductive PAC-Bayesian learning

also would like to stress that next to come local and relative bounds could
hardly be obtained with the only help of union bounds.

Although the choice of a flat prior seems at first glance to be the only
alternative when nothing is known about the sample distribution P, the
previous discussion shows that this type of choice is lacking proper localisa-
tion, and namely that we loose a factor K

{P[πexp(−λr)

]
, π
}
, the divergence

between the bound-optimal prior P[πexp(−λr)

]
, which is concentrated near

the minima of R in favourable situations, and the flat prior π. Fortunately,
there are technical ways to get around this difficulty and to obtain more
local empirical bounds.

1.3.2. Unbiased local empirical bounds. The idea is to start with some flat
prior π ∈ M1

+(Θ), and the posterior distribution ρ = πexp(−λr) minimizing
the bound of Theorem 1.5 (page 13), when π is used as a prior. To im-
prove the bound, we would like to use P[πexp(−λr)

]
instead of π, and we are

going to make the guess that we could approximate it with πexp(−βR) (we
have replaced the parameter λ with some distinct parameter β to give some
more freedom to our investigation, and also because, intuitively, P[πexp(−λr)

]

may be expected to be less concentrated than each of the πexp(−λr) it is mix-
ing, which suggests that the best approximation of P[πexp(−λr)

]
by some

πexp(−βR) may be obtained for some parameter β < λ). We are then led
to look for some empirical upper bound of K

[
ρ, πexp(−βR)

]
. This is happily

provided by the following computationP{K[ρ, πexp(−βR)

]}
= P[K(ρ, π)

]
+ βP[ρ(R)

]
+ log

{
π
[
exp(−βR)

]}

= P{K[ρ, πexp(−βr)

]}
+ βP[ρ(R − r)

]

+ log
{
π
[
exp(−βR)

]}
− P{log π

[
exp(−βr)

]}
.

Using the convexity of r 7→ log
{
π
[
exp(−βr)

]}
as in equation (1.3) on page

18, we see that

0 ≤ P{K[ρ, πexp(−βR)

]}
≤ βP[ρ(R− r)

]
+ P{K[ρ, πexp(−βr)

]}
.

This inequality has an interest of its own, since it provides a lower bound
for P[ρ(R)

]
. Moreover we can plug it into Theorem 1.5 (page 13) applied

to the prior distribution πexp(−βR) and obtain for any posterior distribution
ρ and any positive paramter λ that

Φ λ
N

{P[ρ(R)
]}

≤ P{ρ(r) +
β

λ
ρ(R− r) +

1

λ
P{K

[
ρ, πexp(−βr)

]}}
.
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In view of this, it it convenient to introduce the function

Φ̃a,b(p) = (1 − b)−1
[
Φa(p) − bp

]

= −(1 − b)−1
{
a−1 log

{
1 − p

[
1 − exp(−a)

]}
+ bp

}
,

p ∈ (0, 1), a ∈)0,∞(, b ∈ (0, 1(.

This is a convex function of p, moreover

Φ̃′
a,b(0) =

{
a−1
[
1 − exp(−a)

]
− b
}
(1 − b)−1,

showing that it is an increasing one to one convex map of the unit interval
unto itself as soon as b ≤ a−1

[
1 − exp(−a)

]
. Its convexity, combined with

the value of its derivative at the origin, shows that

Φ̃a,b(p) ≥
a−1
[
1 − exp(−a)

]
− b

1 − b
p.

Using these notations and remarks, we can state

Theorem 1.13. For any positive real constants β and λ such that 0 ≤ β <
N [1 − exp(− λ

N )], for any posterior distribution ρ : Ω → M1
+(Θ),P{ρ(r) − K

[
ρ, πexp(−βr)

]

β

}
≤ P[ρ(R)

]

≤ Φ̃−1
λ
N
,β
λ

{P[ρ(r) +
K
[
ρ, πexp(−βr)

]

λ− β

]}

≤
λ− β

N [1 − exp(− λ
N )] − β

P[ρ(r) +
K
[
ρ, πexp(−βr)

]

λ− β

]
.

Thus (taking λ = 2β), for any β such that 0 ≤ β < N
2 ,P[ρ(R)

]
≤

1

1 − 2β
N

P{ρ(r) +
K
[
ρ, πexp(−βr)

]

β

}
.

Note that the last inequality is obtained using the fact that 1 − exp(−x) ≥

x− x2

2 , x ∈ R+.

Corollary 1.14. For any β ∈ (0, N(,
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26 1 Inductive PAC-Bayesian learningP[πexp(−βr)(r)
]
≤ P[πexp(−βr)(R)

]

≤ inf
λ∈(−N log(1− β

N
),∞(

λ− β

N [1 − exp(− λ
N )] − β

P[πexp(−βr)(r)
]

≤
1

1 − 2β
N

P[πexp(−βr)(r)
]
,

the last inequality holding only when β < N
2 .

It is interesting to compare the upper bound provided by this corollary
with Theorem 1.5 on page 13 when the posterior is a Gibbs measure ρ =
πexp(−βr). We see that we have succeeded to get rid of the entropy term
K
[
πexp(−βr), π

]
, but at the price of an increase of the multiplicative factor,

which for small values of β
N grows from (1− β

2N )−1 (when we take λ = β in

Theorem 1.5), to (1− 2β
N )−1. Therefore non localized bounds have an interest

of their own, and are superseded by localized bounds only in favourable
circumstances (presumably when the sample is large enough when compared
with the complexity of the classification model).

Corollary 1.14 shows that when 2β
N is small, πexp(−βr)(r) is a tight approx-

imation of πexp(−βr)(R) in the mean (since we have an upper bound and a
lower bound which are close together).

Another corollary is obtained by optimizing the bound given by Theorem
1.13 in ρ, which is done by taking ρ = πexp(−λr).

Corollary 1.15. For any positive real constants β and λ such that 0 ≤
β < N [1 − exp(− λ

N )],P[πexp(−λr)(R)
]
≤ Φ̃−1

λ
N
,β
λ

{P[ 1

λ− β

∫ λ

β
πexp(−γr)(r)dγ

]}

≤
1

N [1 − exp(− λ
N )] − β

P[ ∫ λ

β
πexp(−γr)(r)dγ

]
.

Although this inequality gives by construction a better upper bound for
infλ∈R+ P[πexp(−λr)(R)

]
than Corollary 1.14, it is not easy to tell which one

of the two inequalities is the best to bound P[πexp(−λr)(R)
]

for a fixed (and
possibly suboptimal) value of λ, because in this case, one factor is improved
while the other is worsened.

Using the empirical dimension de defined by equation (1.5) on page 21,
we see that

1

λ− β

∫ λ

β
πexp(−γr)(r)dγ ≤ ess inf

π
r + de log

(
λ

β

)
.
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Therefore, in the case when we keep the ratio λ
β bounded, we get a better

dependence on the empirical dimension de than in Corollary 1.12 (page 21).

1.3.3. Non random local bounds. Let us come now to the localization of the
non random upper bound given by Theorem 1.8 on page 18. According to
Theorem 1.5 (page 13) applied to the localized prior πexp(−βR),

λΦ λ
N

{P[ρ(R)
]}

≤ P{λρ(r) + K(ρ, π) + βρ(R)
}

+ log
{
π
[
exp(−βR)

]}

= P{K
[
ρ, πexp(−λr)

]
− log

{
π
[
exp(−λr)

]}
+ βρ(R)

}
+ log

{
π
[
exp(−βR)

]}

≤ P{K
[
ρ, πexp(−λr)

]
+βρ(R)

}
−log

{
π
[
exp(−λR)

]}
+log

{
π
[
exp(−βR)

]}
,

where we have used as previously inequality (1.3) (page 18). This proves

Theorem 1.16. For any posterior distribution ρ : Ω → M1
+(Θ), for any

real parameters β and λ such that 0 ≤ β < N
[
1 − exp(− λ

N )
]
,P[ρ(R)

]
≤ Φ̃−1

λ
N
,β
λ

{
1

λ− β

∫ λ

β
πexp(−γR)(R)dγ + P[K

[
ρ, πexp(−λr)

]

λ− β

]}

≤
1

N
[
1 − exp(− λ

N )
]
− β

{∫ λ

β
πexp(−γR)(R)dγ + P{K

[
ρ, πexp(−λr)

]}}
.

Let us notice in particular that this theorem contains Theorem 1.8 (page
18) which corresponds to the case β = 0. As a corollary, we see also, taking
ρ = πexp(−λr) and λ = 2β, and noticing that γ 7→ πexp(−γR)(R) is decreasing,
thatP[πexp(−λr)(R)

]
≤ inf

β,β<N [1−exp(− λ
N

)]

β

N
[
1 − exp(− λ

N )
]
− β

πexp(−βR)(R)

≤
1

1 − λ
N

πexp(−λ
2
R)(R).

We can use this inequality in conjunction with the notion of dimension with
margin η introduced by equation (1.4) on page 18, to see that the Gibbs
posterior achieves for a proper choice of λ and any margin parameter η ≥ 0
(which can be chosen to be equal to zero in parametric situations)

inf
λ
P[πexp(−λr)(R)

]
≤ ess inf

π
R+ η +

4dη
N
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+ 2

√
2dη
(
ess infπ R+ η

)

N
+

4d2
η

N2
. (1.7)

Deviation bounds to come next will show that the optimal λ can be esti-
mated from empirical data.

Let us propose a little numerical example as an illustration : assuming
that d0 = 10, N = 1000 and ess infπ R = 0.2, we obtain from equation (1.7)
that infλP[πexp(−λr)(R)

]
≤ 0.373.

1.3.4. Local deviation bounds. When it comes to deviation bounds, we will
for technical reasons choose a slightly more involved change of prior distri-
bution and apply Theorem 1.10 (page 20) to the prior πexp[−βΦ

−
β
N

◦R]. The

advantage of tweaking R with the nonlinear function Φ
− β

N
will appear in

the search for an empirical upper bound of the local entropy term. Theorem
1.4 (page 11), used with the above mentioned local prior, shows thatP{ sup

ρ∈M1
+(Θ)

λ
{
ρ
(
Φ λ

N
◦R
)
− ρ(r)

}
− K

[
ρ, πexp(−βΦ

−
β
N

◦R)

]
}

≤ 1. (1.8)

Moreover

K
[
ρ, πexp[−βΦ

−
β
N

◦R]

]
= K

[
ρ, πexp(−βr)

]
+ βρ

[
Φ
− β

N
◦R− r

]

+ log
{
π
[
exp
(
−βΦ

− β
N
◦R
)]}

− log
{
π
[
exp(−βr)

]}
, (1.9)

which is an invitation to find an upper bound for log
{
π
[
exp
[
−βΦ− λ

N
◦R
]]}

−

log
{
π
[
exp(−βr)

]}
. Let us call for short π our localized prior distribution,

thus defined as

dπ

dπ
(θ) =

exp
{
−βΦ

− β
N

[
R(θ)

]}

π
{
exp
[
−βΦ

− β
N
◦R
]} .

Applying once again Theorem 1.4 (page 11), but this time to −β, we see
thatP{exp

[
log
{
π
[
exp
(
−βΦ

− β
N
◦R
)]}

− log
{
π
[
exp(−βr)

]}]}

= P{exp

[
log
{
π
[
exp
(
−βΦ

− β
N
◦R)

)]}
+ inf
ρ∈M1

+(Θ)
βρ(r) + K(ρ, π)

]}
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≤ P{exp

[
log
{
π
[
exp
(
−βΦ

− β
N
◦R)

)]}
+ βπ(r) + K(π, π)

]}

= P{exp

[
β
[
π(r) − π

(
Φ
− β

N
◦R
)]

− K(π, π)

]}
≤ 1. (1.10)

Combining equations (1.9) and (1.10) and using the concavity of Φ
− β

N
, we

see that with P probability at least 1 − ǫ, for any posterior distribution
ρ : Ω → M1

+(Θ),

0 ≤ K(ρ, π) ≤ K
[
ρ, πexp(−βr)

]
+ β

[
Φ
− β

N

[
ρ(R)

]
− ρ(r)

]
− log(ǫ).

We have proved a lower deviation bound:

Theorem 1.17 For any positive real constant β, with P probability at least
1 − ǫ, for any posterior distribution ρ : Ω → M1

+(Θ),

exp

{
β

N

[
ρ(r) −

K[ρ, πexp(−βr)] − log(ǫ)

β

]}
− 1

exp
( β
N

)
− 1

≤ ρ(R).

Let us now seek for an upper bound. Using the Cauchy-Schwarz inequality
to combine equations (1.8) and (1.10), we obtainP{exp

[
1

2
sup

ρ∈M1
+(Θ)

λρ
(
Φ λ

N
◦R
)
−βρ

(
Φ
− β

N
◦R
)
−(λ−β)ρ(r)−K

[
ρ, πexp(−βr)

]]}

= P{exp

[
1
2 sup
ρ∈M1

+(Θ)

(
λ
{
ρ
(
Φ λ

N
◦R
)
− ρ(r)

}
− K(ρ, π)

)]

× exp

[
1
2

(
log
{
π
[
exp
(
−βΦ

− β
N
◦R
)]}

− log
{
π
[
exp(−βr)

]})]}

≤ P{exp

[
sup

ρ∈M1
+(Θ)

(
λ
{
ρ
(
Φ λ

N
◦R
)
− ρ(r)

}
− K(ρ, π)

)]}1/2

× P{exp

[(
log
{
π
[
exp
(
−βΦ

− β
N
◦R
)]}

− log
{
π
[
exp(−βr)

]})]}1/2

≤ 1.

(1.11)

Thus with P probability at least 1 − ǫ, for any posterior distribution ρ,

λΦ λ
N

[
ρ(R)

]
− βΦ

− β
N

[
ρ(R)

]
≤ (λ− β)ρ(r) + K(ρ, πexp(−βr)) − 2 log(ǫ).
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30 1 Inductive PAC-Bayesian learning

(It would have been more straightforward to use a union bound on devi-
ation inequalities instead of the Cauchy-Schwarz inequality on exponential
moments, anyhow, this would have led to replace −2 log(ǫ) with the worse
factor 2 log(2

ǫ ).) Let us now remind that

λΦ λ
N

(p) − βΦ
− β

N
(p) = −N log

{
1 −

[
1 − exp

(
− λ
N

)]
p
}

−N log
{

1 +
[
exp
( β
N

)
− 1
]
p
}
,

and let us put

B = (λ− β)ρ(r) + K
[
ρ, πexp(−βr)

]
− 2 log(ǫ)

= K
[
ρ, πexp(−λr)

]
+

∫ λ

β
πexp(−ξr)(r)dξ − 2 log(ǫ).

Let us consider moreover the change of variables α = 1 − exp(− λ
N ) and

γ = exp( βN ) − 1.
We obtain

[
1 − αρ(R)

][
1 + γρ(R)

]
≥ exp(−B

N ), leading to

Theorem 1.18. For any positive constants α, γ, such that 0 ≤ γ < α < 1,
with P probability at least 1 − ǫ, for any posterior distribution ρ : Ω →
M1

+(Θ), the bound

M(ρ) = −
log
[
(1 − α)(1 + γ)

]

α− γ
ρ(r) +

K(ρ, πexp[−N log(1+γ)r]) − 2 log(ǫ)

N(α− γ)

=

K
[
ρ, πexp[N log(1−α)r]

]
+

∫ −N log(1−α)

N log(1+γ)
πexp(−ξr)(r)dξ − 2 log(ǫ)

N(α− γ)
,

is such that

ρ(R) ≤
α− γ

2αγ

(√
1 +

4αγ

(α− γ)2
{
1 − exp

[
−(α− γ)M(ρ)

]}
− 1

)
≤M(ρ),

Using the empirical dimension de defined by equation (1.5) on page 21, we
can use the inequality

∫ λ

β
πexp(−ξr)(r)dξ ≤ (λ− β) ess inf

π
r + de log

(
λ

β

)
,
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to prove that

M(ρ) ≤
log
[
(1 + γ)(1 − α)

]

γ − α
ess inf

π
r

+
de log

[
− log(1−α)
log(1+γ)

]
+ K

[
ρ, πexp[N log(1−α)r]

]
− 2 log(ǫ)

N(α− γ)
.

Let us give a little numerical illustration : assuming that de = 10 and N =
1000, taking ǫ = 0.01, α = 0.5 and γ = 0.1, we obtain from Theorem 1.18
πexp[N log(1−α)r](R) ≃ πexp(−693r)(R) ≤ 0.332 ≤ 0.372, where we have given
respectively the non linear and the linear bound. This shows the practical
interest of keeping the non-linearity. Let us also mention that optimizing
the values of the parameters α and γ would not have yielded a significantly
lower bound.

The following corollary is obtained by taking λ = 2β and keeping only
the linear bound, we give it for the sake of its simplicity:

Corollary 1.19. For any positive real constant β such that exp( βN ) +

exp(−2β
N ) < 2, which is the case when β < 0.48N , with P probability at least

1 − ǫ, for any posterior distribution ρ : Ω → M1
+(Θ),

ρ(R) ≤
βρ(r) + K

[
ρ, πexp(−βr)

]
− 2 log(ǫ)

N
[
2 − exp

( β
N

)
− exp

(
−2β
N

)]

=

∫ 2β
β πexp(−ξr)(r)dξ + K

[
ρ, πexp(−2βr)

]
− 2 log(ǫ)

N
[
2 − exp( βN ) − exp(−2β

N )
] .

Let us mention that this corollary applied to the above numerical example
gives πexp(−200r)(R) ≤ 0.475 (when we take β = 100, consistently with the
choice γ = 0.1).

1.3.5. Partially local bounds. Local bounds are suitable when the lowest
values of the empirical error rate r are reached only on a small part of the
parameter set Θ. When Θ is the disjoint union of submodels of different
complexities, the minimum of r will as a rule not be “localized” in a way
that calls for the use of local bounds. Just think for instance of the case
when Θ =

⊔M
m=1 Θm, where the sets Θ1 ⊂ Θ2 ⊂ · · · ⊂ ΘM are nested.

In this case we will have infΘ1 r ≥ infΘ2 r ≥ · · · ≥ infΘM
r, although ΘM

may be too large to be the right model to use. In this situation, we do not
want to localize the bound completely. Let us make a more specific fancyful

May 28, 2006 Olivier Catoni



32 1 Inductive PAC-Bayesian learning

but typical pseudo computation. Just imagine we have a countable collection
(Θm)m∈M of submodels. Let us assume we are interested in choosing between
the estimators θ̂m ∈ arg minΘm r, maybe randomizing them (e.g. replacing
them with πmexp(−λr)). Let us imagine moreover that we are in a typically

parametric situation, where, for some priors πm ∈ M1
+(Θm), m ∈ M , there

is a “dimension” dm such that λ
[
πmexp(−λr)(r)−r(θ̂m)

]
≃ dm. Let µ ∈ M1

+(M)

be some distribution on the index set M . It is easy to see that (µπ)exp(−λr)

will typically not be properly local, in the sense that typically

(µπ)exp(−λr)(r) =
µ
{
πexp(−λr)(r)π

[
exp(−λr)

]}

µ
{
π
[
exp(−λr)

]}

≃

∑

m∈M

[
(inf
Θm

r) + dm
λ

]
exp
[
−λ(inf

Θm

r) − dm log
(
eλ
dm

)]
µ(m)

∑

m∈M

exp
[
−λ(inf

Θm

r) − dm log
(
eλ
dm

)]
µ(m)

≃

{
inf
m∈M

(inf
Θm

r) + dm
λ log

(
eλ

dmµ(m)

)}

+ log

{∑

m∈M

exp
[
−dm log( λ

dm
)
]
µ(m)

}
.

where we have used the estimate

− log
{
π
[
exp(−λr)

]}
=

∫ λ

0
πexp(−βr)(r)dβ

≃

∫ λ

0
(inf
Θm

r) +
[
dm
β ∧ 1

]
dβ ≃ λ(inf

Θm

r) + dm
[
log
(
λ
dm

)
+ 1
]
.

Our approximations have no pretention to be rigorous or very accurate,
but they nevertheless give the best order of magnitude we can expect in
typical situations, and show that this order of magnitude is not what we are
looking for: mixing different models with the help of µ spoils the localization,
introducing a multiplier log

(
λ
dm

)
to the dimension dm which is precisely

what we would have got if we had not localized at all the bound. What
we would really like to do in such situations is to use a partially localized
posterior distribution, such as µm̂exp(−λr), where m̂ is an estimator of the best
submodel to be used. While the most straightforward way to do this is to
use a union bound on results obtained for each submodel Θm, we are going
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here to show how to allow arbitrary posterior distributions on the index set
(corresponding to a randomization of the choice of m̂).

Let us consider the framework we just mentioned: let the measurable
parameter set (Θ,T) be a disjoint union of measurable submodels, Θ =⊔
m∈M Θm. Let the index set (M,M) be some measurable space (most of

the time it will be a countable set). Let µ ∈ M1
+(M) be a prior prob-

ability distribution on (M,M). Let π : M → M1
+(Θ) be a regular con-

ditional probability measure such that π(m,Θm) = 1, for any m ∈ M .
Let µπ ∈ M1

+(M × Θ) be the product probability measure defined by
µπ(h) =

∫
m∈M

(∫
θ∈Θ h(m, θ)π(m,dθ)

)
µ(dm), for any bounded measurable

function h : M × Θ → R. Let πexp(h) ∈ M+(M × Θ) be the regular condi-
tionnal probability measure defined by

dπexp(h)

dπ
(m, θ) =

exp
[
h(θ)

]

π
[
m, exp(h)

] ,

where consistently with previous notations π(m,h) =
∫
Θ h(m, θ)π(m,dθ)

(we will also often use the less explicit notation π(h)). Let for short

U(θ, ω) = λΦ λ
N

[
R(θ)

]
− βΦ

− β
N

[
R(θ)

]
− (λ− β)r(θ, ω).

Integrating with respect to µ equation (1.11) on page 29, written in each
submodel Θm using the prior distribution π(m, ·), we see thatP{exp

[
sup

ν∈M1
+(M)

sup
ρ:M→M1

+(Θ)

1

2

[
(νρ)(U)−ν

{
K(
[
ρ, πexp(−βr)

]}]
−K(ν, µ)

]}

≤ P{exp

[
sup

ν∈M1
+(M)

1

2
ν

(
sup

ρ:M→M1
+(Θ)

ρ(U) − K(ρ, πexp(−βr))

)
− K(ν, µ)

]}

= P{µ[exp
{

1
2 sup
ρ:M→M1

+(Θ)

[
ρ(U) − K

[
ρ, πexp(−βr)

]]}]}

= µ

{P[exp
{

1
2 sup
ρ:M→M1

+(Θ)

[
ρ(U) − K

[
ρ, πexp(−βr)

]]}]}
≤ 1.

This proves thatP{exp

[
1

2
sup

ν∈M1
+(M)

sup
ρ:M→M1

+(Θ)

λΦ λ
N

[
νρ(R)

]
− βΦ

− β
N

[
νρ(R)

]

− (λ− β)νρ(r) − 2K(ν, µ) − ν
{
K
[
ρ, πexp(−βr)

]}
]}

≤ 1. (1.12)
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Introducing the optimal value of r on each submodel r⋆(m) = ess infπ(m,·) r
and the empirical dimensions

de(m) = sup
ξ∈R+

ξ
[
πexp(−ξr)(m, r) − r⋆(m)

]
,

we can thus state

Theorem 1.20. For any positive real constants β < λ, with P probability
at least 1 − ǫ, for any posterior distribution ν : Ω → M1

+(M), for any
conditional posterior distribution ρ : Ω ×M → M1

+(Θ),

λΦ λ
N

[
νρ(R)

]
− βΦ

− β
N

[
νρ(R)

]
≤ B1(ν, ρ),

where B1(ν, ρ) = (λ− β)νρ(r) + 2K(ν, µ) + ν
{
K
[
ρ, πexp(−βr)

]}
− 2 log(ǫ)

= ν

[∫ λ

β
πexp(−αr)(r)dα

]
+ 2K(ν, µ) + ν

{
K
[
ρ, πexp(−λr)

]}
− 2 log(ǫ)

= 2 log

{
µ

[
exp

(
−

1

2

∫ λ

β
πexp(−αr)(r)dα

)]}

+ 2K
[
ν, µ(

π[exp(−λr)]
π[exp(−βr)]

)1/2

]
+ ν
{
K
[
ρ, πexp(−λr)

]}
− 2 log(ǫ),

and therefore B1(ν, ρ) ≤ ν
[
(λ− β)r⋆ + log

(
λ
β

)
de

]
+ 2K(ν, µ)

+ ν
{
K
[
ρ, πexp(−λr)

]}
− 2 log(ǫ),

as well as B1(ν, ρ) ≤ 2 log

{
µ

[
exp

(
−

1

2
r⋆ +

1

2
log
(
λ
β

)
de

)]}

+ 2K
[
ν, µπ[exp(−λr)]

π[exp(−βr)]

]
+ ν
{
K
[
ρ, πexp(−λr)

]
− 2 log(ǫ).

Thus, for any real constants α and γ such that 0 ≤ γ < α < 1, with P
probability at least 1− ǫ, for any posterior distribution ν : Ω → M1

+(M) and
any conditional posterior distribution ρ : Ω ×M → M1

+(Θ), the bound

B2(ν, ρ) = −
log
[
(1−α)(1+γ)

]

α−γ νρ(r) +
2K(ν,µ)+ν

{
K

[
ρ,π

(1+γ)−Nr

]}
−2 log(ǫ)

N(α−γ)

=

2K

[
ν,µ(

π[(1−α)Nr ]

π[(1+γ)−Nr ]

)1/2

]
+ν
{

K

[
ρ,π

(1−α)Nr

]}

N(α−γ)

−

2 log

{
µ

[
exp

[
− 1

2

∫
−N log(1−α)
N log(1+γ)

πexp(−ξr)(·,r)dξ
]]}

+2 log(ǫ)

N(α−γ)
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satisfies

νρ(R) ≤
α− γ

2αγ

(√
1 +

4αγ

(α− γ)2

{
1 − exp

[
−(α− γ)B(ν, ρ)

]}
− 1

)
≤ B(ν, ρ).

Let us remark that in the case when ν = µ(
π[(1−α)Nr ]

π[(1+γ)−Nr ]

)1/2 and ρ = π(1−α)Nr ,

we get as desired a bound that is adaptively local in all the Θm (at least
when M is countable and µ is atomic):

B(ν, ρ) ≤ − 2
N(α−γ) log

{
µ

{
exp

[
N
2 log

[
(1 + γ)(1 − α)

]
r⋆

− log
(
− log(1−α)
log(1+γ)

)
de
2

]}}
−

2 log(ǫ)

N(α− γ)

≤ inf
m∈M

{
−

log
[
(1−α)(1+γ)

]

α−γ r⋆(m)

+ log
(
− log(1−α)
log(1+γ)

)
de(m)
N(α−γ) − 2

log
[
ǫµ(m)

]

N(α−γ)

}
.

The penalization by the empirical dimension de(m) in each submodel is as
desired linear in de(m). Non random partially local bounds could be obtained
in a way that is easy to imagine. We leave this investigation to the reader.

1.3.6. Two step localization. We have seen that the bound optimal choice
of the posterior distribution ν on the index set in Theorem 1.20 (page 34)
is such that

dν

dµ
(m) ∼

(
π
[
exp
(
−λr(m, ·)

)]

π
[
exp
(
−βr(m, ·)

)]
) 1

2

= exp

[
−

1

2

∫ λ

β
πexp(−αr)(m, r)dα

]
.

This suggests to replace the prior distribution µ with µ defined by its density

dµ

dµ
(m) =

exp
[
−h(m)

]

µ
[
exp(−h)

] ,

where h(m) = −ξ

∫ γ

β
πexp(−αΦ

−
η
N

◦R)

[
Φ− η

N
◦R(m, ·)

]
dα. (1.13)

The use of Φ− η
N
◦R instead of R is motivated by technical reasons which will

appear in subsequent computations. Indeed, we will need to bound

ν

[∫ λ

β
πexp(−αΦ

−
η
N

◦R)

(
Φ− η

N
◦R
)
dα

]
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in order to handle K(ν, µ). In the spirit of equation (1.8, page 28), starting
back from Theorem 1.4 (page 11), applied in each submodel Θm to the prior
distribution πexp(−γΦ

−
η
N

◦R) and integrated with respect to µ, we see that

for any positive real constants λ, γ and η, with P probability at least 1− ǫ,
for any posterior distribution ν : Ω → M1

+(M) on the index set and any
conditional posterior distribution ρ : Ω ×M → M1

+(Θ),

νρ
(
λΦ λ

N
◦R − γΦ− η

N
◦R
)
≤ λνρ(r)

+ νK(ρ, π) + K(ν, µ) + ν
{
log
[
π
[
exp
(
−γΦ− η

N
◦R
)]]}

− log(ǫ). (1.14)

Since x 7→ f(x)
def
= λΦ λ

N
− γΦ− η

N
(x) is a convex function, it is such that

f(x) ≥ xf ′(0) = xN
{[

1 − exp(− λ
N )
]
+ γ

η

[
exp( ηN ) − 1

]}
.

Thus if we put

γ =
η
[
1 − exp(− λ

N )
]

exp( ηN ) − 1
, (1.15)

we obtain that f(x) ≥ 0, x ∈ R, and therefore that the left-hand side
of equation (1.14) is non negative. We can moreover introduce the prior
conditional distribution π defined by

dπ

dπ
(m, θ) =

exp
[
−βΦ− η

N
◦R(θ)

]

π
{
m, exp

[
−βΦ− η

N
◦R
]} .

With P probability at least 1 − ǫ, for any posterior distributions νΩ →
M1

+(M) and ρ : Ω ×M → M1
+(Θ),

βνρ(r) + ν
[
K(ρ, π)

]
= ν

{
K
[
ρ, πexp(−βr)

]}
− ν

[
log
{
π
[
exp(−βr)

]}]

≤ ν
{
K
[
ρ, πexp(−βr)

]}
+ βνπ(r) + ν

[
K(π, π)

]

≤ ν
{
K
[
ρ, πexp(−βr)

]}
+ βνπ

(
Φ− η

N
◦R
)

+ β
η

[
K(ν, µ) − log(ǫ)

]
+ ν
[
K(π, π)

]

= ν
{
K
[
ρ, πexp(−βr)

]}
− ν
{

log
[
π
[
exp
(
−βΦ− η

N
◦R
)]]}

+ β
η

[
K(ν, µ) − log(ǫ)

]
.

Thus, coming back to equation (1.14), we see that under condition (1.15),
with P probability at least 1 − ǫ,
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0 ≤ (λ− β)νρ(r) + ν
{
K
[
ρ, πexp(−βr)

]}

− ν

[∫ γ

β
πexp(−αΦ

−
η
N

◦R)

(
Φ− η

N
◦R
)
dα

]
+ (1 + β

η )
[
K(ν, µ) + log(2

ǫ )
]
.

Noticing moreover that

(λ− β)νρ(r) + ν
{
K
[
ρ, πexp(−βr)

]}

= ν
{
K
[
ρ, πexp(−λr)

]}
+ ν

[∫ λ

β
πexp(−αr)(r)dα

]
,

and choosing ρ = πexp(−λr), we have proved

Theorem 1.21 For any positive real constants β, γ and η, such that
γ < η

[
exp( ηN ) − 1

]−1
, defining λ by condition (1.15), so that

λ = −N log
{

1 − γ
η

[
exp( ηN ) − 1

]}
, with P probability at least 1 − ǫ, for

any posterior distribution ν : Ω → M1
+(M), any conditional posterior dis-

tribution ρ : Ω ×M → M1
+(Θ),

ν

[∫ γ

β
πexp(−αΦ

−
η
N

◦R)

(
Φ− η

N
◦R
)
dα

]

≤ ν

[∫ λ

β
πexp(−αr)(r)dα

]
+
(
1 + β

η

)[
K(ν, µ) + log

(
2
ǫ

)]
.

Let us remark that this theorem does not require that β < γ, and thus
provides both an upper and a lower bound for the quantity of interest:

Corollary 1.22 For any positive real constants β, γ and η such that
max{β, γ} < η

[
exp( ηN ) − 1

]−1
, with P probability at least 1 − ǫ, for any

posterior distributions ν : Ω → M1
+(M) and ρ : Ω ×M → M1

+(Θ),

ν

[∫ γ

−N log{1− β
N

[exp( η
N

)−1]}
πexp(−αr)(r)dα

]
−
(
1 + γ

η

)[
K(ν, µ) + log

(
3
ǫ

)]

≤ ν

[∫ γ

β
πexp(−αΦ

−
η
N

◦R)

(
Φ− η

N
◦R
)
dα

]

≤ ν

[∫ −N log{1− γ
η
[exp( η

N
)−1]}

β
πexp(−αr)(r)dα

]

+
(
1 + β

η

)[
K(ν, µ) + log

(
3
ǫ

)]
.
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We can then remember that

K(ν, µ) = ξ
(
ν − µ

)[∫ γ

β
πexp(−αΦ

−
η
N

◦R)

(
Φ− η

N
◦R
)
dα

]
+ K(ν, µ) − K(µ, µ),

to conclude that, putting

Gη(α) = −N log
{
1 −

α

η

[
exp
( η
N

) − 1
]}

≥ α, α ∈ R+, (1.16)

and

dν̂

dµ
(m)

def
=

exp
[
−h(m)

]

µ
[
exp(−h)

] where h(m) = ξ

∫ γ

Gη(β)
πexp(−αr)(m, r)dα, (1.17)

the divergence of ν with respect to the local prior µ is bounded by

[
1 − ξ

(
1 + β

η

)]
K(ν, µ)

≤ ξν

[∫ Gη(γ)

β
πexp(−αr)(r)dα

]
− ξµ

[∫ γ

Gη(β)
πexp(−αr)(r)dα

]

+ K(ν, µ) − K(µ, µ) + ξ
(
2 + β+γ

η

)
log
(

3
ǫ

)

≤ ξν

[∫ Gη(γ)

β
πexp(−αr)(r)dα

]
+ K(ν, µ)

+ log

{
µ

[
exp

(
−ξ

∫ γ

Gη(β)
πexp(−αr)(r)dα

)]}

+ ξ
(
2 + β+γ

η

)
log
(

3
ǫ

)

= K(ν, ν̂) + ξν

[(∫ Gη(β)

β
+

∫ Gη(γ)

γ

)
πexp(−αr)(r)dα

]

+ ξ
(
2 + β+γ

η

)
log
(

3
ǫ

)
.

We have proved

Theorem 1.23. For any positive constants β, γ and η such that
max{β, γ} < η

[
exp( ηN ) − 1

]−1
, with P probability at least 1 − ǫ, for any

posterior distribution ν : Ω → M1
+(M) and any conditional posterior distri-

bution ρ : Ω ×M → M1
+(Θ),

K(ν, µ) ≤
[
1 − ξ

(
1 +

β

η

)]−1
{

K(ν, ν̂)
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+ ξν

[(∫ Gη(β)

β
+

∫ Gη(γ)

γ

)
πexp(−αr)(r)dα

]

+ ξ
(
2 + β+γ

η

)
log
(

3
ǫ

)}

≤
[
1 − ξ

(
1 +

β

η

)]−1
{

K(ν, ν̂)

+ ξν

[[
Gη(γ) − γ +Gη(β) − β

]
r⋆ + log

(
Gη(β)Gη(γ)

βγ

)
de

]

+ ξ
(
2 + β+γ

η

)
log
(

3
ǫ

)}
,

where the local prior µ is defined by equation (1.13) on page 35 and the local
posterior ν̂ and the function Gη are defined by equation (1.17) above.

We can then use this theorem to give a local version of Theorem 1.20 (page
34). To get something pleasing to read, we can apply Theorem 1.23 with
constants β′, γ′ and η chosen so that 2ξ

1−ξ(1+ β′

η
)

= 1, Gη(β
′) = β and γ′ = λ,

where β and λ are the constants appearing in Theorem 1.20. This gives

Theorem 1.24. For any positive real constants β < λ and η such that
λ < η

[
exp( ηN ) − 1

]−1
, with P probability at least 1 − ǫ, for any posterior

distribution ν : Ω → M1
+(M), for any conditional posterior distribution

ρ : Ω ×M → M1
+(Θ),

λΦ λ
N

[
νρ(R)

]
− βΦ

− β
N

[
νρ(R)

]
≤ B3(ν, ρ), where

B3(ν, ρ) = ν

[∫ Gη(λ)

G−1
η (β)

πexp(−αr)(r)dα

]

+
(
3 +

G−1
η (β)
η

)
K
[
ν, µ

exp
[
−
(
3+

G−1
η (β)

η

)
−1 ∫ λ

β πexp(−αr)(r)dα
]
]

+ ν
{
K(ρ, πexp(−λr)

]}
+
(
4 +

G−1
η (β)+λ
η

)
log
(

4
ǫ

)

≤ ν
[[
Gη(λ) −G−1

η (β)
]
r⋆ + log

(
Gη(λ)

G−1
η (β)

)
de

]

+
(
3 +

G−1
η (β)
η

)
K
[
ν, µ

exp
[
−
(
3+

G−1
η (β)

η

)
−1 ∫ λ

β πexp(−αr)(r)dα
]
]

+ ν
{
K(ρ, πexp(−λr)

]}
+
(
4 +

G−1
η (β)+λ
η

)
log
(

4
ǫ

)
,

and where the function Gη is defined by equation (1.16) on page 38.
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A first remark: if we had the stamina to use Cauchy Schwarz inequalities (or
more generally Hölder inequalities) on exponential moments instead of using
weighted union bounds on deviation inequalities, we could have replaced
log(4

ǫ ) with − log(ǫ) in the above inequalities.
We see that we have achieved the desired kind of localization of Theorem

1.20 (page 34), since the new empirical entropy term
K[ν, µ

exp[−ξ
∫ λ
β πexp(−αr)(r)dα]

]

cancels for a value of the posterior distribution on the index set ν which is
of the same form as the one minimizing the bound B1(ν, ρ) of Theorem 1.20
(with a decreased constant, as could be expected). In a typical parametric
setting, we will have

∫ λ

β
πexp(−αr)(r)dα ≃ (λ− β)r⋆(m) + log

(
λ
β

)
de(m),

and therefore, if we choose for ν the Dirac mass at

m̂ ∈ arg minm∈M r⋆(m) +
log(λ

β
)

λ−β de(m),
and ρ(m, ·) = πexp(−λr)(m, ·), we will get, in the case when the index set M
is countable,

B3(ν, ρ) . max

{
[
Gη(λ) −G−1

η (β)
]
, (λ− β)

log
[

Gη(λ)

G−1
η (β)

]

log(λ
β
)

}

×
[
r⋆(m̂) +

log(λ
β
)

λ−β de(m̂)
]

+
(
3 +

G−1
η (β)
η

)
log

{
∑

m∈M

µ(m)
µ(m̂) exp

[
−
(
3 +

G−1
η (β)
η

)−1

×
{

(λ− β)
[
r⋆(m) − r⋆(m̂)

]
+ log

(
λ
β

)[
de(m) − de(m̂)

]}]
}

+
(
4 +

G−1
η (β)+λ
η

)
log
(

4
ǫ

)
.

Therefore, as long as there are not too many of them, we do not feel strongly
in this bound the models for which the penalized minimum empirical risk

r⋆(m) +
log(λ

β
)

λ−β de(m) is far from optimal.

1.4. Relative bounds. The behaviour of the minimum of the empiri-
cal process θ 7→ r(θ) is known to depend on the covariances between pairs

Olivier Catoni May 28, 2006



1.4 Relative bounds 41

[
r(θ), r(θ′)

]
, θ, θ′ ∈ Θ. Accordingly, our previous study, based on the analy-

sis of the variance of r(θ) (or technically on some exponential moment play-
ing quite the same role), is missing some accuracy in some circumstances
(namely when infΘR is not close enough to zero). In this subsection, in-
stead of bounding the expected risk ρ(R), we are going to upper bound the
difference ρ(R) − infΘR, and more generally ρ(R) − R(θ̃), where θ̃ ∈ Θ is
some fixed parameter value. Eventually in the next subsection we will an-
alyze ρ(R) − πexp(−βR)(R), allowing to compare the expected error rate of
a posterior distribution ρ with the error rate of a Gibbs prior distribution.
Thus relative bounds are not exactly of the same nature as previous ones:
although it is not possible to estimate ρ(R) with an order of precision higher
than (ρ(R)/N)1/2, it is still possible in some situations to reach a better pre-
cision for ρ(R)− infΘR, as we will see. The study of PAC-Bayesian relative
bounds stems from the second and third part of J. Y. Audibert’s dissertation
[3].

We will suggest two different kinds of applications of these bounds. The
first more obvious one is to upper bound ρ(R)− infΘR to get an idea of the
performance of the posterior distribution ρ.

The second application is to compare the classification model indexed
by Θ with a submodel indexed by one of its measurable subsets Θ1 ⊂ Θ.
For this purpose we are going to compare ρ(R), where ρ : Ω → M1

+(Θ)

is any posterior distribution, with R(θ̃), where θ̃ ∈ Θ1 is some possibly
unobservable value of the parameter in the submodel defined by Θ1. We
will typically consider the case when θ̃ ∈ arg minΘ1 R. In this special case, a

negative bound for ρ(R)−R(θ̃) = ρ(R)−infΘ1 R indicates that it is definitely
worth using a randomized estimator ρ supported by the larger parameter
set Θ instead of using only the classification model defined by the smaller
set Θ1.

1.4.1. Basic inequalities. Relative bounds in this section are based on the

control of r(θ) − r(θ̃), where θ, θ̃ ∈ Θ. These differences are related to the
random variables

ψi(θ, θ̃) = σi(θ) − σi(θ̃) = 1[fθ(Xi) 6= Yi
]
− 1[f

θ̃
(Xi) 6= Yi

]
.

Some supplementary technical difficulties, as compared to the previous
sections, come from the fact that ψi(θ, θ̃) takes three values, whereas σi(θ)
takes only two. Let r′(θ, θ̃) = r(θ) − r(θ̃) and R′(θ, θ̃) = R(θ) − R(θ̃). We
have as usual from independence that
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log
{P[exp

[
−λr′(θ, θ̃)

]]}
=

N∑

i=1

log
{P[exp

[
− λ
Nψi(θ, θ̃)

]]}

≤ N log

{
1

N

N∑

i=1

P{exp
[
−
λ

N
ψi(θ, θ̃)

]}}
.

Let Ci be the distribution of ψi(θ, θ̃) under P and let C̄ = 1
N

∑N
i=1 Ci ∈

M1
+

(
{−1, 0, 1}

)
. With these notations

log
{P[exp

[
−λr′(θ, θ̃)

]]}
≤ N log

{∫
exp
(
−
λ

N
ψ
)
C̄(dψ)

}
. (1.18)

The right-hand side of this inequality is a function of C̄. On the other
hand, C̄ being a probability measure on a three point set, is defined by two
parameters, that we may take equal to

∫
ψC̄(dψ) and

∫
ψ2C̄(dψ). To this

purpose, let us introduce

M ′(θ, θ̃) =

∫
ψ2C̄(dψ) = C̄(+1) + C̄(−1) =

1

N

N∑

i=1

P[ψ2
i (θ, θ̃)

]
, θ, θ̃ ∈ Θ.

It is a pseudo distance (meaning that it is symmetric and satisfies the triangle
inequality), since it can also be written as

M ′(θ, θ̃) =
1

N

N∑

i=1

P{∣∣∣1[fθ(Xi) 6= Yi
]
− 1[f

θ̃
(Xi) 6= Yi

]∣∣∣
}
, θ, θ̃ ∈ Θ.

It is readily seen that

N log

{∫
exp

(
−
λ

N
ψ

)
C̄(dψ)

}
= −λΨ λ

N

[
R′(θ, θ̃),M ′(θ, θ̃)

]
,

where

Ψa(p,m) = −a−1 log
[
(1 −m) +

m+ p

2
exp(−a) +

m− p

2
exp(a)

]

= −a−1 log
{
1 − sinh(a)

[
p−m tanh(a2 )

]}
.

Thus plugging this equality into inequality (1.18) we see that for any real
parameter λ,

log
{P[exp

[
−λr′(θ, θ̃)

]]}
≤ −λΨ λ

N

[
R′(θ, θ̃),M ′(θ, θ̃)

]
,
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To make a link with previous works initiated by Mammen and Tsybakov
(see e.g. [28, 34]), we may consider the pseudo distance D on Θ defined on
page 14 by equation (1.2). This distance only depends on the distribution of
the patterns. It is often used to formulate margin assumptions (in the sense
of Mammen and Tsybakov). Here we are going to work rather with M ′: as
it is dominated by D in the sense that M ′(θ, θ̃) ≤ D(θ, θ̃), θ, θ̃ ∈ Θ, with
equality in the important case of binary classification, hypotheses formulated
on D induce hypotheses on M ′, and working with M ′ may only sharpen the
results when compared to working with D.

Using the same reasoning as in the previous section, we deduce

Theorem 1.25. For any real parameter λ, any θ̃ ∈ Θ,P{exp

[
sup

ρ∈M1
+(Θ)

λ
[
ρ
{
Ψ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]}
− ρ
[
r′(·, θ̃)

]]
−K(ρ, π)

]}
≤ 1.

We are now going to derive some variant of Theorem 1.25. In this theorem,
we obtain an inequality comparing one observed quantity ρ

[
r′(·, θ̃ )

]
with two

unobversed ones, ρ
[
R′(·, θ̃ )

]
and ρ

[
M ′(·, θ̃ )

]
(because of the convexity of the

function λΨ λ
N

,

λρ
{
Ψ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]}
≥ λΨ λ

N

{
ρ
[
R′(·, θ̃ )

]
, ρ
[
M ′(·, θ̃ )

]}
.)

This may be inconvenient when looking for an empirical bound for ρ
[
R′(·, θ̃)

]
,

and we are going now to seek an inequality comparing ρ
[
R′(·, θ̃ )

]
with em-

pirical quantities only. This is possible through a change of variables in the
exponential inequality. Indeed, if we consider now random variables χi(θ, θ̃),
such that

1 −
λ

N
ψi = exp

(
−
λ

N
χi

)
,

which is possible when λ
N ∈ )−1, 1( and leads to define

χi = −
N

λ
log

(
1 −

λ

N
ψi

)
,

we obtain easily following the same reasoning as previously

log

{P{exp

[ N∑

i=1

log
(
1 −

λ

N
ψi

)]}}
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≤

N∑

i=1

log
[
1 −

λ

N
P(ψi)

]
≤ N log

[
1 −

λ

N
R′(θ, θ̃ )

]
.

Let us replace for simplicity λ/N with λ. Let us also introduce the random
pseudo distance

m′(θ, θ̃) =
1

N

N∑

i=1

ψi(θ, θ̃)
2

=
1

N

N∑

i=1

∣∣∣1[fθ(Xi) 6= Yi
]
− 1[f

θ̃
(Xi) 6= Yi

]∣∣∣, θ, θ̃ ∈ Θ. (1.19)

This is the empirical counter part of M ′, since P(m′) = M ′. Let us notice
that

1

N

N∑

i=1

log
[
1 − λψi(θ, θ̃)

]
=

log(1 − λ) − log(1 + λ)

2
r′(θ, θ̃)

+
log(1 − λ) + log(1 + λ)

2
m′(θ, θ̃)

=
1

2
log

(
1 − λ

1 + λ

)
r′
(
θ, θ̃

)
+

1

2
log(1 − λ2)m′

(
θ, θ̃

)
.

With these notations, we can conveniently write the previous inequality asP{exp

[
−N log

[
1 − λR′(θ, θ̃)

]

−
N

2
log

(
1 + λ

1 − λ

)
r′
(
θ, θ̃

)
+
N

2
log
(
1 − λ2

)
m′
(
θ, θ̃

)
]}

≤ 1.

Integrating with respect to a prior probability measure π ∈ M1
+(Θ), we

obtain

Theorem 1.26. For any real parameter λ ∈ )−1, 1(, for any θ̃ ∈ Θ, for any
prior probability distribution π ∈ M1

+(Θ),P{exp

[
sup

ρ∈M1
+(Θ)

{
−Nρ

{
log
[
1 − λR′(·, θ̃ )

]}
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−
N

2
log

(
1 + λ

1 − λ

)
ρ
[
r′(·, θ̃ )

]

+
N

2
log(1 − λ2)ρ

[
m′(·, θ̃ )

]
− K(ρ, π)

}]}
≤ 1.

1.4.2. Non random bounds. Let us first deduce a non random bound from
Theorem 1.25. This theorem can be conveniently taken advantage of by
throwing the non linearity into a localized prior, considering the prior prob-
ability measure µ defined by

dµ

dπ
(θ) =

exp
{
−λΨ λ

N

[
R′(θ, θ̃ ),M ′(θ, θ̃ )

]
+ βR′(θ, θ̃ )

}

π
{
exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

}} .

Indeed, for any posterior distribution ρ : Ω → M1
+(Θ),

K(ρ, µ) = K(ρ, π) + λρ
{

Ψ λ
N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]}
− βρ

[
R′(·, θ̃ )

]

+ log
{
π
[
exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

]}]}
.

Plugging this into Theorem 1.25 and using the convexity of the exponential
function, we see that for any posterior probability distribution ρ : Ω →
M1

+(Θ),

βP{ρ[R′(·, θ̃ )
]}

≤ λP{ρ[r′(·, θ̃ )
]}

+ P[K(ρ, π)
]

+ log
{
π
[
exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

]}]}
.

We can then recall that

λρ
[
r′(·, θ̃ )

]
+ K(ρ, π) = K

[
ρ, πexp(−λr)

]
− log

{
π
[
exp
[
−λr′(·, θ̃ )

]]}
,

and notice moreover that

−P{log
{
π
[
exp
[
−λr′(·, θ̃ )

]]}}
≤ − log

{
π
[
exp
[
−λR′(·, θ̃ )

]]}
,

since R′ = P(r′) and h 7→ log
{
π
[
exp(h)

]}
is a convex functional. Putting

these two remarks together, we obtain
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Theorem 1.27. For any real positive parameter λ, for any prior distribu-
tion π ∈ M1

+(Θ), for any posterior distribution ρ : Ω → M1
+(Θ),P{ρ[R′(·, θ̃ )

]}
≤

1

β
P[K(ρ, πexp(−λr))

]

+
1

β
log
{
π
[
exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

]}]}

−
1

β
log
{
π
[
exp
[
−λR′(·, θ̃ )

]]}

≤
1

β
P[K(ρ, πexp(−λr))

]

+
1

β
log
{
π
[
exp
{
−
[
N sinh( λN ) − β

]
R′(·, θ̃ )

+ 2N sinh( λ
2N )2M ′(·, θ̃ )

}]}

−
1

β
log
{
π
[
exp
[
−λR′(·, θ̃ )

]]}
.

It may be interesting to derive some more suggestive (but slightly weaker)
bound in the important case when Θ1 = Θ and R(θ̃) = infΘR. In this case,
it is convenient to introduce the margin function

ϕ(x) = sup
θ∈Θ

M ′(θ, θ̃) − xR′(θ, θ̃), x ∈ R+. (1.20)

We see that ϕ is convex and nonnegative on R+. Using the boundM ′(θ, θ̃ ) ≤
xR′(θ, θ̃ ) + ϕ(x), we obtainP{ρ[R′(·, θ̃ )

]}
≤

1

β
P[K(ρ, πexp(−λr))

]

+
1

β
log

{
π

[
exp
{
−
{
N sinh( λN )

[
1 − x tanh( λ

2N )
]
− β

}
R′(·, θ̃ )

}]}

+
N sinh( λN ) tanh( λ

2N )

β
ϕ(x) −

1

β
log
{
π
[
exp
[
−λR′(·, θ̃ )

]]}
.

Let us make the change of variable γ = N sinh( λN )
[
1 − x tanh( λ

2N )
]
− β to

obtain

Corollary 1.28. For any real positive parameters x, γ and λ such that
x ≤ tanh( λ

2N )−1 and 0 ≤ γ < N sinh( λN )
[
1 − x tanh( λ

2N )
]
,
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1.4 Relative bounds 47P[ρ(R)
]
− inf

Θ
R ≤

{
N sinh( λN )

[
1 − x tanh( λ

2N )
]
− γ
}−1

×

{∫ λ

γ

[
πexp(−αR)(R) − inf

Θ
R
]
dα

+N sinh
(
λ
N

)
tanh

(
λ

2N

)
ϕ(x) + P[K(ρ, πexp(−λr))

]}
.

Let us remark that these results, although well suited to study Mammen
and Tsybakov’s margin assumptions, hold in the general case: introducing
the convex expected margin function ϕ is a substitute for making hypotheses
about the relations between R and D.

Using the fact that R′(θ, θ̃ ) ≥ 0, θ ∈ Θ and that ϕ(x) ≥ 0, x ∈ R+, we
can weaken and simplify even more the preceding corollary to get

Corollary 1.29. For any real parameters β, λ and x such that x ≥ 0 and
0 ≤ β < λ− x λ2

2N , for any posterior distribution ρ : Ω → M1
+(Θ),P[ρ(R)

]
≤ inf

Θ
R

+
[
λ− x λ2

2N − β
]−1
{∫ λ

β

[
πexp(−αR)(R) − inf

Θ
R
]
dα

+ P{K[ρ, πexp(−λr)

]}
+ ϕ(x)

λ2

2N

}
.

Let us apply this bound under the margin assumption first considered by
Mammen and Tsybakov [28, 34], which tells that for some real positive
constant c and some real exponent κ ≥ 1,

R′(θ, θ̃) ≥ cD(θ, θ̃)κ, θ ∈ Θ. (1.21)

In the case when κ = 1, then ϕ(c−1) = 0, proving thatP{πexp(−λr)

[
R′(·, θ̃ )

]}
≤

∫ λ
β πexp(−γR)

[
R′(·, θ̃ )

]
dγ

N sinh( λN )
[
1 − c−1 tanh( λ

2N )
]
− β

≤

∫ λ
β πexp(−γR)

[
R′(·, θ̃ )

]
dγ

λ− λ2

2cN − β
.

Taking for example λ = cN
2 , β = λ

2 = cN
4 , we obtainP[πexp(−2−1cNr)(R)

]
≤ inf R+

8

cN

∫ cN
2

cN
4

πexp(−γR)

[
R′(·, θ̃)

]
dγ

≤ inf R+ 2πexp(− cN
4
R)

[
R′(·, θ̃ )

]
.
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If moreover the behaviour of the prior distribution π is parametric meaning
that πexp(−βR)

[
R′(·, θ̃ )

]
≤ d

β , for some positive real constant d linked with
the dimension of the classification model, thenP[πexp(− cN

2
r)(R)

]
≤ inf R+

8 log(2)d

cN
≤ inf R+

5.55 d

cN
.

In the case when κ > 1,

ϕ(x) ≤ (κ− 1)κ−
κ

κ−1 (cx)−
1

κ−1 = (1 − κ−1)(κcx)−
1

κ−1 ,

thus P{πexp(−λr)

[
R′(·, θ̃ )

]}

≤

∫ λ
β πexp(−γR)

[
R′(·, θ̃ )

]
dγ + (1 − κ−1)(κcx)−

1
κ−1 λ2

2N

λ− xλ2

2N − β
.

Taking for instance β = λ
2 , x = N

2λ , and putting b = (1 − κ−1)(cκ)−
1

κ−1 , we
obtainP[πexp(−λr)(R)

]
− inf R ≤

4

λ

∫ λ

λ/2
πexp(−γR)

[
R′(·, θ̃ )

]
dγ + b

(
2λ

N

) κ
κ−1

.

In the parametric case when πexp(−γR)

[
R′(·, θ̃ )

]
≤ d

γ , we getP[πexp(−λr)(R)
]
− inf R ≤

4 log(2)d

λ
+ b

(
2λ

N

) κ
κ−1

.

Taking

λ = 2−1
[
8 log(2)d

] κ−1
2κ−1 (κc)

1
2κ−1N

κ
2κ−1 ,

we obtainP[πexp(−λr)(R)
]
− inf R ≤ (2 − κ−1)(κc)−

1
2κ−1

(
8 log(2)d

N

) κ
2κ−1

.

We see that this formula coincides with the result for κ = 1. We can thus
reduce the two cases to a single one and state

Corollary 1.30. Let us assume that for some θ̃ ∈ Θ, some positive real
constant c, some real exponent κ ≥ 1 and for any θ ∈ Θ, R(θ) ≥ R(θ̃) +
cD(θ, θ̃)κ. Let us also assume that for some positive real constant d and any
positive real parameter γ, πexp(−γR)(R) − inf R ≤ d

γ . Then
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exp
{
−2−1[8 log(2)d]

κ−1
2κ−1 (κc)

1
2κ−1N

κ
2κ−1 r

}(R)
]

≤ inf R+ (2 − κ−1)(κc)−
1

2κ−1

(
8 log(2)d

N

) κ
2κ−1

.

Let us remark that the exponent of N is this corollary is known to be the
minimax exponent under these assumptions: it is unimprovable, whatever
estimator is used in place of the Gibbs posterior shown here (at least in the
worst case compatible with the hypotheses). The interest of the corollary
is to show not only the minimax exponent in N , but also an explicit non
asymptotic bound with reasonable and simple constants. It is also clear that
we could have got slightly better constants if we had kept the full strength
of Theorem 1.27 (page 46) instead of using the weaker Corollary 1.29 (page
47).

We will prove in the following empirical bounds showing how the constant
λ can be estimated from the data instead of being chosen according to some
margin and complexity assumptions.

1.4.3. Unbiased empirical bounds. We are going to provide an empirical
counter part for the expected margin function ϕ. It will appear in empiri-
cal bounds having otherwise the same structure as the non random bound
we just proved. Anyhow, we will not launch into trying to compare the be-
haviour of our proposed empirical margin function with the expected margin
function, since the margin function involves taking a supremum which is not
straightforward to handle.

Let us start as in the previous subsection with the inequality

βP{ρ[R′(·, θ̃ )
]}

≤ P{λρ[r′(·, θ̃ )
]
+ K(ρ, π)

}

+ log
{
π
[
exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

}]}
.

We have already defined by equation (1.19) the empirical pseudo distance

m′(θ, θ̃ ) =
1

N

N∑

i=1

ψi(θ, θ̃ )2.

Recalling that P[m′(θ, θ̃ )
]

= M ′(θ, θ̃ ), and using the convexity of h 7→

log
{
π
[
exp(h)

]}
, leads to the following inequalities:
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log
{
π
[
exp
{
−λΨ λ

N

[
R′(·, θ̃ ),M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

}]}

≤ log
{
π
[
exp
{
−N sinh( λN )R′(·, θ̃ )

+N sinh( λN ) tanh( λ
2N )M ′(·, θ̃ ) + βR′(·, θ̃ )

]}]}

≤ P{log
{
π
[
exp
{
−
[
N sinh( λN ) − β

]
r′(·, θ̃ )

+N sinh( λN ) tanh( λ
2N )m′(·, θ̃ )

}]}}
.

We may moreover remark that

λρ
[
r′(·, θ̃ )

]
+ K(ρ, π) =

[
β −N sinh( λN ) + λ

]
ρ
[
r′(·, θ̃ )

]

+ K
[
ρ, πexp{−[N sinh( λ

N
)−β]r}

]

− log
{
π
[
exp
{
−
[
N sinh( λN ) − β

]
r′(·, θ̃ )

}]}
.

This ends to prove

Theorem 1.31. For any positive real parameters β and λ, for any posterior
distribution ρ : Ω → M1

+(Θ),P{ρ[R′(·, θ̃ )
]}

≤ P{[1 −
N sinh( λN ) − λ

β

]
ρ
[
r′(·, θ̃ )

]

+
K
[
ρ, πexp{−[N sinh( λ

N
)−β]r}

]

β

+ β−1 log
{
πexp{−[N sinh( λ

N
)−β]r}

[
exp
[
N sinh( λN ) tanh( λ

2N )m′(·, θ̃ )
]]}}

.

Taking β = N
2 sinh( λN ), using the fact that sinh(a) ≥ a, a ≥ 0 and expressing

tanh(a2 ) = a−1
[√

1 + sinh(a)2 − 1
]

and a = log
[√

1 + sinh(a)2 + sinh(a)
]
,

we deduce

Corollary 1.32. For any positive real constant β and any posterior dis-
tribution ρ : Ω → M1

+(Θ),P{ρ[R′(·, θ̃ )
]}

≤ P{[Nβ log
(√

1 + 4β2

N2 + 2β
N

)
− 1

]

︸ ︷︷ ︸
≤1

ρ
[
r′(·, θ̃ )

]
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+
1

β

{
K
[
ρ, πexp(−βr)

]

+ log

[
πexp(−βr)

{
exp
[
N
(√

1 + 4β2

N2 − 1
)
m′(·, θ̃ )

]}]}}
.

This theorem and its corollary are really anologous to Theorem 1.27 (page
46) and it could easily be proved that under Mammen and Tsybakov margin
assumptions, we obtain an upper bound of the same order as Corollary 1.30
(page 48). Anyhow, in order to obtain an empirical bound, we are going now
to take a supremum over all possible values of θ̃, that is over Θ1. Although
we believe that taking this supremum will not spoil the bound in cases when
overfitting remains under control, we will not try to investigate precisely if
and when this is actually true, and provide our empirical bound as such. Let
us only say that on a qualitative ground, the values of the margin function
quantify how steep is the contrast function R or its empirical counterpart r,
and that the definition of the empirical margin function is obtained by sub-

stituting P, the true sample distribution, with P =
(

1
N

∑N
i=1 δ(Xi,Yi)

)⊗N
, the

empirical sample distribution, in the definition of the expected margin func-
tion. Therefore, on qualitative grounds, it sounds like hopeless to presume
that R is steep when r is not, or in other words that a classification model
that would be unefficient at estimating a bootstrapped sample according
to our non random bound would be by some miracle efficient at estimating
the true sample distribution according to the same bound. To this extent,
we feel that our empirical bounds bring a satisfactory counterpart of our
non random bounds. Anyhow, we will also produce estimators which can
be proved to be adaptive using PAC-Bayesian tools in the next subsection,
at the price of a more sophisticated construction involving comparisons be-
tween a posterior distribution and a Gibbs prior distribution.

Let us restrict now to the important case when θ̃ ∈ arg minΘ1 R. To

obtain an observable bound, let θ̂ ∈ arg minθ∈Θ r(θ) and let us introduce
the empirical margin functions

ϕ(x) = sup
θ∈Θ

m′(θ, θ̂) − x
[
r(θ)− r(θ̂)

]
, x ∈ R+,

ϕ̃(x) = sup
θ∈Θ1

m′(θ, θ̂) − x
[
r(θ) − r(θ̂)

]
, x ∈ R+.

Using the fact that m′(θ, θ̃) ≤ m′(θ, θ̂) +m′(θ̂, θ̃), we get

Corollary 1.33. For any positive real parameters β and λ, for any pos-
terior distribution ρ : Ω → M1

+(Θ),
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]
− inf

Θ1

R ≤ P{[1 −
N sinh( λ

N
)−λ

β

][
ρ(r) − r(θ̂)

]

+
K
[
ρ, πexp{−[N sinh( λ

N
)−β]r}

]

β

+ β−1 log
{
πexp{−[N sinh( λ

N
)−β]r}

[
exp
[
N sinh

(
λ
N

)
tanh

(
λ

2N

)
m′(·, θ̂)

]]}

+β−1N sinh( λN ) tanh( λ
2N )ϕ̃

[
β

N sinh( λN ) tanh( λ
2N )

(
1 −

N sinh( λN ) − λ

β

)]}
.

Taking β = N
2 sinh( λN ), we also obtainP[ρ(R)

]
− inf

Θ1

R ≤ P{[Nβ log
(√

1 + 4β2

N2 + 2β
N

)
− 1

]

︸ ︷︷ ︸
≤1

[
ρ(r) − r(θ̂)

]

+
1

β

{
K
[
ρ, πexp(−βr)

]

+ log

[
πexp(−βr)

{
exp
[
N
(√

1 + 4β2

N2 − 1
)
m′(·, θ̂)

]}]}

+
N

β

(√
1 + 4β2

N2 − 1
)
ϕ̃

[
log
(√

1 + 4β2

N2 + 2β
N

)
− β

N
(√

1 + 4β2

N2 − 1
)

]}
.

Note that we could also use the upper boundm′(θ, θ̂) ≤ x
[
r(θ)−r(θ̂)

]
+ϕ(x)

and put α = N sinh( λN )
[
1 − x tanh( λ

2N )
]
− β, to obtain

Corollary 1.34. For any non negative real parameters x, α and λ, such
that α < N sinh( λN )

[
1− x tanh( λ

2N )
]
, for any posterior distribution ρ : Ω →

M1
+(Θ),P[ρ(R)

]
− inf

Θ1

R

≤ P{[1 −
N sinh( λN )

[
1 − x tanh( λ

2N )
]
− λ

N sinh( λN )
[
1 − x tanh( λ

2N )
]
− α

][
ρ(r) − r(θ̂)

]

+
K
[
ρ, πexp(−αr)

]

N sinh( λN )
[
1 − x tanh( λ

2N )
]
− α

+
N sinh( λN ) tanh( λ

2N )

N sinh( λN )
[
1 − x tanh( λ

2N )
]
− α
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×

[
ϕ(x) + ϕ̃

(
λ− α

N sinh( λN ) tanh( λ
2N )

)]}
.

Let us notice that in the case when Θ1 = Θ, the upper bound provided by
this corollary has the same general form as the upper bound provided by
Corollary 1.28 (page 46), with the sample distribution P replaced with the

empirical distribution of the sample P =
(

1
N

∑N
i=1 δ(Xi,Yi)

)⊗N
. Therefore,

our empirical bound can be of a larger order of magnitude than our non
random bound only in the case when our non random bound applied to the
bootstrapped sample distribution P would be of a larger order of magnitude
than when applied to the true sample distribution P. In other words, we
can say that our empirical bound is close to our non random bound in every
situation where the bootstrapped sample distribution P is not harder to
bound than the true sample distribution P. Although this does not prove
that our empirical bound is always of the same order as our non random
bound, this is a good qualitative hint that this will be the case in most
practical situations of interest, since in situations of “underfitting”, if they
exist, it is likely that the choice of the classification model is inappropriate
to the data and should be modified.

Another reassuring remark is that the empirical margin functions ϕ and
ϕ̃ behave well in the case when infΘ r = 0. Indeed in this case m′(θ, θ̂) =
r′(θ, θ̂) = r(θ), θ ∈ Θ, and thus ϕ(1) = ϕ̃(1) = 0, and

ϕ̃(x) ≤ −(x− 1) infΘ1 r, x ≥ 1.
This shows that we recover in this case the same accuracy as with non rela-
tive local empirical bounds. Thus the bound of Corollary 1.34 does not col-
lapse in presence of massive overfitting in the larger model, causing r(θ̂) = 0,
which is another hint that this may be an accurate bound in many situations.

1.4.4. Relative empirical deviation bounds. It is natural to make use of
Theorem 1.26 on page 44 to obtain empirical deviation bounds, since this
theorem provides an empirical variance term.

Theorem 1.26 is written in a way which exploits the fact that ψi takes
only the three values -1, 0 and +1. However, it will be more convenient for
the following computations to use it in its more general form, which only
makes use of the fact that ψi ∈ (−1, 1). With notations to be explained
hereafter, it can indeed also be written asP{exp

[
sup

ρ∈M1
+(Θ)

{
−Nρ

{
log
[
1 − λP (ψ)

]}
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+Nρ
{
P
[
log(1 − λψ)

]}
− K(ρ, π)

}]}
≤ 1. (1.22)

We have used the following notations in this inequality. We have put

P =
1

N

N∑

i=1

δ(Xi,Yi),

so that P is our notation for the empirical distribution of the process
(Xi, Yi)

N
i=1. Moreover we have also used

P = P(P ) =
1

N

N∑

i=1

Pi,

where it should be remembered that the joint distribution of the process
(Xi, Yi)

N
i=1 is P =

⊗N
i=1 Pi. We have considered ψ(θ, θ̃) as a function defined

on X × Y,
as ψ(θ, θ̃)(x, y) = 1[y 6= fθ(x)

]
− 1[y 6= f

θ̃
(x)
]
, (x, y) ∈ X × Y

so that it should be understood that

P (ψ) =
1

N

N∑

i=1

P[ψi(θ, θ̃)]
=

1

N

N∑

i=1

P{1[Yi 6= fθ(Xi)
]
− 1[Yi 6= f

θ̃
(Xi)

]}
= R′(θ, θ̃).

In the same way

P
[
log(1 − λψ)

]
=

1

N

N∑

i=1

log
[
1 − λψi(θ, θ̃)

]
.

Moreover integration with respect to ρ bears on the index θ, so that

ρ
{
log
[
1 − λP (ψ)

]}
=

∫

θ∈Θ
log

{
1 −

λ

N

N∑

i=1

P[ψi(θ, θ̃)]}ρ(dθ),
ρ
{
P
[
log(1 − λψ)

]}
=

∫

θ∈Θ

{
1

N

N∑

i=1

log
[
1 − λψi(θ, θ̃)

]}
ρ(dθ).

We have chosen concise notations, as we did throughout these notes, in
order to make the computations easier to follow.
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To get an alternate version of empirical relative deviation bounds, we
need to find some convenient way to localize the choice of the prior distri-
bution π in equation (1.22, page 54). Here we propose to replace π with
µ = πexp{−N log[1+βP (ψ)]}, which can also be written π

exp{−N log[1+βR′(·,θ̃)]}
.

Indeed we see that

K(ρ, µ) = Nρ
{

log
[
1 + βP (ψ)

]}
+ K(ρ, π)

+ log
{
π
[
exp
{
−N log

[
1 + βP (ψ)

]}]}
.

Moreover, we deduce from our deviation inequality applied to −ψ, that (as
long as β > −1),P{exp

[
Nµ
{
P
[
log(1 + βψ)

]}
−Nµ

{
log
[
1 + βP (ψ)

]}]}
≤ 1.

ThusP{exp

[
log
{
π
[
exp
{
−N log

[
1 + βP (ψ)

]}]}

− log
{
π
[
exp
{
−NP

[
log(1 + βψ)

]}]}]}

≤ P{exp

[
−Nµ

{
log
[
1 + βP (ψ)

]}
− K(µ, π)

+Nµ
{
P
[
log(1 + βψ)

]}
+ K(µ, π)

]}
≤ 1.

This can be used to handle K(ρ, µ), making use of the Cauchy Schwarz
inequality as followsP{exp

[
1

2

[
−N log

{(
1 − λρ

[
P (ψ)

])(
1 + βρ

[
P (ψ)

])}

+Nρ
{
P
[
log(1 − λψ)

]}

− K(ρ, π) − log
{
π
[
exp
{
−NP

[
log(1 + βψ)

]}]}]
]}

≤ P{exp

[
−N log

{(
1 − λρ

[
P (ψ)

])}

+Nρ
{
P
[
log(1 − λψ)

]}
− K(ρ, µ)

]}1/2
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× P{exp

[
log
{
π
[
exp
{
−N log

[
1 + βP (ψ)

]}]}

− log
{
π
[
exp
{
−NP

[
log(1 + βψ)

]}]}
]}1/2

≤ 1.

This implies that with P probability at least 1 − ǫ,

−N log
{(

1 − λρ
[
P (ψ)

])(
1 + βρ

[
P (ψ)

])}

≤ −Nρ
{
P
[
log(1 − λψ)

]}

+ K(ρ, π) + log
{
π
[
exp
{
−NP

[
log(1 + βψ)

]}]}
− 2 log(ǫ).

It is now convenient to remember that

P
[
log(1 − λψ)

]
=

1

2
log

(
1 − λ

1 + λ

)
r′(θ, θ̃) +

1

2
log(1 − λ2)m′(θ, θ̃).

We thus can write the previous inequality as

−N log
{(

1 − λρ
[
R′(·, θ̃)

])(
1 + βρ

[
R′(·, θ̃)

])}

≤
N

2
log

(
1 + λ

1 − λ

)
ρ
[
r′(·, θ̃)

]
−
N

2
log(1 − λ2)ρ

[
m′(·, θ̃)

]
+ K(ρ, π)

+ log

{
π

[
exp
{
−
N

2
log
(1 + β

1 − β

)
r′(·, θ̃)

−
N

2
log(1 − β2)m′(·, θ̃)

}]}
− 2 log(ǫ).

Let us assume now that θ̃ ∈ arg minΘ1 R. Let us introduce θ̂ ∈ arg minΘ r.

Decomposing r′(θ, θ̃) = r′(θ, θ̂) + r′(θ̂, θ̃) and considering that
m′(θ, θ̃) ≤ m′(θ, θ̂) +m′(θ̂, θ̃),

we see that with P probability at least 1 − ǫ, for any posterior distribution
ρ : Ω → M1

+(Θ),
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−N log
{(

1 − λρ
[
R′(·, θ̃)

])(
1 + βρ

[
R′(·, θ̃)

)}

≤
N

2
log

(
1 + λ

1 − λ

)
ρ
[
r′(·, θ̂)

]
−
N

2
log(1 − λ2)ρ

[
m′(·, θ̂)

]
+ K(ρ, π)

+ log

{
π

[
exp
{
−N

2 log
(

1+β
1−β

)[
r′(·, θ̂ )

]
− N

2 log(1 − β2)m′(·, θ̂ )
}]}

+ N
2 log

[
(1+λ)(1−β)
(1−λ)(1+β)

][
r(θ̂ ) − r(θ̃)

]

− N
2 log

[
(1 − λ2)(1 − β2)

]
m′(θ̂ , θ̃) − 2 log(ǫ).

Let us now define for simplicity the posterior ν : Ω → M1
+(Θ) by the

identity

dν

dπ
(θ) =

exp
{
−N

2 log
(

1+λ
1−λ

)
r′(θ, θ̂) + N

2 log(1 − λ2)m′(θ, θ̂)
}

π

[
exp
{
−N

2 log
(

1+λ
1−λ

)
r′(·, θ̂) + N

2 log(1 − λ2)m′(·, θ̂)
}] .

Let us also introduce the random bound

B =
1

N
log

{
ν

[
exp
[
N
2 log

[
(1+λ)(1−β)
(1−λ)(1+β)

]
r′(·, θ̂)

− N
2 log

[
(1 − λ2)(1 − β2)

]
m′(·, θ̂ )

]]}

+ sup
θ∈Θ1

1

2
log
[

(1−λ)(1+β)
(1+λ)(1−β)

]
r′(θ, θ̂ )

−
1

2
log
[
(1 − λ2)(1 − β2)

]
m′(θ, θ̂ ) −

2

N
log(ǫ).

Theorem 1.35. Using the above notations, for any real constants 0 ≤ β <
λ < 1, for any prior distribution π ∈ M1

+(Θ), for any subset Θ1 ⊂ Θ, withP probability at least 1 − ǫ, for any posterior distribution ρ : Ω → M1
+(Θ),

− log
{(

1 − λ
[
ρ(R) − inf

Θ1

R
])(

1 + β
[
ρ(R) − inf

Θ1

R
])}

≤
K(ρ, ν)

N
+B.

Therefore,
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ρ(R) − inf
Θ1

R

≤
λ− β

2λβ

(√
1 + 4

λβ

(λ− β)2

[
1 − exp

(
−B −

K(ρ, ν)

N

)]
− 1

)

≤
1

λ− β

(
B +

K(ρ, ν)

N

)
.

Let us define the posterior ν̂ by the identity

dν̂

dπ
(θ) =

exp
[
−N

2 log
(

1+β
1−β

)
r′(θ, θ̂) − N

2 log(1 − β2)m′(θ, θ̂)
]

π
{

exp
[
−N

2 log
(

1+β
1−β

)
r′(·, θ̂) − N

2 log(1 − β2)m′(·, θ̂)
]} .

It is useful to remark that

1

N
log

{
ν

[
exp
[N

2
log
((1 + λ)(1 − β)

(1 − λ)(1 + β)

)
r′(·, θ̂)

−
N

2
log
[
(1 − λ2)(1 − β2)

]
m′(·, θ̂)

]]}

≤ ν̂

{
1

2
log
((1 + λ)(1 − β)

(1 − λ)(1 + β)

)
r′(·, θ̂)

−
1

2
log
[
(1 − λ2)(1 − β2)

]
m′(·, θ̂)

}
.

Let us introduce as previously ϕ(x) = supθ∈Θm
′(θ, θ̂) − x r′(θ, θ̂), x ∈ R+.

Let us moreover consider ϕ̃(x) = supθ∈Θ1
m′(θ, θ̂)−x r′(θ, θ̂), x ∈ R+. These

functions can be used to produce a result which is slightly weaker, but maybe
easier to read and understand. Indeed, comming back a little while, we see
that, for any x ∈ R+, with P probability at least 1 − ǫ, for any posterior
distribution ρ,
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−N log
{(

1 − λρ
[
R′(·, θ̃)

])(
1 + βρ

[
R′(·, θ̃)

])}

≤
N

2
log

[
(1 + λ)

(1 − λ)(1 − λ2)x

]
ρ
[
r′(·, θ̂)

]

−
N

2
log
[
(1 − λ2)(1 − β2)

]
ϕ(x) + K(ρ, π)

+ log

{
π

[
exp
{
−N

2 log
[

(1+β)
(1−β)(1−β2)x

]
r′(·, θ̂)

}]}

−
N

2
log
[
(1 − λ2)(1 − β2)

]
ϕ̃




log
[

(1+λ)(1−β)
(1−λ)(1+β)

]

− log [(1 − λ2)(1 − β2)]




− 2 log(ǫ)

=

∫ N
2

log
[

(1+λ)

(1−λ)(1−λ2)x

]

N
2

log
[

(1+β)

(1−β)(1−β2)x

] πexp(−αr)

[
r′(·, θ̂)

]
dα

+ K(ρ, π
exp{−N

2
log[

(1+λ)

(1−λ)(1−λ2)x
]r}

) − 2 log(ǫ)

−
N

2
log
[
(1 − λ2)(1 − β2)

]

ϕ(x) + ϕ̃




log
[

(1+λ)(1−β)
(1−λ)(1+β)

]

− log[(1 − λ2)(1 − β2)]




 .

Theorem 1.36. With the previous notations, for any real constants 0 ≤
β < λ < 1, for any positive real constant x, for any prior probability distri-
bution π ∈ M1

+(Θ), for any subset Θ1 ⊂ Θ, with P probability at least 1− ǫ,
for any posterior distribution ρ : Ω → M1

+(Θ), putting

B(ρ) =
1

N(λ− β)

∫ N
2

log
[

(1+λ)

(1−λ)(1−λ2)x

]

N
2

log
[

(1+β)

(1−β)(1−β2)x

] πexp(−αr)

[
r′(·, θ̂)

]
dα

+

K(ρ, π
exp{−N

2
log[

(1+λ)

(1−λ)(1−λ2)x
]r}

) − 2 log(ǫ)

N(λ− β)

−
1

2(λ− β)
log
[
(1 − λ2)(1 − β2)

]

ϕ(x) + ϕ̃




log
[

(1+λ)(1−β)
(1−λ)(1+β)

]

− log[(1 − λ2)(1 − β2)]






≤
1

N(λ− β)
de log




log
[

(1+λ)
(1−λ)(1−λ2)x

]

log
(

(1+β)
(1−β)(1−β2)x

)
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+

K(ρ, π
exp{−N

2
log[ (1+λ)

(1−λ)(1−λ2)x
]r}

) − 2 log(ǫ)

N(λ− β)

−
1

2(λ− β)
log
[
(1−λ2)(1−β2)

]

ϕ(x) + ϕ̃




log
[

(1+λ)(1−β)
(1−λ)(1+β)

]

− log[(1 − λ2)(1 − β2)]




 ,

the following bounds hold true:

ρ(R) − inf
Θ1

R

≤
λ− β

2λβ

(√
1 +

4λβ

(λ− β)2

{
1 − exp

[
−(λ− β)B(ρ)

]}
− 1

)

≤ B(ρ).

Let us remark that this alternative way of handling relative deviation bounds
made it possible to carry on with non linear bounds up to the final result.
(For instance, if λ = 0.5, β = 0.2 and B(ρ) = 0.1, the non linear bound
gives ρ(R) − infΘ1 R ≤ 0.096.)

1.5. Bounds relative to a Gibbs distribution. The empirical bounds
of the previous section involve taking suprema in θ ∈ Θ, and replacing the
margin function ϕ by some empirical counter parts ϕ or ϕ̃, which may prove
unsafe when using very complex classification models. Moreover, they are
not easy to analyze with PAC-Bayesian tools. To remedy these weaknesses,
we are going now to propose another type of relative bounds. We will first
explain how to compare the expected error rate ρ(R) of any posterior distri-
bution ρ : Ω → M1

+(Θ) with πexp(−βR)(R), the expected risk of a Gibbs prior
distribution. We will then show how to analyze the behaviour of this bound.
This will provide an estimator proven to reach adaptively the best possi-
ble asymptotic behaviour of the error rate under Mammen and Tsybakov
margin assumptions and parametric complexity assumptions.

Then, we will provide an empirical bound for the Kullback divergence
K(ρ, πexp(−βR)) of a posterior distribution with respect to a Gibbs prior,
making use of relative deviation inequalities.

To tackle the question of model selection, we will estimate the relative
performance of one posterior distribution with respect to another, which is
useful when the two posteriors are supported by different models.

Eventually, we will propose a more integrated approach to model selec-
tion, showing how to build a two step localization strategy, in which the
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performance of the posterior distribution to be analyzed is compared with
some two step Gibbs prior.

1.5.1. Comparing a posterior distribution with a Gibbs prior. Similarly to
Theorem 1.26 we can prove that for any prior distribution π̃ ∈ M1

+(Θ),P{π̃ ⊗ π̃

{
exp

[
−N log(1 − λR′)

−
N

2
log

(
1 + λ

1 − λ

)
r′ +

N

2
log
(
1 − λ2)m′

]}}
≤ 1. (1.23)

Replacing π̃ with πexp(−βR) and considering the posterior distribution ρ ⊗
πexp(−βR), provides a starting point in the comparison of ρ with πexp(−βR);
we can indeed state with P probability at least 1 − ǫ that

−N log
{

1 − λ
[
ρ(R) − πexp(−βR)(R)

]}

≤
N

2
log

(
1 + λ

1 − λ

)[
ρ(r) − πexp(−βR)(r)

]

−
N

2
log
(
1 − λ2

)
ρ⊗ πexp(−βR)(m

′)

+ K
[
ρ, πexp(−βR)

]
− log(ǫ). (1.24)

Using the parameter γ = N
2 log

(
1+λ
1−λ

)
, so that λ = tanh

( γ
N

)
and −N

2 log(1−

λ2) = N log
[
cosh( γN )

]
, and noticing that

K
[
ρ, πexp(−βR)

]
= β

[
ρ(R) − πexp(−βR)(R)

]

+ K(ρ, π) − K
[
πexp(−βR), π

]
, (1.25)

makes a step further in the proper handling of the entropy term:

−N log
{

1 − tanh( γN )
[
ρ(R) − πexp(−βR)(R)

]}
− β

[
ρ(R) − πexp(−βR)(R)

]

≤ γ
[
ρ(r) − πexp(−βR)(r)

]
+N log

[
cosh

( γ
N

)]
ρ⊗ πexp(−βR)(m

′)

+ K(ρ, π) − K
[
πexp(−βR), π

]
− log(ǫ). (1.26)

We can then decompose in the right-hand side γ
[
ρ(r)−πexp(−βR)(r)

]
into

(γ − λ)
[
ρ(r) − πexp(−βR)(r)

]
+ λ

[
ρ(r) − πexp(−βR)(r)

]
and use the fact that
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λ
[
ρ(r) − πexp(−βR)(r)

]
+N log

[
cosh( γN )

]
ρ⊗ πexp(−βR)(m

′)

+ K(ρ, π) − K
[
πexp(−βR), π

]

≤ λρ(r) + K(ρ, π) + log
{
π
[
exp
{
−λr +N log

[
cosh( γN )

]
ρ(m′)

}]}

= K
[
ρ, πexp(−λr)

]
+ log

{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
ρ(m′)

}]}
,

to get rid of the appearance of the unobserved Gibbs prior πexp(−βR) in most
places of the right-hand side of our inequality, leading to

Theorem 1.37. For any real constants β and γ, with P probability at least
1 − ǫ, for any posterior distribution ρ : Ω → M1

+(Θ), for any real constant
λ,

[
N tanh( γN ) − β

][
ρ(R) − πexp(−βR)(R)

]

≤ −N log
{

1 − tanh( γN )
[
ρ(R) − πexp(−βR)(R)

]}

− β
[
ρ(R) − πexp(−βR)(R)

]

≤ (γ − λ)
[
ρ(r) − πexp(−βR)(r)

]
+ K

[
ρ, πexp(−λr)

]

+ log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
ρ(m′)

}]}
− log(ǫ)

= K
[
ρ, πexp(−γr)

]

+ log
{
πexp(−γr)

[
exp
{
(γ − λ)r +N log

[
cosh( γN )

]
ρ(m′)

}]}

− (γ − λ)πexp(−βR)(r) − log(ǫ).

We would like to have a fully empirical upper bound even in the case when
λ 6= γ. This can be done by using the theorem twice. We will need a lemma

Lemma 1.38 For any probability distribution π ∈ M1
+(Θ), for any bounded

measurable functions g, h : Θ → R,

πexp(−g)(g) − πexp(−h)(g) ≤ πexp(−g)(h) − πexp(−h)(h).

Proof. Let us notice that

0 ≤ K(πexp(−g), πexp(−h)) = πexp(−g)(h)+log
{
π
[
exp(−h)

]}
+K(πexp(−g), π)

= πexp(−g)(h) − πexp(−h)(h) − K(πexp(−h), π) + K(πexp(−g), π)

= πexp(−g)(h)−πexp(−h)(h)−K(πexp(−h), π)−πexp(−g)(g)−log
{
π
[
exp(−g)

]}
.
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Moreover

− log
{
π
[
exp(−g)

]}
≤ πexp(−h)(g) + K(πexp(−h), π),

which achieves the proof. �

For any positive real constants β and λ, we can then apply Theorem 1.37
to ρ = πexp(−λr), and use the inequality

λ

β

[
πexp(−λr)(r) − πexp(−βR)(r)

]
≤ πexp(−λr)(R) − πexp(−βR)(R) (1.27)

provided by the previous lemma. We thus obtain with P probability at least
1 − ǫ

−N log
{

1 − tanh( γN )λβ

[
πexp(−λr)(r) − πexp(−βR)(r)

]}

− γ
[
πexp(−λr)(r) − πexp(−βR)(r)

]

≤ log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}

− log(ǫ).

Let us introduce the convex function

Fγ,α(x) = −N log
[
1 − tanh( γN )x

]
− αx ≥

[
N tanh( γN ) − α

]
x.

With P probability at least 1 − ǫ,

− πexp(−βR)(r) ≤ inf
λ∈R∗

+

{
−πexp(−λr)(r)

+
β

λ
F−1

γ,βγ
λ

[
log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}

− log(ǫ)

]}
.

Since Theorem 1.37 holds uniformly for any posterior distribution ρ, we can
apply it again to some arbitrary posterior distribution ρ. We can moreover
make the result uniform in β and γ by considering some atomic measure
ν ∈ M1

+(R) on the real line and using a union bound. This leads to

Theorem 1.39. For any atomic probability distribution on the positive
real line ν ∈ M1

+(R+), with P probability at least 1 − ǫ, for any posterior
distribution ρ : Ω → M1

+(Θ), for any positive real constants β and γ,
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[
N tanh( γN ) − β

][
ρ(R) − πexp(−βR)(R)

]

≤ Fγ,β
[
ρ(R) − πexp(−βR)(R)

]
≤ B(ρ, β, γ), where

B(ρ, β, γ) = inf
λ1∈R+,λ1≤γ

λ2∈R,λ2>
βγ
N

tanh( γ
N

)−1

{
K
[
ρ, πexp(−λ1r)

]

+ (γ − λ1)
[
ρ(r) − πexp(−λ2r)(r)

]

+ log
{
πexp(−λ1r)

[
exp
{
N log

[
cosh( γN )

]
ρ(m′)

}]}
− log

[
ǫν(β)ν(γ)

]

+ (γ − λ1)
β

λ2
F−1

γ,βγ
λ2

[
log
{

πexp(−λ2r)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λ2r)(m

′)
}]}

− log
[
ǫν(β)ν(γ)

]]
}

≤ inf
λ1∈R+,λ1≤γ

λ2∈R,λ2>
βγ
N

tanh( γ
N

)−1

{
K
[
ρ, πexp(−λ1r)

]

+ (γ − λ1)
[
ρ(r) − πexp(−λ2r)(r)

]

+ log
{
πexp(−λ1r)

[
exp
{
N log

[
cosh( γN )

]
ρ(m′)

}]}

+
β

λ2

(1 − λ1
γ )

[
N
γ tanh( γN ) − β

λ2

] log
{
πexp(−λ2r)

[

exp
{
N log

[
cosh( γN )

]
πexp(−λ2r)(m

′)
}]}

−
{

1 +
β

λ2

(1−
λ1
γ

)

[ N
γ

tanh( γ
N

)− β
λ2

]

}
log
[
ǫν(β)ν(γ)

]
}
,

where we have written for short ν(β) and ν(γ) instead of ν({β}) and ν({γ}).

Let us notice that B(ρ, β, γ) = +∞ when ν(β) = 0 or ν(γ) = 0, the unifor-
mity in β and γ of the theorem therefore necessarily bears on a countable
number of values of these parameters. We can typically choose for ν distri-
butions such as the one used in Theorem 1.11 on page 21: namely we can
put for some positive real ratio α > 1

ν(αk) =
1

(k + 1)(k + 2)
, k ∈ N,

or alternatively, since we are interested in values of the parameters less than
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N , we can prefer

ν(αk) =
log(α)

log(αN)
, 0 ≤ k <

log(N)

log(α)
.

We can also use such a coding distribution on dyadic numbers as the one
defined by equation (1.6) on page 23.

1.5.2. The effective temperature of a posterior distribution. Using the para-

metric approximation πexp(−αr)(r)− infΘ r ≃
de
α , we get as an order of mag-

nitude

B(πexp(−λ1r), β, γ) . −(γ − λ1)de
[
λ−1

2 − λ−1
1

]

+ 2de log
λ1

λ1 −N log
[
cosh( γN )

]
x

+ 2
β

λ2

(1 − λ1
γ )

[
N
γ tanh( γN ) − β

λ2

]de log

(
λ2

λ2 −N log
[
cosh( γN )

]
x

)

+ 2N log
[
cosh( γN )

][
1 +

β

λ2

(1 − λ1
γ )

[
N
γ tanh( γN ) − β

λ2

]
]
ϕ̃(x)

−
{

1 +
β

λ2

(1 − λ1
γ )

[Nγ tanh( γN ) − β
λ2

]

}
log
[
ν(β)ν(γ)ǫ

]
.

Therefore, if the empirical dimension de stays bounded when N increases, we
are going to obtain a negative upper bound for any values of the constants
λ1 > λ2 > β, as soon as γ and N

γ are chosen to be large enough. This
ability to obtain negative values for the bound B(πexp(−λ1r), γ, β), and more
generally B(ρ, γ, β), leads the way to introducing the new concept of the
effective temperature of an estimator.

Definition 1.1 For any posterior distribution ρ : Ω → M1
+(Θ) we define

the effective temperature T (ρ) ∈ R ∪ {−∞,+∞} of ρ by the equation

ρ(R) = πexp(− R
T (ρ)

)(R).

Note that β 7→ πexp(−βR)(R) : R ∪ {−∞,+∞} → (0, 1) is continuous and
strictly decreasing from ess supπ R to ess infπ R (as soon as these two bounds
do not coincide). This shows that the effective temperature T (ρ) is a well
defined random variable.

Theorem 1.39 provides a bound for T (ρ), indeed:
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Proposition 1.40. Let

β̂(ρ) = sup
{
β ∈ R; inf

γ,N tanh( γ
N

)>β
B(ρ, β, γ) ≤ 0

}
,

where B(ρ, β, γ) is as in Theorem 1.39. Then with P probability at least
1 − ǫ, for any posterior distribution ρ : Ω → M1

+(Θ), T (ρ) ≤ β̂(ρ)−1, or
equivalently ρ(R) ≤ π

exp[−β̂(ρ)R]
(R).

This notion of effective temperature of a (randomized) estimator ρ is inter-
esting for two reasons:

• the difference ρ(R)−πexp(−βR)(R) can be estimated with a better accu-
racy than ρ(R) itself, due to the use of relative deviation inequalities, leading
to convergence rates up to 1/N in favourable situations, even when infΘR
is not close to zero;

• and of course πexp(−βR)(R) is a decreasing function of β, thus being able
to estimate ρ(R)−πexp(−βR)(R) with some given accuracy, means being able
to discriminate between values of ρ(R) with the same accuracy, although
doing so through the parametrization β 7→ πexp(−βR)(R), which cannot be
observed nor estimated with the same precision!

1.5.3. Analysis of an empirical bound for the effective temperature. We are
now going to launch into a mathematically rigorous analysis of the bound
B(πexp(−λ1r),β,γ) provided by Theorem 1.39, to show that
infρ∈M1

+(Θ) πexp[−β̂(ρ)R]
(R) converges indeed to infΘR at some unimprovable

rates in favourable situations.
It is more convenient for this purpose to use deviation inequalities involv-

ing M ′ rather than m′. It is straightforward to extend Theorem 1.25 on page
43 to

Theorem 1.41. For any real constants β and γ, for any prior distribution
µ ∈ M1

+(Θ), with P probability at least 1 − η, for any posterior distribution
ρ : Ω → M1

+(Θ),

γρ⊗ πexp(−βR)

[
Ψ γ

N
(R′,M ′)

]
≤ γρ⊗ πexp(−βR)(r

′) + K(ρ, µ) − log(η).

In order to transform the left-hand side into a linear expression and in the
same time to localize this theorem, let us choose µ defined by its density
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dµ

dπ
(θ1) = C−1 exp

[
−βR(θ1)

− γ

∫

Θ

{
Ψ γ

N

[
R′(θ1, θ2),M

′(θ1, θ2)
]

− N
γ sinh( γN )R′(θ1, θ2)

}
πexp(−βR)(dθ2)

]
,

where C is such that µ(Θ) = 1. We get

K(ρ, µ) = βρ(R) + γρ⊗ πexp(−βR)

[
Ψ γ

N
(R′,M ′) − N

γ sinh( γN )R′
]
+ K(ρ, π)

+ log

{∫

Θ
exp

[
−βR(θ1)

− γ

∫

Θ

{
Ψ γ

N

[
R′(θ1, θ2),M

′(θ1, θ2)
]

− N
γ sinh( γN )R′(θ1, θ2)

}
πexp(−βR)(dθ2)

]
π(dθ1)

}

= β
[
ρ(R) − πexp(−βR)(R)

]

+ γρ⊗ πexp(−βR)

[
Ψ γ

N
(R′,M ′) − N

γ sinh( γN )R′
]

+ K(ρ, π) − K(πexp(−βR), π)

+ log

{∫

Θ
exp

[
−γ

∫

Θ

{
Ψ γ

N

[
R′(θ1, θ2),M

′(θ1, θ2)
]

− N
γ sinh( γN )R′(θ1, θ2)

}
πexp(−βR)(dθ2)

]
πexp(−βR)(dθ1)

}
.

Thus with P probability at least 1 − η,

[
N sinh( γN ) − β

][
ρ(R) − πexp(−βR)(R)

]

≤ γ
[
ρ(r)−πexp(−βR)(r)

]
+K(ρ, π)−K(πexp(−βR), π)−log(η)+C(β, γ)

where C(β, γ) = log

{∫

Θ
exp

[
−γ

∫

Θ

{
Ψ γ

N

[
R′(θ1, θ2),M

′(θ1, θ2)
]

− N
γ sinh( γN )R′(θ1, θ2)

}
πexp(−βR)(dθ2)

]
πexp(−βR)(dθ1)

}
. (1.28)

Remarking that

K
[
ρ, πexp(−βR)

]
= β

[
ρ(R) − πexp(−βR)(R)

]
+ K(ρ, π) − K(πexp(−βR), π),

we deduce from the previous inequality
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Theorem 1.42. For any real constants β and γ, with P probability at least
1 − η, for any posterior distribution ρ : Ω → M1

+(Θ),

N sinh( γN )
[
ρ(R) − πexp(−βR)(R)

]
≤ γ

[
ρ(r) − πexp(−βR)(r)

]

+ K
[
ρ, πexp(−βR)

]
− log(η) + C(β, γ).

We can also go into a slightly different direction, starting back again from
equation (1.28) on page 67 and remarking that for any real constant λ,

λ
[
ρ(r) − πexp(−βR)(r)

]
+ K(ρ, π) − K(πexp(−βR), π)

≤ λρ(r) + K(ρ, π) + log
{
π
[
exp(−λr)

]}
= K

[
ρ, πexp(−λr)

]
.

This leads to

Theorem 1.43. For any real constants β and γ, with P probability at least
1 − η, for any real constant λ,

[
N sinh( γN ) − β

][
ρ(R) − πexp(−βR)(R)

]

≤ (γ − λ)
[
ρ(r) − πexp(−βR)(r)

]
+ K

[
ρ, πexp(−λr)

]
− log(η) + C(β, γ),

where the definition of C(β, γ) is given by equation (1.28) on page 67.

We can now use this inequality in the case when ρ = πexp(−λr) and com-
bine it with inequality (1.27) on page 63 to obtain

Theorem 1.44 For any real constants β and γ, with P probability at least
1 − η, for any real constant λ,

[
Nλ
β sinh( γN ) − γ

][
πexp(−λr)(r) − πexp(−βR)(r)

]
≤ C(β, γ) − log(η).

We deduce from this theorem

Proposition 1.45 For any real positive constants β1, β2 and γ, with P
probability at least 1 − η, for any real constants λ1 and λ2, such that λ2 <
β2

γ
N sinh( γN )−1 and λ1 > β1

γ
N sinh( γN )−1,

πexp(−λ1r)(r) − πexp(−λ2r)(r) ≤ πexp(−β1R)(r) − πexp(−β2R)(r)

+
C(β1, γ) + log(2/η)
Nλ1
β1

sinh( γN ) − γ
+
C(β2, γ) + log(2/η)

γ − Nλ2
β2

sinh( γN )
.
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Moreover, πexp(−β1R) and πexp(−β2R) being prior distributions, with P prob-
ability at least 1 − η,

γ
[
πexp(−β1R)(r) − πexp(−β2R)(r)

]

≤ γπexp(−β1R) ⊗ πexp(−β2R)

[
Ψ− γ

N
(R′,M ′)

]
− log(η).

Hence

Proposition 1.46 For any positive real constants β1, β2 and γ, with P
probability at least 1− η, for any positive real constants λ1 and λ2 such that
λ2 < β2

γ
N sinh( γN )−1 and λ1 > β1

γ
N sinh( γN )−1,

πexp(−λ1r)(r) − πexp(−λ2r)(r)

≤ πexp(−β1R) ⊗ πexp(−β2R)

[
Ψ− γ

N
(R′,M ′)

]

+
log( 3

η )

γ
+
C(β1, γ) + log( 3

η )

Nλ1
β1

sinh( γN ) − γ
+
C(β2, γ) + log( 3

η )

γ − Nλ2
β2

sinh( γN )
.

In order to achieve the analysis of the bound B(πexp(−λ1r), β, γ) given by
Theorem 1.39, there remains now to bound quantities of the general form

log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}

= sup
ρ∈M1

+(Θ)

N log
[
cosh( γN )

]
ρ⊗ πexp(−λ)(m

′) − K
[
ρ, πexp(−λr)

]
.

Let us consider the prior distribution µ ∈ M1
+(Θ × Θ) on couples of

parameters defined by its density

dµ

d(π ⊗ π)
(θ1, θ2) = C−1 exp

{
−βR(θ1) − βR(θ2) + αΦ− α

N

[
M ′(θ1, θ2)

]}
,

where the normalizing constant C is such that µ(Θ × Θ) = 1. Since for
fixed values of the parameters θ and θ′ ∈ Θ, m′(θ, θ′), like r(θ), is a sum of
independent Bernoulli random variables, we can easily adapt the proof of
Theorem 1.4 on page 11, to establish that with P probability at least 1− η,
for any posterior distribution ρ and any real constant λ,

αρ⊗ πexp(−λr)(m
′) ≤ αρ⊗ πexp(−λr)

[
Φ− α

N
(M ′)

]

+ K(ρ⊗ πexp(−λr), µ) − log(η)
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= K
[
ρ, πexp(−βR)

]
+ K

[
πexp(−λr), πexp(−βR)

]

+ log
{
πexp(−βR) ⊗ πexp(−βR)

[
exp
(
αΦ− α

N
◦M ′

)]}
− log(η).

Thus for any real constant β and any positive real constants α and γ, withP probability at least 1 − η, for any real constant λ,

log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}

≤ sup
ρ∈M1

+(Θ)

(
N
α log

[
cosh( γN )

]{
K
[
ρ, πexp(−βR)

]
+ K

[
πexp(−λr), πexp(−βR)

]

+ log
{
πexp(−βR) ⊗ πexp(−βR)

[
exp(αΦ− α

N
◦M ′)

]}

− log(η)
}
− K

[
ρ, πexp(−λr)

])
. (1.29)

To conclude, we need some suitable upper bound for the entropy
K
[
ρ, πexp(−βR)

]
. This question can be handled in the following way: using

Theorem 1.42 on page 68, we see that for any positive real constants γ and
β, with P probability at least 1 − η, for any posterior distribution ρ,

K
[
ρ, πexp(−βR)

]
= β

[
ρ(R) − πexp(−βR)(R)

]
+ K(ρ, π) − K(πexp(−βR), π)

≤
β

N sinh( γN )

[
γ
[
ρ(r) − πexp(−βR)(r)

]

+ K
[
ρ, πexp(−βR)

]
− log(η) + C(β, γ)

]

+ K(ρ, π) − K(πexp(−βR), π)

≤ K
[
ρ, π

exp(− βγ

N sinh(
γ
N

)
r)

]

+
β

N sinh( γN )

{
K
[
ρ, πexp(−βR)

]
+ C(β, γ) − log(η)

}
.

In other words,

Theorem 1.47. For any positive real constants β and γ such that β <
N sinh( γN ), with P probability at least 1 − η, for any posterior distribution
ρ : Ω → M1

+(Θ),

K
[
ρ, πexp(−βR)

]
≤

K
[
ρ, πexp[−β γ

N
sinh( γ

N
)−1r]

]

1 −
β

N sinh( γN )

+
C(β, γ) − log(η)

N sinh( γN )

β
− 1

.
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Choosing in equation (1.29) on page 70 α =
N log

[
cosh( γN )

]

1 − β
N sinh( γ

N
)

and

β = λNγ sinh( γN ), so that α =
N log

[
cosh( γN )

]

1 − λ
γ

, we obtain with P proba-

bility at least 1 − η,

log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}

≤ 2λ
γ

[
C(β, γ) + log( 2

η )
]

+
(
1 − λ

γ

)[
log
{
πexp(−βR) ⊗ πexp(−βR)

[
exp(αΦ− α

N
◦M ′)

]}

+ log( 2
η )

]
.

This proves

Proposition 1.48. For any positive real constants λ < γ, with P probabil-
ity at least 1 − η,

log
{
πexp(−λr)

[
exp
{
N log

[
cosh( γN )

]
πexp(−λr)(m

′)
}]}

≤
2λ

γ

[
C(Nλγ sinh( γN ), γ) + log( 2

η )
]

+
(
1 − λ

γ

)
log

{
π⊗2

exp[−Nλ
γ

sinh( γ
N

)R]

[

exp

(
N log[cosh( γN )]

1 − λ
γ

Φ
−

log[cosh(
γ
N

)]

1−λ
γ

◦M ′

)]}

+
(
1 − λ

γ

)
log( 2

η ).

We are now ready to analyse the bound B(πexp(−λ1r), β, γ) of Theorem
1.39 on page 63.

Theorem 1.49. For any positive real constants λ1, λ2, β1, β2, β and γ,
such that

λ1 < γ, β1 <
Nλ1
γ sinh( γN ),

λ2 < γ, β2 >
Nλ2
γ sinh( γN ),

β < Nλ2
γ tanh( γN ),
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with P probability 1 − η, the bound B(πexp(−λ1r), β, γ) of Theorem 1.39 on
page 63 satisfies

B(πexp(−λ1r), β, γ)

≤ (γ − λ1)

{
πexp(−β1R) ⊗ πexp(−β2R)

[
Ψ− γ

N
(R′,M ′)

]
+

log( 7
η )

γ

+
C(β1, γ) + log( 7

η )

Nλ1
β1

sinh( γN ) − γ
+
C(β2, γ) + log( 7

η )

γ − Nλ2
β2

sinh( γN )

}

+
2λ1

γ

[
C
(
Nλ1
γ sinh( γN ), γ

)
+ log( 7

η )
]

+
(
1 − λ1

γ

)
log

{
π⊗2

exp[−
Nλ1

γ
sinh( γ

N
)R]

[

exp

(
N log[cosh( γ

N
)]

1−
λ1
γ

Φ
−

log[cosh(
γ
N

)]

1−
λ1
γ

◦M ′

)]}

+
(
1 − λ1

γ

)
log( 7

η ) − log
[
ν({β})ν({γ})ǫ

]

+ (γ − λ1)
β
λ2
F−1

γ,βγ
λ2

{
2λ2

γ

[
C
(
Nλ2
γ sinh( γN ), γ

)
+ log

(
7
η

)]

+
(
1 − λ2

γ

)
log

{
π⊗2

exp[−
Nλ2

γ
sinh( γ

N
)R]

[

exp

(
N log[cosh( γN )]

1 − λ2
γ

Φ
−

log[cosh(
γ
N

)]

1−
λ2
γ

◦M ′

)]}

+
(
1 − λ2

γ

)
log
(

7
η

)
− log

[
ν({β})ν({γ})ǫ

]
}
,

where the function C(β, γ) is defined by equation (1.28) on page 67.

1.5.4. Adaptation to parametric and margin assumptions. To help under-
stand the previous theorem, it may be useful to give linear upper-bounds
to the factors appearing in the right-hand side of the previous inequality.
Introducing θ̃ such that R(θ̃) = infΘR (assuming that such a parameter
exists) and remembering that

Ψ−a(p,m) ≤ a−1 sinh(a)p+ 2a−1 sinh(a2 )2m, a ∈ R+,

Φ−a(p) ≤ a−1
[
exp(a) − 1

]
p, a ∈ R+,

Ψa(p,m) ≥ a−1 sinh(a)p− 2a−1 sinh(a2 )2m, a ∈ R+,
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M ′(θ1, θ2) ≤M ′(θ1, θ̃) +M ′(θ2, θ̃), θ1, θ2 ∈ Θ,

M ′(θ1, θ̃) ≤ xR′(θ1, θ̃) + ϕ(x), x ∈ R+, θ1 ∈ Θ,

(the last inequality being rather a consequence of the definition of ϕ than a
property of M ′), we easily see that

πexp(−β1R) ⊗ πexp(−β2R)

[
Ψ− γ

N
(R′,M ′)

]

≤ N
γ sinh( γN )

[
πexp(−β1R)(R) − πexp(−β2R)(R)

]

+ 2N
γ sinh( γ

2N )2πexp(−β1R) ⊗ πexp(−β2R)(M
′)

≤ N
γ sinh( γN )

[
πexp(−β1R)(R) − πexp(−β2R)(R)

]

+
2xN

γ
sinh( γ

2N )2
{
πexp(−β1R)

[
R′(·, θ̃)

]
+ πexp(−β2R)

[
R′(·, θ̃)

]}

+
4N

γ
sinh( γ

2N )2ϕ(x).

C(β, γ) ≤ log

{
πexp(−βR)

{
exp
[
2N sinh

( γ
2N

)2
πexp(−βR)(M

′)
]}}

≤ log

{
πexp(−βR)

{
exp
[
2N sinh

( γ
2N

)2
M ′(·, θ̃)

]}}

+ 2N sinh( γ
2N )2πexp(−βR)

[
M ′(·, θ̃)

]

≤ log

{
πexp(−βR)

{
exp
[
2xN sinh( γ

2N )2R′(·, θ̃)
]}}

+ 2xN sinh( γ
2N )2πexp(−βR)

[
R′(·, θ̃)

]
+ 4N sinh( γ

2N )2ϕ(x)

=

∫ β

β−2xN sinh( γ
2N

)2
πexp(−αR)

[
R′(·, θ̃)

]
dα

+ 2xN sinh( γ
2N )2πexp(−βR)

[
R′(·, θ̃)

]
+ 4N sinh( γ

2N )2ϕ(x)

≤ 4xN sinh( γ
2N )2πexp[−(β−2xN sinh( γ

2N
)2)R]

[
R′(·, θ̃)

]

+ 4N sinh( γ
2N )2ϕ(x).

log
{
π⊗2

exp(−βR)

[
exp
(
NαΦ−α◦M

′
)]}

≤ 2 log
{
πexp(−βR)

[
exp
(
N
[
exp(α) − 1

]
M ′(·, θ̃)

)]}
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≤ 2xN
[
exp(α) − 1

]
πexp[−(β−xN [exp(α)−1])R]

[
R′(·, θ̃)

]

+ 2xN
[
exp(α) − 1

]
ϕ(x).

Let us push further the investigation under the parametric assumption
that for some positive real constant d

lim
β→+∞

βπexp(−βR)

[
R′(·, θ̃)

]
= d, (1.30)

This assumption will for instance hold true with d = n
2 when R : Θ → (0, 1)

is a smooth function defined on a compact subset Θ of Rn that reaches its
minimum value on a finite number of non degenerate (i.e. with a positive
definite Hessian) interior points of Θ, and π is absolutely continuous with
respect to the Lebesgue measure on Θ and has a smooth density.

In case of assumption (1.30), if we restrict to sufficiently large values of
the constants β, β1, β2, λ1, λ2 and γ (the smaller of which being as a rule β
as we will see), we can use the fact that for some (small) positive constant
δ, and some (large) positive constant A,

d

α
(1 − δ) ≤ πexp(−αR)

[
R′(·, θ̃)

]
≤
d

α
(1 + δ), α ≥ A. (1.31)

Under this assumption,

πexp(−β1R) ⊗ πexp(−β2R)

[
Ψ− γ

N
(R′,M ′)

]

≤ N
γ sinh( γN )

[
d
β1

(1 + δ) − d
β2

(1 − δ)
]

+ 2xN
γ sinh( γ

2N )2(1 + δ)
[
d
β1

+ d
β2

]
+ 4N

γ sinh( γ
2N )2ϕ(x).

C(β, γ) ≤ d(1 + δ) log
(

β
β−2xN sinh( γ

2N
)2

)

+ 2xN sinh( γ
2N )2 (1+δ)d

β + 4N sinh( γ
2N )2ϕ(x).

log
{
π⊗2

exp(−βR)

[
exp
(
NαΦ−α◦M

′
)]}

≤ 2xN
[
exp(α) − 1

] d(1 + δ)

β − xN [exp(α) − 1]
+ 2N

[
exp(α) − 1

]
ϕ(x).

Thus with P probability at least 1 − η,

B(πexp(−λ1r), β, γ) ≤ −(γ − λ1)
N
γ sinh( γN ) dβ2

(1 − δ)

+ (γ − λ1)

{
N
γ sinh( γN ) (1+δ)d

β1

+ 2xN
γ sinh( γ

2N )2(1 + δ)
[
d
β1

+ d
β2

]
+ 4N

γ sinh( γ
2N )2ϕ(x) +

log( 7
η )

γ
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+
4xN sinh( γ

2N )2 (1+δ)d
β1−2xN sinh( γ

2N
)2

+ 4N sinh( γ
2N )2ϕ(x) + log( 7

η )

Nλ1
β1

sinh( γN ) − γ

+
4xN sinh( γ

2N )2 (1+δ)d
β2−2xN sinh( γ

2N
)2

+ 4N sinh( γ
2N )2ϕ(x) + log( 7

η )

γ − Nλ2
β2

sinh( γN )

}

+
2λ1

γ

{
4xN sinh( γ

2N )2 (1+δ)d
Nλ1
γ sinh(

γ
N )−2xN sinh( γ

2N
)2

+ 4N sinh( γ
2N )2ϕ(x) + log( 7

η )

}

+
(
1 −

λ1

γ

){
2d(1 + δ)

(
λ1 sinh

( γ
N

)

xγ

[
exp

(
log[cosh(

γ
N

)]

1−
λ1
γ

)
−1

] − 1

)−1

+ 2N
[
exp
(

log[cosh( γ
N

)]

1−
λ1
γ

)
− 1
]
ϕ(x)

}

+
(
1 − λ1

γ

)
log( 7

η ) − log
[
ν({β})ν({γ})ǫ

]

+
1 − λ1

γ

Nλ2
βγ tanh( γN ) − 1

{
2λ2

γ

{
4xN sinh( γ

2N )2 (1+δ)d
Nλ2
γ sinh(

γ
N )−2xN sinh( γ

2N
)2

+ 4N sinh( γ
2N )2ϕ(x) + log( 7

η )

}

+
(
1 −

λ2

γ

)[
2d(1 + δ)

(
λ2 sinh

( γ
N

)

xγ

[
exp

(
log[cosh(

γ
N

)]

1−
λ2
γ

)
−1

] − 1

)−1

+ 2N
[
exp
(

log[cosh( γ
N

)]

1−
λ2
γ

)
− 1
]
ϕ(x)

]

+
(
1 − λ2

γ

)
log( 7

η ) − log
[
ν(β)ν(γ)ǫ

]
}
.

Now let us choose for simplicity β2 = 2λ2 = 4β, β1 = λ1/2 = γ/4, and let
us introduce the notations

C1 =
N

γ
sinh(

γ

N
),

C2 =
N

γ
tanh(

γ

N
),
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C3 =
N2

γ2

[
exp(

γ2

N2
) − 1

]

and C4 =
2N2(1 − 2β

γ )

γ2

[
exp
( γ2

2N2(1 − 2β
γ )

)
− 1
]
,

to obtain

B(πexp(−λ1r), β, γ) ≤ −
C1γ

8β
(1 − δ)d

+
C1γ

2

{
4(1+δ)d

γ + x γ
2N (1 + δ)

[
4d
γ + d

4β

]
+ γ

N ϕ(x)

}
+ 1

2 log
(

7
η

)

+
1

2C1 − 1

[
(1 + δ)d

(
N

2xC1γ
− 1
)−1

+ C1
γ2

2N
ϕ(x) + 1

2 log( 7
η )
]

+
1

2 − C1

[
2(1 + δ)d

(
8Nβ
xC1γ2 − 1

)−1
+C1

γ2

N
ϕ(x) + log( 7

η )

]

+
2xγ(1 + δ)d

N − xγ
+ C1

γ2

N ϕ(x) + log( 7
η )

+ d(1 + δ)
xγ

N

(
C1

2C3
−
xγ

N

)−1

+
γ2

N
C3ϕ(x) +

log( 7
η )

2
− log

[
ν(β)ν(γ)ǫ

]

+
(
4C2 − 2

)−1
{

4β

γ

{
x
γ2

N
C1(1 + δ)d

(
2βC1 − xC1

γ2

2N

)−1

+ γ2

N ϕ(x) + log( 7
η )

}

+
(
1 −

2β

γ

){
2d(1 + δ)

xγ

N

[
4βC1

γC4

(
1 −

2β

γ

)
−
xγ

N

]−1

+
γ2

N(1 − 2β
γ )
C4ϕ(x)

}

+
(
1 − 2β

γ

)
log( 7

η ) − log
[
ν(β)ν(γ)ǫ

]
}
.

This simplifies to

B(πexp(−λ1r), β, γ) ≤ −
C1

8
(1 − δ)d

γ

β

+ 2C1(1 + δ)d + log( 7
η )

[
2 + 3C1

(4C1−2)(2−C1) +
1 + 2β

γ

4C2 − 2

]
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−
(
1 + 1

4C2−2

)
log
[
ν(β)ν(γ)ǫ

]

+
(1 + δ)dxγ

N

{
C1 + 1

2C1−1

(
1

2C1
− γx

N

)−1

+ 2
(
1 − γx

N

)−1
+
(
C1
2C3

− γx
N

)−1
+ 4C1β

γ(4C2−2)

}

+
(1 + δ)dxγ2

Nβ

{
C1
16 + 2

2−C1

(
8
C1

− xγ2

Nβ

)−1

+
(
1 − 2β

γ

)
1

2C2−1

[
4C1
C4

(
1 − 2β

γ

)
− γ2x

βN

]−1
}

+
γ2

N
ϕ(x)

{
3C1
2 + C1

4C1−2 + C1
2−C1

+ C3 + 4β
γ(4C2−2) + C4

4C2−2

}
.

This shows that there exist universal positive real constants A1, A2, B1,
B2, B3, and B4 such that as soon as γmax{x,1}

N ≤ A1
β
γ ≤ A2,

B(πexp(−λ1r), β, γ) ≤ −B1(1 − δ)d
γ

β
+B2(1 + δ)d

−B3 log
[
ν(β)ν(γ)ǫ η

]
+B4

γ2

N
ϕ(x).

Thus πexp(−λ1r)(R) ≤ πexp(−βR)(R) ≤ infΘR+ (1+δ)d
β as soon as moreover

β

γ
≤

B1

B2
(1+δ)
(1−δ) +

B4
γ2

N
ϕ(x)−B3 log[ν(β)ν(γ)ǫη]

(1−δ)d

.

Choosing some real ratio α > 1, we can now make the above result uniform
for any

β, γ ∈ Λα
def
=
{
αk; k ∈ N, 0 ≤ k < log(N)

log(α)

}
, (1.32)

by substituting ν(β) and ν(γ) with log(α)
log(αN) and − log(η) with − log(η) +

2 log
[

log(αN)
log(α)

]
.

Taking moreover for simplicity η = ǫ, let us summarize the type of result
we got by

Theorem 1.50. There exist positive real universal constants A, B1, B2,
B3 and B4 such that for any positive real constants α > 1, d and δ, for
any prior distribution π ∈ M1

+(Θ), with P probability at least 1− ǫ, for any
β, γ ∈ Λα (where Λα is defined by equation (1.32) above) such that

sup
β′∈R,β′≥β

∣∣∣∣
β′

d

[
πexp(−β′R)(R) − inf

Θ
R
]
− 1

∣∣∣∣ ≤ δ
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and such that also for some positive real parameter x

γmax{x, 1}

N
≤
Aβ

γ
and

β

γ
≤

B1

B2
(1+δ)
(1−δ) +

B4
γ2

N
ϕ(x)−2B3 log(ǫ)+4B3 log

[
log(N)
log(α)

]

(1−δ)d

,

the bound B(πexp(− γ
2
r), β, γ) given by Theorem 1.39 on page 63 in the case

where we have chosen ν to be the uniform probability measure on Λα, satisfies
B(πexp(− γ

2
r), β, γ) ≤ 0, proving that β̂(πexp(− γ

2
r)) ≥ β and therefore that

πexp(−γ r
2
)(R) ≤ πexp(−βR)(R) ≤ inf

Θ
R+

(1 + δ)d

β
.

What is important in this result is that we do not only bound πexp(− γ
2
r)(R),

but also B(πexp(− γ
2
r), β, γ), and that we do it uniformly on a grid of values

of β and γ, showing that we can indeed set the constants β and γ adaptively
using the empirical bound B(πexp(− γ

2
r), β, γ).

Let us see what we get under the margin assumption (1.21) (see page 47).
When κ = 1, ϕ(c−1) ≤ 0, leading to

Corollary 1.51. Assuming that the margin assumption 1.21 (on page 47)
is satisfied for κ = 1, that R : Θ → (0, 1) is independent of N (which is the
case for instance when P = P⊗N), and is such that

lim
β′→+∞

β′
[
πexp(−β′R)(R) − inf

Θ
R
]

= d,

there are universal positive real constants B5 and B6 and N1 ∈ N such that
for any N ≥ N1, with P probability at least 1 − ǫ

πexp(−γ̂ r
2
)(R) ≤ inf

Θ
R+

B5d

cN

[
1 +

B6

d
log

(
log(N)

ǫ

)]2

,

where γ̂ ∈ arg maxγ∈Λ2 max
{
β ∈ Λ2;B(πexp(−γ r

2
), β, γ) ≤ 0

}
(where Λ2 is

defined by equation (1.32) on page 77).

When κ > 1, ϕ(x) ≤ (1 − κ−1)
(
κcx
)− 1

κ−1 , and we can choose γ and x such

that γ2

N ϕ(x) ≃ d to prove

Corollary 1.52. Assuming that the margin assumption (1.21) is satisfied
for some exponent κ > 1, that R : Θ → (0, 1) is independent of N (which is
for instance the case when P = P⊗N), and is such that

lim
β′→+∞

β′
[
πexp(−β′R)(R) − inf

Θ
R
]

= d,
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there are universal positive constants B7 and B8 and N1 ∈ N such that for
any N ≥ N1, with P probability at least 1 − ǫ,

πexp(−γ̂ r
2
)(R) ≤ inf

Θ
R+B7c

− 1
2κ−1

[
1 +

B8

d
log

(
log(N)

ǫ

)] 2κ
2κ−1

(
d

N

) κ
2κ−1

,

where γ̂ ∈ arg maxγ∈Λ2 max
{
β ∈ Λ2;B(πexp(−γ r

2
), β, γ) ≤ 0

}
(Λ2 being de-

fined by equation (1.32) on page 77).

We find the same rate of convergence as in Corollary 1.30 on page 48, but this
time, we were able to provide an empirical posterior distribution πexp(−γ̂ r

2
)

which achieves this rate adaptively in all the parameters (meaning in partic-
ular that we do not need to know d, c or κ). Moreover, as already mentioned,
the power of N in this rate of convergence is known to be unimprovable in
the worst case (see [28, 34, 35], and more specifically in [3] — downloadable
from its author’s web page,— Theorem 3.3 on page 132).

1.5.5. Estimating the divergence of a posterior with respect to a Gibbs prior.
Another interesting question is to estimate K

[
ρ, πexp(−βR)

]
using relative

deviation inequalities. We follow here an idea to be found first in Audibert
[3, page 93]. Indeed, combining equation (1.24) with equation (1.25) on page
61, we see that for any positive real parameters β and λ, with P probability
at least 1 − ǫ, for any posterior distribution ρ : Ω → M1

+(Θ),

K
[
ρ, πexp(−βR)

]
≤

β

Nλ

{
N

2
log

(
1 + λ

1 − λ

)[
ρ(r) − πexp(−βR)(r)

]

−
N

2
log(1 − λ2)ρ⊗ πexp(−βR)(m

′)

+ K
[
ρ, πexp(−βR)

]
− log(ǫ)

}
+ K(ρ, π) − K

[
πexp(−βR), π

]

≤ K
[
ρ, π

exp[− β
2λ

log( 1+λ
1−λ

)r]

]
+

β

Nλ
K
[
ρ, πexp(−βR)

]
−

β

Nλ
log(ǫ)

+ log

[
π

exp[− β
2λ

log( 1+λ
1−λ

)r]

{
exp
[
−
β

2λ
log(1 − λ2)ρ(m′)

]}]
.

Thus, putting γ = N
2 log(1+λ

1−λ ), we obtain

Theorem 1.53. For any positive real constants β and γ such that β <
N tanh( γN ), with P probability at least 1 − ǫ, for any posterior distribution
ρ : Ω → M1

+(Θ),
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K
[
ρ, πexp(−βR)

]
≤

(
1 −

β

N
tanh

( γ
N

)−1
)−1

×

{
K
[
ρ, π

exp[−βγ
N

tanh( γ
N

)−1r]

]
−

β

N tanh( γN )
log(ǫ)

+ log
{
π

exp[−βγ
N

tanh( γ
N

)−1r]

[
exp
{
β tanh( γN )−1 log[cosh( γN )]ρ(m′)

}]}
}
.

This theorem provides another way of measuring overfitting, since it gives
an upper bound for K

[
π

exp[−βγ
N

tanh( γ
N

)−1r]
, πexp(−βR)

]
. It may be used in

combination with Theorem 1.10 on page 20 as an alternative to Theorem
1.18 on page 30. It will also be used in the next section.

An alternative parametrization of the same result providing a simpler
right-hand side is also useful:

Corollary 1.54 For any positive real constants β and γ such that β < γ,
with P probability at least 1 − ǫ, for any posterior distribution ρ : Ω →
M1

+(Θ),

K
[
ρ, π

exp[−N β
γ

tanh( γ
N

)R]

]
≤

(
1 −

β

γ

)−1
{

K
[
ρ, πexp(−βr)

]
−
β

γ
log(ǫ)

+ log
{
πexp(−βr)

[
exp
{
N β

γ log
[
cosh( γN )

]
ρ(m′)

}]}
}
.

1.5.6. Comparing two posterior distributions. Estimating the effective tem-
perature of an estimator provides an efficient way to tune parameters in a
model with a parametric behaviour. On the other hand, it will not be fitted
to choose between different models, especially in the case when they are
nested (because as we already saw in the case when Θ is a union of nested
models, the prior distribution πexp(−βR) is not providing an efficient local-
ization of the parameter in this case, in the sens that πexp(−βR)(R) is not
going down to infΘR at the desired rate when β goes to +∞, requiring to
resort to partial localization).

Once some estimator (in the form of a posterior distribution) has been
chosen in each submodel, these estimators can be compared between them-
selves with the help of the relative bounds that we will establish in this
section.

From equation (1.23) (slightly modified by replacing π⊗π with π1 ⊗π2),
we obtain easily
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Theorem 1.55. For any positive real constant λ, for any prior distribu-
tions π1, π2 ∈ M1

+(Θ), with P probability at least 1 − ǫ, for any posterior
distributions ρ1 and ρ2 : Ω → M1

+(Θ),

−N log
{

1 − tanh
(
λ
N

)[
ρ2(R) − ρ1(R)

]}
≤ λ

[
ρ2(r) − ρ1(r)

]

+N log
[
cosh

(
λ
N

)]
ρ1 ⊗ ρ2(m

′)

+ K
(
ρ1, π

1
)

+ K
(
ρ2, π

2
)
− log(ǫ).

There enters into the game the entropy bound of the previous section,
providing a localized version of Theorem 1.55. We will use the notation

Ξa(q) = tanh(a)−1
[
1 − exp(−aq)

]
≤

a

tanh(a)
q, a, q ∈ R.

Theorem 1.56. For any sequence of prior distributions (πi)i∈N ∈ M1
+(Θ)N,

any probability distribution µ on N, any atomic probability distribution ν
on R+, with P probability at least 1 − ǫ, for any posterior distributions
ρ1, ρ2 : Ω → M1

+(Θ),

ρ2(R) − ρ1(R) ≤ B(ρ1, ρ2), where

B(ρ1, ρ2) = inf
λ,β1<γ1,β2<γ2∈R+,i,j∈NΞ λ

N

{
[
ρ2(r) − ρ1(r)

]

+ N
λ log

[
cosh( λN )

]
ρ1 ⊗ ρ2(m

′)

+
1

λ
(
1 − β1

γ1

)
{

K
[
ρ1, π

i
exp(−β1r)

]

+ log
{
πiexp(−β1r)

[
exp
{
β1

N
γ1

log
[
cosh(γ1N )

]
ρ1(m

′)
}]}}

+
1

λ
(
1 − β2

γ2

)
{

K
[
ρ2, π

j
exp(−β2r)

]

+ log
{
πjexp(−β2r)

[
exp
{
β2

N
γ2

log
[
cosh(γ2N )

]
ρ2(m

′)
}]}}

−
[( γ1

β1
− 1
)−1

+
( γ2
β2

− 1
)−1

+ 1
]

×
log
[
3−1ν(β1)ν(β2)ν(γ1)ν(γ2)ν(λ)µ(i)µ(j)ǫ

]

λ

}
.
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The sequence of prior distributions (πi)i∈N should be understood to be typ-
ically supported by subsets of Θ corresponding to parametric submodels,
that is submodels for which it is reasonable to expect that

lim
β→+∞

β
[
πiexp(−βR)(R) − ess inf

πi
R
]

exists and is positive and finite. As there is no reason why the bound
B(ρ1, ρ2) provided by the previous theorem should be subadditive (in the
sense that B(ρ1, ρ3) ≤ B(ρ1, ρ2) +B(ρ2, ρ3)), it is adequate, at least from a
theoretical point of view, to consider some workable subset P ⊂ M1

+(Θ) of
posterior distributions (for instance the distributions of the form πiexp(−βr),
i ∈ N, β ∈ R+, it is understood that P is allowed to be a random subset of
M1

+(Θ), as in this suggested example), and to define the subadditive chained
bound

B̃(ρ, ρ′) = inf

{
n−1∑

k=0

B(ρk, ρk+1); n ∈ N∗, (ρk)
n
k=0 ∈ Pn+1,

ρ0 = ρ, ρn = ρ′

}
, ρ, ρ′ ∈ P.

Proposition 1.57. With P probability at least 1 − ǫ, for any posterior
distributions ρ1, ρ2 ∈ P, ρ2(R) − ρ1(R) ≤ B̃(ρ1, ρ2). Moreover for any
posterior distribution ρ1 ∈ P, any posterior distribution ρ2 ∈ P such that
B̃(ρ1, ρ2) = infρ3∈P B̃(ρ1, ρ3) is unimprovable with the help of B̃ in P in the

sense that infρ3∈P B̃(ρ2, ρ3) ≥ 0.

Proof. The first assertion is a direct consequence of the previous theorem,
therefore only the second assertion requires a proof: for any ρ3 ∈ P, we
deduce from the optimality of ρ2 and the subadditivity of B̃ that B̃(ρ1, ρ2) ≤
B̃(ρ1, ρ3) ≤ B̃(ρ1, ρ2) + B̃(ρ2, ρ3). �

This proposition provides a way to improve a posterior distribution ρ1 ∈ P

by choosing ρ2 ∈ arg minρ∈P B̃(ρ1, ρ) whenever B̃(ρ1, ρ2) < 0. This improve-
ment process is proved according to Proposition 1.57 to be a one step pro-
cess: the obtained improved posterior ρ2 cannot be improved again using
the same technique.

Let us give some example of possible starting distribution ρ1 for this im-
provement scheme: ρ1 may be chosen as the best posterior Gibbs distribution
according to Proposition 1.40 on page 66. More precisely, we may build from
the prior distributions πi, i ∈ N, a global prior π =

∑
i∈N µ(i)πi. We can

Olivier Catoni May 28, 2006



1.5 Bounds relative to a Gibbs distribution 83

then define the estimator of the inverse effective temperature as in Propo-
sition 1.40 and choose ρ1 ∈ arg minρ∈P β̂(ρ), where P is as suggested above
the set of posterior distributions

P =
{
πiexp(−βr); i ∈ N, β ∈ R+

}
.

(This starting point ρ1 should already be pretty good, at least in an asymp-
totic perspective, the only gain in the rate of convergence to be expected
bearing on spurious log(N) factors).

For more elaborate uses of relative bounds, we refer to the third section
of the second chapter of Audibert [3], where an algorithm is proposed and
analyzed, which allows to use relative bounds between two posterior distri-
butions as a stand alone estimation tool.

1.5.7. Two step localization of relative bounds. Let us consider again in
this section the case when we want to choose adaptively between a family of
parametric models. Let us thus assume that the parameter set is a disjoint
union of measurable submodels, so that we can write Θ = ⊔m∈MΘm, where
M is some measurable index set. Let us choose some prior probability dis-
tribution on the index set µ ∈ M1

+(M), and some regular conditional prior
distribution on (M,Θ), π : M → M1

+(Θ), such that π(m,Θm) = 1, m ∈M .
Let us then study some arbitrary posterior distributions ν : Ω → M1

+(M)
and ρ : Ω ×M :→ M1

+(Θ), such that ρ(ω,m,Θm) = 1, ω ∈ Ω, m ∈ M . We
would like to compare νρ(R) with some doubly localized prior distribution
µ

exp[− β
1+ζ2

πexp(−βR)(R)]

[
πexp(−βR)

]
(R) (where ζ2 is a positive parameter to be

set as needed later on). We will define to ease notations two prior distribu-
tions (one being more precisely a conditional distribution) depending on the
positive real parameters β and ζ2, putting

π = πexp(−βR) and µ = µ
exp[− β

1+ζ2
π(R)]

. (1.33)

Similarly to Theorem 1.26 on page 44 we can write for any positive real
constants β and γP{(µ π) ⊗ (µ π)

[
exp
[
−N log

[
1 − tanh( γN )R′

]

− γr′ −N log
[
cosh( γN )

]
m′
]]}

≤ 1,
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and deduce, using Lemma 1.3 on page 11P{exp

[
sup

ν∈M1
+(M)

sup
ρ:M→M1

+(Θ)

{
−N log

[
1 − tanh( γN )(νρ− µπ)(R)

]

− γ(νρ− µπ)(r) −N log
[
cosh( γN )

]
(νρ) ⊗ (µπ)(m′)

− K(ν, µ) − ν
[
K(ρ, π)

]}]}
≤ 1. (1.34)

This will be our starting point in comparing νρ(R) with µπ(R). However,
obtaining an empirical bound will require some supplementary efforts. For
each m ∈M , we can write in the same wayP{π ⊗ π

[
exp
[
−N log

[
1 − tanh( γN )R′

]
− γr′ −N log

[
cosh( γN )

]
m′
]]}

≤ 1.

Intagrating this inequality with respect to µ and using Fubini’s lemma for
positive functions, we getP{µ(π⊗π)

[
exp
[
−N log

[
1−tanh( γN )R′

]
−γr′−N log

[
cosh( γN )

]
m′
]]}

≤ 1.

Let us make clear that µ(π ⊗ π) is a probability measure on M × Θ ×
Θ, whereas (µπ) ⊗ (µ π) considered previously is a probability measure on
(M × Θ) × (M × Θ). We get as previouslyP{exp

[
sup

ν∈M1
+(M)

sup
ρ:M→M1

+(Θ)

{
−N log

[
1 − tanh( γN )ν(ρ− π)(R)

]

− γν(ρ− π)(r) −N log
[
cosh( γN )

]
ν(ρ⊗ π)(m′)

− K(ν, µ) − ν
[
K(ρ, π)

]}]}
≤ 1. (1.35)

Let us eventually recall that

K(ν, µ) = β
1+ζ2

(ν − µ)π(R) + K(ν, µ) − K(µ, µ), (1.36)

K(ρ, π) = β(ρ− π)(R) + K(ρ, π) − K(π, π). (1.37)

From equations (1.34), (1.35) and (1.37) we deduce

Proposition 1.58. For any positive real constants β, γ and ζ2, with P
probability at least 1− ǫ, for any posterior distribution ν : Ω → M1

+(M) and
any conditional posterior distribution ρ : Ω ×M → M1

+(Θ),
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−N log
[
1 − tanh( γN )(νρ− µπ)(R)

]
− βν(ρ− π)(R)

≤ γ(νρ− µπ)(r) +N log
[
cosh( γN )

]
(νρ) ⊗ (µπ)(m′)

+ K(ν, µ) + ν
[
K(ρ, π)

]
− ν
[
K(π, π)

]
+ log

(
2
ǫ

)
.

and

−N log
[
1 − tanh( γN )ν(ρ− π)(R)

]

≤ γν(ρ− π)(r) +N log
[
cosh( γN )

]
ν(ρ⊗ π)(m′)

+ K(ν, µ) + ν
[
K(ρ, π)

]
+ log

(
2
ǫ

)
,

where the prior distribution µπ is defined by equation (1.33) on page 83 and
depends on β and ζ2.

Let us put for short

T = tanh( γN ) and C = N log
[
cosh( γN )

]
.

We will use some entropy compensation strategy for which we need a
couple of entropy bounds. Let us assume that β < NT . We have according
to Proposition 1.58, with P probability at least 1 − ǫ,

ν
[
K(ρ, π)

]
= βν(ρ− π)(R) + ν

[
K(ρ, π) − K(π, π)

]

≤
β

NT

[
γν(ρ− π)(r) +Cν(ρ⊗ π)(m′)

+ K(ν, µ) + ν
[
K(ρ, π)

]
+ log(2

ǫ )

]

+ ν
[
K(ρ, π) − K(π, π)

]
.

Similarly

K(ν, µ) =
β

1 + ζ2
(ν − µ)π(R) + K(ν, µ) − K(µ, µ)

≤
β

(1 + ζ2)NT

[
γ(ν − µ)π(r) +C(νπ) ⊗ (µπ)(m′)

+ K(ν, µ) + log(2
ǫ )

]
+ K(ν, µ) − K(µ, µ).

Thus, for any positive real constants β, γ and ζi, i = 1, . . . , 5, with P prob-
ability at least 1− ǫ, for any posterior distributions ν, ν3 : Ω → M1

+(Θ), any
posterior conditional distributions ρ, ρ1, ρ2, ρ4, ρ5 : Ω ×M → M1

+(Θ),
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−N log
[
1 − T (νρ− µπ)(R)

]
− βν(ρ− π)(R)

≤ γ(νρ− µπ)(r) + C(νρ) ⊗ (µ π)(m′)

+ K(ν, µ) + ν
[
K(ρ, π) − K(π, π)

]
+ log(2

ǫ ),

ζ1
NT

β
µ
[
K(ρ1, π)

]
≤ ζ1γµ(ρ1 − π)(r) + ζ1Cµ(ρ1 ⊗ π)(m′)

+ ζ1µ
[
K(ρ1, π)

]
+ ζ1 log(2

ǫ ) + ζ1
NT

β
µ
[
K(ρ1, π) − K(π, π)

]
,

ζ2
NT

β
ν
[
K(ρ2, π)

]
≤ ζ2γν(ρ2 − π)(r) + ζ2Cν(ρ2 ⊗ π)(m′)

+ ζ2K(ν, µ) + ζ2ν
[
K(ρ2, π)

]
+ ζ2 log(2

ǫ )

+ ζ2
NT

β
ν
[
K(ρ2, π) − K(π, π)

]
,

ζ3(1 + ζ2)
NT

β
K(ν3, µ) ≤ ζ3γ(ν3 − µ)π(r)

+ ζ3C
[
(ν3π) ⊗ (ν3ρ1) + (ν3ρ1) ⊗ (µ π)

]
(m′) + ζ3K(ν3, µ) + ζ3 log(2

ǫ )

+ ζ3(1 + ζ2)
NT

β

[
K(ν3, µ) − K(µ, µ)

]
,

ζ4
NT

β
ν3

[
K(ρ4, π)

]
≤ ζ4γν3(ρ4 − π)(r)

+ ζ4Cν3(ρ4 ⊗ π)(m′) + ζ4K(ν3, µ) + ζ4ν3

[
K(ρ4, π)

]
+ ζ4 log(2

ǫ )

+ ζ4
NT

β
ν3

[
K(ρ4, π) − K(π, π)

]
,

ζ5
NT

β
µ
[
K(ρ5, π)

]
≤ ζ5γµ(ρ5 − π)(r) + ζ5Cµ(ρ5 ⊗ π)(m′)

+ ζ5µ
[
K(ρ5, π)

]
+ ζ5 log(2

ǫ ) + ζ5
NT

β
µ
[
K(ρ5, π) − K(π, π)

]
.

Adding these six inequalities and assuming that ζ4 ≤ ζ3
[
(1 + ζ2)

NT
β − 1

]
,

we find

−N log
[
1 − T (νρ− µπ)(R)

]
− β(νρ− µπ)(R)

≤ −N log
[
1 − T (νρ− µπ)(R)

]
− β(νρ− µπ)(R)

+ ζ1
(
NT
β − 1

)
µ
[
K(ρ1, π)

]
+ ζ2

(
NT
β − 1

)
ν
[
K(ρ2, π)

]

+
[
ζ3(1 + ζ2)

NT
β − ζ3 − ζ4

]
K(ν3, µ)

+ ζ4
(
NT
β − 1

)
ν3

[
K(ρ4, π)

]
+ ζ5

(
NT
β − 1

)
µ
[
K(ρ5, π)

]

≤ γ(νρ− µπ)(r) + ζ1γµ(ρ1 − π)(r) + ζ2γν(ρ2 − π)(r)
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+ ζ3γ(ν3 − µ)π(r) + ζ4γν3(ρ4 − π)(r) + ζ5γµ(ρ5 − π)(r)

+ C
[
(νρ) ⊗ (µπ) + ζ1µ(ρ1 ⊗ π) + ζ2ν(ρ2 ⊗ π)

+ ζ3(ν3π) ⊗ (ν3ρ1) + ζ3(ν3ρ1) ⊗ (µπ)

+ ζ4ν3(ρ4 ⊗ π) + ζ5µ(ρ5 ⊗ π)
]
(m′)

+ (1 + ζ2)
[
K(ν, µ) − K(µ, µ)

]
+ ν
[
K(ρ, π) − K(π, π)

]

+ ζ1
NT
β µ

[
K(ρ1, π) − K(π, π)

]
+ ζ2

NT
β ν
[
K(ρ2, π) − K(π, π)

]

+ ζ3(1 + ζ2)
NT
β

[
K(ν3, µ) − K(µ, µ)

]
+ ζ4

NT
β ν3

[
K(ρ4, π) − K(π, π)

]

+ ζ5
NT
β µ
[
K(ρ5, π) − K(π, π)

]
+ (1 + ζ1 + ζ2 + ζ3 + ζ4 + ζ5) log(2

ǫ ).

Let us now apply to π (we shall later do the same with µ) the following
inequalities, holding for any random functions of the sample and the param-
eters h : Ω × Θ → R and g : Ω × Θ → R,

π(g − h) − K(π, π) ≤ sup
ρ:Ω×M→M1

+(Θ)

ρ(g − h) − K(ρ, π)

= log
{
π
[
exp(g − h)

]}

= log
{
π
[
exp(−h)

]}
+ log

{
πexp(−h)

[
exp(g)

]}

= −πexp(−h)(h) − K(πexp(−h), π) + log
{
πexp(−h)

[
exp(g)

]}
.

When h and g are observable, and h is not too far from βr ≃ βR, this gives
a way to replace π with some satisfactory empirical approximation. We will
apply this method, choosing ρ1 and ρ5 such that µπ is replaced either with
µρ1, when it comes from the first two inequalities or with µρ5 otherwise,
choosing ρ2 such that νπ is replaced with νρ2 and ρ4 such that ν3π is replaced
with ν3ρ4. We will do so because it leads to a lot of helpful cancellations.
For those to happen, we need to choose ρi = πexp(−λir), i = 1, 2, 4, where
λ1, λ2 and λ4 are such that

(1 + ζ1)γ = ζ1
NT
β λ1,

ζ2γ =
(
1 + ζ2

NT
β

)
λ2,

(ζ4 − ζ3)γ = ζ4
NT

β
λ4,

ζ3γ = ζ5
NT
β λ5,

and to assume that ζ4 > ζ3. We obtain that with P probability at least 1−ǫ,

−N log
[
1 − T (µρ− µπ)(R)

]
− β(νρ− µπ)(R)
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≤ γ(νρ− µρ1)(r) + ζ3γ(ν3ρ4 − µρ5)(r)

+ ζ1
NT
β µ

{
log

[
ρ1

{
exp

[
C β
NTζ1

[
νρ+ ζ1ρ1

]
(m′)

]}]}

+
(
1 + ζ2

NT
β

)
ν

{
log

{
ρ2

{
exp

[
C

1+ζ2
NT
β

ζ2ρ2(m
′)

]}]}

+ ζ4
NT
β ν3

{
log

[
ρ4

{
exp

[
C β
NTζ4

[
ζ3ν3ρ1 + ζ4ρ4

]
(m′)

]}]}

+ ζ5
NT
β µ

{
log

[
ρ5

{
exp

[
C β
NTζ5

[
ζ3ν3ρ1 + ζ5ρ5

]
(m′)

]}]}

+ (1 + ζ2)
[
K(ν, µ) − K(µ, µ)

]
+ ν
[
K(ρ, π) − K(ρ2, π)

]

+ ζ3(1 + ζ2)
NT
β

[
K(ν3, µ) − K(µ, µ)

]

+

(
1 +

5∑

i=1

ζi

)
log
(

2
ǫ

)
.

In order to obtain more cancellations while replacing µ by some posterior
distribution, we will choose the constants such that λ5 = λ4, which can be
done by choosing

ζ5 =
ζ3ζ4
ζ4 − ζ3

.

We can now replace µ with µexp−ξ1ρ1(r)−ξ4ρ4(r), where

ξ1 =
γ

(1 + ζ2)
(
1 + NT

β ζ3
) ,

ξ4 =
γζ3

(1 + ζ2)
(
1 + NT

β ζ3
) .

Choosing moreover ν3 = µexp−ξ1ρ1(r)−ξ4ρ4(r), to induce some more cancella-
tions, we get

Theorem 1.59. For any positive real constants satisfying the above men-
tioned constraints, with P probability at least 1 − ǫ, for any posterior dis-
tribution ν : Ω → M1

+(M) and any conditional posterior distribution ρ :
Ω ×M → M1

+(Θ),

−N log
[
1 − T (νρ− µπ)(R)

]
− β(νρ− µπ)(R) ≤ B(ν, ρ, β),
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where B(ν, ρ, β)
def
= γ(νρ− ν3ρ1)(r)

+ (1 + ζ2)
(
1 + NT

β ζ3
)

× log

{
ν3

[
ρ1

{
exp

[
C β
NTζ1

[
νρ+ ζ1ρ1

]
(m′)

]} ζ1NT

β(1+ζ2)(1+ NT
β

ζ3)

× ρ4

{
exp

[
C β
NTζ5

[
ζ3ν3ρ1 + ζ5ρ4

]
(m′)

]} ζ5NT

β(1+ζ2)(1+ NT
β

ζ3)

]}

+
(
1 + ζ2

NT
β

)
ν

{
log

{
ρ2

{
exp

[
C

1+ζ2
NT
β

ζ2ρ2(m
′)

]}]}

+ ζ4
NT
β ν3

{
log

[
ρ4

{
exp

[
C β
NTζ4

[
ζ3ν3ρ1 + ζ4ρ4

]
(m′)

]}]}

+ (1 + ζ2)
[
K(ν, µ) − K(ν3, µ)

]

+ ν
[
K(ρ, π) − K(ρ2, π)

]
+

(
1 +

5∑

i=1

ζi

)
log
(

2
ǫ

)
.

This theorem can be used to find the largest value β̂(νρ) of β such that
B(ν, ρ, β) ≤ 0, thus providing an estimator for β(νρ) defined as νρ(R) =
µβ(νρ)πβ(νρ)(R), where we have mentioned explicitely the dependence of
µ and π in β, the constant ζ2 staying fixed. The posterior distribution
νρ may then be chosen to maximize β̂(νρ) within some manageable sub-
set of posterior distributions P, thus gaining the assurance that νρ(R) ≤
µ
β̂(νρ)

π
β̂(νρ)

(R), with the largest parameter β̂(νρ) that this approach can

provide. Maximizing β̂(νρ) is supported by the fact that limβ→+∞ µβπβ(R) =
ess infµπ R. Anyhow, there is no assurance (to our knowledge) that β 7→
µβπβ(R) will be a decreasing function of β all the way, although this may
be expected to be the case in many practical situations.

We can make the bound more explicit in several ways. One point of view
is to put forward the optimal values of ρ and ν. We can thus remark that

ν
[
γρ(r) + K(ρ, π) − K(ρ2, π)

]
+ (1 + ζ2)K(ν, µ)

= ν

[
K
[
ρ, πexp(−γr)

]
+ λ2ρ2(r) +

∫ γ

λ2

πexp(−αr)(r)dα

]
+ (1 + ζ2)K(ν, µ)

= ν
{
K
[
ρ, πexp(−γr)

]}
+ (1 + ζ2)K

[
ν, µ

exp
(
−

λ2ρ2(r)
1+ζ2

− 1
1+ζ2

∫ γ
λ2
πexp(−αr)(r)dα

)]

− (1 + ζ2) log

{
µ

[
exp

{
−

λ2

1 + ζ2
ρ2(r) −

1

1 + ζ2

∫ γ

λ2

πexp(−αr)(r)dα

}]}
.
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Thus

B(ν, ρ, β) = (1 + ζ2)
[
ξ1ν3ρ1(r) + ξ4ν3ρ4(r)

+ log
{
µ
[
exp
(
−ξ1ρ1(r) − ξ4ρ4(r)

)]}]

− (1 + ζ2) log

{
µ

[
exp

{
−

λ2

1 + ζ2
ρ2(r) −

1

1 + ζ2

∫ γ

λ2

πexp(−αr)(r)dα

}]}

− γν3ρ1(r) + (1 + ζ2)
(
1 + NT

β ζ3
)

× log

{
ν3

[
ρ1

{
exp

[
C β
NTζ1

[
νρ+ ζ1ρ1

]
(m′)

]} ζ1NT

β(1+ζ2)(1+ NT
β

ζ3)

× ρ4

{
exp

[
C β
NTζ5

[
ζ3ν3ρ1 + ζ5ρ4

]
(m′)

]} ζ5NT

β(1+ζ2)(1+ NT
β

ζ3)

]}

+
(
1 + ζ2

NT
β

)
ν

{
log

{
ρ2

{
exp

[
C

1+ζ2
NT
β

ζ2ρ2(m
′)

]}]}

+ ζ4
NT
β ν3

{
log

[
ρ4

{
exp

[
C β
NTζ4

[
ζ3ν3ρ1 + ζ4ρ4

]
(m′)

]}]}

+ ν
{
K
[
ρ, πexp(−γr)

]}

+ (1 + ζ2)K
[
ν, µ

exp
(
−

λ2ρ2(r)
1+ζ2

− 1
1+ζ2

∫ γ
λ2
πexp(−αr)(r)dα

)]

+

(
1 +

5∑

i=1

ζi

)
log
(

2
ǫ

)
.

This formula is better understood when thinking about the following upper
bound for the two first lines in the expression of B(ν, ρ, β) :

(1 + ζ2)
[
ξ1ν3ρ1(r) + ξ4ν3ρ4(r) + log

{
µ
[
exp
(
−ξ1ρ1(r) − ξ4ρ4(r)

)]}]

− (1 + ζ2) log

{
µ

[
exp

{
−

λ2

1 + ζ2
ρ2(r)

−
1

1 + ζ2

∫ γ

λ2

πexp(−αr)(r)dα

}]}
− γν3ρ1(r)

≤ ν3

[
λ2ρ2(r) +

∫ γ

λ2

πexp(−αr)(r)dα− γρ1(r)

]
.
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Another approach to understanding Theorem 1.59 is to put forward ρ0 =
πexp(−λ0r), for some positive real constant λ0 < γ, noticing that

ν
[
K(ρ0, π) − K(ρ2, π)

]
= λ0ν(ρ2 − ρ0)(r) − ν

[
K(ρ2, ρ0)

]
.

Thus

B(ν, ρ0, β) ≤ ν3

[
(γ − λ0)(ρ0 − ρ1)(r) + λ0(ρ2 − ρ1)(r)

]

+ (1 + ζ2)
(
1 + NT

β ζ3
)

× log

{
ν3

[
ρ1

{
exp

[
C β
NTζ1

[
νρ0 + ζ1ρ1

]
(m′)

]} ζ1NT

β(1+ζ2)(1+ NT
β

ζ3)

× ρ4

{
exp

[
C β
NTζ5

[
ζ3ν3ρ1 + ζ5ρ4

]
(m′)

]} ζ5NT

β(1+ζ2)(1+ NT
β

ζ3)

]}

+
(
1 + ζ2

NT
β

)
ν

{
log

{
ρ2

{
exp

[
C

1+ζ2
NT
β

ζ2ρ2(m
′)

]}]}

+ ζ4
NT
β ν3

{
log

[
ρ4

{
exp

[
C β
NTζ4

[
ζ3ν3ρ1 + ζ4ρ4

]
(m′)

]}]}

+ (1 + ζ2)K
[
ν, µ

exp
(
−

(γ−λ0)ρ0(r)+λ0ρ2(r)
1+ζ2

)
]

− ν
[
K(ρ2, ρ0)

]
+

(
1 +

5∑

i=1

ζi

)
log
(

2
ǫ

)
.

In the case when we want to select a single model m̂(ω), and therefore to
set ν = δm̂, the previous inequality engages us to take

m̂ ∈ arg min
m∈M

(γ − λ0)ρ0(m, r) + λ0ρ2(m, r).

In parametric situations where πexp(−λr)(r) ≃ r⋆(m) + de(m)
λ , we get

(γ − λ0)ρ0(m, r) − λ0ρ2(m, r) ≃ γ
[
r⋆(m) + de(m)

(
1
λ0

+ λ0−λ2
γλ2

)]
,

resulting in a linear penalization of the empirical dimension of the models.

1.5.8. Analysis of the two step relative bound. We will not state a formal
result, but will neverless give some hints about how to establish one. We
should start from Theorem 1.25, which gives a deterministic variance term.
From Theorem 1.25, after a change of prior distribution, we obtain for any
positive constants α1 and α2, any prior distributions µ̃1 and µ̃2 ∈ M1

+(M),
for any prior conditional distributions π̃1 and π̃2 : M → M1

+(Θ), with P
probability at least 1 − η, for any posterior distributions ν1ρ1 and ν2ρ2,
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α1(ν1ρ1 − ν2ρ2)(R) ≤ α2(ν1ρ1 − ν2ρ2)(r)

+ K
[
(ν1ρ1) ⊗ (ν2ρ2), (µ̃1 π̃1) ⊗ (µ̃2 π̃2)

]

+ log
{
(µ̃1 π̃1) ⊗ (µ̃2 π̃2)

[
exp
{
−α2Ψα2

N
(R′,M ′) + α1R

′
}]}

− log(η).

Applying this to α1 = 0, we get that

(νρ− ν3ρ1)(r) ≤
1

α2

[
K
[
(νρ) ⊗ (ν3ρ1), (µ̃ π̃) ⊗ (µ̃3 π̃1)

]

+ log
{

(µ̃ ν̃) ⊗ (µ̃3 π̃1)
[
exp
{
α2Ψ−

α2
N

(R′,M ′)
}]}

− log(η)

]
.

In the same way, to bound quantities of the form

log

{
ν3

[
ρ1

{
exp

[
C1(νρ+ ζ1ρ1)(m

′)

]}p1

× ρ4

{
exp

[
C2

[
ζ3ν3ρ1 + ζ5ρ4

]
(m′)

]}p2]}

= sup
ν5

{
p1 sup

ρ5

{
C1

[
(νρ) ⊗ (ν5ρ5) + ζ1ν5(ρ1 ⊗ ρ5)

]
(m′) − K(ρ5, ρ1)

}

+ p2 sup
ρ6

{
C2

[
ζ3(ν3ρ1) ⊗ (ν5ρ6)

+ ζ5ν5(ρ4 ⊗ ρ6)
]
(m′) − K(ρ6, ρ4)

}
− K(ν5, ν3)

}
,

where C1, C2, p1 and p2 are positive constants, and similar terms, we need
to use inequalities of the type: for any prior distributions µ̃i π̃i, i = 1, 2, withP probability at least 1 − η, for any posterior distributions νiρi, i = 1, 2,

α3(ν1ρ1) ⊗ (ν2ρ2)(m
′) ≤ log

{
(µ̃1 π̃1) ⊗ (µ̃2 π̃2) exp

[
α3Φ−α3

N
(M ′)

]}

+ K
[
(ν1ρ1) ⊗ (ν2ρ2), (µ̃1 π̃1) ⊗ (µ̃2 π̃2)

]
− log(η).

We need also the variant: with P probability at least 1−η, for any posterior
distribution ν1 : Ω → M1

+(M) and any conditional posterior distributions
ρ1, ρ2 : Ω ×M → M1

+(Θ),

α3ν1(ρ1 ⊗ ρ2)(m
′) ≤ log

{
µ̃1

(
π̃1 ⊗ π̃2

)
exp
[
α3Φ−

α3
N

(M ′)
]}

+ K(ν1, µ̃1) + ν1

{
K
[
ρ1 ⊗ ρ2, π̃1 ⊗ π̃2

]}
− log(η).
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We deduce that

log

{
ν3

[
ρ1

{
exp

[
C1(νρ+ ζ1ρ1)(m

′)

]}p1

× ρ4

{
exp

[
C2

[
ζ3ν3ρ1 + ζ5ρ4

]
(m′)

]}p2]}

≤ sup
ν5

{
p1 sup

ρ5

[
C1

α3

{
log
{

(µ̃ π̃) ⊗ (µ̃5 π̃5) exp
[
α3Φ−

α3
N

(M ′)
]}

+ K
[
(νρ) ⊗ (ν5ρ5), (µ̃ π̃ ⊗ (µ̃5 π̃5)

]
+ log( 2

η )

+ ζ1

[
log
{
µ̃5

(
π̃1 ⊗ π̃5

)
exp
[
α3Φ−

α3
N

(M ′)
]}

+ K(ν5, µ̃5) + ν5

{
K
[
ρ1 ⊗ ρ5, π̃1 ⊗ π̃5

]}
+ log

(
2
η

)]}
− K(ρ5, ρ1)

]

+ p2 sup
ρ6

[
C1

α3

{
log
{

(µ̃3 π̃1) ⊗ (µ̃5 π̃6) exp
[
α3Φ−

α3
N

(M ′)
]}

+ K
[
(ν3ρ1) ⊗ (ν5ρ6), (µ̃3 π̃1 ⊗ (µ̃5 π̃6)

]
+ log( 2

η )

+ ζ1

[
log
{
µ̃5

(
π̃4 ⊗ π̃6

)
exp
[
α3Φ−

α3
N

(M ′)
]}

+ K(ν5, µ̃5) + ν5

{
K
[
ρ4 ⊗ ρ6, π̃4 ⊗ π̃6

]}
+ log

(
2
η

)]}

− K(ρ6, ρ4)

]
− K(ν5, ν3)

}
.

We are then left with the need to bound entropy terms like K(ν3ρ1, µ̃3π̃1),
where we have the choice of µ̃3 and π̃1, to obtain a useful bound. As could
be expected, we decompose it into

K(ν3ρ1, µ̃3π̃1) = K(ν3, µ̃3) + ν3

[
K(ρ1, π̃1)

]
.

Let us look after the second term first, choosing π̃1 = πexp(−β1R):

ν3

[
K(ρ1, π̃1)

]
= ν3

[
β1(ρ1 − π̃1)(R) + K(ρ1, π) − K(π̃1, π)

]

≤
β1

α1

[
α2ν3(ρ1 − π̃1)(r) + K(ν3, µ̃3) + ν3

[
K(ρ1, π̃1)

]

+ log
{
µ̃3

(
π̃⊗2

1

)[
exp
{
−α2Ψα2

N
(R′,M ′) + α1R

′
}]}

− log(η)

]
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+ ν3

[
K(ρ1, π) − K(π̃1, π)

]

≤
β1

α1

[
K(ν3, µ̃3) + ν3

[
K(ρ1, π̃1)

]

+ log
{
µ̃3

(
π̃⊗2

1

)[
exp
{
−α2Ψα2

N
(R′,M ′) + α1R

′
}]}

− log(η)

]

+ ν3

{
K
[
ρ1, πexp(−

β1α2
α1

r)

]}
.

Thus, when the constraint λ1 = β1α2

α1
is satisfied,

ν3

[
K(ρ1, π̃1)

]
≤
(
1 −

β1

α1

)−1 β1

α1

[
K(ν3, µ̃3)

+ log
{
µ̃3

(
π̃⊗2

1

)[
exp
{
−α2Ψα2

N
(R′,M ′) + α1R

′
}]}

− log(η)

]
.

We can further specialize the constants, choosing α1 = N sinh(α2
N ), so that

−α2Ψα2
N

(R′,M ′) + α1R
′ ≤ 2N sinh

( α2

2N

)2
M ′.

We can for instance choose α2 = γ, α1 = N sinh( γN ), and β1 = λ1
N
γ sinh( γN ),

leading to

Proposition 1.60. With the notations of Theorem 1.59, the constants be-
ing set as explained above, putting π̃1 = πexp(−λ1

N
γ

sinh( γ
N

)R), with P proba-

bility at least 1 − η,

ν3

[
K(ρ1, π̃1)

]
≤
(
1 −

λ1

γ

)−1λ1

γ

[
K(ν3, µ̃3)

+ log
{
µ̃3

(
π̃⊗2

1

)[
exp
{
2N sinh( γ

2N )2M ′
}]}

− log(η)

]
.

More generally

ν3

[
K(ρ, π̃1)

]
≤
(
1 −

λ1

γ

)−1λ1

γ

[
K(ν3, µ̃3)

+ log
{
µ̃3

(
π̃⊗2

1

)[
exp
{
2N sinh( γ

2N )2M ′
}]}

− log(η)

]

+
(
1 −

λ1

γ

)−1
ν3

[
K(ρ, ρ1)

]
.
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In a similar way, let us choose now µ̃3 = µexp[−α3π(R)]. We can write

K(ν, µ̃3) = α3(ν − µ̃3)π(R) + K(ν, µ) − K(µ̃3, µ)

≤
α3

α1

[
α2(ν − µ̃3)π(r) + K(ν, µ̃3)

+ log
{

(µ̃3π) ⊗ (µ̃3π)
[
exp
{
−α2Ψα2

N
(R′,M ′) + α1R

′
}]}

− log(η)

]

+ K(ν, µ) − K(µ̃3, µ).

Let us choose α2 = γ, α1 = N sinh( γN ), and let us add some other en-
tropy inequalities to get rid of π in a suitable way, the approach of entropy
compensation being quite the same as the one used to obtain the empirical
bound of Theorem 1.59. This results with P probability at least 1 − η in

(
1 −

α3

α1

)
K(ν, µ̃3) ≤

α3

α1

[
γ(ν − µ̃3)π(r)

+ log
{
(µ̃3π) ⊗ (µ̃3π)

[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+ log( 2
η )

]

+ K(ν, µ) − K(µ̃3, µ),

ζ6

(
1 −

β

α1

)
µ̃3

[
K(ρ6, π)

]
≤ ζ6

β

α1

[
γµ̃3(ρ6 − π)(r)

+ log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+ log( 2
η )

]

+ ζ6µ̃3

[
K(ρ6, π) − K(π, π)

]
,

ζ7

(
1 −

β

α1

)
µ̃3

[
K(ρ7, π)

]
≤ ζ7

β

α1

[
γµ̃3(ρ7 − π)(r)

+ log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+ log( 2
η )

]

+ ζ7µ̃3

[
K(ρ7, π) − K(π, π)

]
,

ζ8

(
1 −

β

α1

)
ν
[
K(ρ8, π)

]
≤ ζ8

β

α1

[
γν(ρ8 − π)(r) + K(ν, µ̃3)

+ log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+ log( 2
η )

]

+ ζ8ν
[
K(ρ8, π) − K(π, π)

]
,

ζ9

(
1 −

β

α1

)
ν
[
K(ρ9, π)

]
≤ ζ9

β

α1

[
γν(ρ9 − π)(r) + K(ν, µ̃3)
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+ log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+ log( 2
η )

]

+ ζ9ν
[
K(ρ9, π) − K(π, π)

]
,

where we have introduced a bunch of constants, assumed to be positive, that
we will more precisely set to

x8 + x9 = 1,

(ζ6β + x8α3)
γ

α1
= λ6,

(ζ7β + x9α3)
γ

α1
= λ7,

(ζ8β − x8α3)
γ

α1
= λ8,

(ζ9β − x9α3)
γ

α1
= λ9.

We get with P probability at least 1 − η,

(
1 −

α3

α1
− (ζ8 + ζ9)

β

α1

)
K(ν, µ̃3) ≤

α3

α1

[
γ
[
ν(x8ρ8 + x9ρ9)(r) − µ̃3(x8ρ6 + x9ρ7)(r)

]

+
α3

α1
log
{
(µ̃3π) ⊗ (µ̃3π)

[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+ (ζ6 + ζ7 + ζ8 + ζ9)
β

α1
log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+ K(ν, µ) − K(µ̃3, µ) +
(α3

α1
+ (ζ6 + ζ7 + ζ8 + ζ9)

β

α1

)
log
(

2
η

)
.

Let us choose the constants so that λ1 = λ7 = λ9, λ4 = λ6 = λ8, α3x9
γ
α1

= ξ1
and α3x8

γ
α1

= ξ4. This is done by setting

x8 =
ξ4

ξ1 + ξ4
,

x9 =
ξ1

ξ1 + ξ4
,

α3 = N
γ sinh( γN )(ξ1 + ξ4),

ζ6 = N
γ sinh( γN )

(λ4 − ξ4)

β
,

ζ7 = N
γ sinh( γN )

(λ1 − ξ1)

β
,
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ζ8 = N
γ sinh( γN )

(λ4 + ξ4)

β
,

ζ9 = N
γ sinh( γN )

(λ1 + ξ1)

β
.

The inequality λ1 > ξ1 is always satisfied. The inequality λ4 > ξ4 is required
for the above choice of constants, and will be satisfied for a suitable choice
of ζ3 and ζ4.

Under these asumptions, we obtain with P probability at least 1 − η

(
1 −

α3

α1
− (ζ8 + ζ9)

β

α1

)
K(ν, µ̃3) ≤ (ν − µ̃3)(ξ1ρ1 + ξ4ρ4)(r)

+
α3

α1
log
{
(µ̃3π) ⊗ (µ̃3π)

[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+ (ζ6 + ζ7 + ζ8 + ζ9)
β

α1
log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+ K(ν, µ) − K(µ̃3, µ) +
(α3

α1
+ (ζ6 + ζ7 + ζ8 + ζ9)

β

α1

)
log
(

2
η

)
.

This proves

Proposition 1.61. The constants being set as explained above, with P
probability at least 1 − η, for any posterior distribution ν : Ω → M1

+(M),

K(ν, µ̃3) ≤
(
1 −

α3

α1
− (ζ8 + ζ9)

β

α1

)−1
[
K(ν, ν3)

+
α3

α1
log
{
(µ̃3π) ⊗ (µ̃3π)

[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+ (ζ6 + ζ7 + ζ8 + ζ9)
β

α1
log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+
(α3

α1
+ (ζ6 + ζ7 + ζ8 + ζ9)

β

α1

)
log
(

2
η

)]
.

Thus

K(ν3ρ1, µ̃3 π̃1) ≤
1 +

(
1 − λ1

γ

)−1 λ1
γ

1 − α3
α1

− (ζ8 + ζ9)
β
α1

×

[
α3

α1
log
{

(µ̃3π ⊗ (µ̃3π)
[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}

+ (ζ6 + ζ7 + ζ8 + ζ9)
β

α1
log
{
µ̃3

(
π⊗2

)[
exp
{
−γΨ γ

N
(R′,M ′) + α1R

′
}]}
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+
(α3

α1
+ (ζ6 + ζ7 + ζ8 + ζ9)

β

α1

)
log
(

2
η

)]

+
(
1 −

λ1

γ

)−1λ1

γ

[
log
{
µ̃3

(
π̃⊗2

1

)[
exp
{
2N sinh

( γ
2N

)2
M ′
}]}

− log( 2
η )

]
.

We will not go further, lest it may become tedious, but we hope we have given
sufficient hints to state informally that the bound B(ν, ρ, β) of Theorem 1.59
is upper bounded with P probability close to one by a bound of the same
flavour where the empirical quantities r and m′ have been replaced with
their expectations R and M ′.

2. Transductive PAC-Bayesian learning

2.1. Basic inequalities. In this section the observed sample (Xi, Yi)
N
i=1

will be supplemented with a shadow sample (Xi, Yi)
(k+1)N
i=N+1 . This point of

view, called transductive classification, has been introduced by V. Vapnik.
It may be justified in different ways.

On the practical side, one interest of the transductive setting is that it is
often a lot easier to collect examples than it is to label them, so that it is not
unreallistic to assume that we indeed have two training samples, one labelled
and one unlabelled. It also covers the case when a batch of patterns is to be
classified and we are allowed to observe the whole batch before issuing the
classification.

On the mathematical side, considering a shadow sample proves technically
fruitfull. Indeed, when introducing the VC entropy and VC dimension con-
cepts, as well as when dealing with compression schemes, albeit the inductive
setting is our final concern, the transductive setting is a useful detour. In this
second scenario, intermediate technical results involving the shadow sample
are integrated with respect to unobserved random variables in a second stage
of the proofs.

Let us describe now the changes to be made to previous notations to adapt
them to the transductive setting. The distribution P will be a probability

measure on the canonical space Ω = (X×Y)(k+1)N , and (Xi, Yi)
(k+1)N
i=1 will be

the canonical process on this space (that is the coordinate process). Unless
explicitely mentioned, the parameter k indicating the size of the shadow
sample will remain fixed. Assuming the shadow sample size is a multiple of
the training sample size is convenient without significantly restricting the
generality. For a while, we will use a weaker assumption than independence,
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assuming that P is partially exchangeable, since this is all what we need in
the proofs.

Definition 2.1. For i = 1, . . . , N , let τi : Ω → Ω be defined for any

ω = (ωj)
(k+1)N
j=1 ∈ Ω by





τi(ω)i+jN = ωi+(j−1)N , j = 1, . . . , k,

τi(ω)i = ωi+kN ,

and τi(ω)m+jN = ωm+jN , m 6= i,m = 1, . . . , N, j = 0, . . . k.

Clearly, if we arrange the (k+1)N samples in a N×(k+1) array, τi performs
a circular permutation of k+1 entries on the ith row, letting the other rows
unchanged. Moreover, all the circular permutations of the ith row have the
form τ ji , j ranging from 0 to k.

The probability distribution P is said to be partially exchangeable if for
any i = 1, . . . , N , P ◦ τ−1

i = P.
This means equivalently that for any bounded measurable function h :

Ω → R, P(h ◦ τi) = P(h).
In the same way a function h defined on Ω will be said to be partially

exchangeable if h ◦ τi = h for any i = 1, . . . , N . Accordingly a posterior
distribution ρ : Ω → M1

+(Θ,T) will be said to be partially exchangeable
when ρ(ω,A) = ρ

[
τi(ω), A

]
, for any ω ∈ Ω, any i = 1, . . . , N and any A ∈ T.

For any bounded measurable function h, let us define Ti(h) = 1
k+1

∑k
j=0 h ◦

τ ji . Let T (h) = TN ◦ · · · ◦ T1(h). For any partially exchangeable probability
distribution P, and for any bounded measurable function h, P[T (h)

]
=P(h). Let us put

σi(θ) = 1[fθ(Xi) 6= Yi
]
, indicating the success or failure of fθ

to predict Yi from Xi,

r1(θ) =
1

N

N∑

i=1

σi(θ), the empirical error rate of fθ
on the observed sample,

r2(θ) =
1

kN

(k+1)N∑

i=N+1

σi(θ), the error rate of fθ on the shadow sample,

r(θ) =
r1(θ) + kr2(θ)

k + 1
=

1

(k + 1)N

(k+1)N∑

i=1

σi(θ), the global error
rate of fθ,
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Ri(θ) = P[fθ(Xi) 6= Yi
]
, the expected error

rate of fθ on the ith input,

R(θ) =
1

N

N∑

i=1

Ri(θ) = P[r1(θ)] = P[r2(θ)], the average expected

error rate of fθ on all inputs.

We will allow for posterior distributions ρ : Ω → M1
+(Θ) depending on

the shadow sample. The most interesting ones will anyhow be independent
of the shadow labels YN+1, . . . , Y(k+1)N . We will be interested in the con-
ditional expected error rate of the randomized classification rule described
by ρ on the shadow sample, given the observed sample, which reads asP[ρ(r2)|(Xi, Yi)

N
i=1

]
.

Let us comment on the case when P is invariant by any permutations of
the rows, meaning thatP[h(ω ◦ s)

]
= P[h(ω)

]
for all s ∈ S({i+ jN ; j = 0, . . . , k})

and all i = 1, . . . , N (where S(A) is the set of permutations of A, extended
to {1, . . . , (k + 1)N} so as to be the identity outside of A). In this case, if
ρ is invariant by permutations of the rows of the shadow sample, meaning
that ρ(ω ◦ s) = ρ(ω) ∈ M1

+(Θ), s ∈ S({i + jN ; j = 1, . . . , k}), i = 1, . . . , N ,

then P[ρ(r2)|(Xi, Yi)
N
i=1

]
= 1

N

∑N
i=1P[ρ(σi+N )|(Xi, Yi)

N
i=1

]
, meaning that

the expectation can be taken on a restricted shadow sample of the same size
as the observed sample. If moreover the rows are equidistributed (meaning
that their marginal distributions are equal), thenP[ρ(r2)|(Xi, Yi)

N
i=1

]
= P[ρ(σN+1)|(Xi, Yi)

N
i=1

]
.

This means that under these quite commonly fullfilled assumptions, the
expectation can be taken on a single new object to be classified, our study
thus covers the case when only one of the patterns from the shadow sample
is to be labelled and one is interested in the expected error rate of this
single labelling. Of course, in the case when P is i.i.d. and ρ depends only
on the training sample (Xi, Yi)

N
i=1, we fall back on the usual criterion of

performance P[ρ(r2)|(Zi)Ni=1

]
= ρ(R) = ρ(R1).

Let us recall the notation Φa(p) = −a−1 log
{
1 − p

[
1 − exp(−a)

]}
.

Using an obvious factorization, and considering for the moment a fixed
value of θ and any partially exchangeable positive real measurable function
λ : Ω → R+, we can compute the log Laplace transform of r1 under T ,
which acts like a conditional probability distribution:

log
{
T
[
exp(−λr1)

]}
=

N∑

i=1

log
{
Ti
[
exp(− λ

N σi)
]}
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≤ N log

{
1

N

N∑

i=1

Ti

[
exp
(
− λ
N σi

)]}
= −λΦ λ

N
(r).

Remarking that T
{
exp
[
λ
[
Φ λ

N
(r) − r1

]]}
= exp

[
λΦ λ

N
(r)
]
T
[
exp(−λr1)

]
we

obtain

Lemma 2.1. For any θ ∈ Θ and any partially exchangeable positive real
measurable function λ : Ω → R+,

T
{

exp
[
λ
{
Φ λ

N

[
r(θ)

]
− r1(θ)

}]}
≤ 1.

We deduce from this lemma a result analogous to the inductive case:

Theorem 2.2. For any partially exchangeable positive real measurable func-
tion λ : Ω × Θ → R+, for any partially exchangeable posterior distribution
π : Ω → M1

+(Θ),P{exp

[
sup

ρ∈M1
+(Θ)

ρ
[
λ
[
Φ λ

N
(r) − r1

]]
− K(ρ, π)

]}
≤ 1.

The proof is deduced from the previous lemma, using the fact that π is
partially exchangeable :P{exp

[
sup

ρ∈M1
+(Θ)

ρ
[
λ
[
Φ λ

N
(r) − r1

]]
− K(ρ, π)

]}

= P{π{exp
[
λ
[
Φ λ

N
(r) − r1

]]}}
= P{Tπ{exp

[
λ
[
Φ λ

N
(r) − r1

]]}}

= P{π{T exp
[
λ
[
Φ λ

N
(r) − r1

]]}}
≤ 1.

Introducing in the same way

m′(θ, θ′) =
1

N

N∑

i=1

∣∣∣1[fθ(Xi) 6= Yi
]
− 1[fθ′(Xi) 6= Yi

]∣∣∣

and m(θ, θ′) =
1

(k + 1)N

(k+1)N∑

i=1

∣∣∣1[fθ(Xi) 6= Yi
]
− 1[fθ′(Xi) 6= Yi

]∣∣∣,

we could prove along the same line of reasoning
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Theorem 2.3. For any real parameter λ, any θ̃ ∈ Θ, any partially ex-
changeable posterior distribution π : Ω → M1

+(Θ),P{exp

[
sup

ρ∈M1
+(Θ)

λ
[
ρ
{
Ψ λ

N

[
r(·) − r(θ̃),m(·, θ̃)

]}

−
[
ρ(r1) − r1(θ̃)

]]
− K(ρ, π)

]}
≤ 1.

Theorem 2.4. For any real constant γ, for any θ̃ ∈ Θ, for any partially
exchangeable posterior distribution π : Ω → M1

+(Θ),P{exp

[
sup

ρ∈M1
+(Θ)

{
−Nρ

{
log
[
1 − tanh

( γ
N

)[
r(·) − r(θ̃)

]]}

− γ
[
ρ(r1) − r1(θ̃)

]
−N log

[
cosh

( γ
N

)]
ρ
[
m′(·, θ̃)

]
− K(ρ, π)

}]}
≤ 1.

This last theorem can be generalized to give

Theorem 2.5. For any real constant γ, for any partially exchangeable pos-
terior distributions π1, π2 : Ω → M1

+(Θ),P{exp

[
sup

ρ1,ρ2∈M1
+(Θ)

{
−N log

{
1 − tanh

( γ
N

)[
ρ1(r) − ρ2(r)

]}

− γ
[
ρ1(r1) − ρ2(r1)

]
−N log

[
cosh

( γ
N

)]
ρ1 ⊗ ρ2(m

′)

− K(ρ1, π
1) − K(ρ2, π

2)

}]}
≤ 1.

To conclude this section, we see that the basic theorems of transductive
PAC-Bayesian classification have exactly the same form as the basic inequal-
ities of inductive classification, Theorems 1.4, 1.25 and 1.26 with R(θ) re-
placed with r(θ), r(θ) replaced with r1(θ) and M ′(θ, θ̃) replaced with m(θ, θ̃).

Thus all the results of the first section remain true under the hypotheses of
transductive classification, with R(θ) replaced with r(θ), r(θ) replaced with
r1(θ) and M ′(θ, θ̃ ) replaced with m(θ, θ̃).

Consequently, in the case when the unlabelled shadow sample is observed,
it is possible to improve on Vapnik’s bounds to be discussed hereafter by us-
ing an explicit partially exchangeable posterior distribution π and resorting
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to localized or to relative bounds (in the case at least of unlimited computing
resources, which of course may still be unrealistic in many real world situ-
ations, and with the caveat, to be recalled in the conclusion of this article,
that for small sample sizes and comparatively complex classification models,
the improvement may not be so decisive).

Let us notice also that the transductive setting when experimentally avail-
able, has the advantage that

d(θ, θ′) =
1

(k + 1)N

(k+1)N∑

i=1

1[fθ′(Xi) 6= fθ(Xi)
]

≥ m(θ, θ′) ≥ r(θ) − r(θ′), θ, θ′ ∈ Θ,

is observable in this context, providing an empirical upper bound for the
difference r(θ̂)− ρ(r) for any non randomized estimator θ̂ and any posterior
distribution ρ, namely

r(θ̂) ≤ ρ(r) + ρ
[
d(·, θ̂)

]
.

Thus in the setting of transductive statistical experiments, the PAC-Bayesian
framework provides fully empirical bounds for the error rate of non random-
ized estimators θ̂ : Ω → Θ, even when using a non atomic prior π (or
more generally a non atomic partially exchangeable posterior distribution
π), when Θ is not a vector space and θ 7→ R(θ) cannot be proved to be
convex on the support of some useful posterior distribution ρ.

2.2. Vapnik’s bounds for transductive classification. In this sec-
tion, we are going to stick to plain unlocalized non relative bounds. As we
have already mentioned, (and as it was put forward by Vapnik himself in
his seminal works), these bounds are not always superseded by the asymp-
totically better ones, and deserve all our efforts since they deal in many
situations better with small samples.

2.2.1. With a shadow sample of arbitrary size. The great thing with the
transductive setting is that we are manipulating only r1 and r which can
take but a finite number of values and therefore are piecewise constant on
Θ. To make use of this, let us consider for any value θ ∈ Θ of the parameter
the subset ∆(θ) ⊂ Θ of parameters θ′ such that the classification rule fθ′

answers the same on the extended sample (Xi)
(k+1)N
i=1 as fθ. Namely, let us

put for any θ ∈ Θ

∆(θ) =
{
θ′ ∈ Θ; fθ′(Xi) = fθ(Xi), i = 1, . . . , (k + 1)N

}
.
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We see immediately that ∆(θ) is an exchangeable parameter subset on which
r1 and r2 (and therefore also r) take a constant value. Thus for any θ ∈ Θ
we may consider the posterior ρθ defined by

dρθ
dπ

(θ′) = 1[θ′ ∈ ∆(θ)
]
π
[
∆(θ)

]−1
,

and use the fact that ρθ(r1) = r1(θ) and ρθ(r) = r(θ), to prove that

Lemma 2.6. For any partially exchangeable positive real measurable func-
tion λ : Ω × Θ → R such that

λ(ω, θ′) = λ(ω, θ), θ ∈ Θ, θ′ ∈ ∆(θ), ω ∈ Ω, (2.1)

and any partially exchangeable posterior distribution π : Ω → M1
+(Θ), withP probability at least 1 − ǫ, for any θ ∈ Θ,

Φ λ
N

[
r(θ)

]
+

log
{
ǫπ
[
∆(θ)

]}

λ(θ)
≤ r1(θ).

We can then remark that for any value of λ independent of ω, the left-
hand side of the previous inequality is a partially exchangeable function of
ω ∈ Ω. Thus this left-hand side is maximized by some partially exchangeable
function λ, namely

arg max
λ

Φ λ
N

[
r(θ)

]
+

log
{
ǫπ
[
∆(θ)

]}

λ

is partially exchangeable as depending only on partially exchangeable quan-
tities. Moreover this choice of λ(ω, θ) satisfies also condition (2.1) stated in
the previous lemma of being constant on ∆(θ), proving

Lemma 2.7. For any partially exchangeable posterior distribution π : Ω →
M1

+(Θ), with P probability at least 1 − ǫ, for any θ ∈ Θ and any λ ∈ R+,

Φ λ
N

[
r(θ)

]
+

log
{
ǫπ
[
∆(θ)

]}

λ
≤ r1(θ).

Writing r = r1+kr2
k+1 and rearranging terms we obtain

Theorem 2.8. For any partially exchangeable posterior distribution π :
Ω → M1

+(Θ), with P probability at least 1 − ǫ, for any θ ∈ Θ,

r2(θ) ≤
k + 1

k
inf
λ∈R+

1 − exp

(
−
λ

N
r1(θ) +

log
{
ǫπ
[
∆(θ)

]}

N

)

1 − exp
(
− λ
N

) −
r1(θ)

k
.
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Let us remind the reader that in the case when we have a set of binary
classification rules {fθ; θ ∈ Θ} whose VC dimension is not greater than h,
then we can choose π such that π

[
∆(θ)

]
is independent of θ and not less

that

(
h

e(k + 1)N

)h
.

Another important case when the complexity term − log
{
π
[
∆(θ)

]}
can

easily be controlled is the setting of compression schemes, introduced by
Littlestone et Warmuth [24]. In this case, we are given for each labelled
subsample (Xi, Yi)i∈J , J ⊂ {1, . . . , N}, an estimator of the parameter

θ̂
[
(Xi, Yi)i∈J

]
= θ̂J , J ⊂ {1, . . . , N}, |J | ≤ h,

where

θ̂ :

N⊔

k=1

(
X × Y

)k
→ Θ

is an exchangeable function providing estimators for subsamples of arbitrary
size. Let us assume that θ̂ is exchangeable, meaning that for any k = 1, . . . , N
and any permutation σ of {1, . . . , k}

θ̂
[
(xi, yi)

k
i=1

]
= θ̂
[
(xσ(i), yσ(i))

k
i=1

]
, (xi, yi)

k
i=1 ∈

(
X × Y

)k
.

In this situation, we can introduce the exchangeable subset

{
θ̂J ;J ⊂ {1, . . . , (k + 1)N}, |J | ≤ h

}
⊂ Θ,

which is seen to contain at most

h∑

j=0

(
(k + 1)N

j

)
≤

(
e(k + 1)N

h

)h
classifi-

cation rules (as will be proved later on in Theorem 3.14 on page 138). Note
that we had to extend the range of J to all the subsets of the extended sam-
ple, although we will use for estimation only those of the training sample, on
which the labels are observed. Thus in this case also we can find a partially

exchangeable posterior distribution π such that π
[
∆(θ̂J)

]
≥

(
h

e(k + 1)N

)h
.

We see that the size of the compression scheme plays the same role in this
complexity bound as the V C dimension for V C classes.

In these two cases of binary classification with VC dimension not greater
than h and compression schemes depending on a compression set with at
most h points, we get a bound of
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r2(θ) ≤
k + 1

k
inf
λ∈R+

1 − exp


−

λ

N
r1(θ) −

h log
(
e(k+1)N

h

)
− log(ǫ)

N




1 − exp
(
− λ
N

)

−
r1(θ)

k
.

Let us make some numerical application: when N = 1000, h = 10, ǫ = 0.01,
and infΘ r1 = r1(θ̂) = 0.2, we find that r2(θ̂) ≤ 0.4093, for k between 15 and
17, and values of λ equal respectively to 965, 968 and 971. For k = 1, we
find only r2(θ̂) ≤ 0.539, showing the interest of allowing k to be larger than
1.

2.2.2. When the shadow sample has the same size as the training sample.
In the case when k = 1, we can improve Theorem 2.2 by taking advantage
of the fact that Ti(σi) can take only 3 values, namely 0, 0.5 and 1. We see
thus that Ti(σi) − Φ λ

N

[
Ti(σi)

]
can take only two values, 0 and 1

2 − Φ λ
N

(1
2 ),

because Φ λ
N

(0) = 0 and Φ λ
N

(1) = 1. Thus

Ti(σi) − Φ λ
N

[
Ti(σi)

]
=
[
1 − |1 − 2Ti(σi)|

][
1
2 − Φ λ

N
(1
2)
]
.

This shows that in the case when k = 1,

log
{
T
[
exp(−λr1)

]}
= −λr +

λ

N

N∑

i=1

Ti(σi) − Φ λ
N

[
Ti(σi)

]

= −λr +
λ

N

N∑

i=1

[
1 − |1 − 2Ti(σi)|

][
1
2 − Φ λ

N
(1
2)
]

≤ −λr + λ
[

1
2 − Φ λ

N
(1
2 )
][

1 − |1 − 2r|
]
.

Noticing that 1
2 − Φ λ

N
(1
2 ) = N

λ log
[
cosh( λ

2N )
]
, we obtain

Theorem 2.9. For any partially exchangeable function λ : Ω × Θ → R+,
for any partially exchangeable posterior distribution π : Ω → M1

+(Θ),P{exp

[
sup

ρ∈M1
+(Θ)

ρ
[
λ(r − r1)

−N log
[
cosh( λ

2N )
](

1 − |1 − 2r|
)]

− K(ρ, π)

]}
≤ 1.
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As a consequence, reasonning as previously, we deduce

Theorem 2.10. In the case when k = 1, for any partially exchangeable
posterior distribution π : Ω → M1

+(Θ), with P probability at least 1 − ǫ, for
any θ ∈ Θ and any λ ∈ R+,

r(θ) − N
λ log

[
cosh( λ

2N )
](

1 − |1 − 2r(θ)|
)

+
log
{
ǫπ
[
∆(θ)

]}

λ
≤ r1(θ);

and consequently for any θ ∈ Θ,

r2(θ) ≤ 2 inf
λ∈R+

r1(θ) −
log
{
ǫπ
[
∆(θ)

]}

λ
1 − 2N

λ log
[
cosh( λ

2N )
] − r1(θ).

In the case of binary classification using a VC class of VC dimension not
greater than h, we can choose π such that − log

{
π
[
∆(θ)

]}
≤ h log(2eN

h ) and
obtain the following numerical illustration of this theorem : for N = 1000,
h = 10, ǫ = 0.01 and infΘ r1 = r1(θ̂) = 0.2, we find an upper bound
r2(θ̂) ≤ 0.5033, which improves on Theorem 2.8 but still is not under the
significance level 1

2 (achieved by blind random classification). This indicates
that considering shadow samples of arbitrary sizes brings in some noisy
situations a significant improvement on bounds obtained with a shadow
sample of the same size as the training sample.

2.2.3. When moreover the distribution of the augmented sample is exchange-
able. In the case when k = 1 and P is exchangeable meaning that for
any bounded measurable function h : Ω → R and any permutation s ∈
S
(
{1, . . . , 2N}

) P[h(ω◦s)] = P[h(ω)
]
, then we can still improve the bound

as follows. Let

T ′(h) =
1

N !

∑

s∈S

(
{N+1,...,2N}

)
h(ω ◦ s).

Then we can write

1 − |1 − 2Ti(σi)| = (σi − σi+N )2 = σi + σi+N − 2σiσi+N .

Using this identity, we get for any exchangeable function λ : Ω × Θ → R+,

T

{
exp

[
λ(r − r1) − log

[
cosh( λ

2N )
] N∑

i=1

(
σi + σi+N − 2σiσi+N

)]}
≤ 1.
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Let us put

A(λ) = 2N
λ log

[
cosh( λ

2N )
]
, (2.2)

v(θ) =
1

2N

N∑

i=1

(σi + σi+N − 2σiσi+N ). (2.3)

With these notations

T
{
exp
{
λ
[
r − r1 −A(λ)v

]}}
≤ 1.

Let notice now that

T ′
[
v(θ)

]
= r(θ) − r1(θ)r2(θ).

Let π : Ω → M1
+(Θ) be any given exchangeable posterior distribution. Using

the exchangeability of P and π and the exchangeability of the exponential
function, we getP{π[exp

{
λ
[
r − r1 −A(r − r1r2)

]}]}
= P{π[exp

{
λ
[
r − r1 −AT ′(v)

]}]}

≤ P{π[T ′ exp
{
λ
[
r − r1 −Av

]}]}
= P{T ′π

[
exp
{
λ
[
r − r1 −Av

]}]}

= P{π[exp
{
λ
[
r − r1 −Av

]}]}
= P{Tπ[exp

{
λ
[
r − r1 −Av

]}]}

= P{π[T exp
{
λ
[
r − r1 −Av

]}]}
≤ 1.

We are thus ready to state

Theorem 2.11. In the case when k = 1, for any exchangeable probability
distribution P, for any exchangeable posterior distribution π : Ω → M1

+(Θ),
for any exchangeable function λ : Ω × Θ → R+,P{exp

[
sup

ρ∈M1
+(Θ)

ρ
{
λ
[
r − r1 −A(λ)(r − r1r2)

]}
− K(ρ, π)

]}
≤ 1,

where A(λ) is defined by equation (2.2) above.

We then deduce as previously

Corollary 2.12. For any exchangeable posterior distribution π : Ω →
M1

+(Θ), for any exchangeable probability measure P ∈ M1
+(Ω), for any mea-

surable exchangeable function λ : Ω × Θ → R+, with P probability at least
1 − ǫ, for any θ ∈ Θ,

r(θ) ≤ r1(θ) +A(λ)
[
r(θ) − r1(θ)r2(θ)

]
−

log
{
ǫπ
[
∆(θ)

]}

λ
,
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where A(λ) is defined by equation (2.2) on page 108.

In order to deduce an empirical bound from this theorem, we have to make
some choice for λ(ω, θ). Fortunately, it is easy to show that the bound indeed
holds uniformly in λ. This is the case because the inequality can be rewritten
as a function of only one non exchangeable quantity, namely r1(θ). Indeed,
since r2 = 2r − r1, we see that the inequality can be written as

r(θ) ≤ r1(θ) +A(λ)
[
r(θ) − 2r(θ)r1(θ) + r1(θ)

2
]
−

log
{
ǫπ
[
∆(θ)

]

λ
.

It can be solved in r1(θ), to get

r1(θ) ≥ f
(
λ, r(θ),− log

{
ǫπ
[
∆(θ)

]})
,

where namely

f(λ, r, d) =
[
2A(λ)

]−1
{

2rA(λ) − 1

+

√[
1 − 2rA(λ)

]2
+ 4A(λ)

{
r
[
1 −A(λ)

]
− d

λ

}}
.

Thus we can find some exchangeable function λ(ω, θ), such that

f
(
λ(ω, θ), r(θ),− log

{
ǫπ
[
∆(θ)

]})
= sup

β∈R+

f
(
β, r(θ),− log

{
ǫπ
[
∆(θ)

]})
.

Applying Corollary 2.12 to that choice of λ, we see that

Theorem 2.13. For any exchangeable probability measure P ∈ M1
+(Ω), for

any exchangeable posterior probability distribution π : Ω → M1
+(Θ), with P

probability at least 1 − ǫ, for any θ ∈ Θ, for any λ ∈ R+,

r(θ) ≤ r1(θ) +A(λ)
[
r(θ) − r1(θ)r2(θ)

]
−

log
{
ǫπ
[
∆(θ)

]}

λ
,

where A(λ) is defined by equation (2.2) on page 108.

Solving the previous inequality in r2(θ), we get

Corollary 2.14. Under the same assumptions as in the previous theorem,
with P probability at least 1 − ǫ, for any θ ∈ Θ,

r2(θ) ≤ inf
λ∈R+

r1(θ)
{

1 + 2N
λ log

[
cosh( λ

2N )
]}

−
2 log

{
ǫπ
[
∆(θ)

]}

λ
1 − 2N

λ log
[
cosh( λ

2N )
][

1 − 2r1(θ)
] .
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Applying this to our usual numerical example of a binary classification model
with VC dimension not greater than h = 10, when N = 1000, infΘ r1 =
r1(θ̂) = 10 and ǫ = 0.01, we obtain that r2(θ̂) ≤ 0.4450.

2.3. Vapnik’s bounds for inductive classification.

2.3.1. Arbitrary shadow sample size. We assume in this section thatP =

( N⊗

i=1

Pi

)⊗∞

∈ M1
+

{[(
X × Y

)N]N}
,

where Pi ∈ M1
+

(
X×Y

)
: we consider an infinite i.i.d. sequence of independent

not identically distributed samples of size N , the first one only being ob-
served. The shadow samples will only appear in the proofs. The aim of this
section is to prove better Vapnik’s bounds, generalizing them in the same
time to the independent non i.i.d. setting, which to our knowledge had not
been done before.

Let us introduce the notation P′
[
h(ω)

]
= P[h(ω) | (Xi, Yi)

N
i=1

]
, where h

may be any suitable (e.g. bounded) random variable, let us also put Ω =[
(X × Y)N

]N
.

Definition 2.2. For any subset A ⊂ N of integers, let C(A) be the set of
circular permutations of the totally ordered setA, extended to a permutation
of N by taking it to be the identity on the complement N \A of A. We will
say that a random function h : Ω → R is k-partially exchangeable if

h(ω ◦ s) = h(ω), s ∈ C
(
{i+ jN ; j = 0, . . . , k}

)
, i = 1, . . . , N.

In the same way, we will say that a posterior distribution π : Ω → M1
+(Θ)

is k-partially exchangeable if

π(ω ◦ s) = π(ω) ∈ M1
+(Θ), s ∈ C

(
{i+ jN ; j = 0, . . . , k}

)
, i = 1, . . . , N.

Note that P itself is k-partially exchangeable for any k in the sense that for
any bounded measurable function h : Ω → RP[h(ω ◦ s)

]
= P[h(ω)

]
, s ∈ C

(
{i+ jN ; j = 0, . . . , k}

)
, i = 1, . . . , N.

Let ∆k(θ) =
{
θ′ ∈ Θ ;

[
fθ′(Xi)

](k+1)N

i=1
=
[
fθ(Xi)

](k+1)N

i=1

}
, θ ∈ Θ, k ∈ N∗,

and let also rk(θ) =
1

(k + 1)N

(k+1)N∑

i=1

1[fθ(Xi) 6= Yi
]
. Theorem 2.2 shows
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that for any positive real parameter λ and any k-partially exchangeable
posterior distribution πk : Ω → M1

+(Θ),P{exp

[
sup
θ∈Θ

λ
[
Φ λ

N
(rk) − r1

]
+ log

{
ǫπk
[
∆k(θ)

]}]}
≤ ǫ.

Using the general fact thatP[exp(h)
]

= P{P′
[
exp(h)

]}
≥ P{exp

[P′(h)
]}
,

and the fact that the expectation of a supremum is larger than the supremum
of an expectation, we see that with P probability at most 1−ǫ, for any θ ∈ Θ,P′

{
Φ λ

N

[
rk(θ)

]}
≤ r1(θ) −

P′
{
log
{
ǫπk
[
∆k(θ)

]}}

λ
.

Let us put for short

d̄k(θ) = − log
{
ǫπk
[
∆k(θ)

]}
,

d′k(θ) = −P′
{

log
{
ǫπk
[
∆k(θ)

]}}
,

dk(θ) = −P{log
{
ǫπk
[
∆k(θ)

]}}
.

We can use the convexity of Φ λ
N

and the fact that P′(rk) = r1+kR
k+1 , to see

that P′
{

Φ λ
N

[
rk(θ)

]}
≥ Φ λ

N

[
r1(θ) + kR(θ)

k + 1

]
.

We have proved

Theorem 2.15. Using the above hypotheses and notations, for any sequence
πk : Ω → M1

+(Θ), where πk is a k-partially exchangeable posterior distribu-
tion, for any positive real constant λ, any positive integer k, with P proba-
bility at least 1 − ǫ, for any θ ∈ Θ,

Φ λ
N

[
r1(θ) + kR(θ)

k + 1

]
≤ r1(θ) +

d′k(θ)

λ
.

We can make as we did with Theorem 1.10 on page 20 the result of this
theorem uniform in λ ∈ {αj ; j ∈ N∗} and k ∈ N∗ (considering on k the
prior 1

k(k+1) and on j the prior 1
j(j+1)), and obtain
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Theorem 2.16. For any real parameter α > 1, with P probability at least
1 − ǫ, for any θ ∈ Θ,

R(θ) ≤

inf
k∈N∗,j∈N∗

1 − exp

{
−αj

N r1(θ) −
1
N

{
d′k(θ) + log

[
k(k + 1)j(j + 1)

]}}

k
k+1

[
1 − exp

(
−αj

N

)]

−
r1(θ)

k
.

Note that as a special case we can choose πk such that log
{
πk
[
∆k(θ)

]}
is

independent of θ and equal to log(Nk), where Nk =
∣∣{[fθ(Xi)

](k+1)N

i=1
; θ ∈

Θ
}∣∣ is the size of the trace of the classification model on the extended sample

of size (k+1)N . With this choice, we obtain a bound involving a new flavour
of conditional Vapnik’s entropy, namely

d′k(θ) = P[log(Nk) |(Zi)
N
i=1

]
− log(ǫ).

In the case of binary classification using a VC class of VC dimension not
greater than h = 10, when N = 1000, infΘ r1 = r1(θ̂) = 0.2 and ǫ = 0.01,
choosing α = 1.1, we obtain R(θ̂) ≤ 0.4271 (for an optimal value of λ =
1071.8, and an optimal value of k = 16).

2.3.2. A better minimization with respect to the exponential parameter. If
we are not pleased with the fact of optimizing λ on a discrete subset of the
real line, we can use a slightly different approach. From Theorem 2.2, we
see that for any positive integer k, for any k-partially exchangeable positive
real measurable function λ : Ω × Θ → R+ satisfying equation (2.1) on page
104 (with ∆(θ) replaced with ∆k(θ)), for any ǫ ∈)0, 1) and η ∈)0, 1),P{P′

[
exp
[
sup
θ
λ
[
Φ λ

N
(rk) − r1

]
+ log

{
ǫηπk

[
∆k(θ)

]}]}
≤ ǫη,

therefore with P probability at least 1 − ǫ,P′

{
exp
[
sup
θ
λ
[
Φ λ

N
(rk) − r1

]
+ log

{
ǫηπk

[
∆k(θ)

]}]}
≤ η,

and consequently, with P probability at least 1 − ǫ, with P′ probability at
least 1 − η, for any θ ∈ Θ,

Φ λ
N

(rk) +
log
{
ǫηπk

[
∆k(θ)

]}

λ
≤ r1.
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Now we are entitled to choose

λ(ω, θ) ∈ arg max
λ′∈R+

Φλ′

N

(rk) +
log
{
ǫηπk

[
∆k(θ)

]}

λ′
.

This shows that with P probability at least 1 − ǫ, with P′ probability at
least 1 − η, for any θ ∈ Θ,

sup
λ∈R+

Φ λ
N

(rk) −
d̄k(θ) − log(η)

λ
≤ r1,

which can also be written

Φ λ
N

(rk) − r1 −
d̄k(θ)

λ
≤ −

log(η)

λ
, λ ∈ R+.

Thus with P probability at least 1 − ǫ, for any θ ∈ Θ, any λ ∈ R+,P′

[
Φ λ

N
(rk) − r1 −

d̄k(θ)

λ

]
≤ −

log(η)

λ
+

[
1 − r1 +

log(η)

λ

]
η.

On the other hand, Φ λ
N

being a convex function,P′

[
Φ λ

N
(rk) − r1 −

d̄k(θ)

λ

]
≥ Φ λ

N

[P′(rk)
]
− r1 −

d′k
λ

= Φ λ
N

(
kR+ r1
k + 1

)
− r1 −

d′k
λ
.

Thus with P probability at least 1 − ǫ, for any θ ∈ Θ,

kR+ r1
k + 1

≤ inf
λ∈R+

Φ−1
λ
N

[
r1(1 − η) + η +

d′k − log(η)(1 − η)

λ

]
.

We can generalize this approach by considering a finite decreasing sequence
η0 = 1 > η1 > η2 > · · · > ηJ > ηJ+1 = 0, and the corresponding sequence of
levels

Lj = −
log(ηj)

λ
, 0 ≤ j ≤ J,

LJ+1 = 1 − r1 −
log(J) − log(ǫ)

λ
.

Taking a union bound in j, we see that with P probability at least 1− ǫ, for
any θ ∈ Θ, for any λ ∈ R+,P′

[
Φ λ

N
(rk) − r1 −

d̄k + log(J)

λ
≥ Lj

]
≤ ηj , j = 0, . . . , J + 1,
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and consequentlyP′

[
Φ λ

N
(rk) − r1 −

d̄k + log(J)

λ

]

≤

∫ LJ+1

0
P′

[
Φ λ

N
(rk) − r1 −

d̄k + log(J)

λ
≥ α

]
dα ≤

J+1∑

j=1

ηj−1(Lj − Lj−1)

= ηJ

[
1 − r1 −

log(J) − log(ǫ) − log(ηJ )

λ

]
−

log(η1)

λ
+

J−1∑

j=1

ηj
λ

log

(
ηj
ηj+1

)
.

Let us put

d′′k
[
θ, (ηj)

J
j=1

]
= d′k(θ) + log(J) − log(η1)

+

J−1∑

j=1

ηj log

(
ηj
ηj+1

)
+ log

(ǫηJ
J

)
ηJ .

We have proved that for any decreasing sequence (ηj)
J
j=1, with P proba-

bility at least 1 − ǫ, for any θ ∈ Θ,

kR+ r1
k + 1

≤ inf
λ∈R+

Φ−1
λ
N

[
r1(1 − ηJ) + ηJ +

d′′k
[
θ, (ηj)

J
j=1

]

λ

]
.

Remark 2.1. We can for instance choose J = 2, η2 = 1
10N , η1 = 1

log(10N) ,
resulting in

d′′k = d′k + log(2) + log log(10N) + 1 −
log log(10N)

log(10N)
−

log
(

20N
ǫ

)

10N
.

In the case when N = 1000 and for any ǫ ∈ (0, 1), we get d′′k ≤ d′k + 3.7, in
the case when N = 106, we get d′′k ≤ d′k + 4.4, and in the case N = 109, we
get d′′k ≤ d′k + 4.7.

Therefore, for any practical purpose we could take d′′k = d′k + 4.7 and
ηJ = 1

10N in the above inequality.

Taking moreover a weighted union bound in k, we get

Theorem 2.17. For any ǫ ∈)0, 1), any sequence 1 > η1 > · · · > ηJ > 0, any
sequence πk : Ω → M1

+(Θ), where πk is a k-partially exchangeable posterior
distribution, with P probability at least 1 − ǫ, for any θ ∈ Θ,
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R(θ) ≤ inf
k∈N∗

k + 1

k
inf
λ∈R+

Φ−1
λ
N

[
r1(θ) + ηJ

[
1 − r1(θ)

]

+
d′′k
[
θ, (ηj)

J
j=1

]
+ log

[
k(k + 1)

]

λ

]
−
r1(θ)

k
.

Corollary 2.18. For any ǫ ∈)0, 1), for any N ≤ 109, with P probability
at least 1 − ǫ, for any θ ∈ Θ,

R(θ) ≤ inf
k∈N∗

inf
λ∈R+

k + 1

k

[
1 − exp(− λ

N )
]−1
{

1 − exp

[
− λ
N

[
r1(θ) + 1

10N

]

−
P′
[
log(Nk) | (Zi)

N
i=1

]
− log(ǫ) + log

[
k(k + 1)

]
+ 4.7

N

]}
−
r1(θ)

k
.

Let us end this section with a numerical example: in the case of binary
classification with a VC class of dimension not greater than 10, when N =
1000, infΘ r1 = r1(θ̂) = 0.2 and ǫ = 0.01, we get a bound R(θ̂) ≤ 0.4211 (for
optimal values of k = 15 and of λ = 1010).

2.3.3. Equal shadow and training sample sizes. In the case when k = 1, we

can use Theorem 2.10, and replace Φ−1
λ
N

(q) with
{
1− 2N

λ log
[
cosh( λ

2N )
]}−1

q,

resulting in

Theorem 2.19. For any ǫ ∈)0, 1), any N ≤ 109, any 1-partially exchange-
able posterior distribution π1 : Ω → M1

+(Θ), with P probability at least 1−ǫ,
for any θ ∈ Θ,

R(θ) ≤ inf
λ∈R+

{
1 + 2N

λ log
[
cosh( λ

2N )
]}
r1(θ) +

1

5N
+ 2

d′1(θ) + 4.7

λ
1 − 2N

λ log
[
cosh( λ

2N )
] .

2.3.4. Improvement on the equal sample size bound in the i.i.d. case. Even-
tually, in the case when P is i.i.d., meaning that all the Pi are equal, we
can improve the previous bound. For any partially exchangeable function
λ : Ω × Θ → R+, we saw in the discussion preceding Theorem 2.11 on page
108 that

T
[
exp
[
λ(rk − r1) −A(λ)v

]]
≤ 1,

with the notations introduced therein. Thus for any partially exchangeable
positive real measurable function λ : Ω × Θ → R+ satisfying equation (2.1)
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on page 104, any 1-partially exchangeable posterior distribution π1 : Ω →
M1

+(Θ),P{exp
[
sup
θ∈Θ

λ
[
rk(θ) − r1(θ) −A(λ)v(θ)

]
+ log

[
ǫπ1

[
∆(θ)

]]}
≤ 1.

Therefore with P probability at least 1 − ǫ, with P′ probability 1 − η,

rk(θ) ≤ r1(θ) +A(λ)v(θ) +
1

λ

[
d̄1(θ) − log(η)

]

We can then choose λ(ω, θ) ∈ arg min
λ′∈R+

A(λ′)v(θ)+
d̄1(θ) − log(η)

]

λ′
, which

satisfies the required conditions, to show that with P probability at least
1 − ǫ, for any θ ∈ Θ, with P′ probability at least 1 − η, for any λ ∈ R+,

rk(θ) ≤ r1(θ) +A(λ)v(θ) +
d̄1(θ) − log(η)

λ
.

We can then take a union bound on a decreasing sequence of J values
η1 ≥ · · · ≥ ηJ of η. Weakening a little the order of quantifiers, we then
obtain the following statement: with P probability at least 1 − ǫ, for any
θ ∈ Θ, for any λ ∈ R+, for any j = 1, . . . , JP′

[
rk(θ) − r1(θ) −A(λ)v(θ) −

d̄1(θ) + log(J)

λ
≥ −

log(ηj)

λ

]
≤ ηj .

Consequently for any λ ∈ R+,P′

[
rk(θ) − r1(θ) −A(λ)v(θ) −

d̄1(θ) + log(J)

λ

]

≤ −
log(η1)

λ
+ ηJ

[
1 − r1(θ) −

log(J) − log(ǫ) − log(ηJ )

λ

]

+

J−1∑

j=1

ηj
λ

log

(
ηj
ηj+1

)
.

Moreover P′
[
v(θ)

]
= r1+R

2 − r1R, (this is where we need equidistribution)
thus proving that

R− r1
2

≤
A(λ)

2

[
R+ r1 − 2r1R

]
+
d′′1
[
θ, (ηj)

J
j=1

]

λ
+ ηJ

[
1 − r1(θ)

]
.

Keeping track of quantifiers, we obtain
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Theorem 2.20. For any decreasing sequence (ηj)
J
j=1, any ǫ ∈ (0, 1), any

1-partially exchangeable posterior distribution π : Ω → M1
+(Θ), with P prob-

ability at least 1 − ǫ, for any θ ∈ Θ,

R(θ) ≤ inf
λ∈R+

{
1 + 2N

λ log
[
cosh( λ

2N )
]}
r1(θ) +

2d′′1
[
θ, (ηj)

J
j=1

]

λ
+ 2ηJ

[
1 − r1(θ)

]

1 − 2N
λ log

[
cosh( λ

2N )
][

1 − 2r1(θ)
] .

2.4. Gaussian approximation in Vapnik’s bounds. To obtain formu-
las which could be easily compared with original Vapnik’s bounds, we may
replace p− Φa(p) with a Gaussian upper bound:

Lemma 2.21. For any p ∈ (0, 1
2 ), any a ∈ R+,

p− Φa(p) ≤
a

2
p(1 − p).

For any p ∈ (1
2 , 1),

p− Φa(p) ≤
a

8
.

Proof. Let us notice that for any p ∈ (0, 1),

∂

∂a

[
−aΦa(p)

]
= −

p exp(−a)

1 − p+ p exp(−a)
,

∂2

∂2a

[
−aΦa(p)

]
=

p exp(−a)

1 − p+ p exp(−a)

(
1 −

p exp(−a)

1 − p+ p exp(−a)

)

≤

{
p(1 − p) p ∈ (0, 1

2 ),
1
4 p ∈ (1

2 , 1).

Thus taking a Taylor expansion of order one with integral remainder :

−aΦ(a) ≤





−ap+

∫ a

0
p(1 − p)(a− b)db

= −ap+
a2

2
p(1 − p), p ∈ (0, 1

2),

−ap+

∫ a

0

1

4
(a− b)db = −ap+

a2

8
, p ∈ (1

2 , 1).

This ends the proof of our lemma. �
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Lemma 2.22. Let us consider the bound

B(q, d) =

(
1 +

2d

N

)−1 [
q +

d

N
+

√
2dq(1 − q)

N
+

d2

N2

]
, q ∈ R+, d ∈ R+.

Let us also put

B̄(q, d) =

{
B(q, d) B(q, d) ≤ 1

2 ,

q +
√

d
2N otherwise.

For any positive real parameters q and d

inf
λ∈R+

Φ−1
λ
N

(
q +

d

λ

)
≤ B̄(q, d).

Proof. Let p = inf
λ

Φ−1
λ
N

(
q +

d

λ

)
. For any λ ∈ R+,

p−
λ

2N
(p ∧ 1

2)
[
1 − (p ∧ 1

2 )
]
≤ Φ λ

N
(p) ≤ q +

d

λ
.

Thus

p ≤ q + inf
λ∈R+

λ

2N
(p ∧ 1

2)
[
1 − (p ∧ 1

2)
]
+
d

λ

= q +

√
2d(p ∧ 1

2)
[
1 − (p ∧ 1

2 )
]

N
≤ q +

√
d

2N
.

Then let us remark that B(q, d) = sup

{
p′ ∈ R+ ; p′ ≤ q +

√
2dp′(1 − p′)

N

}
.

If moreover 1
2 ≥ B(q, d), then according to this remark 1

2 ≥ q +
√

d
2N ≥ p.

Therefore p ≤ 1
2 , and consequently p ≤ q +

√
2dp(1−p)

N , implying that p ≤

B(q, d). �

2.4.1. Arbitrary shadow sample size. This lemma combined with Corollary
2.18 on page 115 implies

Corollary 2.23. For any ǫ ∈)0, 1), any integer N ≤ 109, with P proba-
bility at least 1 − ǫ, for any θ ∈ Θ,

R(θ) ≤ inf
k∈N∗

k + 1

k

{
B̄
[
r1(θ) +

1

10N
, d′k(θ) + log

[
k(k + 1)

]
+ 4.7

]}
−
r1(θ)

k
.
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2.4.2. Equal sample sizes in the i.i.d. case. To make a link with Vapnik’s
result, it is useful to work out the Gaussian approximation to Theorem 2.20
on page 117. Indeed, using the upper bound A(λ) ≤ λ

4N , where A(λ) is
defined by equation (2.2) on page 108, we get with P probability at least
1 − ǫ

R− r1 − 2ηJ ≤ inf
λ∈R+

λ

4N

[
R+ r1 − 2r1R

]
+

2d′′1
λ

=

√
2d′′1(R+ r1 − 2r1R)

N
,

which can be solved in R to obtain

Corollary 2.24. With P probability at least 1 − ǫ, for any θ ∈ Θ,

R(θ) ≤ r1(θ) +
d′′1(θ)

N

[
1 − 2r1(θ)

]
+ 2ηJ

+

√
4d′′1(θ)

[
1 − r1(θ)

]
r1(θ)

N
+
d′′1(θ)

2

N2

[
1 − 2r1(θ)

]2
+

4d′′1(θ)

N

[
1 − 2r1(θ)

]
ηJ .

This is to be compared with Vapnik’s result, as proved in [37, page 138]:

Theorem 2.25 (Vapnik). For any i.i.d. probability distribution P, with P
probability at least 1 − ǫ, for any θ ∈ Θ, putting

dV = log
[P(N1)

]
+ log(4/ǫ),

R(θ) ≤ r1(θ) +
2dV
N

+

√
4dV r1(θ)

N
+

4d2
V

N2
.

Recalling that we can choose (ηj)
2
j=1 such that ηJ = 1

10N (which is neglige-

able by all means) and such that for any N ≤ 109,

d′′1(θ) ≤ P[log(N1) | (Zi)
N
i=1

]
− log(ǫ) + 4.7,

we see that our complexity term is somehow more satisfactory than Vapnik’s,
since it is integrated outside the logarithm, with a little larger additional
constant (remember that log(4) ≃ 1.4, which is better than our 4.7, which
could presumably be improved by working out a better sequence ηj, but not
down to log(4)). Our variance term is better, since we get r1(1 − r1) as we

should, instead of only r1. We also have
d′′1
N

instead of 2
dV
N

, comming from

the fact that we do not use any symmetrization trick.
Let us illustrate these bound on a numerical example (corresponding to

a situation where the sample is noisy or the classification model is weak).
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Let us assume that N = 1000, infΘ r1 = r1(θ̂) = 0.2, that we are performing
binary classification with a model with VC dimension not greater than h =
10, and that we work at level of confidence ǫ = 0.01. Vapnik’s theorem
provides an upper bound for R(θ̂) not smaller than 0.610, whereas Corollary
2.24 gives R(θ̂) ≤ 0.461 (using the bound d′′1 ≤ d′1 + 3.7 when N = 1000).
Now if we go for Theorem 2.20 and do not make a Gaussian approximation,
we get R(θ̂) ≤ 0.453. It is interesting to remark that this bound is achieved
for λ = 1195 > N = 1000. This explains why the Gaussian approximation
in Vapnik’s bound can be improved: for such a large value of λ, λr1(θ) does
not behave like a Gaussian random variable.

Let us remind in conclusion that the best bound is provided by Theorem
2.17, giving R(θ̂) ≤ 0.4211, (that is approximately 2/3 of Vapnik’s bound),
for optimal values of k = 15, and of λ = 1010. This bound can be seen to
take advantage of the fact that Bernoulli random variables are not Gaussian
(its Gaussian approximation, Corollary 2.23, gives a bound R(θ) ≃ 0.4325,
still with an optimal k = 15), and of the fact that the optimal size of the
shadow sample is significantly larger than the size of the observed sample.
Moreover, Theorem 2.17 does not assume that the sample is i.i.d., but only
that it is independent, thus generalizing Vapnik’s bounds to inhomogeneous
data (this will presumably be the case when data are collected from differ-
ent places where the experimental conditions may not be expected to be
the same, although they may reasonably be assumed to be independent).
We would like also to emphasis that our little numerical example shows
that Vapnik’s bounds can be expected to be appropriate when dealing with
moderate sample sizes. More sophisticated bounds obviously have a better
asymptotic behaviour as shown in the first section. Nevertheless the numer-
ical illustration of Theorem 1.18 given on page 30 suggests hat Vapnik’s
bounds are not doing so bad for small to medium ratios between the sample
size and the dimension of the classification model (with local bounds, we
could only get down to 0.332, although using a quite stronger dimension
assumption).

We chose on purpose an example where it is non trivial to decide whether
the chosen classifier does better than the 0.5 error rate of blind random
classification. We think that this situation of weak learning is of practical
interest, since “significant” weak learning rules may afterwards be aggre-
gated or combined in various ways to achieve better classification rates.
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3. Support Vector Machines

3.1. How to build them.

3.1.1. The canonical hyperplane. Support Vector Machines, of widely spread
use and renown, were introduced by V. Vapkik [37]. Before introducing them,
we will study as a prerequisite the separation of points by hyperplanes in
a finite dimensional Euclidean space. Support Vector Machines perform the
same kind of linear separation after an implicit change of pattern space. The
preceding PAC-Bayesian results provide a fit framework to analyze their
generalization properties.

We will deal in this section with the classification of points in Rd in two

classes. Let Z = (xi, yi)
N
i=1 ∈

(Rd × {−1,+1}
)N

be some set of labelled
examples (called the training set hereafter). Let us split the set of indices
I = {1, . . . , N} according to the labels into two subsets

I+ = {i ∈ I : yi = +1},

I− = {i ∈ I : yi = −1}.

Let us then consider the set of admissible separating directions

AZ =
{
w ∈ Rd : sup

b∈R inf
i∈I

(〈w, xi〉 − b)yi ≥ 1
}
,

which can also be written as

AZ =
{
w ∈ Rd : max

i∈I−
〈w, xi〉 + 2 ≤ min

i∈I+
〈w, xi〉

}
.

As it is easily seen, the optimal value of b for a fixed value of w, in other
words the value of b which maximizes infi∈I(〈w, xi〉 − b)yi, is equal to

bw =
1

2

[
max
i∈I−

〈w, xi〉 + min
i∈I+

〈w, xi〉
]
.

Lemma 3.1. When AZ 6= ∅, inf{‖w‖2 : w ∈ AZ} is reached for only one
value wZ of w.

Proof. Let w0 ∈ AZ . The set AZ ∩ {w ∈ Rd : ‖w‖ ≤ ‖w0‖} is a compact
convex set and w 7→ ‖w‖2 is strictly convex and therefore has a unique
minimum on this set, which is also obviously its minimum on AZ . �
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Definition 3.1. When AZ 6= ∅, the training set Z is said to be linearly
separable. The hyperplane

H = {x ∈ Rd : 〈wZ , x〉 − bZ = 0},

where

wZ = arg min{‖w‖ : w ∈ AZ},

bZ = bwZ
,

is called the canonical separating hyperplane of the training set Z. The
quantity ‖wZ‖

−1 is called the margin of the canonical hyperplane.

Note that as mini∈I+〈wZ , xi〉 − maxi∈I−〈wZ , xi〉 = 2, the margin is also
equal to half the distance between the projections on the direction wZ of
the positive and negative patterns.

3.1.2. Computation of the canonical hyperplane. Let us consider the convex
hulls X+ and X− of the positive and negative patterns:

X+ =
{∑

i∈I+

λixi :
(
λi
)
i∈I+

∈ RI++ ,
∑

i∈I+

λi = 1
}
,

X− =
{∑

i∈I−

λixi :
(
λi
)
i∈I−

∈ RI−+ ,
∑

i∈I−

λi = 1
}
.

Let us introduce the closed convex set

V = X+ − X− =
{
x+ − x− : x+ ∈ X+, x− ∈ X−

}
.

As v 7→ ‖v‖2 is strictly convex, with compact lower level sets, there is a
unique vector v∗ such that

‖v∗‖2 = inf
v∈V

{
‖v‖2 : v ∈ V

}
.

Lemma 3.2. The set AZ is non empty (i.e. the training set Z is linearly
separable) if and only if v∗ 6= 0. In this case

wZ =
2

‖v∗‖2
v∗,

and the margin of the canonical hyperplane is equal to 1
2‖v

∗‖.
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Proof. Let us assume first that v∗ = 0, or equivalently that X+ ∩X− 6= ∅.
As for any vector w ∈ Rd,

min
i∈I+

〈w, xi〉 = min
x∈X+

〈w, x〉,

max
i∈I−

〈w, xi〉 = max
x∈X−

〈w, x〉,

we see that necessarily mini∈I+〈w, xi〉 − maxi∈I−〈w, xi〉 ≤ 0, which shows
that w cannot be in AZ and therefore that AZ is empty.

Let us assume now that v∗ 6= 0, or equivalently that X+ ∩ X− = ∅. Let
us put w∗ = 2

‖v∗‖2 v
∗. Let us remark first that

min
i∈I+

〈w∗, xi〉 − max
i∈I−

〈w∗, xi〉 = inf
x∈X+

〈w∗, x〉 − sup
x∈X−

〈w∗, x〉

= inf
x+∈X+,x−∈X−

〈w∗, x+ − x−〉

=
2

‖v∗‖2
inf
v∈V

〈v∗, v〉.

Let us now prove that infv∈V〈v
∗, v〉 = ‖v∗‖2. Some arbitrary v ∈ V being

fixed, consider the function

β 7→ ‖βv + (1 − β)v∗‖2 : [0, 1] → R.
By definition of v∗, it reaches its minimum value for β = 0, and therefore
has a non negative derivative at this point. Computing this derivative, we
find that 〈v − v∗, v∗〉 ≥ 0, as claimed. We have proved that

min
i∈I+

〈w∗, xi〉 − max
i∈I−

〈w∗, xi〉 = 2,

and therefore that w∗ ∈ AZ . On the other hand, any w ∈ AZ is such that

2 ≤ min
i∈I+

〈w, xi〉 − max
i∈I−

〈w, xi〉 = inf
v∈V

〈w, v〉 ≤ ‖w‖ inf
v∈V

‖v‖ = ‖w‖ ‖v∗‖.

This proves that ‖w∗‖ = inf
{
‖w‖ : w ∈ AZ

}
, and therefore that w∗ = wZ

as claimed. � One way to compute wZ would be therefore to compute v∗

by minimizing

{
‖
∑

i∈I

λiyixi‖
2 : (λi)i∈I ∈ RI+,∑

i∈I

λi = 2,
∑

i∈I

yiλi = 0
}
.

Although this is a tractable quadratic programming problem, a direct com-
putation of wZ through the following proposition is usually prefered.
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Proposition 3.3. The canonical direction wZ can be expressed as

wZ =
N∑

i=1

α∗
i yixi,

where (α∗
i )
N
i=1 is obtained by minimizing

inf
{
F (α) : α ∈ A

}
,

where
A =

{
(αi)i∈I ∈ RI+,∑

i∈I

αiyi = 0
}
,

and

F (α) =
∥∥∥
∑

i∈I

αiyixi

∥∥∥
2
− 2

∑

i∈I

αi.

Proof. Let w(α) =
∑

i∈I αiyixi and let S(α) = 1
2

∑
i∈I αi. We can express

the function F (α) as F (α) = ‖w(α)‖2 − 4S(α). Moreover it is important to
notice that for any s ∈ R+ {w(α) : α ∈ A, S(α) = s} = sV. This shows that
for any s ∈ R+, inf{F (α) : α ∈ A, S(α) = s} is reached and that for any
αs ∈ {α ∈ A : S(α) = s} reaching this infimum, w(αs) = sv∗. As
s 7→ s2‖v∗‖2 − 4s : R+ → R reaches its infimum for only one value s∗

of s, namely at s∗ = 2
‖v∗‖2 , this shows that F (α) reaches its infimum on

A, and that for any α∗ ∈ A such that F (α∗) = inf{F (α) : α ∈ A},
w(α∗) = 2

‖v∗‖2 v
∗ = wZ . �

3.1.3. Support vectors.

Definition 3.2. The set of support vectors S is defined by

S = {xi : 〈wZ , xi〉 − bZ = yi}.

Proposition 3.4. Any α∗ minimizing F (α) on A is such that

{xi : α∗
i > 0} ⊂ S.

This implies that the representation wZ = w(α∗) involves in general only
a limited number of non zero coefficients and that wZ = wZ′, where Z ′ =
{(xi, yi) : xi ∈ S}.
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Proof. Let us consider any given i ∈ I+ and j ∈ I−, such that α∗
i > 0 and

α∗
j > 0 (there exists at least one such index in each set I− and I+, since

the sum of the components of α∗ on each of these sets are equal and since∑
k∈I α

∗
k > 0). For any t ∈ R, consider

αk(t) = α∗
k + t1(k ∈ {i, j}), k ∈ I.

The vector α(t) is in A for any value of t in some neighborhood of 0, therefore
∂
∂t |t=0

F
[
α(t)

]
= 0. Computing this derivative, we find that

yi〈w(α∗), xi〉 + yj〈w(α∗), xj〉 = 2.

As yi = −yj, this can also be written as

yi
[
〈w(α∗), xi〉 − bZ

]
+ yj

[
〈w(α∗), xj〉 − bZ

]
= 2.

As w(α∗) ∈ AZ ,

yk
[
〈w(α∗), xk〉 − bZ

]
≥ 1, k ∈ I,

which implies necessarily as claimed that

yi
[
〈w(α∗), xi〉 − bZ

]
= yj

[
〈w(α∗), xj〉 − bZ

]
= 1.

�

3.1.4. The non separable case. In the case when the training set Z =
(xi, yi)

N
i=1 is not linearly separable, we can define a noisy canonical hyper-

plane as follows. We can choose w ∈ Rd and b ∈ R to minimize

C(w, b) =

N∑

i=1

[
1 −

(
〈w, xi〉 − b

)
yi
]
+

+ 1
2‖w‖

2, (3.1)

where for any real number r, r+ = max{r, 0} is the positive part of r.

Theorem 3.5. Let us introduce the dual criterion

F (α) =

N∑

i=1

αi −
1

2

∥∥∥∥
N∑

i=1

yiαixi

∥∥∥∥
2

and the domain A′ =

{
α ∈ RN+ : αi ≤ 1, i = 1, . . . , N,

N∑

i=1

yiαi = 0

}
. Let

α∗ ∈ A′ be such that F (α∗) = supα∈A′ F (α). Let w∗ =
∑N

i=1 yiα
∗
i xi. There

is a threshold b∗ (whose construction will be detailed in the proof), such that

C(w∗, b∗) = inf
w∈Rd,b∈RC(w, b).

May 28, 2006 Olivier Catoni
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Corollary 3.6. (scaled criterion) For any positive real parameter λ
let us consider the criterion

Cλ(w, b) = λ2
N∑

i=1

[
1 − (〈w, xi〉 − b)yi

]
+

+ 1
2‖w‖

2

and the domain A′
λ =

{
α ∈ RN+ : αi ≤ λ2, i = 1, . . . , N,

N∑

i=1

yiαi = 0

}
. For

any solution α∗ of the minimization problem F (α∗) = supα∈A′

λ
F (α), the

vector w∗ =
∑N

i=1 yiα
∗
i xi is such that

inf
b∈RCλ(w∗, b) = inf

w∈Rd,b∈RCλ(w, b).
Let us remark that in the separable case, the scaled criterion is minimized by
the canonical hyperplane for λ large enough. This extension of the canonical
hyperplane computation in dual space is often called the box constraint, for
obvious reasons.
Proof. The corollary is a straightforward consequence of the scale property
Cλ(w, b, x) = λ2C(λ−1w, b, λx), where we have made the dependence of the
criterion in x ∈ RdN explicit. Let us come now to the proof of the theorem.

The minimization of C(w, b) can be performed in dual space extending the
couple of parameters (w, b) to w = (w, b, γ) ∈ Rd×R×RN+ and introducing
the dual multipliers α ∈ RN+ and the criterion

G(α,w) =

N∑

i=1

γi +

N∑

i=1

αi
{[

1 − (〈w, xi〉 − b)yi
]
− γi

}
+ 1

2‖w‖
2.

We see that
C(w, b) = inf

γ∈RN
+

sup
α∈RN

+

G
[
α, (w, b, γ)

]
,

and therefore, putting W = {(w, b, γ) : w ∈ Rd, b ∈ R, γ ∈ RN+}, we are led
to solve the minimization problem

G(α∗, w∗) = inf
w∈W

sup
α∈RN

+

G(α,w),

whose solution w∗ = (w∗, b∗, γ∗) is such that C(w∗, b∗) = inf(w,b)∈Rd+1 C(w, b),

according to the preceding identity. As for any value of α′ ∈ RN+ ,

inf
w∈W

sup
α∈RN

+

G(α,w) ≥ inf
w∈W

G(α′, w),
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it is immediately seen that

inf
w∈W

sup
α∈RN

+

G(α,w) ≥ sup
α∈RN

+

inf
w∈W

G(α,w).

We are going to show that there is no duality gap, meaning that this in-
equality is indeed an equality. More importantly, we will do so by exhibiting
a saddle point, which, solving the dual minimization problem will also solve
the original one.

Let us first make explicit the solution of the dual problem (the interest of
this dual problem precisely lies in the fact that it can more easily be solved
explicitly). Introducing the admissible set of values of α,

A′ =
{
α ∈ RN : 0 ≤ αi ≤ 1, i = 1, . . . , N,

N∑

i=1

yiαi = 0
}
,

it is elementary to check that

inf
w∈W

G(α,w) =





inf
w∈Rd

G
[
α, (w, 0, 0)

]
, α ∈ A′,

−∞, otherwise.

As

G
[
α, (w, 0, 0)

]
= 1

2‖w‖
2 +

N∑

i=1

αi
(
1 − 〈w, xi〉yi

)
,

we see that infw∈Rd G
[
α, (w, 0, 0)

]
is reached at

wα =
N∑

i=1

yiαixi.

This proves that
inf
w∈W

G(α,w) = F (α).

The continuous map α 7→ infw∈W
G(α,w) reaches a (non necessarily unique)

maximum α∗ on the compact convex set A′. We are now going to exhibit a
choice of w∗ ∈ W such that (α∗, w∗) is a saddle point. This means that we
are going to show that

G(α∗, w∗) = inf
w∈W

G(α∗, w) = sup
α∈RN

+

G(α,w∗).
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It will imply that

inf
w∈W

sup
α∈Rd

+

G(α,w) ≤ sup
α∈RN

+

G(α,w∗) = G(α∗, w∗)

on the one hand and that

inf
w∈W

sup
α∈Rd

+

G(α,w) ≥ inf
w∈W

G(α∗, w) = G(α∗, w∗)

on the other hand, proving that

G(α∗, w∗) = inf
w∈W

sup
α∈RN

+

G(α,w)

as required.
Construction of w∗.

• Let us put w∗ = wα∗ .
• If there is j ∈ {1, . . . , N} such that 0 < α∗

j < 1, let us put

b∗ = 〈xj , w
∗〉 − yj.

Otherwise, let us put

b∗ = sup{〈xi, w
∗〉 − 1 : α∗

i > 0, yi = +1, i = 1, . . . , N}.

• Let us then put

γ∗i =

{
0, α∗

i < 1,

1 − (〈w∗, xi〉 − b∗)yi, α∗
i = 1.

If we can prove that

1 − (〈w∗, xi〉 − b∗)yi





≤ 0, α∗
i = 0,

= 0, 0 < α∗
i < 1,

≥ 0, α∗
i = 1,

(3.2)

it will show that γ∗ ∈ RN+ and therefore that w∗ = (w∗, b∗, γ∗) ∈ W. It will
also show that

G(α,w∗) =

N∑

i=1

γ∗i +
∑

i,α∗

i =0

αi
[
1 − (〈w∗, xi〉 − b∗)yi

]
+ 1

2‖w
∗‖2,
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proving that G(α∗, w∗) = supα∈RN
+
G(α,w∗). As obviously G(α∗, w∗) =

G
[
α∗, (w∗, 0, 0)

]
, we already know that G(α∗, w∗) = infw∈W

G(α∗, w). This
will show that (α∗, w∗) is the saddle point we were looking for, thus ending
the proof of the theorem.
Proof of equation (3.2): Let us deal first with the case when there is
j ∈ {1, . . . , N} such that 0 < α∗

j < 1.
For any i ∈ {1, . . . , N} such that 0 < α∗

i < 1, there is ǫ > 0 such that for
any t ∈ (−ǫ, ǫ), α∗ + tyiei − tyjej ∈ A′, where (ek)

N
k=1 is the canonical base

of RN . Thus ∂
∂t |t=0

F (α∗ + tyiei − tyjej) = 0. Computing this derivative, we

obtain

∂

∂t |t=0
F (α∗ + tyiei − tyjej) = yi − 〈w∗, xi〉 + 〈w∗, xj〉 − yj

= yi
[
1 −

(
〈w, xi〉 − b∗

)
yi
]
.

Thus 1−
(
〈w, xi〉−b

∗
)
yi = 0, as required. This shows also that the definition

of b∗ does not depend on the choice of j such that 0 < α∗
j < 1.

For any i ∈ {1, . . . , N} such that α∗
i = 0, there is ǫ > 0 such that for

any t ∈ (0, ǫ), α∗ + tei − tyiyjej ∈ A′. Thus ∂
∂t |t=0

F (α∗ + tei − tyiyjej) ≤ 0,

showing that 1 −
(
〈w∗, xi〉 − b∗

)
yi ≤ 0 as required.

For any i ∈ {1, . . . , N} such that α∗
i = 1, there is ǫ > 0 such that α∗ −

tei + tyiyjej ∈ A′. Thus ∂
∂t |t=0

F (α∗ − tei + tyiyjej) ≤ 0, showing that 1 −(
〈w∗, xi〉−b

∗
)
yi ≥ 0 as required. This ends to prove that (α∗, w∗) is a saddle

point in this case.
Let us deal now with the case where α∗ ∈ {0, 1}N . If we are not in the

trivial case where the vector (yi)
N
i=1 is constant, the case α∗ = 0 is ruled out.

Indeed, in this case, considering α∗ + tei + tej, where yiyj = −1, we would
get the contradiction 2 = ∂

∂t |t=0
F (α∗ + tei + tej) ≤ 0.

Thus there are values of j such that α∗
j = 1, and since

∑N
i=1 αiyi = 0,

both classes are present in the set {j : α∗
j = 1}.

Now for any i, j ∈ {1, . . . , N} such that α∗
i = α∗

j = 1 and such that

yi = +1 and yj = −1, ∂
∂t |t=0

F (α∗− tei− tej) = −2+ 〈w∗, xi〉− 〈w∗, xj〉 ≤ 0.

Thus

sup{〈w∗, xi〉 − 1 : α∗
i = 1, yi = +1} ≤ inf{〈w∗, xj〉 + 1 : α∗

j = 1, yj = −1},

showing that
1 −

(
〈w∗, xk〉 − b∗

)
yk ≥ 0, α∗

k = 1.
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Eventually, for any i such that α∗
i = 0, for any j such that α∗

j = 1 and
yj = yi

∂

∂t |t=0
F (α∗ + tei − tej) = yi〈w

∗, xi − xj〉 ≤ 0,

showing that 1 −
(
〈w∗, xi〉 − b∗

)
yi ≤ 0. This ends to prove that (α∗, w∗) is

in all circumstances a saddle point.

3.1.5. Support Vector Machines.

Definition 3.3. The symmetric measurable kernel K : X ×X → R is said
to be positive (or more precisely positive semi-definite) if for any n ∈ N,
any (xi)

n
i=1 ∈ Xn,

inf
α∈Rn

n∑

i=1

n∑

j=1

αiK(xi, xj)αj ≥ 0.

Let Z = (xi, yi)
N
i=1 be some training set. Let us consider as previously

A =
{
α ∈ RN+ :

N∑

i=1

αiyi = 0
}
.

Let

F (α) =

N∑

i=1

N∑

j=1

αiyiK(xi, xj)yjαj − 2

N∑

i=1

αi.

Definition 3.4. Let K be a positive symmmetric kernel. The training set
Z is said to be K-separable if

inf
{
F (α) : α ∈ A

}
> −∞.

Lemma 3.7. When Z is K-separable, inf{F (α) : α ∈ A} is reached.

Proof. Consider the training set Z ′ = (x′i, yi)
N
i=1, where

x′i =

{[{
K(xk, xℓ)

}N N

k=1,ℓ=1

]1/2

(i, j)

}N

j=1

∈ RN .
We see that F (α) =

∥∥∥
∑N

i=1 αiyix
′
i

∥∥∥
2
− 2

∑N
i=1 αi. We have proved in the

previous section that Z ′ is linearly separable if and only if inf{F (α) : α ∈
A} > −∞, and that the infimum is reached in this case. �
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Proposition 3.8. Let K be a symmetric positive kernel and let Z =
(xi, yi)

N
i=1 be some K-separable training set. Let α∗ ∈ A be such that F (α∗) =

inf{F (α) : α ∈ A}. Let

I∗− = {i ∈ N : 1 ≤ i ≤ N, yi = −1, α∗
i > 0}

I∗+ = {i ∈ N : 1 ≤ i ≤ N, yi = +1, α∗
i > 0}

b∗ =
1

2

{ N∑

j=1

α∗
jyjK(xj, xi−) +

N∑

j=1

α∗
jyjK(xj, xi+)

}
, i− ∈ I∗−, i+ ∈ I∗+,

where the value of b∗ does not depend on the choice of i− and i+. The
classification rule f : X → Y defined by the formula

f(x) = sign

(
N∑

i=1

α∗
i yiK(xi, x) − b∗

)

is independent of the choice of α∗ and is called the support vector machine
defined by K and Z. The set S = {xj :

∑N
i=1 α

∗
i yiK(xi, xj) − b∗ = yj} is

called the set of support vectors. For any choice of α∗, {xi : α∗
i > 0} ⊂ S.

An important consequence of this proposition is that the support vector
machine defined by K and Z is also the support vector machine defined by
K and Z ′ = {(xi, yi) : α∗

i > 0, 1 ≤ i ≤ N}, since this restriction of the index
set contains the value α∗ where the minimum of F is reached.

Proof. The independence from the choice of α∗, which is not necessarily
unique, is seen as follows. Let (xi)

N
i=1 and x ∈ X be fixed. Let us put for

ease of notations xN+1 = x. Let M be the (N + 1) × (N + 1) symmetric
semi-definite matrix defined by M(i, j) = K(xi, xj), i = 1, . . . , N + 1, j =
1, . . . , N+1. Let us consider the mapping Ψ : {xi : i = 1, . . . , N+1} → RN+1

defined by

Ψ(xi) =
[
M1/2(i, j)

]N+1

j=1
∈ RN+1. (3.3)

Let us consider the training set Z ′ =
[
Ψ(xi), yi

]N
i=1

. Then Z ′ is linearly
separable,

F (α) =
∥∥∥
N∑

i=1

αiyiΨ(xi)
∥∥∥

2
− 2

N∑

i=1

αi,

and we have proved that for any choice of α∗ ∈ A minimizing F (α),
wZ′ =

∑N
i=1 α

∗
i yiΨ(xi). Thus the support vector machine defined by K and

Z can also be expressed by the formula

f(x) = sign
[
〈wZ′ ,Ψ(x)〉 − bZ′

]
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which does not depend on α∗. The definition of S is such that Ψ(S) is the
set of support vectors defined in the linear case, where its stated property
has already been prooved. �

We can in the same way use the box constraint and show that any solution
α∗ ∈ arg min{F (α) : α ∈ A, αi ≤ λ2, i = 1, . . . , N} minimizes

inf
b∈Rλ2

N∑

i=1

[
1 −

( N∑

j=1

yjαjK(xj, xi) − b

)
yi

]

+

+
1

2

N∑

i=1

N∑

j=1

αiαjyiyjK(xi, xj). (3.4)

3.1.6. Building kernels. The results of this section (except the last one)
are drawned from [18]. We have no reference for the last proposition of
this section, although we believe it is well known. We include them for the
convenience of the reader.

Proposition 3.9. Let K1 and K2 be positive symmetric kernels on X. Then
for any a ∈ R+

(aK1 +K2)(x, x
′)

def
= aK1(x, x

′) +K2(x, x
′)

and (K1 ·K2)(x, x
′)

def
= K1(x, x

′)K2(x, x
′)

are also positive symmetric kernels. Moreover, for any measurable function

g : X → R, Kg(x, x
′)

def
= g(x)g(x′) is also a positive symmetric kernel.

Proof. It is enough to prove the proposition in the case when X is finite and
kernels are just ordinary symmetric matrices. Thus we can assume without
loss of generality that X = {1, . . . , n}. Then for any α ∈ RN , using usual
matrix notations,

〈α, (aK1 +K2)α〉 = a〈α,K1α〉 + 〈α,K2α〉 ≥ 0,

〈α, (K1 ·K2)α〉 =
∑

i,j

αiK1(i, j)K2(i, j)αj

=
∑

i,j,k

αiK
1/2
1 (i, k)K

1/2
1 (k, j)K2(i, j)αj

=
∑

k

∑

i,j

[
K

1/2
1 (k, i)αi

]
K2(i, j)

[
K

1/2
1 (k, j)αj

]

︸ ︷︷ ︸
≥0

≥ 0,
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〈α,Kgα〉 =
∑

i,j

αig(i)g(j)αj =

(
∑

i

αig(i)

)2

≥ 0.

�

Proposition 3.10. Let K be some positive symmetric kernel on X. Let
p : R → R be a polynomial with positive coefficients. Let g : X → Rd be a
measurable function. Then

p(K)(x, x′)
def
= p

[
K(x, x′)

]
,

exp(K)(x, x′)
def
= exp

[
K(x, x′)

]

and Gg(x, x
′)

def
= exp

(
−‖g(x) − g(x′)‖2

)

are all positive symmetric kernels.

Proof. The first assertion is a direct consequence of the previous proposi-
tion. The second one comes from the fact that the exponential function is
the pointwise limit of a sequence of polynomial functions with positive co-
efficients. The third one is seen from the second one and the decomposition

Gg(x, x
′) =

[
exp
(
−‖g(x)‖2

)
exp
(
−‖g(x′)‖2

)]
exp
[
2〈g(x), g(x′)〉

]

�

Proposition 3.11. With the notations of the previous proposition, any

training set Z = (xi, yi)
N
i=1 ∈

(
X × {−1,+1}

)N
is Gg-separable as soon

as g(xi), i = 1, . . . , N are distinct points of Rd.
Proof. It is clearly enough to prove the case when X = Rd and g is the
identity. Let us consider some other generic point xN+1 ∈ Rd and define Ψ as
in (3.3). It is enough to prove that Ψ(x1), . . . ,Ψ(xN ) are affine independent,
since the simplex, and therefore any affine independent set of points can be
shattered by affine half-spaces. Let us assume that (x1, . . . , xN ) are affine
dependent, this means that for some (λ1, . . . , λN ) 6= 0 such that

∑N
i=1 λi = 0,

N∑

i=1

N∑

j=1

λiG(xi, xj)λj = 0.
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Thus, (λi)
N+1
i=1 , where we have put λN+1 = 0 is in the kernel of the symmetric

positive semi-definite matrix G(xi, xj)i,j∈{1,...,N+1}. Therefore

N∑

i=1

λiG(xi, xN+1) = 0,

for any xN+1 ∈ Rd. This would mean that the functions x 7→ exp(−‖x−xi‖
2)

are linearly dependent, which can be easily proved to be false. Indeed, let
n ∈ Rd be such that ‖n‖ = 1 and 〈n, xi〉, i = 1, . . . , N are distinct (such
a vector exists, because it has to be outside the union of a finite number
of hyperplanes, which is of zero Lebesgue measure on the sphere). Let us
assume for a while that for some (λi)

N
i=1 ∈ RN , for any x ∈ Rd,

N∑

i=1

λi exp(−‖x− xi‖
2) = 0.

Considering x = tn, for t ∈ R, we would get

N∑

i=1

λi exp(2t〈n, xi〉 − ‖xi‖
2) = 0, t ∈ R.

Letting t go to infinity, we see that this is only possible if λi = 0 for all
values of i. �

3.2. Bounds for Support Vector Machines.

3.2.1. Compression scheme bounds. We can use Support Vector Machines
in the framework of compression schemes and apply Theorem 2.17 on page
114. More precisely, given some positive symmetric kernel K on X, we may
consider for any training set Z ′ = (x′i, y

′
i)
h
i=1 the classifier f̂Z′ : X → Y which

is equal to the Support Vector Machine defined by K and Z ′ whenever
Z ′ is K-separable, and which is equal to some constant classification rule
otherwise (we take this convention to stick to the framework described on
page 105, we will only use f̂Z′ in theK-separable case, so this extension of the
definition is just a matter of presentation). In the application of Theorem
2.17 in the case when the observed sample (Xi, Yi)

N
i=1 is K-separable, a

natural (if not always optimal) choice of Z ′ is to choose for (x′i) the set
of support vectors defined by Z = (Xi, Yi)

N
i=1 and to choose for (y′i) the

corresponding values of Y . This is justified by the fact that f̂Z = f̂Z′, as
shown in Proposition 3.8 (page 131). In the case when Z is not K-separable,
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we can train a Support Vector Machine with the box constraint, then remove
all the errors to obtain a K-separable subsample Z ′ = {(Xi, Yi) : α∗

i <
λ2, 1 ≤ i ≤ N}, (using the same notations as in equation (3.4) on page 132)
and then consider its support vectors as the compression set. Still using the
notations of page 132, this means we have to compute successively α∗ ∈
arg min{F (α) : α ∈ A, αi ≤ λ2}, and α∗∗ ∈ arg min{F (α) : α ∈ A, αi =
0 when α∗

i = λ2}, to keep eventually the compression set indexed by J =

{i : 1 ≤ i ≤ N,α∗∗
i > 0}, and the corresponding Support Vector Machine f̂J .

Different values of λ can be used at this stage, producing different candidate
compression sets : when λ increases, the number of errors should decrease,
on the other hand when λ decreases, the margin ‖w‖−1 of the separable
subset Z ′ increases, supporting the hope for a smaller set of support vectors,
thus we can use λ to monitor the number of errors on the training set we
accept from the compression scheme. As we can use whatever heuristic we
want while selecting the compression set, we can also try to threshold in
the previous construction α∗∗

i at different levels η ≥ 0, to produce candidate
compression sets Jη = {i : 1 ≤ i ≤ N,α∗∗

i > η} of various sizes.
As the size |J | of the compression set is random in this construction, we

have to use a version of Theorem 2.17 (page 114) which handles compression
sets of arbitrary sizes. This is done by choosing for each k a k-partially
exchangeable posterior distribution πk which weights the compression sets
of all dimensions. We immediately see that we can choose πk such that

− log
[
πk(∆k(J))

]
≤ log

[
|J |(|J | + 1)

]
+ |J | log

[
(k+1)eN

|J |

]
.

If we observe the shadow sample patterns, and if computer resources
permit, we can of course use more elaborate bounds than Theorem 2.17,
such as the transductive correspondent to Theorem 1.24 (page 39) (where
we may consider the submodels made of all the compression sets of the same
size). Theorems based on relative bounds, such as Theorem 1.59 ( page 88)
can also be used. Gibbs distributions can be approximated by Monte Carlo
techniques, where a Markov chain with the proper invariant measure consists
in suitable local perturbations of the compression set.

Let us mention also that the use of compression schemes based on Support
Vector Machines can be tailored to perform some kind of feature aggregation.
Imagine that the kernel K is defined as the scalar product in L2(π), where
π ∈ M1

+(Θ). More precisely let us consider for some set of soft classification
rules

{
fθ : X → R ; θ ∈ Θ

}
the kernel

K(x, x′) =

∫

θ∈Θ
fθ(x)fθ(x

′)π(dθ).

In this setting, the Support Vector Machine applied to the training set Z =
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(xi, yi)
N
i=1 has the form

fZ(x) = sign

(∫

θ∈Θ
fθ(x)

N∑

i=1

yiαifθ(xi)π(dθ) − b

)

and, may it be too burdening to compute, we can replace it with some finite
approximation

f̃Z(x) = sign

(
m∑

k=1

fθk
(x)wk − b

)
,

where the set {θk, k = 1, . . . ,m} and the weights {wk, k = 1, . . . ,m} are
computed in some suitable way from Z ′ = (xi, yi)i,αi>0, the set of support
vectors of fZ . For instance, we can draw {θk, k = 1, . . . ,m} at random
according to the probability distribution proportional to

∣∣∣∣∣

N∑

i=1

yiαifθ(xi)

∣∣∣∣∣ π(dθ),

define the weights wk by

wk = sign

(
N∑

i=1

yiαifθk
(xi)

)∫

θ∈Θ

∣∣∣∣∣

N∑

i=1

yiαifθ(xi)

∣∣∣∣∣ π(dθ),

and choose the smallest value of m for which this approximation still clas-
sifies Z ′ without errors. Let us remark that we have built f̃Z in such a way
that

lim
m→+∞

f̃Z(xi) = fZ(xi) = yi, a.s.

for any support index i such that αi > 0.
Alternatively, given Z ′, we can select a finite set of features Θ′ ⊂ Θ such

that Z ′ is KΘ′ separable, where KΘ′(x, x′) =
∑

θ∈Θ′ fθ(x)fθ(x
′) and consider

the Support Vector Machines fZ′ built with the kernel KΘ′ . As soon as Θ′

is chosen as a function of Z ′ only, Theorem 2.17 (page 114) applies and
provides some level of confidence for the risk of fZ′ .

3.2.2. The Vapnik Cervonenkis dimension of a family of subsets. Let us
consider some set X and some set S ⊂ {0, 1}X of subsets of X. Let h(S) be
the VC dimension of S, defined as

h(S) = max{|A| : A finite and A ∩ S = {0, 1}A},
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where by definition A ∩ S = {A ∩ B : B ∈ S}. Let us notice that this
definition does not depend on the choice of the reference set X. Indeed X
can be chosen to be

⋃
S, the union of all the sets in S or any bigger set. Let

us notice also that for any set B, h(B ∩ S) ≤ h(S), the reason being that
A ∩ (B ∩ S) = B ∩ (A ∩ S).

This notion of VC dimension is useful because it can, as we will see about
Support Vector Machines, be computed in some important special cases. Let
us prove here as an illustration that h(S) = d + 1 when X = Rd and S is
made of all the half spaces :

S = {Aw,b : w ∈ Rd, b ∈ R}, where Aw,b = {x ∈ X : 〈w, x〉 ≥ b}.

Proposition 3.12. With the previous notations, h(S) = d+ 1.

Proof. Let (ei)
d+1
i=1 be the canonical base of Rd+1, and let X be the affine

subspace it generates, which can be identified with Rd. For any (ǫi)
d+1
i=1 ∈

{−1,+1}d+1, let w =
∑d+1

i=1 ǫiei and b = 0. The half space Aw,b ∩X is such
that {ei ; i = 1, . . . , d + 1} ∩ (Aw,b ∩ X) = {ei ; ǫi = +1}. This proves that
h(S) ≥ d+ 1.

To prove that h(S) ≤ d+1, we have to show that for any set A ⊂ Rd of size
|A| = d+2, there is B ⊂ A such that B 6∈ (A∩S). This will obviously be the
case if the convex hulls of B and A\B have a non empty intersection : indeed
if a hyperplane separates two sets of points, it also separates their convex
hulls. As |A| > d+ 1, A is affine dependent : there is (λx)x∈A ∈ Rd+2 \ {0}
such that

∑
x∈A λxx = 0 and

∑
x∈A λx = 0. The set B = {x ∈ A : λx > 0}

is non-empty, as well as its complement A \ B, because
∑

x∈A λx = 0 and
λ 6= 0. Moreover

∑
x∈B λx =

∑
x∈A\B −λx > 0. The relation

1∑
x∈B λx

∑

x∈B

λxx =
1∑

x∈B λx

∑

x∈A\B

−λxx

shows that the convex hulls of B and A \B have a non void intersection. �

Let us introduce the function of two integers

Φh
n =

h∑

k=0

(
n

k

)

Let us notice that Φ can alternatively be defined by the relations :

Φh
n =

{
2n when n ≤ h,

Φh−1
n−1 + Φh

n−1 when n > h.
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Theorem 3.13. Whenever
⋃
S is finite,

|S| ≤ Φ
(∣∣∣
⋃
S
∣∣∣ , h(S)

)
.

Theorem 3.14. For any h ≤ n,

Φh
n ≤ exp

(
nH(hn)

)
≤ exp

[
h
(
log(nh ) + 1

)]
,

where H(p) = −p log(p) − (1 − p) log(1 − p) is the Shannon entropy of the
Bernoulli distribution with parameter p.

Proof of theorem 3.13. Let us prove this theorem by induction on |
⋃
S|.

It is easy to check that it holds true when |
⋃
S| = 1. Let X =

⋃
S, let x ∈ X

and X ′ = X \{x}. Define (△ denoting the symmetric difference of two sets)

S′ = {A ∈ S : A△ {x} ∈ S},

S′′ = {A ∈ S : A△ {x} 6∈ S}.

Clearly, ⊔ denoting the disjoint union, S = S′ ⊔ S′′ and S ∩ X ′ = (S′ ∩
X ′) ⊔ (S′′ ∩ X ′). Moreover |S′| = 2|S′ ∩ X ′| and |S′′| = |S′′ ∩ X ′|. Thus
|S| = |S′| + |S′′| = 2|S′ ∩ X ′| + |S′′| = |S ∩ X ′| + |S′ ∩ X ′|. Obviously
h(S ∩ X ′) ≤ h(S). Moreover h(S′ ∩ X ′) = h(S′) − 1, because if A ⊂ X ′

is shattered by S′ (or equivalently by S′ ∩ X ′), then A ∪ {x} is shattered
by S′ (we say that A is shattered by S when S ∩ A = {0, 1}A). Using the

induction hypothesis, we then see that |S ∩ X ′| ≤ Φ
h(S)
|X′| + Φ

h(S)−1
|X′| . But

as |X ′| = |X| − 1, the righthand side of this inequality is equal to Φ
h(S)
|X| ,

according to the recurrence equation satisfyied by Φ.
Proof of theorem 3.14: This is the well known Chernoff bound for

the deviation of sums of Bernoulli r.v.: let (σ1, . . . , σn) be i.i.d. Bernoulli r.v.
with parameter 1/2. Let us notice that

Φh
n = 2nP( n∑

i=1

σi ≤ h

)
.

For any positive real number λ ,P(

n∑

i=1

σi ≤ h) ≤ exp(λh)E[exp

(
−λ

n∑

i=1

σi

)]

= exp
{
λh+ n log

{E[exp
(
−λσ1

)]}}
.
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Differentiating the right-hand side in λ shows that its minimal value is
exp
[
−nK(hn ,

1
2)
]
, where K(p, q) = p log(pq ) + (1 − p) log(1−p

1−q ) is the Kull-
back divergence function between two Bernoulli distributions Bp and Bq
of parameters p and q. Indeed the optimal value λ∗ of λ is such that h =

n
E[σ1 exp(−λ∗σ1)

]E[exp(−λ∗σ1)
] = nBh/n(σ1). Therefore (using the fact that two Bernoulli

distributions with the same expectations are equal)

log
{E[exp(−λ∗σ1)

]}
= −λ∗Bh/n(σ1) − K(Bh/n, B1/2) = −λ∗ hn − K(hn ,

1
2).

The announced result then follows from the identity

H(p) = log(2) − K(p, 1
2)

= p log(p−1) + (1 − p) log(1 +
p

1 − p
) ≤ p

[
log(p−1) + 1

]
.

3.2.3. VC dimension of linear rules with margin. The proof of the following
theorem has been suggested to us by a similar proof presented in [18].

Theorem 3.15. Consider a family of points (x1, . . . , xn) in some Eu-
clidean vector space E and a family of affine functions

H =
{
gw,b : E → R ;w ∈ E, ‖w‖ = 1, b ∈ R},

where
gw,b(x) = 〈w, x〉 − b, x ∈ E.

Assume that there is a set of thresholds (bi)
n
i=1 ∈ Rn such that for any

(yi)
n
i=1 ∈ {−1,+1}n, there is gw,b ∈ H such that

n
inf
i=1

(
gw,b(xi) − bi

)
yi ≥ γ.

Let us also introduce the empirical variance of (xi)
n
i=1,Var(x1, . . . , xn) =

1

n

n∑

i=1

∥∥∥∥xi −
1

n

n∑

j=1

xj

∥∥∥∥
2

.

In this case and with these notations,Var(x1, . . . , xn)

γ2
≥

{
n− 1 when n is even,

(n− 1)n
2−1
n2 when n is odd.

(3.5)

Moreover, equality is reached when γ is optimal, bi = 0, i = 1, . . . , n and
(x1, . . . , xn) is a regular simplex (i.e. when 2γ is the minimum distance
between the convex hulls of any two subsets of {x1, . . . , xn} and ‖xi − xj‖
does not depend on i 6= j).
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Proof. Let (si)
n
i=1 ∈ Rn be such that

∑n
i=1 si = 0. Let σ be a uniformly

distributed random variable with values in Sn, the set of permutations of
the first n integers {1, . . . , n}. By assumption, for any value of σ, there is
an affine function gw,b ∈ H such that

min
i=1,...,n

[
gw,b(xi) − bi

][
21(sσ(i) > 0) − 1

]
≥ γ.

As a consequence

〈
n∑

i=1

sσ(i)xi, w

〉
=

n∑

i=1

sσ(i)

(
〈xi, w〉 − b− bi

)
+

n∑

i=1

sσ(i)bi

≥
n∑

i=1

γ|sσ(i)| + sσ(i)bi.

Therefore, using the fact that the map x 7→
(
max

{
0, x
})2

is convex,E(∥∥∥∥ n∑

i=1

sσ(i)xi

∥∥∥∥
2
)

≥ E(max

{
0,

n∑

i=1

γ|sσ(i)| + sσ(i)bi

})2



≥

(
max

{
0,

n∑

i=1

γE(|sσ(i)|
)

+ E(sσ(i)

)
bi

})2

= γ2

(
n∑

i=1

|si|

)2

,

where E is the expectation with respect to the random permutation σ. On
the other handE(∥∥∥∥ n∑

i=1

sσ(i)xi

∥∥∥∥
2
)

=

n∑

i=1

E(s2σ(i))‖xi‖
2 +

∑

i6=j

E(sσ(i)sσ(j))〈xi, xj〉.

Moreover E(s2σ(i)) =
1

n
E( n∑

i=1

s2σ(i)

)
=

1

n

n∑

i=1

s2i .

In the same way, for any i 6= j,E (sσ(i)sσ(j)

)
=

1

n(n− 1)
E∑

i6=j

sσ(i)sσ(j)




=
1

n(n− 1)

∑

i6=j

sisj
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=
1

n(n− 1)

[(
n∑

i=1

si

︸ ︷︷ ︸
=0

)2

−

n∑

i=1

s2i

]

= −
1

n(n− 1)

n∑

i=1

s2i .

ThusE(∥∥∥∥ n∑

i=1

sσ(i)xi

∥∥∥∥
2
)

=

(
n∑

i=1

s2i

)
 1

n

n∑

i=1

‖xi‖
2 −

1

n(n− 1)

∑

i6=j

〈xi, xj〉




=

(
n∑

i=1

s2i

)[(
1

n
+

1

n(n− 1)

) n∑

i=1

‖xi‖
2

−
1

n(n− 1)

∥∥∥∥
n∑

i=1

xi

∥∥∥∥
2
]

=
n

n− 1

(
n∑

i=1

s2i

)Var(x1, . . . , xn).

We have proved thatVar(x1, . . . , xn)

γ2
≥

(n− 1)

( n∑

i=1

|si|

)2

n

n∑

i=1

s2i

.

This can be used with si = 1(i ≤ n
2 ) − 1(i > n

2 ) in the case when n is even
and si = 2

(n−1)1(i ≤ n−1
2 ) − 2

n+11(i > n−1
2 ) in the case when n is odd to

establish the first inequality (3.5) of the theorem.
Checking that equality is reached for the simplex is an easy computation

when the simplex (xi)
n
i=1 ∈ (Rn)n is parametrized in such a way that

xi(j) =

{
1 if i = j,

0 otherwise.

Indeed the distance between the convex hulls of any two subsets of the
simplex is the distance between their mean values (i.e. centers of mass). �
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3.2.4. Application to Support Vector Machines. We are going to apply The-
orem 3.15 (page 139) to Support Vector Machines in the transductive case.

So let us consider (Xi, Yi)
(k+1)N
i=1 distributed according to some partially

exchangeable distribution P and assume that (Xi)
(k+1)N
i=1 and (Yi)

N
i=1 are

observed. Let us consider some positive kernel K on X. For any K-separable

training set of the form Z ′ = (Xi, y
′
i)

(k+1)N
i=1 , where (y′i)

(k+1)N
i=1 ∈ Y(k+1)N , let

f̂Z′ be the Support Vector Machine defined by K and Z ′ and let γ(Z ′) be
its margin. Let

R2 = max
i=1,...,(k+1)N

K(Xi,Xi) +
1

(k + 1)2N2

(k+1)N∑

j=1

(k+1)N∑

k=1

K(Xj ,Xk)

−
2

(k + 1)N

(k+1)N∑

j=1

K(Xi,Xj).

(This is an easily computable upper-bound for the radius of some ball con-
taining the image of (X1, . . . ,X(k+1)N ) in feature space.)

Let us define for any integer h the margins

γ2h = (2h − 1)−1/2 and γ2h+1 =

[
2h

(
1 −

1

(2h + 1)2

)]−1/2

. (3.6)

Let us consider for any h = 1, . . . , N the exchangeable model

Rh =
{
f̂Z′ : Z ′ = (Xi, y

′
i)

(k+1)N
i=1 is K-separable and γ(Z ′) ≥ Rγh

}
.

The family of models Rh, h = 1, . . . , N is nested, and we know from Theorem
3.15 (page 139) and Theorems 3.13 (page 138) and 3.14 (page 138) that

log
(
|Rh|

)
≤ h log

( (k+1)eN
h

)
.

We can then consider on the large model R =
⊔N
h=1 Rh (the disjoint union

of the submodels) an exchangeable prior π which is uniform on each Rh and
is such that π(Rh) ≥

1
h(h+1) . Applying Theorem 2.8 (page 104) we get

Proposition 3.16. With P probability at least 1− ǫ, for any h = 1, . . . , N ,
any Support Vector Machine f ∈ Rh,

r2(f) ≤

k + 1

k
inf
λ∈R+

1 − exp
[
− λ
N r1(f) − h

N log
(
e(k+1)N

h

)
− log[h(h+1)]−log(ǫ)

N

]

1 − exp(− λ
N )

−
r1(f)

k
.
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Searching the whole model Rh may be unfeasible, nonetheless any heuristic
can be applied to choose f . For instance, a Support Vector Machine f ′ can

be trained from the training set (Xi, Yi)
N
i=1 and then (y′i)

(k+1)N
i=1 can be set

to y′i = sign(f ′(Xi)), i = 1, . . . , (k + 1)N .

3.2.5. Inductive margin bounds for Support Vector Machines. In order to
establish inductive margin bounds, we will need a different combinatorial
lemma. It is due to [1]. We will reproduce their proof with some tiny im-
provements on the values of constants.

Let us consider the finite case when X = {1, . . . , n}, Y = {1, . . . , b} and
b ≥ 3 (the question we will study would be meaningless in the case when b ≤
2). Assume as usual that we are dealing with a prescribed set of classification
rules
R =

{
f : X → Y

}
. Let us say that a pair (A, s), where A ⊂ X is a non

empty set of shapes and s : A→ {2, . . . , b− 1} a threshold function, is shat-
tered by the set of functions F ⊂ R if for any (σx)x∈A ∈ {−1,+1}A, there
exists some f ∈ F such that minx∈A σx

[
f(x) − s(x)

]
≥ 1.

Definition 3.5. Let the fat shattering dimension of (X,R) be the maximal
size |A| of the first component of the pairs which are shattered by R.

Let us say that a subset of classification rules F ⊂ YX is separated when-
ever for any pair (f, g) ∈ F 2 such that f 6= g, ‖f − g‖∞ = maxx∈X|f(x) −
g(x)| ≥ 2. Let M(R) be the maximum size |F | of separated subsets F of
R. Note that if F is a separated subset of R such that |F | = M(R), then it
is a 1-net for the L∞ distance: for any function f ∈ R there exists g ∈ F
such that ‖f − g‖∞ ≤ 1 (otherwise f could be added to F to create a larger
separated set).

Lemma 3.17. With the above notations, whenever the fat shattering di-
mension of (X,R) is not greater than h,

log
[
M(R)

]
< log

[
(b− 1)(b − 2)n

]
{

log
[∑h

i=1

(n
i

)
(b− 2)i

]

log(2)
+ 1

}
+ log(2)

≤ log
[
(b− 1)(b − 2)n

]
{[

log
[

(b−2)n
h

]
+ 1

]
h

log(2)
+ 1

}
+ log(2).

Proof. For any set of functions F ⊂ YX, let t(F ) be the number of pairs
(A, s) shattered by F . Let t(m,n) be the minimum of t(F ) over all separated
sets of functions F ⊂ YX of size |F | = m (n is here to recall that the shape
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space X is made of n shapes). For anym such that t(m,n) >
∑h

i=1

(n
i

)
(b−2)i,

it is clear that any separated set of functions of size |F | ≥ m shatters at
least one pair (A, s) such that |A| > h. Indeed, t(m,n) is clearly from its
definition a non decreasing function ofm, so that t(|F |, n) >

∑h
i=1

(n
i

)
(b−2)i.

Moreover there are only
∑h

i=1

(n
i

)
(b−2)i pairs (A, s) such that |A| ≤ h. As a

consequence, whenever the fat shattering dimension of (X,R) is not greater
than h we have M(R) < m.

It is clear that for any n ≥ 1, t(2, n) = 1.

Lemma 3.18. For any m ≥ 1, t
[
mn(b − 1)(b − 2), n

]
≥ 2t

[
m,n − 1

]
, and

therefore t
[
2n(n− 1) . . . (n− r + 1)(b− 1)r(b− 2)r, n

]
≥ 2r.

Proof. Let F = {f1, . . . , fmn(b−1)(b−2)} be some separated set of functions
of size mn(b−1)(b−2). For any pair (f2i−1, f2i), i = 1, . . . ,mn(b−1)(b−2)/2,
there is xi ∈ X such that |f2i−1(xi) − f2i(xi)| ≥ 2. Since |X| = n, there

is x ∈ X such that
∑mn(b−1)(b−2)/2

i=1 1(xi = x) ≥ m(b − 1)(b − 2)/2. Let
I = {i : xi = x}. Since there are (b − 1)(b − 2)/2 pairs (y1, y2) ∈ Y2

such that 1 ≤ y1 < y2 − 1 ≤ b − 1, there is some pair (y1, y2), such that
1 ≤ y1 < y2 ≤ b and such that

∑
i∈I 1({y1, y2} = {f2i−1(x), f2i(x)}) ≥ m.

Let J =
{
i ∈ I : {f2i−1(x), f2i(x)} = {y1, y2}

}
. Let

F1 = {f2i−1 : i ∈ J, f2i−1(x) = y1} ∪ {f2i : i ∈ J, f2i(x) = y1},

F2 = {f2i−1 : i ∈ J, f2i−1(x) = y2} ∪ {f2i : i ∈ J, f2i(x) = y2}.

Obviously |F1| = |F2| = |J | = m. Moreover the restrictions of the functions
of F1 to X \ {x} are separated, and it is the same with F2. Thus F1 strongly
shatters at least t(m,n − 1) pairs (A, s) such that A ⊂ X \ {x} and it
is the same with F2. Eventually, if the pair (A, s) where A ⊂ X \ {x} is
both shattered by F1 and F2, then F1 ∪F2 shatters also (A∪ {x}, s′) where
s′(x′) = s(x′) for any x′ ∈ A and s′(x) = ⌊y1+y2

2 ⌋. Thus F1∪F2, and therefore
F , shatters at least 2t(m,n− 1) pairs (A, s). �

Resuming the proof of lemma 3.17, let us choose for r the smallest integer
such that 2r >

∑h
i=1

(n
i

)
(b− 2)i, which is no greater than{

log
[∑h

i=1 (n
i)(b−2)i

]

log(2) + 1

}
.

In the case when 1 ≤ n ≤ r,

log(M(R)) < |X| log(|Y|) = n log(b) ≤ r log(b) ≤ r log
[
(b−1)(b−2)n

]
+log(2),

which proves the lemma. In the remaining case n > r,
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t
[
2nr(b− 1)r(b− 2)r, n

]

≥ t
[
2n(n− 1) . . . (n− r + 1)(b− 1)r(b− 2)r, n

]

>

h∑

i=1

(
n

i

)
(b− 2)i.

Thus |M(R)| < 2
[
(b− 2)(b− 1)n

]r
as claimed. �

In order to apply this combinatorial lemma to Support Vector Machines,
let us consider now the case of separating hyperplanes in Rd (the gener-
alization to Support Vector Machines being straightforward). Assume that

X = Rd and Y = {−1,+1}. For any sample (X)
(k+1)N
i=1 , let

R(X
(k+1)N
1 ) = max{‖Xi‖ : 1 ≤ i ≤ (k + 1)N}.

Let us consider the set of parameters

Θ =
{
(w, b) ∈ Rd ×R : ‖w‖ = 1

}
.

For any (w, b) ∈ Θ, let gw,b(x) = 〈w, x〉 − b. Let h be some fixed integer and

let γ = R(X
(k+1)N
1 )γh, where γh is defined by equation (3.6) on page 142.

Let us define ζ : R→ Z by

ζ(r) =





−5 when r ≤ −4γ,

−3 when −4γ <r ≤ −2γ,

−1 when −2γ <r ≤ 0,

+1 when 0 <r ≤ 2γ,

+3 when 2γ <r ≤ 4γ,

+5 when 4γ <r.

Let Gw,b(x) = ζ
[
gw,b(x)

]
. The fat shattering dimension (as defined in 3.5)

of (
X

(k+1)N
1 ,

{
(Gw,b + 7)/2 : (w, b) ∈ Θ

})

is not greater than h (according to Theorem 3.15, page 139), therefore there

is some set F of functions from X
(k+1)N
1 to {−5,−3,−1,+1,+3,+5} such

that

log
(
|F|
)
≤ log

[
20(k + 1)N

]
{

h

log(2)

[
log

(
4(k + 1)N

h

)
+ 1

]
+ 1

}
+ log(2).
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and for any (w, b) ∈ Θ, there is fw,b ∈ F such that sup
{
|fw,b(Xi)−Gw,b(Xi)| :

i = 1, . . . , (k + 1)N
}
≤ 2. Moreover, the choice of fw,b may be required to

depend on (Xi)
(k+1)N
i=1 in an exchangeable way. Similarly to Theorem 2.8

(page 104), it can be proved that for any partially exchangeable probability
distribution P ∈ M1

+(Ω), with P probability at least 1− ǫ, for any fw,b ∈ F,

1

kN

(k+1)N∑

i=N+1

1[fw,b(Xi)Yi ≤ 1
]

≤
k + 1

k
inf
λ∈R+

[
1 − exp(− λ

N )
]−1
{

1−

exp

[
−
λ

N2

N∑

i=1

1[fw,b(Xi)Yi ≤ 1
]
−

log
(
|F|
)
− log(ǫ)

N

]}

−
1

kN

N∑

i=1

1[fw,b(Xi)Yi ≤ 1
]
.

Let us remark that1{21[gw,b(Xi) ≥ 0
]
− 1 6= Yi

}
= 1[Gw,b(Xi)Yi < 0

]
≤ 1[fw,b(Xi)Yi ≤ 1

]

and 1[fw,b(Xi)Yi ≤ 1
]
≤ 1[Gw,b(Xi)Yi ≤ 3

]
≤ 1[gw,b(Xi)Yi ≤ 4γ

]
.

This proves the following theorem.

Theorem 3.19. With P probability at least 1 − ǫ, for any (w, b) ∈ Θ,

1

kN

(k+1)N∑

i=N+1

1{21[gw,b(Xi) ≥ 0
]
− 1 6= Yi

}

≤
k + 1

k
inf

λ∈R+,h∈N∗

[
1 − exp(− λ

N )
]−1

{
1−

exp

[
−
λ

N2

N∑

i=1

1[gw,b(Xi)Yi ≤ 4Rγh
]

−
log
[
20(k + 1)N

]{
h

log(2) log
(

4e(k+1)N
h

)
+ 1
}

+ log
[

2h(h+1)
ǫ

]

N

]}
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−
1

kN

N∑

i=1

1[gw,b(Xi)Yi ≤ 4Rγh
]
.

As a consequence, we obtain with P probability at least 1 − ǫ, for any
(w, b) ∈ Θ such that

γ = min
i=1,...,N

gw,b(Xi)Yi > 0,

1

kN

(k+1)N∑

i=N+1

1[gw,b(Xi)Yi < 0
]

≤ k+1
k

{
1 − exp

[
−

log
[
20(k+1)N

]
N

{
16R2+2γ2

log(2)γ2 log
(
e(k+1)Nγ2

4R2

)
+ 1
}

+
1

N
log( ǫ2)

]}
.

This inequality compares favourably with similar inequalities in [18], which
moreover do not extend to the margin quantile case as this one.

Let us also remark that it is easy to circonvent the fact that R is not

observed when the test set X
(k+1)N
N+1 is not observed.

Indeed, we can consider the sample obtained by projecting X
(k+1)N
1 on

some ball of fixed radius Rmax, putting

tRmax(Xi) = min

{
1,
Rmax

‖Xi‖

}
Xi.

We can further consider an atomic prior distribution ν ∈ M1
+(R+) bearing

on Rmax, to obtain a uniform result through a union bound. As a conse-
quence of the previous theorem indeed,

Corollary 3.20. For any atomic prior ν ∈ M1
+(R+), for any partially

exchangeable probability measure P ∈ M1
+(Ω), with P probability at least

1 − ǫ, for any (w, b) ∈ Θ, any Rmax ∈ R+,
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1

kN

(k+1)N∑

i=N+1

1{21[gw,b ◦ tRmax(Xi) ≥ 0
]
− 1 6= Yi

}

≤
k + 1

k
inf

λ∈R+,h∈N∗

[
1 − exp(− λ

N )
]−1

{
1−

exp

[
−
λ

N2

N∑

i=1

1[gw,b ◦ tRmax(Xi)Yi ≤ 4Rmaxγh
]

−
log
[
20(k + 1)N

]{
h

log(2) log
(

4e(k+1)N
h

)
+ 1
}

+ log
[

2h(h+1)
ǫν(Rmax)

]

N

]}

−
1

kN

N∑

i=1

1[gw,b ◦ tRmax(Xi)Yi ≤ 4Rmaxγh
]
.

4. Appendix: classification by thresholding

In this appendix, we show how the bounds given in the first section of
this monograph can be computed in practice on a simple example: the case
when the classification is performed by comparing a series of measurements
to threshold values. Let us mention that our description covers the case when
the same measurement is compared to several thresholds, since it is enough
to repeat a measurement in the list of measurements describing a pattern
to cover this case.

4.1. Description of the model. Let us assume that the patterns we
want to classify are described through h real valued measurements normal-
ized in the range (0, 1). In this setting the pattern space can thus be defined
as X = (0, 1)h.

Consider the threshold set T = (0, 1)h and the response set R = Y{0,1}h.
For any t ∈ (0, 1)h and any a : {0, 1}h → Y, let

f(t,a)(x) = a
{[1(xj ≥ tj)

]h
j=1

}
, x ∈ X,

where xj is the jth coordinate of x ∈ X. Thus our parameter set here is
Θ = T × R. Let us consider on T the Lebesgue measure L and on R the
uniform probability distribution U . Let our prior distribution be π = L⊗U .
Let us define for any threshold sequence t ∈ T

∆t =
{
t′ ∈ T : (t′j, tj) ∩ {Xj

i ; i = 1, . . . , N} = ∅, j = 1, . . . , h
}
,
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where Xj
i is the jth coordinate of the sample pattern Xi, and where the

interval (t′j, tj) of the real line is defined as the convex hull of the two point
set {t′j , tj}, whether t′j ≤ tj or not. We see that ∆t is the set of thresholds
giving the same response as t on the training patterns. Let us consider for
any t ∈ T the middle

m(∆t) =

∫
∆t
t′L(dt′)

L(∆t)

of ∆t. The set ∆t being a product of intervals, its middle is the point whose
coordinates are the middle of these intervals. Let us introduce the finite set
T composed of the middles of the cells ∆t, which can be defined as

T = {t ∈ T : t = m(∆t)}.

It is easy to see that |T | ≤ (N + 1)h and that |R| = |Y|2
h
.

4.2. Computation of inductive bounds. For any parameter (t, a) ∈
T × R = Θ, let us consider the posterior distribution defined by its density

dρ(t,a)

dπ
(t′, a′) =

1(t′ ∈ ∆t

)1(a′ = a
)

π
(
∆t × {a}

) .

Let us notice that we are in fact considering a finite number of posterior
distributions, since ρ(t,a) = ρ(m(∆t),a), where m(∆t) ∈ T . Let us also mention

that for any exchangeable sample distribution P ∈ M1
+

[
(X×Y)N+1

]
and any

thresholds t ∈ T,P[ (Xj
N+1, tj) ∩ {Xj

i , i = 1, . . . , N} = ∅

]
≤

2

N + 1
.

Thus, for any (t, a) ∈ Θ,P{ρ(t,a)

[
f.(XN+1)

]
6= f(t,a)(XN+1)

}
≤

2h

N + 1
,

showing that the classification produced by ρ(t,a) on new examples is most
of the time non random (this result is only indicative, since it is concerned
with a non random choice of (t, a)).

Let us then compute the various quantities needed to apply the results of
the first section, focussing our attention of Theorem 1.39 (page 63):

It is to be noted first of all that ρ(t,a)(r) = r[(t, a)]. The entropy term is
such that

K(ρt,a, π) = − log
[
π
(
∆t × {r}

)]
= − log

[
L(∆t)

]
+ 2h log

(
|Y|
)
.
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Let us notice accordingly that

min
(t,a)∈Θ

K(ρ(t,a), π) ≤ h log(N + 1) + 2h log
(
|Y|
)
.

Let us introduce the counters

bty(c) =
1

N

N∑

i=1

1{Yi = y and
[1(Xj

i ≥ tj)
]h
j=1

= c
}
,

t ∈ T, c ∈ {0, 1}h, y ∈ Y,

bt(c) =
∑

y∈Y

bty(c) =
1

N

N∑

i=1

1{[1(Xj
i ≥ tj)

]h
j=1

= c
}
, t ∈ T, c ∈ {0, 1}h.

Since
r[(t, a)] =

∑

c∈{0,1}h

[
bt(c) − bta(c)(c)

]
,

the partition function of the Gibbs estimator can be computed as

π
[
exp(−λr)

]
=
∑

t∈T

L(∆t)
∑

a∈R

1

|Y|2h
exp

[
−λ

N∑

i=1

1[Yi 6= f(t,a)(Xi)
]]

=
∑

t∈T

L(∆t)
∑

a∈R

1

|Y|2h
exp

[
−λ

∑

c∈{0,1}h

[
bt(c) − bta(c)(c)

]]

=
∑

t∈T

L(∆t)
∏

c∈{0,1}h

[
1

|Y|

∑

y∈Y

exp

(
−λ
[
bt(c) − bty(c)

])
]
.

We see that the number of operations needed to compute π
[
exp(−λr)

]
is

proportional to |T | × 2h × |Y| ≤ (N + 1)h2h|Y|. An exact computation will
therefore be feasible only for small values of N and h. For higher values, a
Monte Carlo approximation of this sum will have to be performed instead.

If we want to compute the bound provided by Theorem 1.39 (page 63),
we need also to compute, for any fixed parameter θ ∈ Θ, quantities of the
type

πexp(−λr)

{
exp
[
ξm′(·, θ)

]}
= πexp(−λr)

{
exp
[
ξρθ(m

′)
]}
, λ, ξ ∈ R+.

To this purpose we need to introduce

b
t
y(θ, c) =

1

N

N∑

i=1

∣∣∣1[fθ(Xi) 6= Yi
]
− 1(y 6= Yi)

∣∣∣1{[1(Xj
i ≥ tj)

]h
j=1

= c
}
.
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Similarly to what has been done previously, we obtain

π
{
exp
[
−λr + ξm′(·, θ)

]}

=
∑

t∈T

L(∆t)
∏

c∈{0,1}h

[
1

|Y|

∑

y∈Y

exp

(
−λ
[
bt(c) − bty(c)

]
+ ξb

t
y(θ, c)

)]
.

We can then compute

πexp(−λr)(r) = −
∂

∂λ
log
{
π
[
exp(−λr)

]}
,

πexp(−λr)

{
exp
[
ξρθ(m

′)
]}

=
π
{
exp
[
−λr + ξm′(·, θ)

]}

π
[
exp(−λr)

] ,

πexp(−λr)

[
m′(·, θ)

]
=

∂

∂ξ |ξ=0

log
[
π
{
exp
[
−λr + ξm′(·, θ)

]}]
.

This is all we need to compute B(ρθ, β, γ) (and also B(πexp(−λr), β, γ)) in
Theorem 1.39 (page 63), using the approximation

log
{
πexp(−λ1r)

[
exp
{
ξπexp(−λ2r)(m

′)
}]}

≤ log
{
πexp(−λ1r)

[
exp
{
ξm′(·, θ)

}]}
+ ξπexp(−λ2r)

[
m′(·, θ)

]
, ξ ≥ 0.

Let us also explain how to apply the posterior distribution ρ(t,a), in other
words our randomized estimated classification rule, to a new pattern XN+1:

ρ(t,a)

[
f·(XN+1) = y

]
= L(∆t)

−1

∫

∆t

1[a{[1(Xj
N+1 ≥ t′j)

]h
j=1

}
= y

]
L(dt′)

= L(∆t)
−1

∑

c∈{0,1}h

L
({
t′ ∈ ∆t :

[1(Xj
N+1 ≥ t′j)

]h
j=1

= c
})1[a(c) = y

]
.

Let us define for short

∆t(c) =
{
t′ ∈ ∆t :

[1(Xj
N+1 ≥ t′j)

]h
j=1

= c
}
, c ∈ {0, 1}h.

With this notation

ρ(t,a)

[
f.(XN+1) = y

]
= L

(
∆t

)−1
∑

c∈{0,1}h

L
[
∆t(c)

]1[a(c) = y
]
.

We can compute in the same way the probabilities for the label of the new
pattern under the Gibbs posterior distribution:
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πexp(−λr)

[
f·(XN+1) = y′

]

=

{
∑

t∈T

∏

c∈{0,1}h

[
1

|Y|

∑

y∈Y

exp

(
−λ
[
bt(c) − bty(c)

])]

×
∑

c∈{0,1}h

L
[
∆t(c)

]
∑

y∈Y1(y = y′) exp
{
−λ
[
bt(c) − bty(c)

]}
∑

y∈Y exp
{
−λ
[
bt(x) − bty(c)

]}
}

×

{
∑

t∈T

L(∆t)
∏

c∈{0,1}h

[
1

|Y|

∑

y∈Y

exp
(
−λ
[
bt(c) − bty(c)

])]
}−1

.

4.3. Transductive bounds. In the case when we observe the patterns

of a shadow sample (Xi)
(k+1)N
i=N+1 on top of the training sample (Xi, Yi)

N
i=1, we

can introduce the set of thresholds responding as t on the extended sample

(Xi)
(k+1)N
i=1

∆t =
{
t′ ∈ T : (t′j , tj) ∩

{
Xj
i ; i = 1, . . . , (k + 1)N} = ∅, j = 1, . . . , h

}
,

consider the set
T =

{
t ∈ T : t = m(∆t)

}
,

of the middle points of the cells ∆t, t ∈ T, and replace the Lebesgue mea-
sure L ∈ M1

+

[
(0, 1)h

]
of the previous section with the uniform probabil-

ity measure L on T . We can then consider π = L ⊗ U , where U is as
previously the uniform probability measure on R. This gives obviously an
exchangeable posterior distribution and therefore qualifies π for transduc-

tive bounds. Let us notice that |T | ≤
[
(k + 1)N + 1

]h
, and therefore that

π(t, a) ≥
[
(k + 1)N + 1

]−h
|Y|−2h

, for any (t, a) ∈ T × R.
For any (t, a) ∈ T×R we may similarly to the inductive case consider the

posterior distribution ρ(t,a) defined by

dρ(t,a)

dπ
(t′, a′) =

1(t′ ∈ ∆t)1(a′ = a)

π
(
∆t × {a})

,

but we may also consider δ(m(∆t),a)
, which is such that ri{[m(∆t), a]} =

ri[(t, a)], i = 1, 2, whereas only ρ(t,a)(r1) = r1[(t, a)], while

ρ(t,a)(r2) =
1

|T ∩ ∆t|

∑

t′∈T∩∆t

r2[(t
′, a)].
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We get

K(ρ(t,a), π) = − log
[
L(∆t)

]
+ 2h log

(
|Y|
)

≤ log
(
|T |
)

+ 2h log(|Y|) = K(δ[m(∆t),a]
, π)

≤ h log
[
(k + 1)N + 1

]
+ 2h log(|Y|),

whereas we had no such uniform bound in the inductive case. Similarly to
the inductive case

π
[
exp(−λr1)

]
=
∑

t∈T

L(∆t)
∏

c∈{0,1}h

[
1

|Y|

∑

y∈Y

exp

(
−λ
[
bt(c) − bty(c)

])]
.

Moreover, for any θ ∈ Θ,

π
{
exp
[
−λr1 + ξρθ(m

′)
]}

= π
{
exp
[
−λr1 + ξm′(·, θ)

]}

=
∑

t∈T

L(∆t)
∏

c∈{0,1}h

[
1

|Y|

∑

y∈Y

exp

(
−λ
[
bt(c) − bty(c)

]
+ ξb(θ, c)

)]
.

The bound for the transductive counter part to Theorem 1.39 (page 63),
obtained as explained page 102, can be computed as in the inductive case,
from these two partitions functions and the above entropy estimates.

Let us mention eventually that, using the same notations as in the induc-
tive case,

πexp(−λr1)

[
f·(XN+1) = y′

]

=

{
∑

t∈T

∏

c∈{0,1}h

[
1

|Y|

∑

y∈Y

exp

(
−λ
[
bt(c) − bty(c)

])]

×
∑

c∈{0,1}h

L
[
∆t(c)

]
∑

y∈Y1(y = y′) exp
{
−λ
[
bt(c) − bty(c)

]}
∑

y∈Y exp
{
−λ
[
bt(x) − bty(c)

]}
}

×

{
∑

t∈T

L(∆t)
∏

c∈{0,1}h

[
1

|Y|

∑

y∈Y

exp
(
−λ
[
bt(c) − bty(c)

])]
}−1

.
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