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Optimal control for rough differential
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Abstract

In this note, we consider an optimal control problem associated to a differential
equation driven by a Hölder continuous function g of index β > 1/2. We split
our study in two cases. If the coefficient of dgt does not depend on the control
process, we prove an existence theorem for a slightly generalized control prob-
lem, that is we obtain a literal extension of the corresponding deterministic
situation. If the coefficient of dgt depends on the control process, we also prove
an existence theorem but we are here obliged to restrict the set of controls to
sufficiently regular functions.

Key words: Optimal control - Rough differential equations - Fractional Brownian
motion - Young integral - Doss-Sussmann’s method.

1 Introduction

In recent years, several authors have been interested in control problems involving
a stochastic process driven by a fractional Brownian motion (fBm in short). This
kind of situation may indeed be natural when one wishes to modelized a problem in
which long distance memory effects may occur. However, contrary to the situation
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of processes driven by ordinary Brownian motion, fBm lacks many strong stochastic
properties (in particular, martingales properties). Although attempts have been made
to build a stochastic calculus for fBm some twenty years ago (see [1] for a nice survey),
the developed techniques remain until today not so easy to use.

In order to deal with the situation of control for processes driven with fBm, it
was up to now necessary to limit oneself to special situations. Two directions have
been mainly considered in recent literature:

1. A series of paper used a stochastic calculus based on Wick integrals and devel-
oped in [3]; see in particular [9] for considerations about application to mathe-
matical finance. Moreover, in a recent paper [10], the special situation of a linear
regulator driven by fBm was considered and optimal controls characterized.

2. A completely different way has been followed in several papers of a group in
France, but only when the considered problem is strongly linear, a situation
permitting to the author to use a martingale representation of fBm in order to
transform the original problem in an ordinary stochastic control problem (see
in particular [11] for a general exposition of the method).

In the present paper, we also keep a stochastic control problem for a process
driven by a fBm in the background, and we want to study existence results for optimal
controls. Nevertheless, as the basic property we need in our approach occurs to be
the Hölder regularity of the paths of fBm, we study here the deterministic situation
where the state under control is driven by a Hölder continuous function g of index β

xu
t = xu

0 +

∫ t

0

σ(s, us, x
u
s )dgs +

∫ t

0

b(s, us, x
u
s )ds, t ∈ [0, T ], (1)

where the control process u belongs to a set of admissible controls U . When β ∈
(1/2, 1), it is possible to choose Young integral [17] for integration with respect to dgt

in (1), which simply appears to be the limit of Riemann sums. Moreover, as it was
remarked in [19], it is possible to express it in terms of fractional derivative operators
(see Section 2 below). This appears to be very useful to allow easier computations,
and mostly has motivated us to restrict to the case where β ∈ (1/2, 1) in order
to choose the Young integral. The next step would be considering the case where
β ∈ (1/3, 1/2]. In the very recent work [8], an equivalent to the expression of the
Young integral in terms of fractional derivative operators has been proposed, using
quadratic multiplicative functional. Thus, the strategy introduced in this paper could
also certainly be derived for β ∈ (1/3, 1/2] and we propose to study this fact in a
forthcoming paper.
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The control problem considered in the present paper can be set in the following
way.

Problem: ‘A cost functional J : U → R being given, is it possible to prove
the existence of u∗ ∈ U realizing infu∈U J(u)?’

(2)

As usual, the bigger U is, the more difficult it is to answer this question. A
general methodology is to look for conditions ensuring that U be compact for a certain
topology under which J is continuous.

Differential equations of the type (1) (without the control process u) have been
intensively studied in recent years, due in particular to possible applications for fBm
(see, e.g., [7, 8, 13, 14, 16]). Since the obtention of solutions to (1) requires in general
regularity on the coefficients (see Theorem 3 below), we split our study in two cases.

1. If the coefficient of dgt does not depend on the control process, we are able
to extend the deterministic situation, and to prove an existence theorem for a
slightly generalized control problem where the controls are in fact randomized :
see Corollary 1 and Proposition 4. In fact, we use the so-called ‘compactification
methods’, which have been developed during the 1960’s for deterministic control
problems (see [6], [18]), and during the 1970’s for the stochastic control problem
(see [5], [4]).

2. If the coefficient of dgt does depend on the control function, the situation is
much more intricate, and this obliges us to severely restrict the set of controls
to sufficiently regular functions. A challenging question would be to relax this
hypothesis, but this would require to get a reasonable notion of solution for a
differential equation with a weaker regularity than Hölderian. This seems not
to be already available in the literature, up to our best knowledge.

The paper is organized as follows. In section 2, we recall some now classical
facts on fractional integrals and derivatives, which are useful for the sequel. In section
3, we study the optimal control problem in the case where σ does not depend on u.
The case where σ depends on u is considered in section 4.

2 Fractional integrals and derivatives

Let a, b ∈ R, a < b. For any p ≥ 1, we denote by Lp = Lp([a, b]) the usual Lebesgue
spaces of functions on [a, b].

Let f ∈ L1 and a > 0. The left-sided and right-sided fractional Riemann-
Liouville integrals of f of order α are defined for almost all x ∈ (a, b) by

Iα
a+f(x) =

1

Γ(α)

∫ x

a

(x − y)α−1f(y)dy,

3



and

Iα
b−f(x) =

(−1)−α

Γ(α)

∫ b

x

(y − x)α−1f(y)dy,

respectively, where (−1)−α = e−iπα and Γ(α) =
∫ ∞

0
rα−1e−rdr denotes the usual Euler

function.
If f ∈ Iα

a+(Lp) (resp. f ∈ Iα
b−(Lp)) and α ∈ (0, 1), then for almost all x ∈ (a, b),

the left-sided and right-sided Riemann-Liouville derivative of f of order α are defined
by

Dα
a+f(x) =

1

Γ(1 − α)

(

f(x)

(x − a)α
+ α

∫ x

a

f(x) − f(y)

(x − y)α+1
dy

)

(3)

and

Dα
b−f(x) =

1

Γ(1 − α)

(

f(x)

(b − x)α
+ α

∫ b

x

f(x) − f(y)

(y − x)α+1
dy

)

(4)

respectively, where a ≤ x ≤ b.
If µ ∈ (0, 1) and T ∈ (0,∞), we note Cµ([0, T ]) the set of functions g : [0, T ] →

R such that

sup
0≤s<t≤T

|g(t) − g(s)|

|t − s|µ
< +∞.

If there is no ambiguity, we prefer note Cµ instead of Cµ([0, T ]). The set Cµ is a
Banach space when it is endowed with the following norm:

|g|∞,µ := sup
0≤t≤T

|g(t)| + sup
0≤s<t≤T

|g(t) − g(s)|

|t − s|µ
.

We also set, for a, b ∈ [0, T ] and g ∈ Cµ:

|g|a,b,µ = sup
a≤s<t≤b

|g(t) − g(s)|

|t − s|µ
.

and
|g|a,b,∞ = sup

a≤t≤b

|g(t)|.

When a = 0 and b = T we simply note |g|µ and |g|∞ instead of |g|0,T,µ and |g|0,T,∞

respectively.
Let f : R → R ∈ Cλ and g : R → R ∈ Cµ with λ, µ ∈ (0, 1) such that

λ + µ > 1. Then, for any a, b ∈ [0, T ], the Young integral [17]
∫ b

a
fdg exists and we

can express it in terms of fractional derivatives (see [19]): for any α ∈ (1 − µ, λ), we
have

∫ b

a

fdg = (−1)α

∫ b

a

Dα
a+f(x)D1−α

b− gb−(x)dx, (5)

where gb−(x) = g(x) − g(b).
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3 First case: when σ does not depend of u

In the sequel, we fix x0 ∈ R, β ∈ (1/2, 1), T ∈ (0,∞) and g ∈ Cβ = Cβ([0, T ]). We
assume moreover that σ : [0, T ] × R → R is C1,2 with bounded derivatives and that
b : [0, T ]× R

2 → R is bounded and global Lipschitz, uniformly in x ∈ R with respect
to (t, u) ∈ [0, T ] × R.

Theorem 1 For any measurable control u : [0, T ] → R, the integral equation

xu
t = xu

0 +

∫ t

0

σ(r, xu
r )dgr +

∫ t

0

b(r, xu
r , ur)dr, t ∈ [0, T ] (6)

admits a unique solution xu ∈ C0([0, T ]).

Proof of Theorem 1.

• We first prove Theorem 1 in the autonomous case, that is when σ(t, x) = σ(x)
and b(t, x, u) = b(x, u). In other words, we consider

xu
t = xu

0 +

∫ t

0

σ(xu
r )dgr +

∫ t

0

b(xu
r , ur)dr, t ∈ [0, T ] (7)

instead of (6). At this level, we need a preliminary lemma:

Lemma 1 Assume that h : [0, T ] × R
3 → R is such that, for any R > 0, there

exists cR > 0 verifying

∀(r, g, u, y, z) ∈ [0, T ]× [−R, R]×R
3 : |h(r, g, u, y)− h(r, g, u, z)| ≤ cR|y − z|,

(8)
and that u : [0, T ] → R is a measurable function. Then the integral equation

yt = y0 +

∫ t

0

h(r, gr, ur, yr)dr, t ∈ [0, T ] (9)

admits a unique solution y ∈ C0([0, T ]).

Proof of Lemma 1. We only sketch the proof, the arguments used being
classical.
Existence. Let us define (yn) recursively by y0(t) ≡ y0 and

yn+1(t) = y0 +

∫ t

0

h(r, g(r), u(r), yn(r))dr, t ∈ [0, T ].
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Since g is continuous, there exists R > 0 such that g([0, T ]) ⊂ [−R, R]. Thus,
using the hypothesis made on h, it is classical to prove that |yn+1−yn|∞ ≤ cR

n

n!
.

In particular, the sequence (yn) is Cauchy and the limit y is a solution to (9).
Uniqueness. Let y and z be two solutions of (9). Then, for any t ∈ [0, T ], we
easily have

|y − z|∞,[0,t] ≤ cR

∫ t

0

|y − z|∞,[0,r]dr

and we can conclude that y = z using Gronwall’s lemma.
2

We now apply the Doss-Sussmann’s method in order to finish the proof of
Theorem 1 in the autonomous case. First, we denote by φ the unique solution
to

∂φ

∂g
(g, y) = σ ◦ φ(g, y), ∀g, y ∈ R and φ(0, y) = y, ∀y ∈ R. (10)

The hypothesis made on σ ensures that φ is well-defined. We also have, for
g, y ∈ R:

∂φ

∂y
(g, y) = exp

(
∫ g

0

σ′(φ(h, y))dh

)

.

Define f : R
3 → R by

f(g, u, y) =
b(φ(g, y), u)

∂φ

∂y
(g, y)

= b(φ(g, y), u) exp

(

−

∫ g

0

σ′(φ(ℓ, y))dℓ

)

.

The hypothesis made on b and σ ensures that h : [0, T ] × R
3 → R defined by

h(r, g, u, y) = f(g, u, y) verifies (8). Thus, there exist a unique y solution to
(9). Using the change of variable formula, it is now immediate to prove that
xu

t = φ(gt, yt) is a solution to (7). For the uniqueness, it suffices to adapt to our
context the proof contained in [2], page 103.

• The general case being similar with the previous case, we only sketch the proof.
Here, we have to consider φ given by

∂φ

∂g
(r, g, y) = σ(r, φ(r, g, y)), ∀(r, g, y) ∈ [0, T ] × R

2 (11)

with initial conditions

φ(r, 0, y) = y, ∀(r, y) ∈ [0, T ] × R

6



instead of (10). Moreover, y : [0, T ] → R is, in the case, defined as the unique
solution to (9) with h given by

h(r, g, u, y) =
b(r, φ(r, g, y), u)− ∂φ

∂r
(r, g, y)

∂φ

∂y
(r, g, y)

,

see also [2], page 116. Finally, the unique solution to (6) is given by

xu
t = φ(t, gt, yt).

2

In order to make use of a compactification method, it is necessary to enlarge
the set of controls by considering relaxed controls.

Definition 1 A relaxed control is a measure q over U× [0, T ] such that the projection
of q on [0, T ] is the Lebesgue measure. We denote by V the set of relaxed controls.

A relaxed control q can be decomposed with a measurable kernel: q(da, dt) =
qt(da)dt where t 7→ qt is a measurable function from R

+ to the set of probability
measures on U . There is a natural embedding of (non-relaxed) controls in the set
of relaxed controls: q is a non-relaxed control if at each time t, qt concentrates on a
single point ut. In other words, we assimilate the control (ut)t∈[0,T ] with the relaxed
control δut

dt where δx denotes the Dirac measure at x. We denote by V ′ the set of
non-relaxed controls.

The main result that we shall need is the immediate following consequence of
the vague topology.

Proposition 1 Suppose U is a compact subset of R
n. The set V of relaxed controls

equipped with the vague topology is compact.

From now on, we shall suppose that the set U is compact. A solution to
equation (6) associated to a relaxed control q is obtained in the following extension
of Theorem 1.

Theorem 2 Let q ∈ V be a relaxed control. There exists a unique solution xq ∈
C0([0, T ]) of the equation

xq
t = xq

0 +

∫ t

0

σ(r, xq
r)dgr +

∫ t

0

∫

U

b(r, xq
r, a)qr(da)dr. (12)

Moreover, q 7→ xq is continuous from V to C0([0, T ]).

7



Proof. Denote by φ the unique solution to (11). Set

h(r, g, q, y) =

∫

U
b(r, φ(r, g, y), a)qr(da) − ∂φ

∂r
(r, g, y)

∂φ

∂y
(r, g, y)

. (13)

Clearly, due to the hypotheses on b and σ, ∀(r, g, q, y, z) ∈ [0, T ]×[−R, R]×V×R×R,

|h(r, g, q, y)− h(r, g, q, z)| ≤ cR|y − z|.

Therefore, the integral equation (9) admits a unique solution y ∈ C0([0, T ]), see
Lemma 1. Then, one may check that xq

t = φ(t, gt, yt) is a solution to (12). Uniqueness
is obtained as before.

Suppose now that qn is a sequence in V, converging to q ∈ V and let yn be the
solution of (9) associated to h = h(r, g, qn, y) given by (13). Using hypotheses on b,
we now prove that yn converges to y in C0([0, T ]). Indeed,

|yt − yn
t | =

∣

∣

∣

∫ t

0
[h(s, gs, q, ys) − h(s, gs, q

n, yn
s )]ds

∣

∣

∣

≤
∣

∣

∣

∫ t

0
h(s, gs, q, ys)ds −

∫ t

0
h(s, gs, q

n, ys)ds
∣

∣

∣

+
∣

∣

∣

∫ t

0
h(s, gs, q

n, ys)ds −
∫ t

0
h(s, gs, q

n, yn
s )ds

∣

∣

∣

≤
∣

∣

∣

∫ t

0

∫

U
b(s, φ(s, gs, ys), a)qn

s (da)ds −
∫ t

0

∫

U
b(s, φ(s, gs, ys), a)qs(da)ds

∣

∣

∣

+cR

∫ t

0
|ys − yn

s |ds.

In the last expression, the first term tends to 0 due to the vague convergence
of qn

s (da)ds to qs(da)ds, and continuity and boundedness hypotheses on b. It results
therefore from Gronwall’s lemma that |y − yn|∞ tends to 0. Finally, as the solution
xq (resp. xqn

) of (12) associated to q (resp. qn) is given by xt = φ(t, gt, yt) (resp.
xn

t = φ(t, gt, y
n
t )), one easily deduces that |x − xn|∞ tends to 0.

2

Consider now a cost in integral form: for ut a given control taking values in
U , we set

J(u) =

∫ T

0

ℓ(r, xu
r , ur)dr

where ℓ is a bounded continuous function on (r, x, u). The definition can be immedi-
ately extended to the case of relaxed controls: if q is a relaxed control from V,

J(q) =

∫ T

0

∫

U

ℓ(r, xq
r, a)qr(da)dr.

Using the continuity property of Theorem 2, and the hypotheses on ℓ, one obtains
the following Proposition.

8



Proposition 2 Under the hypotheses introduced in the previous paragraph, the ap-
plication q 7→ J(q) is continuous on V.

The set V being compact, one immediately deduces the following existence
result.

Corollary 1 Under the prevailing hypotheses, there exists q∗ ∈ V such that

J(q∗) = inf
q∈V

J(q).

We conclude the present section by proving that one has not enlarged too
much the control problem by considering relaxed controls. More precisely, we now
prove that the optimal cost (i.e. the infemum of the cost functional) over relaxed and
non-relaxed controls is the same. This result is obtained as in the deterministic case
by means of approximation of relaxed controls by step constant relaxed controls, and
then by non-relaxed controls via the so-called chattering lemma, a method originally
introduced in [6]. We here only sketch these two steps.

First step : q ∈ V is approximated by relaxed controls of the form

N−1
∑

j=0

k
∑

i=1

qj
i δai

(da)1[tj ,tj+1[

where 0 = t0 < t1 < · · · < tN = T , a1, . . . , ak are elements in U , and for each

j = 0, . . . , N − 1, qj
1, . . . , q

j
k are non-negative real numbers such that

k
∑

i=1

qj
i = 1. This

is a straightforward consequence of approximation of the measurable function t 7→ qt

by a step function and of approximation of a probability measure µ on U by point

measures of the form

m
∑

i=1

µiδai
.

Second step: Recall the chattering lemma (see [6], Theorem 1)

Proposition 3 Let a1, . . . , ak be in U and q1, . . . , qk be non-negative real numbers

such that
k

∑

i=1

qi = 1. Let f be a bounded continuous function from [s, t] × U to R.

Then, for ε > 0 given, there exists a measurable partition V1, . . . , Vk of [s, t] such that

∣

∣

∣

∣

∣

∫ t

s

k
∑

i=1

qif(r, ai)dr −

k
∑

i=1

∫

Vi

f(r, ai)dr

∣

∣

∣

∣

∣

< ε.
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In other words, the step-relaxed control
(
∑k

i=1 qiδai
(da)

)

dr is approximated by the

non-relaxed control
∑k

i=1 1Vi
(r)δai

(da)dr. Therefore, for any q ∈ V, there exists a se-
quence of (non-relaxed) controls qn which converges to q. As, obviously, the infemum
of J on V is smaller than the infemum on V ′, using the continuity of J , we obtain the
following comparison result.

Proposition 4 Under the hypotheses of the present section, infq∈V J(q) = infq∈V ′ J(q).

4 Second case: when σ depends of u

As already mentioned in the introduction, the case when u enters the coefficient of
dgt seems to be much more complicated as we do not have a reasonable way for
integrating functions less regular than Hölderian. Therefore we shall need to restrict
very strongly our admissible controls set.

In the sequel, we fix x0 ∈ R, β ∈ (1/2, 1), T ∈ (0,∞), g ∈ Cβ = Cβ([0, T ]),
σ : [0, T ] × R

2 → R ∈ C1,2,2 with bounded derivatives and b : [0, T ] × R
2 → R global

Lipschitz continuous.

Theorem 3 For any control u ∈ Cµ with 1 − β < µ ≤ β, the integral equation

xu
t = xu

0 +

∫ t

0

σ(r, xu
r , ur)dgr +

∫ t

0

b(r, xu
r , ur)dr, t ∈ [0, T ] (14)

admits a unique solution xu ∈ Cµ.

Proof of Theorem 3. It suffices to adapt the proof of Ruzmaikina [16] to our
context, i.e. to hold account of the control u. There is not new difficulties. See also
Nualart and Rǎsçanu [15].

2

Theorem 4 If U is a set of functions which is bounded in a certain Cµ with µ ∈
(1−β, β] and if J : U → R is continuous for | · |∞,µ′ for a certain µ′ ∈ (1−β, µ) then
the following control problem can be solved:

there exists u∗ ∈ U realizing infu∈U J(u).

Proof of Theorem 4. It is a direct consequence of Lemma 2 below.
2

10



Lemma 2 If U is a set of functions which is bounded in a certain Cµ with µ ∈
(1−β, β] then the set of all couples (u, xu) ∈ U ×Cµ is relatively compact in Cµ′

×Cµ′

for any µ′ ∈ (1 − β, µ).

Proof of Lemma 2. According to Lamperti [12], we know that U is relatively
compact in Cµ′

. Lemma 3 below allows then to conclude.
2

Lemma 3 For any µ ∈ (1 − β, β], T µ : Cµ → Cµ defined by T µ(u) = xu is a
continuous operator.

Proof of Lemma 3. We adapt the proof of Theorem 3.2 in Hu and Nualart [7].
For simplicity, we assume that σ(r, x, u) = σ(x, u) and b(r, x, u) = b(x, u), the proof
of the general case being similar. Moreover positive constants, depending only on b,
σ, their derivatives, x0 and g, will be denoted by k, regardless of their value. Let
(un) ⊂ Cβ be such that un → u. Fix s, t ∈ [0, T ] and let α ∈ (1−β, µ). We can write,
using (5):

|xu
t − xun

t − xu
s + xun

s |

=
∣

∣

∣

∫ t

s
[σ(xu

r , ur) − σ(xun
r , un

r )]dgr +
∫ t

s
[b(xu

r , ur) − b(xun
r , un

r )]dr
∣

∣

∣

≤
∫ t

s
|Dα

s+[σ(xu
r , ur) − σ(xun

r , un
r )]| · |D

1−α
t− gt−(r)|dr +

∫ t

s
|b(xu

r , ur) − b(xun
r , un

r )|dr.

Using (4), it is easy, on one hand, to show that

|D1−α
t− gt−(r)| ≤ k|g|β|t − r|α+β−1.

On the other hand, we have, using (3):

|Dα
s+[σ(xu

r , ur) − σ(xun
r , un

r )]|
≤ |σ′|∞ (|xu − xun |s,t,∞ + |u − un|s,t,∞) (r − s)−α

+ |σ′|∞ (|xu − xun |s,t,µ + |u − un|s,t,µ) (r − s)µ−α

+ |σ′′|∞ (|xu − xun |s,t,∞ + |u − un|s,t,∞) (|xun|s,t,µ + |un|s,t,µ) (r − s)µ−α.

We deduce that

|xu − xun |s,t,µ
≤ k

[

(|xu − xun |s,t,∞ + |u − un|s,t,∞)(t − s)β−µ + (|xu − xun |s,t,µ + |u − un|s,t,µ)(t − s)β

+ (|xu − xun |s,t,∞ + |u − un|s,t,∞)(|xun |s,t,µ + |un|s,t,µ)(t − s)β
]

and, by rearranging:

|xu − xun |s,t,µ
≤ k(1 − k(t − s)β)−1

[

|xu − xun |s,t,∞ + |u − un|s,t,∞ + |u − un|s,t,µ(t − s)β

+ (|xu − xun |s,t,∞ + |u − un|s,t,∞)(|xun|s,t,µ + |un|s,t,µ)(t − s)β
]

.
(15)
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Then, if we set ∆ = t − s:

|xu − xun |s,t,∞
≤ |xu

s − xun
s | + |xu − xun |s,t,µ∆

β

≤ |xu
s − xun

s | + k(1 − k∆β)−1∆β [|xu − xun |s,t,∞ + |u − un|s,t,∞
+ |u − un|s,t,µ∆

β + (|xu − xun |s,t,∞ + |u − un|s,t,∞)(|xun|s,t,µ + |un|s,t,µ)∆
β
]

.

By rearranging, we obtain

|xu − xun |s,t,∞ ≤
[

1 − k(1 − k∆β)−1∆β(1 + (|xun |s,t,µ + |un|s,t,µ)∆
β)

]−1

×
(

|xu
s − xun

s | + k(1 − k∆β)−1∆β [|u − un|∞,µ + |u − un|∞(|xun|µ + |un|µ)]
)

.

We can finish as in [7] to obtain that |xu − xun |∞ → 0 as n → ∞. Using finally (15),
we obtain that |xu − xun |∞,µ → 0 as n → ∞, that is xun → xu in Cµ. In other words,
T µ is a continuous operator from Cµ to himself.

2

An example of a cost J satisfying conditions of Theorem 4 is

J(u) =

∫ T

0

ℓ(r, xu
r , ur)dr

with ℓ : [0, T ] × R
2 → R verifying

∀(r, x, y, u, v) ∈ [0, T ] × R
4, |ℓ(r, x, u) − ℓ(r, y, v)| ≤ cst (|x − y| + |u − v|) .
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