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SUMMARY 

The general purpose of this research is to develop a methodology 

for evaluating projects during the planning phase, when there are alter­

native methods of achieving the stated goals of a given project. The 

emphasis in this study is on the managerial decision making process 

involved in approving or rejecting a project. 

A network model is used to represent the project, and since this 

network includes all possible alternatives of performing the project, 

it is called a decision network. 

Three types of decision networks are considered in this research. 

The first type is a case where all alternatives are known with certainty 

during the planning phase, and the other two types describe cases where 

uncertainty is associated with each alternative, described by a proba­

bility distribution. Thus, this study handles both deterministic and 

stochastic decision networks. 

No assumptions are made relative to the decision maker. Instead, 

inputs to the decision making process are developed. The two parameters 

considered are time and cost. 

For the deterministic network, the problem is that of selecting a 

particular set of alternatives to be performed, each represented by its 

time and cost values. The input to the decision making process developed 

for this case takes the shape of a time-cost trade-off relationship, 

where the interesting sets of alternatives are those that yield a lower 

cost value for a higher time value. 
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For the stochastic networks, a variety of inputs to the decision 

making process is developed, utilizing various criteria of choice. 

These inputs supplement each other and enable the decision maker to 

make his evaluation on the basis of a broad information base. 

The procedure introduced in this research is based upon discrete 

dynamic programming concepts for the deterministic network, and 

stochastic discrete dynamic programming for the stochastic networks. 

In addition, Monte Carlo simulation is applied to the stochastic net­

works . 

A series of numerical examples is used to supplement the method­

ology developed in this study, demonstrating that the computation pro­

cedure is not complex, and is practical. 

Recommendations are made that a project represented by a mixed 

deterministic and stochastic network be investigated, and that the 

multi-project case be explored. Also, further investigation of some of 

the techniques developed in this research is suggested, with the main 

purpose of applying these techniques for other types of problems. 
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CHAPTER I 

INTRODUCTION 

Purpose 

The purpose of this research is to develop methodology for evalu­

ating projects during the planning phase, when there are alternative 

methods of achieving the stated goals of a given project. Such method­

ology would permit an objective and systematic approach to the problem 

of project assessment. 

Problem Formulation 

The area of project management experienced a major change in 1957 

with the introduction of new techniques, commonly known as CPM (critical 

path method) and PERT (program evaluation and review technique). These 

techniques are characterized by their use of a project model consisting 

of an acyclic network representing dependencies among the activities to 

be performed in order to achieve a given goal. The network includes 

additional information, typically the duration and cost of each activity 

Thus, a project network may look like that of Fig. 1, where the nodes 

represent activities, and arrows indicate precedence relationships among 

the activities. This type of network is referred to as a "standard net­

work. " 



Figure 1. A Project Network 

In network based project management there exists distinct separa­

tion between the planning phase, the scheduling phase and the control 

phase. The planning phase is usually identified with the construction 

of the project network, during which time specific decisions are made 

on the method of performing the various activities. Thus, if there is 

a number of competing methods of performing some of the activities, an 

elimination process takes place before the project network is con­

structed. The scheduling phase is concerned with establishing commence­

ment and completion times for each activity. The control phase provides 

the basic for adjusting the schedule throughout the life of the project. 

Sometimes during the planning-scheduling phases, management is 

interested in finding out the time and cost of the project. These are 

the two most crucial elements of the project evaluation process, the 

outcome of which determines whether the project is going to be under­

taken. 

Evaluation of the project time and cost is relatively simple for 

the CPM type network, where the elimination of alternatives is completed 
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before the project network is constructed. However, this elimination 

process does not guarantee that the most desirable network representing 

the project will be selected. When a few alternatives exist for per­

forming the project, it is not hard to visualize that management would 

like to know the available options. For the purpose of this research 

these options will be in terms of project time and cost for the various 

alternatives. The a-priori elimination process results in presenting to 

management just one of these options, which may or may not be the most 

desirable. Thus, the decision making process of management is basically 

reduced to accepting or rejecting this one option out of the many, most 

of which are not even known. 

A more desirable approach would be to perform a posterior elimi­

nation of alternatives, after all options are known. This can be 

achieved by introducing explicitly all alternatives into the project 

network, resulting in a decision network. 

Decision Network 

Suppose that, during the planning phase, there are different 

alternatives for performing some of the activities, with each alternative 

having a different cost, a different time duration, and different depend­

encies. Also suppose that no elimination process takes place before the 

project network is constructed. The result is a different type of 

project model—one which includes all the possible alternatives. Fig. 

2 is an example of such a network. The triangular nodes are referred 

to as "decision vertices" and imply that a decision must be made to 

select at most one of the possible alternatives, called decision nodes, 
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emanating from the decision vertex. This type of project network is 

called "Decision Network." 

Figure 2. A Decision Network 

The Case of Certainty. Consider the decision network of a proj­

ect, as presented in Fig. 2. In this example, the scheduling phase can­

not start until at most one decision node is selected at each decision 

vertex. This selection is done during the planning phase. By elimi­

nating all decision nodes that were not chosen, the decision network 

can be reduced to a standard network. 

The problem then is that of selecting a particular set of alter­

natives to be performed. Since each activity is quantitatively described 

by its duration and cost, then the set of alternatives selected should be 

that set yielding the most desirable time—cost combination for the whole 

project. This does not necessarily mean that the combination yielding 

the minimum project time or minimum project cost is the most desirable 
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one. However, the only combinations of interest are those that for a 

higher project time value have a lower cost value. Thus, a time-cost 

trade-off is required to enable management to make the selection that 

meets its desires or constraints. It is definitely a planning problem 

This problem is referred to as "The Case of Certainty" because 

all possible alternatives are known during the planning phase, it is 

possible to eliminate all undesired alternatives, and the outcome of 

selecting each alternative is known with certainty. Situations like 

this arise in conventional projects or in development projects. 

The mathematical formulation of this problem is as follows: 

Let: 

T_̂  - the ith possible project time value 

T™ - the ith possible project time value obtained by selecting 
the mth subset of decision nodes 

C_ m - project cost associated with T™ 

Then, the time-cost trade-off is given by all points satisfying 

the following inequalities. 

if T. > T. , and T,- ' s are arranged in 
1 i-1 ascending order of T^ values. 

then C. < C e = 1...i-1 
l e 

and is the policy associated with this point, i.e. the set of deci­

sion nodes that, if selected, will yield the above (T,C). 
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Computational Magnitude. If there are 15 decision vertices 
J 5 

each having two decision nodes, there are 2' = 32,768 decision patterns. 
15 

If there are 3 decision nodes per decision vertex, there are 3 = 

9,034,497 decision patterns. 

Certain types of projects, especially R £ D projects, are char­

acterized by the uncertainty of the outcomes of performing some of the 

activities. The problem formulation given above would not fit these 

cases. Therefore a different approach has to be used. 

The Case of Risk With Stochastic Decisions. This problem formu­

lation considers the case where all possible alternatives are known 

during the planning phase; however, preliminary selection is impossible 

because there is a probability associated with each alternative. A 

situation like this is represented by the decision network of Fig. 3. 

Figure 3. A Stochastic Decisions Network 

A network of this type is referred to as a "Stochastic Decisions 
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Network." The probabilities associated with, say, decision vertex 3 

represent the fact that during the planning phase there is not sufficient 

information to decide whether "31" or "32" should be performed, although 

as the project unfolds and vertex 3 is reached the decision maker is 

able to eliminate either one and proceed with the other one. Thus, the 

probabilities in this case represent the uncertainty during the planning 

phase. Note that it is not certain at the outset which of these alter­

natives will be chosen. This is representative for example of a devel­

opment project where, say, node 1 can represent a certain state of 

knowledge that has to be acquired before "31" or "32" can be selected. 

In contrast to the case of certainty, where selection among 

alternatives and network reduction were possible during the planning 

phase, no such approach is possible here. 

Due to the nature of this problem, time-cost trade-off has no 

meaning here. However, the decision maker is still in need of some 

information in order to decide whether or not to proceed with the 

project. Thus, the problem here is to develop decision making tools 

for evaluating projects with known alternatives and uncertain future. 

The Case of Risk With Stochastic Outcomes. This problem formu­

lation considers a different case than the previous one. Again, all 

possible alternatives are known during the planning phase, however, each 

alternative, if selected, is followed by a finite number of stochastic 

outcomes. An example of this type of project is represented in Fig. 4. 

The decision network associated with this case is called "Stochastic 

Outcomes Network." 
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Figure 4. A Stochastic Outcomes Network 

The decision maker, either during the planning phase or during 

the execution of the project, is able to control the alternative 

selected, but he is unable to control the stochastic outcome associated 

with the selection of a certain alternative. The stochastic outcomes 

associated with each alternative are represented by a probability dis­

tribution. Each outcome has associated with it a duration and cost 

values, in the same manner as a regular node. Thus, this case differs 

from the previous one in the amount of control that can be exerted 

during the planning and execution of the project. This situation is 

common to R £ D projects or conventional projects, where certain events 

are uncontrollable (for example, in a construction project the weather 

would be uncontrollable). 
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Due to the nature of this case, only partial elimination of 

alternatives is possible during the planning phase, once a criterion 

for such elimination is established. Again, a decision has to be made 

during the planning phase as to whether to proceed with the project or 

not. The time-cost trade-off approach is not applicable here because 

of the uncertainty of the future. Therefore, the problem here is to 

develop inputs to the decision making process to enable the evaluation 

of a stochastic outcomes project during the planning phase. 

Importance of the Problem 

Network based project management techniques are widely used today 

in all phases of industry and business. The vast amount of literature 

available, and the fact that there are over 50 computer programs avail­

able in this area are an indication of the diversified use of these 

techniques. 

One of the shortcomings of the existing techniques is in handling 

cases where EL selection among alternatives has to be made, or whenever a 

decision has to be made in the face of an uncertain future. 

Whenever a new venture is to be undertaken, management is seeking 

information relative to at least two factors: time and money. The 

proper combination of the two which is acceptable to management may vary 

from case to case, but, unless there is such an acceptable combination, 

the venture will never take place. 

Practically thousands of decisions of this type are made every 

day. When the venture at hand is a project with a few alternatives 

available for some of its elements, and when the future is either 
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certain or uncertain, management does not have adequate information in 

order to make the proper decision. The few available techniques, which 

are applicable to only some of the previously mentioned cases, concen­

trate on only one criterion of choice for decision making. However, 

not less important is presenting to management information based upon 

various decision making criteria and let management decide what the 

optimal option is. 

Scope and Limitations 

The research reported herein considers problems associated with 

the planning phase of project management, emphasizing the managerial 

decision making process involved in approving or rejecting a project. 

No assumptions are made relative to the decision maker. Instead, in­

puts to the decision making process are developed. 

The present study is confined to the planning phase only and does 

not consider the scheduling and control phases.. 

Although this research is restricted to the analysis of project 

networks, it is recognized that some of the techniques to be developed 

might have some other applications, as suggested in Chapter VII. 

The research effort presented herein is restricted to the single 

project case., and no resource constraints or nonsimultaneity constraints 

are considered. Time and cost are the only parameters examined here, 

and no other factors affecting the project evaluation process are intro­

duced. The time value of money is not considered explicitly. 

It is assumed that activity duration and cost are known with 

certainty and are single valued. Also, it is assumed that all 
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alternative ways of performing a certain activity and all possible 

stochastic outcomes following a certain activity (where applicable), as 

well as the probability distributions for the stochastic cases, are 

known during the planning phase. 

The research is of a general nature and applies to all projects 

fitting the general model presented herein. 

Organization 

Chapter II gives a general review of project management and 

related literature and a detailed review of the literature relevant 

to the present study. 

Chapter III discusses some mathematical concepts of project 

management and decision networks. 

Chapter IV treats the case of certainty. A dynamic programming 

model of a decision network is introduced, and a solution procedure 

for finding time-cost trade-off is developed. 

Chapter V discusses the case of risk with stochastic decisions. 

Various analytical techniques are discussed. Among others suggested, 

the problem is formulated as a Markov Process with rewards. 

Chapter VI analyzes the case of risk with stochastic outcomes. 

Again, various approaches are discussed, where dynamic programming and 

stochastic dynamic programming are the dominant techniques used. This 

chapter also examines Monte Carlo simulation as a possible approach to 

this type of problem. 

Chapter VII concludes the research with summary of the results 

and recommendations for further research. The appendices include 
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examples demonstrating the solution procedures developed. 

Objectives 

The primary objective of this research is to develop methods by 

which problems attendant to planning with decision networks can be 

resolved without examining every possible outcome. The secondary objec­

tive is the extension and application of Operations Research techniques 

to a class of real world problems. 
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CHAPTER II 

LITERATURE SURVEY 

Introduction 

The literature associated with network based project management 

is very extensive. The purpose of the survey presented herein is to 

give an overview of representative literature in this area, followed 

by a more detailed discussion of the literature closely related to the 

topic of this research. Some additional items which have a bearing on 

the problem area under consideration are included too. Thus, this sur­

vey is divided into four sections as follows: 

CPM and PERT 

Network Algebra 

Digital Simulation 

Decision Networks 

For a more extensive literature survey, the interested reader is 

referred to Krishnamoorthy (39). 

CPM and PERT 

Initially, most of the research attention that has been directed 

towards network based project management dealt with the "single" project 

type—i.e. only one large complex work program is involved. 

It was for this type of project that the now widely used PERT 

(Program Evaluation £ Review Technique) and CPM (Critical Path Method) 
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procedures were developed. This was the origin of the network approach 

to project management, and it can be attributed to two separate proj­

ects: one undertaken by industry, the other by the U. S. Government. 

Both groups advocated the use of a network depicting explicitly 

the relationships among various activities. This was a significant 

change from the then existing technique of using bar-charts. 

PERT (45) and CPM (33,34,35) were developed independently and at 

about the same time in 19 58. PERT was originally designed for the 

Navy's Polaris research and development program, whereas CPM was 

designed for a construction project at DuPont. 

CPM (Critical Path Method) 

This method was initiated by Kelly and Walker (33,34,35). It 

was completely different from the previously known project planning 

techniques in the sense that the functions of planning and scheduling 

were separated. In this method, activity durations are considered to 

be deterministic for a certain level of resource utilization. This 

level can be varied by varying the amount of money spent for direct 

cost factors, and accordingly there is a change in the activity dura­

tion. In (33) Kelly and Walker introduced the functional relationship 

between project cost and time, by defining, for each activity, limits 

for time and cost called "normal" and "crash." Kelly (35) developed 

this further to a parametric linear programming formulation to obtain 

the project cost curve. Fulkerson (22) developed a similar analysis. 

Both Kelly and Fulkerson assumed that a project's time-cost relationship 

is a continuous, convex function, and that this function can accurately 

be represented by a piece-wise linear approximation. 
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Some original simplifications and modification of Fulkerson's 

algorithm may be found in an article by Roper (57), who has also bor­

rowed ideas from Kelley. Roper's algorithm produces sub-project cost 

curves in addition to the project cost curve. 

A somewhat similar approach was taken by Alpert and Orkland (1), 

and refined by Moder and Phillips (49, p.109). Their procedure con­

siders only discrete time-cost points. This method does not require 

the assumption of a convex cost function. However, the method used will 

not give all possible minimum-cost project time reduction; consequently, 

it is not necessarily an optimal procedure. 

Meyer and Shaffer (48) used integer linear programming to study 

project cost functions. However, with present algorithms they state 

that projects of 50 or more activities cannot be handled. 

Some extensions of CPM include the work of Gessford (24), who 

found that "medium and large construction firms may find it economically 

and administratively, advantageous to add cost constraints to their 

existing CPM/Time systems," and the article by Kleinschmidt, Moore and 

Tamashanas (38), who introduced cash flow into CPM and applied it to 

"make" or "buy" decisions. 

The mathematical basis for CPM was established by Kelley (35) 

and later extended by Levy, Thompson and Wiest (40). 

PERT (Program Evaluation and Review Technique) 

PERT was formally defined by Malcolm, Roseboom, Clark and Fazar 

(45). PERT was originally designed to be time oriented—it paid little 

explicit attention to factors of cost and resource availability. The 
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basic difference between PERT and CPM is that in CPM activity durations 

are deterministic, whereas in PERT activity durations are subject to a 

probability distribution. An integral part of this probability distri­

bution is the system of three time estimates—normal, optimistic and 

pessimistic. The paper by Malcolm et at. (45) assumes a Beta distribu­

tion for activity duration. It suggests that the probability of com­

pleting a project by a given date can be computed by calculating the 

critical path using an expected activity duration as deterministic 

quantity and then invoking the central limit theorem. 

PERT assumptions were discussed by Murray (50) and MacCrimmon 

and Ryavec (41,42). They have performed rigorous analyses of the PERT 

assumptions and have suggested methods which may lead to better time 

estimates and probability statements. Clark (8) developed an itera­

tive procedure to get the expected value and variances of a network. 

He uses different assumptions than the original PERT assumptions, the 

main difference being assuming that the elements of the network are 

normal random variables. Moder and Phillips (49, p.229-239) provide 

an illustrative application of this procedure. 

In a different article, Clark (9) makes an attempt to validate 

the probability statements of PERT. Grubbs (26) has pointed out the 

subjective nature of the PERT estimation problem and the restrictions 

on the Beta distribution. 

While Macrimmon and Ryavec were working on a comprehensive 

analysis of PERT assumptions, Van Slyke (59,60) was exploring the use 

of Monte Carlo methods to yield solutions to the PERT problem. He 
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observed that the Monte Carlo estimate of the mean project length is 

unbiased. Another outcome of his research is "criticality index" for 

each activity expressed in terms of the probability that the activity 

will be on the critical path. 

An attempt to remove the biases in PERT assumptions was made 

by Hartley and Wortham (27). The novel feature of this article is the 

attempt to synthesize various contributions in this direction and 

evolve a statistical theory for the derivation of unbiased distribution 

of the project completion times, with a provision for sensitivity analy­

sis relating to assumptions. 

A research into the behavioral aspect of time estimating was per­

formed by King and Wilson (37) and King, Vittebrongel and Hazel (36). 

The second paper is more or less a continuation of the first one. 

These two papers fulfill a long felt need to initiate research on the 

estimating behavior of individuals in relation to PERT assumptions. 

The conclusion of these two papers is that there is no significant 

change in the accuracy of estimating the remaining portion of an 

activity as the portion of activity remaining becomes smaller. 

Some extensions of PERT include PERT/cost (15) and PERT/ 

Reliability (46). PERT/cost adds the considerations of resource costs 

to the schedule produced by PERT/Time; however, it does not provide 

probability information relative to cost. There is no attempt to use 

cost data in such a way as to optimize total project costs. PERT/ 

Reliability is an extension of PERT into reliability management. 

For the computer aspects of PERT, the article by Phillips (53) 
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gives a wealth of information concerning various CPM and PERT computer 

programs. 

To conclude this discussion of PERT, the following quote from 

Caruthers and Battersby (3) is of interest: "In spite of the initial 

success of PERT, its distinguishing feature of a statistical distribu­

tion of activity time, is seldom used." 

Network Algebra 

It is not the purpose here to cite all work done in network 

algebra, but only a few references having some relationship to the 

research presented herein. 

Charnes and Cooper (4) applied the subdual algorithm of linear 

programming to critical path scheduling. The project graph is con­

verted to a network by imposing a flow on it. Then, a pair of linear 

programming problems is synthesized so that pertinent applications of 

the theory of subdual algorithms can be applied. Another illustration 

of this approach is given in Moder and Phillips (M-9, p. 1 3 5 - 1 3 9 ) . 

Application of chance constrained programming methods to examin­

ing some statistical properties of PERT networks is reported by Charnes 

and Thompson (5). The main focus of this paper is on the statistical 

distributions of the project completion times. 

The idea of decomposing a project network into subnetworks is 

discussed by Parikh and Jewell (52). Their paper considers a "critical 

path" networks, and presents a method to decompose a project network 

into subnetworks, schedule the subnetworks and then put the project net­

work back together. First, time-only networks are handled. Then, the 



19 

method is extended to cost-time networks by a method which is a gener­

alization of Fulkerson's (21, p.151-169) project cost curve method and 

"out of kilter" algorithm. 

Martin (47) presents a method of computing the density function 

of the passage time from source to sink of an acyclic network. An 

interesting technique in this paper is an algorithm reducing a series-

parallel network to a single arc whose density function is that of the 

time through the original network. 

The problem of finding a mini-maximal path in a disjunctive PERT 

network was solved by Balas (2). The procedure is iterative and con­

sists of a two-stage solution: In stage 1 a 0-1 integer programming 

problem is solved to select a subset of the disjunctive pairs of arcs 

between all pairs of nodes. In stage 2 the critical path is found, and 

a simple test shows whether it is minimaximal or not. If it is not, 

each critical path of stage 2 defines a new constraint for stage 1. 

Digital Simulation 

The application of digital simulation to project management has 

been discussed previously in connection with PERT assumptions (ref. 59, 

60). A few more references that are of interest are cited here. 

Trilling (58) describes a job shop simulation of orders that are 

networks. This work describes a coding procedure based on binary numbers 

while defining the networks represented by the routings or line-ups of 

shop orders. Several decision rules are tested. 

The application of GPSS to Project management is reported by 

Hicks and Jain (28). They considered a number of examples of complex 
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precedence relationships employing GPSS/360 program. Their conclusion 

is that GPSS/360 can be employed to develop project management informa­

tion not readily attainable employing standard project management 

programs. 

An interesting application of Monte Carlo simulation to invest­

ment risk analysis is reported in the work of Hess and Quigley (30). 

They worked out an example where the distribution of a certain profit­

ability criterion was obtained using Monte Carlo, for the case of a 

few variables with given distributions, where analytical techniques 

fail because of complexity. Clark (10) made a similar analysis for 

the case of two investments, where the cash flows have a probability 

distribution,, Using Monte Carlo simulation he obtained the probability 

distribution of the rate of return of each investment. 

Hespos and Strassman (29) applied simulation to the case of 

stochastic decision trees. This is discussed in the following section. 

Decision Networks 

A somewhat more detailed discussion is going to be presented 

here, as this area is the most relevant to the present study. 

Fig. 5 summarizes the flow of ideas in this area. Thus, in 

1962 Eisner (17) introduced decision boxes into PERT network, while 

Magee (43,44) published his decision tree analysis in 1964. Elmaghraby 

(19) added feedback loops to the network, while Hespos (29) followed 

Magee with stochastic decision trees. Pritsker et at, (16,54,55,56, 

61) developed GERT, and Elmaghraby (18) further developed his previous 

work. Chillcot and Thursfeld (6,7) illustrated applications of Eisner's 
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ideas to research management and project evaluation. Dean (14) investi­

gated the application of stochastic networks to research planning. 

Graham (25) extended the ideas of Eisner to analyze R and D expenditures, 

and finally, Crowstone and Thompson (11,12) introduced "Decision CPM." 

Generalized Networks 

Eisner (17) describes his method as a generalization of the PERT 

network for R and D that allows alternative procedures for accomplishing 

research tasks to be considered. Thus, he proposes a network with deci­

sion vertices (termed decision boxes—DB) to represent such situations: 

Fig. 6. Eisner's Decision Boxes 

If decision vertex D^ is reached, then d ̂  occurs with proba­

bility p and with probability p . Note that it is not certain at 

the outset which of these alternatives will be chosen. Eisner solved a 

simple example by enumerating the outcomes and evaluating their respec­

tive probabilities. To evaluate the favorable outcome, he introduced 

the notion of "entropy." Time values are introduced only after the 

entropy calculations. 

Essentially Eisner constructs a decision tree with time values. 

The proposed solution by enumeration cannot be regarded as very useful. 
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Also, using the "entropy" as a means of evaluating the outcomes is 

questionable. At the time, this work had some value as being one of 

the first works in this direction. 

departure from the well-known directed acyclic network having either 

deterministic or probabilistic activity durations. Based on the ideas 

of Eisner (17) regarding the probabilistic branching of activities from 

a given event, Elmaghraby evolves an algebra for generalized activity 

networks. He introduces a series of logical relations to network formu­

lation. Each event has probability of occurrence, and some parameter-

time, attached to it. In (19) only deterministic values for this 

parameter were discussed, whereas in (18) the formulation was extended 

to the case of probabilistic times. Elmagrahby defines logical rela­

tions that may exist between events, and a graphical symbol is defined 

for each relation, so that the relations can be expressed graphically. 

The relations and their symbols are summarized in Fig. 7 and Fig. 8. 

Elmaghraby1s important papers (18,19) account for a significant 

Graphic 
Symbol Type of Receiver Type of Source 

O O O o Exclusive-or 
And 

And 
Inclusive-or 

May-follow 

Must-follow 
Must-follow 

Must-follow 

Exclusive-or 
Inclusive-or May-follow 

May-follow 

Figure 7. Logical Relations (19) 
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M P(anb)]/D 

Pe = P^d-Pe* 

Pa = 

e*e' 

Figure 8. Network Algebra (18) 

Elmaghraby suggests a complete enumerat'ion of paths, and shows 

algebraically that for each such path a time and probability of occur­

rence may be determined. He concludes by combining path time and 

probability information for an overall expected value for project com­

pletion. Note that Elmaghraby combines time and probability information, 

whereas Eisner did not. 

The applicability of this method to PERT-CPM network is rather 

limited. These networks are composed mainly of "AND" nodes, and as 

Elmaghraby himself notes: 
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. . . an AND node can be replaced with two Exclusive-or nodes. 

. . . Therefore, it seems that the price paid for the use of an 
already established theory is the enlargement of the original 
logic of the network. Whether such trade-off is advantageous or 
not can be answered only from empirical experience. 

The work of Elmaghraby received further momentum as a result of 

four recent papers by Pritsker (56), Pritsker and Happ (55), Drezner 

and Pritsker (16) and Whitehouse (61). A new term was given to the 

exploration of stochastic activity network: "GERT" - for Graphical 

Evaluation and Review Technique. 

Whitehouse (61, p.l) describes GERT as a procedure which combines 

the disciplines of flow graph theory, moment generating functions and 

PERT to obtain solution to stochastic problems. In (55), a stochastic 

network is defined as having the following properties: 

a) A branch has associated with it a probability that the 

activity represented by the network will be performed. 

b) Other parameters describe the activities which the branches 

represent. These parameters may be additive, such as time, or multi­

plicative such as reliability. 

c) A realization of a network is a particular set of branches 

and nodes which describe the network for one experiment. 

Note that property (b) above creates difficulty for CPM-PERT 

type networks, as time is not purely additive. 

GERT derives both the probability that a node will be realized, 

and the conditional moment generating function (M.G.F.) of the elapsed 

time required to traverse between any two nodes. 

With the help of Signal Flow Graphs, Pritsker and Happ (55) have 

been able to outline an algebra for the solution of stochastic networks. 

They formalized node-symbols as in Fig. 9. 
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Input Exclusive-or Inclusive-or and 

Output ^ " v ^ ^ ^ Kl < Q 
Deterministic, O o O 
Probabilistic, o o O 
Exclusive-or - The realization of any branch leading into the node 

causes the node to be realized; however, one and only 
one of the branches leading into this node can be 
realized at a given time. 

Inclusive-or - The realization of any branch leading into the node 
causes the node to be realized. The time of realiza­
tion is the smallest of the completion times of the 
activities leading into the Inclusive-or node. 

and - The node will be realized only if all the branches 
leading into the node are realized. The time of 
realization is the largest of the completion times of 
the activities leading into the and node. 

Deterministic - All branches emanating from the node are taken if the 
node is realized, that is, all branches emanating from 
this node have a p-parameter equal to one. 

Probabilistic - At most one branch emanating from the node is taken if 
the node is realized. 

Figure 9. Node Characteristics and Symbols—GERT (55). 

Pritsker and Happ consider the principles of network reduction 

for exclusive or nodes only. Essentially they employ a moment gener­

ating function (M.G.F) M ^ s ) , continuous or discrete, associated with 

activity duration (t) which is further transformed by the conditional 

probability p oriented to the branch to form a W function where: 



27 

W(s) = pM (s) 

Network Type Equivalent w-Function 

Figure 10. w Function (55) 

Whitehouse (61) has investigated different approaches for obtain­

ing the distribution function from an M.G.F. so as to ascribe confidence 

limits to system performance. 

In (16) the application of GERT to a space vehicle countdown is 

reported. The authors ended up using simulation for system performance. 

The outcome of this two-stage transformation results in a system 

of linear independent equations which is amenable to solution by flow-

graph techniques. The two key features of network reduction at the 

transform level are: (1) The M.G.F. of the sum of time values is the 

product of the M.G.F. of individual time values; (2) the M.G.F. of a 

mixture of two distributions is the sum of M.G.F. of individual dis­

tributions, each one being weighted by their conditional probabilities. 

At the two-stage transformation level this is reduced to simple addi­

tion of the corresponding functions as in Fig. 10. 



28 

An attempt to solve a network with "AND" nodes was made, and the 

reported result is: " . . . the programming and storage problems 

associated with computations appear formidable. The area, however, is 

one for future research." 

The applicability of GERT to CPM-PERT networks is doubtful. 

Pritsker (56, p.101) notes that "the analysis of AND nodes is similar 

to the analysis of PERT-type networks. To date there is no exact solu­

tion to the analysis of PERT networks that is computationally tractible." 

The same observation was reiterated later by Wolfe (62) who wrote 

his Ph.D. dissertation under Pritsker. He states that "Although GERT 

appears to hold promise in aiding the analysis of stochastic networks; 

at present no general method for analyzing PERT and CPM type networks 

has been incorporated in this procedure." 

The reason for the difficulty encountered with CPM-PERT networks 

is that an "AND" node is regarded as nonlinear, and therefore GERT can­

not transform it in a simple fashion to a linear independent equation 

and apply flow graph techniques to it. 

The works of Chilcott and Thursfield (6,7) illustrate applica­

tions of Eisner's ideas in research management and project evaluation. 

Graham (25) applies Eisner's decision box ideas to analyze R and D 

expenditure. Solving a simple example, he enumerates all paths and 

takes the expected cost of each path. A discounted cash flow analysis 

is also introduced. No time element in the sense of CPM-PERT is con­

sidered. 
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Dean (14) concentrates his efforts on the analysis of stochastic 

networks for research planning. After discussing the three planning 

techniques of CPM, CPM-minimum cost, and PERT Time, he concludes that 

these techniques are not applicable to research projects, because the 

sequence of events and activities is known with certainty. A research 

project is viewed as a process of acquiring knowledge sequentially. 

This leads to the development of the stochastic network concept— 

stochastic because the nodes of the network are not known with certainty 

in advance. The stochastic network represents the researcher's planned 

acquisition of knowledge. The change in this plan is represented by a 

configurational change in the research network. 

Four models are presented for solving four decision problems in 

research planning: 

a) Sequencing of research tasks 

b) Selection of technical alternatives 

c) Funding of components concepts 

d) Cost allocation across systems. 

The solution of the first model yields that high risk tasks 

should be performed first if the costs are the same, and the cheaper 

tasks should be performed first if the risks are the same. Models (b) 

through (d) are solved sequentially in that the results of each decision 

problem are used in the next decision problem. Discrete Dynamic Pro­

gramming is used to solve each one of these models—for a specific 

example. The solution obtained is cost vs. maximum probability of 

success for various alternatives. Dean states that solutions may be 
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obtained manually if the number of alternatives is less than 20, and 

otherwise may be programmed for an electronic computer. Note that none 

of the models considers the time element directly. 

Decision Trees 

The two papers by Magee (43,44) are an extension of decision 

tree analysis developed in various texts of statistical decision theory. 

The idea is that a choice among alternatives can be made, and this 

choice of a specific alternative is followed by certain stochastic 

events, with known probabilities, where the decision maker has no 

control over the outcome. Each combination of decisions and stochastic 

events has a different outcome. 

Figure 11. Decision Tree 

One can see that this case is different from the decision box 

method presented by Eisner. Magee used this method for analysis of 

capital investments, by using discounted cash flows and expected values. 

Hespos and Strassmann (29) introduce the concept of "Stochastic 

decision trees," with the following features: 
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a) All quantities and factors, including stochastic events, 

can be represented by continuous, empirical probability distributions. 

b) The information about the results from any or all possible 

combinations of decisions made at sequential points in time can be 

obtained in a probabilistic form. 

c) The probability distribution of possible results from any 

particular combination of decisions can be analyzed using the concepts 

of utility and risk. 

This method calls for eliminating the stochastic node and 

replacing it with a probability distribution. Using simulation, a 

single branch is selected at each node for which a probability distribu­

tion exists. The result of the simulation is a probability distribution 

of the variable of interest. The authors report the results of solving 

a stochastic decision tree problem with GPSS simulation. 

Deterministic Networks 

Crowstone and Thompson (11), based upon the idea of Eisner, 

introduced the activity alternatives into CPM network. A new term was 

coined for this analysis: Decision CPM. Thus, if there is a number of 

competing methods of performing some of the activities, each method 

having a different cost, a different time duration and different tech­

nological dependencies, these possibilities are included in the project 

network. Among all these alternative, the ones minimizing total project 

cost are selected. The authors recommend the repeated use of the same 

method during the execution phase of the project. 
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Using activity-on-node representation of a network, and following 

Levy (40), they define a decision project graph G as a graph with nodes 

representing activities and directed line segments connecting two nodes 

s.. (in activity set i) and s (in activity set m ) , if and only if s . . i] J mn J ° ij 

is an immediate predecessor of s , i.e., s.. << s . Additional inter-r J mn i] m n 

dependencies of contingent relations between activities are defined too 

(Crowstone (12) later calls these interdependencies "other constraints." 

Their nature is not disclosed, but this might be, for example, the non-

simultaniety constraint discussed by Davis (13)). A decision project is 

defined as a set J (a set of activity-sets S_̂ ) together with the speci­

fied interdependencies and the precedence relationships. In addition, 

all alternatives for a given activity have identical predecessor suc­

cessor relations. Exactly one of the activities of each decision set 

must be performed—and in contrast to Eisner, this activity is performed 

with certainty. 

The outcome of decisions based on project cost analysis would be 

to eliminate a cluster of activities from the decision project network 

to obtain the final project network used in regular CPM analysis. Two 

methods are suggested to achieve this pruning: 0-1 integer programming, 

and heuristics with partial enumeration. Crowstone and Thompson illus­

trate with a few examples the several ways in which the 0-1 variable can 

be used to represent interdependencies among decisions. 

This work has two main shortcomings: the fact that all alterna­

tives of a given decision set have identical predecessor-successor 

relations makes the problem very unrealistic. The exponential growth 
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of constraint sets as the number of activities are increased poses 

severe practical problems for a 0-1 integer programming solution. The 

authors recognized this by stating: 

In very large problems the integer programming solution tech­
nique becomes impractical because of the resulting large 
number of constraints and variables. For that reason we 
have developed heuristic solution techniques for solving 
the problem. 

The heuristic method is a modification of the one given by Moder 

and Phillips (49, pp.109-122). 

Crowstone's paper (12) is an extension of the previous work. 

He removed the above requirement of identical predecessor-successor 

relations, and added a method that is supposed to reduce the size of 

the integer programming formulation and also suggested a branch and 

bound solution. 

The reduction method amounts to enumerating 2 paths through the 

network, where h is the total number of decision alternatives. Some of 

these paths are not feasible, because of the "other constraints." The 

author developed a reduction algorithm, however, it is not certain 

whether the time saved in the integer programming solution is not con­

sumed by this reduction algorithm. 

The branch and bound technique developed solves, at a particular 

node of the tree, an integer programming problem of the form: 



h k(i) 
Min c 

: i=l j = 

subject to 

Acceptance d. . 1 

Exclusion d. . 
I D 

0 

interdependency 

k(i) 
1 

plus "other interdependency constraints." 

c.. is the cost associated with decision node in. This is the 
I D 

cost of node (ij) plus the cost of regular nodes associated with deci­

sion ij. No method is given, here or in the regular 0-1 solution, 

indicating how this cost c „ should be evaluated. 

Crowstone (12) states (p.40) that "In order to complete the 

project, one of the jobs from each job set must be completed . . . " 

This is a limiting assumption. There might be cases where a 

decision node will not be considered at all, and therefore at most one 

activity (job) from each decision set (job set) must be selected. 

The rest of this paper discusses resource constrained decision 

networks, and shows some applications of Decision CPM. 
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Concluding Remarks 

The following conclusions may be drawn from the literature survey 

presented herein: 

1. Although some research has been done in decision networks, 

the problem of time-cost trade off, for different sets of decisions has 

not been investigated. For the regular CPM analysis, this problem has 

been treated by introducing "crash time," and "normal time" for each 

activity. (See, for example: (1,22,33,48,49,57).) The works of Crow-

stone and Thompson are a first step in this direction for decision 

networks. 

2. The attempts made so far for the case of certainty centered 

on minimizing cost only, utilizing integer programming, branch and 

bound or heuristic programming. 

3. The stochastic cases of decision networks received some 

attention in the literature. All these approaches use expected value 

as the sole criterion of choice, only one parameter at a time is con­

sidered (cost or time), and a project decision network is rarely treated 

explicitly. 
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CHAPTER III 

MATHEMATICAL BACKGROUND 

Introduction 

The purpose of this chapter is to present some of the defini­

tions , concepts and theorems relevant to this research. 

Definitions 

Project 

A project is a collection of well-defined activities which, when 

completed, msLrk the end of the project. These activities are partially-

ordered j i.e., certain subsets must be performed in a given sequence. 

The Project Network 

Each project can be modeled by a project network (or graph). 

This necessitates the following definition. A directed network or 

directed linear graph G is a set M = {nu|i=l...n} together with A which 

is a subset of MxM, where MxM = {m.,m.|m.eM,m.eM}. The elements of M 

are called nodes, and the elements of A are called arrows (or arcs). 

In the research that follows, a directed network G will be denoted by 

G(M,A), and the term directed will be suppressed. 

There are two different methods of modeling a project—activities 

on arrows and activities on nodes. 

Activities on Arrows (A-O-A) 

In this method, arrows represent activities, and nodes represent 
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events. All immediate predecessors of a given activity connect to a 

node at the tail of the activity arrow, and all immediate successor 

activities emanate from the node at the head of the activity arrow. 

Thus, a node marks the event of completion of all activities leading 

into the node. The precedence relationships among activities is shown 

by the manner in which the activities are connected through events. 

In order to portray accurately all predecessor relationships, "dummy 

activity" must often be added to the project graph. 

Activities on Nodes (A-Q-N) 

In this method, nodes represent activities and arrows indicate 

the precedence relationships among the activities. For convenience, 

all nodes without predecessors are connected to a node marked "Start." 

All nodes with no successors are connected to a node marked "Finish." 

Throughout this research, the A-O-N method wilt be used. Additional 

parameters which will be included in the network are the duration of 

each activity and its cost. The duration and cost of "Start" and 

"Finish" are taken to be zero. 

Types of Nodes 

Throughout this research, six different types of nodes will be 

encountered. Definitions of each type follow (refer to Fig. 12). 

Activity Node. This node describes one and only one activity. 

This is the basic node for an A-O-N network, and is represented by a 

circle. Each activity node is denoted by iik , and the set of all 

activity nodes is: 

M = {m.} 
1 
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M actually contains more than one m, but the range of i was 

omitted for notational simplicity. The same approach has been used for 

the rest of the nodes' notations. 

Figure 12. Types of Nodes—Schematic Illustration 

Decision Vertex. From this node emanates a decision set with a 

finite number of elements, out of which at most one element must be 

selected. This node is illustrated by a triangle, and is denoted by 

D.. Each activity node may or may not have a decision vertex following 

it; also, each activity node may have more than one decision vertex. 

Note that the subscript j on the decision vertex is not directly related 

to the subscript i on the activity node, for example, at m one could 

have V)^ 

D = {D.} 
3 

The set of all decision vertices is: 
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Decision Node. This node describes a decision alternative which 

D. = {d. w 

3 3^(3) 

Stochastic Decision Vertex. This is essentially a decision ver­

tex with a probability function distributed over its elements. The 

notation and graphical symbol are the same as that of the decision 

vertex D_.. Hence, it is not illustrated in Fig. 12. 

Stochastic Vertex. From a stochastic vertex emanates a finite 

set of mutually exclusive stochastic elements with a probability func­

tion distributed over its elements. If the stochastic vertex is 

encountered, exactly one of its elements is realized. Of course, if 

this vertex is not encountered, none of its elements is realized. This 

node is illustrated by a small shaded triangle and is denoted by A.. 

since, if this node exists, it always follows a decision node d., 
]k(]) 

Also: 

Outcome Node. This node describes an outcome which is an element 

of the stochastic vertex. A probability is associated with each outcome 

node. This node is illustrated by a circle and is denoted by <5.-, , • \-i/i \ • 
J J jk(j)l(k) 

is an element of the decision set D.. It is illustrated by a circle 
3 

and denoted by d_.̂ _.̂ . ^ n "the subscript on d, k(j) means that k depends 

on j also. 
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In the subscript on an outcome node, l(k) means that 1 depends on k. 

Also note that 

Ajk(j) = { 6jk(j)l(k) } 

The hierarchy among these nodes is as follows: 

M = {m.} 
1 

jHj) jHj) :k(])l(k) 

where => is the usual set notation for contains. 

The duration and cost of a decision vertex, stochastic decision 

vertex and stochastic vertex is always zero. Note that the decision 

maker can control, at some stage of the project life, the alternative 

selected at a decision vertex (deterministic or stochastic); however, 

he can never control the outcome associated with a stochastic vertex. 

Types of Networks 

Four major types of networks will be encountered throughout this 

research (two less important types will be introduced later). The fol­

lowing are definitions of each type. 

Standard Network. This is the acyclic directed network previ­

ously defined where all nodes are activity nodes nu . The network has 

one "Start" node (labeled "S") and one "Finish" node (labeled "F"). The 

duration and cost of "S" and "F" are zero. Thus, this network is the 
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ordinary project network of the CPM variety (see Fig. 1). 

Decision Network. A decision Network G ( J , A ) is a directed 

acyclic network as defined before, where the set of nodes J is given by: 

J = MUD = {j.} 

and 

M n D = 0 

Essentially, this is a deterministic decision network (see Fig. 2). 

Stochastic Decisions Network. This is the decision network 

G ( J , A ) with £i probability distribution associated with the elements of 

each D_. (see Fig. 3). 

Stochastic Outcomes Network. A Stochastic Outcomes Network 

G ( A , A ) is a directed acyclic network where the set of nodes A is given 

by: 

A = J u A = M u D u A = { A . } 
i 

where M n D n A = 0 

M n D = 0 M n A = 0 D n A = 0 

and there is a probability distribution associated with each A , . s 
3k(]) 

(see Fig. 4). 
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Mathematical Basis 

The concepts of this section are developed mainly for the deci­

sion network G(J;A). A modification of these concepts will be used in 

Chapters V and VI for the stochastic decisions network and stochastic 

outcomes network. 

Reduction of a Decision Network to a Standard Network 

Given a decision network G(J;A), then a certain set of activities 

must be performed in order to complete the project. These activities 

are as follows: 

a) At most one d., ,.N for each D., call this d.. 

b) Choose all or part of M = {nu}, denote this subset 

of M by M = {nu }. 

Then, it is possible to reduce the decision network to a standard 

network G(j",A") . 

where G(J ,A ) is the standard network obtained by 
decision network reduction. 

Hence, J cj; A cA 

The reduction of G(J,A) to G(J ,A ) is done using the following 

procedure: 

a) All nodes d., / • \ become elements of the standard network. 

b) Any activity node with at least one of its immediate prede­

cessors being an element of the standard network, is also an element of 

the standard network. 
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c) All decision vertices are eliminated as follows: If at 

least one of the immediate predecessors of D. is an element of the 
A 

standard network, then it is connected with an arrow to d., .... If no 

predecessor of D. is an element of G(J ,A ), then D. is eliminated 
3 3 

along with all its d., / . v . 

d) Any node other than D. that is eliminated from the network, 

then all its incoming and outgoing arrows are eliminated. If this 

leaves some adjacent node without incoming arrows, this node is elimi­

nated too and the process continues until no further nodes can be 

eliminated. Note that "S" and "F" are always elements of the standard 

network. 

Following is an example of the above procedure. 

Figure 13. Decision Network Reduction 

Referring to Fig. 13, one has: 

J = {S,1,2,3,D1,F} 
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and 

Dl = { dll' d12 } 

Now if 

dlk(l) = d12 
then d n n is eliminated since there can be at most one d.n for each 11 
D. . 
: 

Hence 

M" = {S,1,3,F} 

and the standard network is: 

J K = {S,l,3,d12,F> 

Since d was eliminated, then, following rule (d) the three 

arrows entering into and emanating from d ^ are also eliminated, and 

correspondingly are marked with an "X." As a consequence, activity 

node 2 and the arrow emanating from it are also eliminated. Note that 

because of rule (b), activity node 3 remains an element of the standard 

network. 

Throughout this research, no interdependencies are considered 

among d_.^.^ for different j , as of the type mentioned by Crowstone (12). 
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Precedence Relations 

m. << m. 

The set 

( I P ) ^ = { i r u j i r u < < n ^ } 

is the immediate predecessor set of some m^. Similarly: 

(IS)^ = {m i|m k<<m i} 

is the immediate successor set of some m^. 

The network G{M;A} is a planar graph with nodes representing 

activities, and a directed line segment exists from some node nu to some 

node m^ if and only if nu << m^. Note that SeM is the only activity 

without predecessor, and FeM is the only activity without successor. 

A path in G is a set of nodes m.,m....m for which the immediate 
i : r 

predecessor relation holds as follows: 

The following discussion considers precedence relation in a 

standard network; however, the concepts and notations hold true for all 

other types of networks, with some minor differences, as indicated. 

Let "<<" denote a precedence relation between two nodes; for 

example, if for some nu , nu e M, either nu is an immediate predecessor 

of nu , or, equivalently, nu is an immediate successor of and this is 

denoted by 



46 

m. << m. << m, << ••• << m 

A cycle in G is a closed path of the form: 

m. << m. << nl ••• << m << m. 
i D K r I 

A graph is acyctic if and only if it has no cycles. 

rru < m^ means that nu must precede m^, but must not immediately 

precede m^. This is possible if and only if there is a set of nodes 

{n.} such that 

m. << n, << n_ ••• << n << m, 
I 1 2 r k 

i.e., rru < m^ if and only if there is a path from nu to m^ in the net­

work G. 

All the above concepts and definitions hold true if M is replaced 

with J, J or A. Some differences, however, do exist between the stand­

ard network and the other networks. 

For a standard network, m. << m. means that m. must be completed 

before the commencement of m.. For all types of decision networks, this 

is still true for the activity nodes: however, m. << D. means that 
i ] 

m. << d., for all k(i) where i is fixed. 

Let: 

m. <A m. mean that m. is not the immediate predecessor of m.. 

Then, the following precedence relations hold for the various 

decision networks. 
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D. « d., , 

d j k ( j ) « AiHi) 

Ajk(j) K < 6 j k ( j ) K k ) 

D. 9^ m. 
1 ' i 

m i ̂  V ( j ) 

The above precedence relations always exist for the various deci­

sion networks. Other relations may or may not exist. 

Finally the predecessor matrix B for a project with n nodes is 

the nxn matrix with components b_̂ _. defined as follows: 

fl if m . « ir^ 
b. . 

1-1 '0 otherwise 

T 

This is essentially a "From To" matrix. Note that B is the suc­

cessor matrix. 

Critical Path Computation 

For the purpose of this research, only a short form of the criti­

cal path computation is required. Once the decision network has been 
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reduced to a standard network, normal CPM analysis can be applied 

whenever applicable, and it is possible to evaluate early start, late 

start, slack., etc. These terms will not be defined here, and the 

interested reader should consult Moder (49). 

The following discussion describes concepts used in standard 

networks. The same concepts will be used in the formulation of the 

three problems discussed in this research. 

A critical activity is an activity which contributes directly 

to the overall project time. 

Obviously, every project has at least one critical activity. 

This leads to the following theorem: 

Theorem 1. a) There is at least one path, called "critical 

path," from "S" to "F" such that every activity on the path is critical, 

b) Every critical activity lies on such a path. c) The sum of the 

activity durations on every critical path is T, which is at least as 

large as the sum of the activity durations on every other path from "S" 

to "F." (For proof, see Levy (40)). 

Let t_̂  be the duration of activity tik (this is the time required 

to complete activity m.). Let Z, represent the kth path from "S" to 
1 K 

"F," and let L(Z, ) represent the length of this path. Thus, if Z " = k _L 

S << << iru • • • << m , << F, where m n = S, m = F, then: 2 3 n-1 I n 

L(Z ) = I t 
i=l 

Then, the length T of the critical path is 
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T = Max L(Z, ) 
k k 

The critical path can be determined after using a forward pass 

to evaluate ES (early start), and EC (early completion). The following 

algorithm, due in part to Davis (13), will be used: 

1) Assign ES of "S" as 0. 

2) Proceed along any path from "S." To each activity assign 

ES and EC as follows: 

ES(m k) + t k = EC(m k), 

where EStin^) is the early start of activity in̂ , etc. 

ES(m, ) = Max EC(m i) 
k all m.e(IP) v 

l k 

3) If an activity m. is encountered such that one or more mem-
l 

bers of (IP), have not been assigned an ES and EC, temporarily defer 
K 

further consideration of this path. 

4) Find any other activity whose predecessors have all been 

assigned an EC but which have not been assigned an ES. 

5) Proceed along any path starting with such an activity until 

an impasse is reached as cited above, or until "F" is assigned an EC. 

6) The forward pass is complete when "F" is assigned an EC. 

7) Start with "F" and proceed backwards through the network. 

8) Whenever a merge event is encountered, the critical path(s) 
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follows the activity(s) for which 

EC(m.) = ES(m.) for m. << m. 
i : i : 

The concept of the critical path can be extended to the case of 

two nodes, nu, nu , provided there is at least one path from nu to nu . 

If there is such a path, the critical path will give the time required 

to reach m. from m.. 
: 1 
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CHAPTER IV 

THE CASE OF CERTAINTY 

Introduction 

This chapter develops the methodology for the case of certainty, 

as defined previously. The approach used evaluates first the two 

extreme points satisfying the conditions of this problem (referred to 

later as o^ and o^), and then evaluates all points in between, together 

yielding the time-cost trade-off desired. This is done by solving three 

separate problems, as follows: 

a) Minimum time problem 

b) Minimum cost problem 

c) Time-cost trade-off problem 

The problems are discussed in this order. The basic approach 

used is a dynamic programming formulation. 

Minimum Time Problem 

The minimum time problem is defined as follows: Given the deci­

sion network G(J,A), select, for each decision vertex (decision set) D., 

at most one decision node d.. , . , € D . so that the completion time of the 

project will be minimized. Find the minimum cost associated with the 

minimum time. 

The approach taken in solving this problem is to transform the 
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decision network into a dynamic programming model. To structure a DP 

model of the decision network, one defines the following elements and 

conventions: 

i) The decision variables are grouped in stages, and the 

stages considered sequentially. 

ii) The only information about previous stages relevant to 

selecting optimal values for the current decision variables is summar­

ized by a so-called state variable (or input variable). 

iii) The current decision, given the present state of the system, 

has an influence on the state at the next stage, and it is represented 

by a "return." 

In the following section a DP model of a simplified decision 

network is introduced, along with a short review of DP concepts, and 

this is later extended to the general case of a decision network. 

DP Model—Simple Formulation 

A simplified decision network as shown in Fig. 14 can be 

described by the standard serial DP model. In this case, the model will 

have three stages, as shown in Fig. 15 (the stages are numbered back­

wards ). t 

The decision variables associated with each stage are composed 

of the proper decision sets of the network. (For a more complicated 

problem, it is not immediately obvious how to form the decision variable 

of a particular stage of the DP model. An algorithm to achieve this is 

introduced later.) 

^Throughout this research, dynamic programming will be denoted 
as DP. 



Figure 14. A Simplified Decision Network 

{ D 2 ' V { V D 5 ' W 

S —> 

Figure 15. A DP Model for the Simplified Network 

Y t n X , X. n-lf i 1 

Y. 
" l V V |Y1 
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1 
T. 
l 

1 
Tl 

Figure 16. Serial DP Model 
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The next step in developing a DP model is defining the stage 

transformation of the state variable. Referring to Fig. 16, for the 

standard serial DP model one has (stages are numbered backwards) 

Xi-1 = 8i< Xi.V 

where X_̂  is the state variable of stage i, defined as: 

X. = {x..} 

and 

Y. = {y..} 
1 J 1 ] 

is the decision variable of stage i. g^ is the forward state transfor­

mation at stage i. This transformation, for a decision network, has the 

convenient form of: 

Xi-1 = « i ( V = Yi 

i.e., the decision variable of stage i is the state variable of stage 

(i-1). Both can be n-dimensional. Also, one always has 

x n = { S } 

and X = {F} 
o 

where both X and X are element state variables, n o 
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To complete the DP model formulation, the returns associated with 

each stage have to be defined. Obviously enough, if the objective is to 

minimize the total project time, the return matrix of stage i would be 

composed of the durations of the decision nodes associated with stage i. 

Let: T^(X_^,Y^) be the return matrix for stage i—time, and let 

t., / . v be the time return of decision node d.. (this is the duration IlHj) 3 H 3 ) 
in this case). Then, if: v.. = d.w.>., the 1th column of T.(X.,Y.), 

J i i j k ( -j) 1 1 1 

for all X., would be equal to t., / . x , whenever the transformation i jk(-j)' 
g^(X^,Y^) exists. Thus, for stage 2 of Fig. 15, this would be: 

T.(X.,Y.) = d 

'12 

S i d22 d31 d32_ 
t 2 1 t 2 2 x X 

X X t31 t32 

Note that each row of T.(X.,Y.) has entries only for columns 
i l l J 

associated with the same D.. This statement is true also for the more 
3 

general case introduced later. 

All possible project times for this case will be obtained by 

evaluating the length of all paths from S to F. 

Let: U m be the mth set of decision nodes d., ,.N associated with 

the mth path. Then, the length of the mth path is: 

L(Z ) = I t

m

v(., 
3 

where t?, / . s are the time values associated with the mth path. To 
3 M 3 ) 
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minimize the total project time, one has to evaluate: 

L(Z*"') = Min[L(Zm)] = Min(£ t ™ . ) ) 
m m j J J 

The optimal policy, indicating the decision node (if any) to be 

selected for each D. is given as: 

This procedure is equivalent to minimizing the sum of stage 

returns of the DP model. A formulation of this type is generally known 

as the "Stage Coach" problem. 

Using Bellman's principle of optimality, it is possible to write 

the recursive equations for solving this case, assuming that a backward 

solution approach is used. 

f . ,^v(X.) = min Q.(X.,Y.) i=l...n 
i(t) 1 y 1 1 1 

i 

Q 1(X 1,Y 1) = T ^ X ^ ) 

Q.(X.,Y.) = T.(X.,Y ) + f, . n w . x ( X . .) 1 1 1 1 1 1 (i-l)(t) l-l 

where f., N(X.) denotes the minimum time at stage i as a function of i (t) i 

the input variable, and Qj_(X̂  ,Y_̂ ) denote the i-stage time matrix. 

Note that: 
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f(i-l)(t) ( Xi-l } = f(i-l)(t) (V 

DP Model--Extended Formulation 

The general case of a project decision network is more complicated 

than the simple example of the previous section, where the equivalence 

with a DP model was almost obvious. Thus, for the decision network of 

Fig. 17 it is not immediately clear what the equivalent DP model is, 
2 

with its input variable, decision variable and returns for each stage. 

The model for the general case is not necessarily composed of serial 

stages, and as a consequence evaluating the optimal policy is somewhat 

different. This section develops the methodology for the general case, 

which includes four steps, as follows: 

1) Network Decomposition into Decision Dependent Subnetworks, 
denoted DDS., i=l...m: l 

2) Formulation of a DP model for each DDS^; 

3) Determination of the minimum project time; and 

4) Development of the DP solution. 

Decision Dependent Subnetwork (DDS). Prior to rigorously defin­

ing the notion of DDS, a few examples are discussed to introduce the 

concept on an intuitive basis. 

Suppose that the decision network of Fig. 18 is given. 

One can immediately observe that there are two independent sub­

networks, one associated with the decision vertex Dj_, the other 

2 . . . . 
Throughout this research, whenever no ambiguity arises, Dj will 

be denoted by j, and ^-^(j) ̂ y Jk(j)« 



58 



59 

associated with the decision vertex D . Thus, schematically this net­

work could be illustrated as shown in Fig. 19. (For a clearer illus­

tration, F is shown separately, but it is actually an element of both 

subnets 1 and 2.) 

Figure 18. Decision Network 

Dl D2 
Subnet 

1 
Subnet 

2 

XT/ 
Figure 19. Decision Network—Schematic Description 
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Now, suppose the above decision network is modified as shown in 

Fig. 20. 

Figure 20. Modified Decision Network 

Clearly, in this case there are three independent subnetworks; 

that is, two subnetworks as previously described and a third subnetwork 

not dependent on any decision vertex. To be consistent with the previ­

ous case, where every subnetwork was associated with a decision vertex, 

the first activity node S is regarded as a conjunctive decision node3 

where a conjunctive decision node is a node that all activities 
3 

emanating from it are to be performed. 

Thus, subnetwork 3 can be regarded as dependent upon the 

This definition is similar to that of Eisner (17). 
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conjunctive decision node "S," and the decision network of Fig. 20 can 

be reduced to the one shown in Fig. 21. 

Figure 21. Decision Network—Schematic Description 

Finally, assume the decision network of Fig. 18 is modified as 

shown in Fig. 22. 

It remains possible to identify two subnetworks, 1 and 2; how­

ever, they are no longer independent, as decision vertex D^ belongs to 

both subnetworks. The network of Fig. 22 is illustrated schematically 

in Fig. 23. 

It is now possible to define the concept of a decision dependent 

subnetwork (DDS). 
(s) (s) 

Definition, The decision dependent subnetwork G{J ;A } of a 
(s) (s) 

network G{J;A} is a connected network such that J oJ 5 A £_A, and the 



Figure 23. Decision Network--Schematic Description 
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following conditions hold: 

{ d i : L , d 1 2 , d 2 1 s d 2 2 9 F } € j[s) for DDS 1 

{d 3 1,d 3 2,d 2 1,d 2 2,F} e J(
2
S) for DDS 2 

Note that nodes {d 2^ 9d 2 2,F} are elements of both DDS^ and DDS 2 > 

Note also that ^ d21' d22^ e DDS-̂  because ^ d
2l' d22^ e ( I S^2' b u t > 

d 3 1 4 DDS 1 9 because d 3 1 4 < I S ) 1 2 > although d 3 1 e ( I P ) 2 1 and d 3 1 e (IP) 2 2. 

Clearer, since G{J,A} is a directed, acyclic network, so is 

G { J ( S ) , A ( S ) } . 

The previous definition has to be supplemented to include the 

case of subnetwork 3 of Fig. 20, i.e. the case where there is at least 

one path such that: 

S = m n < < n u < < • • • < < m = F 
1 2 n 

(1) Exactly one decision vertex D_. is preceded by the con­

junctive decision node "S," and S^J^ S\ 
(s) (s) 

(2) For exactly one node j eJ , the set (IS)^. = 0 (i.e., 

this is the node "F"). 
(s) (s) 

(3) For every node j eJ , DDS includes all elements of the 

set (IS)^ (the immediate successors) but not necessarily all elements 

of the set (IP)^ (the immediate predecessor). 

Thus, referring to Fig. 22, one has: 
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where all nodes are activity nodes. 

(IS) (c) 
mi^mk < < m i ' a n d 

m. << m. _ << ••• << F 
l l+l 

> v- k 

(c) (c) Then, if (IS).^ ' * 0 , and n^eCDDS, then (IS)^ eCDDS. 

(3) (IS) 1
( c ) = 0 if k = F. k 

Conditions (2) and (3) above need some more elaboration. Condi­

tion 2 guarantees that all nodes which are elements of CDDS are going 

to be elements of some path from S to F that does not include any D . 

This implies condition 3. Thus, in the following example: 

Figure 24. CDDS--An Example 

Definition. The conjunctive decision dependent subnetwork (CDDS) 
(c) (c) 

G{J ,A } of a network G{J,A} is a connected network such that 
(c) (c) 

J £ J, A £A and the following conditions hold: 

(1) The conjunctive decision node "S" is the initial node of 

this network, and SeCDDS. 

(2) For every node (j^ 1 1^) € J define: 
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(IS)^ c ; = 0 and th erefore, node 4 should be eliminated. As a 
(c) 

consequence, (IS) = 0 ; in other words, nodes 3 and 4 are not ele-

ments of some path from S to F. Therefore 

{S,1,2,F} € CDDS 

Clearly, every decision network has at most one CDDS associated 

with it (which may include more than one path from "S" to "F"). Also, 

the standard network is CDDS. 

It remains to be shown now how a decision network can be decom­

posed into its DDS and CDDS. The following labeling algorithm was 

developed for this purpose. 

Algorithm for Network Decomposition: First Level Labeling. The 

algorithm initially identifies the first decision vertices that can be 

reached from S, and then finds all possible paths from each decision 

vertex to "F." Each such vertex is the origin of a DDS, and elements of 

all paths emanating from it are elements of this specific DDS. A simi­

lar approach is used for CDDS. This is done as follows: 

Step 1. First S receives the label "S." S is now labeled. 

Step 2. Check the set (IS)g—all immediate successors of S. If 

this set contains activity nodes nu , they are labeled "S." If it con­

tains decision vertices D_., they are labeled i=l,2,...m consecutively. 

At the end of this step, all (iS)^ is labeled. 

Step 3. Repeat step 2 for each node m^ labeled "S" and its 

proper (IS), . If more decision vertices are encountered, they are 

labeled i=m+l,m+2,... consecutively. 
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Step 4. Labeling with "S" stops when: 

a) no more "S" labeling is possible from an "S"-labeled node. 

Or: 

b) if (a) holds and "F" has been labeled "S." 

Step 5. Go to the decision vertex D. labeled i=l. Starting with 

this D., label all j, 3 D^HY O R > ®'<<l\ with "i" (even if some of them 
H K 3 K "J K 

carry a different label already). This process continues until: 

a) no more labeling is possible, and 

b) "F" is labeled "1." 

Step 6. Repeat step 5 for the D. labeled i=2,3,... 

Step 7. From the set of nodes labeled "S" for every node m^ 
(c) eliminate all nodes m.tt(IS)n 

I k 
Thus, steps 1, 2, 3, 7 generate the CDDS, if it exists; all 

nodes labeled "S" are elements of CDDS. 

Steps 5 and 6 generate the various DDS; all nodes with the same 

label belong to the same DDS. Note that, as was mentioned before, some 

nodes may belong to more than one DDS. 

The algorithm has been applied to the decision network of Fig. 

17, yielding DDS , DDS 2, DDS 3, DDS^ and CDDS. In Fig. 17, only DDS 1 

and CDDS are shown (the rest are discussed in the example of Appendix 

B). The decision vertices associated with each DDS are: 

{D 1 9D 5,D 6} e DDS 1 

{D 2,D 6> e DDS 2 

{D 3,D 2,D 6,D 7,D 8,D g} € DDS 3 

{D 4,D 2,D 6} e DDS^ 
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DP Model of a DDS. Once the decision network has been decomposed 

into its DDS, each DDS is transformed into a DP model. As was indicated 

before, this requires the definition of stages, decision variables, 

state variables and returns. This is achieved through the following 

algorithm, called the Second Level Labeling Algorithm. This procedure 

has to be applied to each DDS separately. For the sake of clarity of 

presentation, it is shown for DDS^ of the decision network of Fig. 17. 

Step 1. Start with the first decision vertex D. = {d., / . v } , 

i.e. Dg = (dgi 9<^32 ' d33^ * "*"s a l w a Y s the decision variable of the 

first stage of the DP model (stage n in a backward solution). 

Step 2. Evaluate ES for this decision vertex. 

Step 3. Select one of the above d.. /.\, say d 0 1. Label jk(j) r 3k(3) 31 
(i.e. , 31) all j. a d . w . v < j. or d . w . * << j until: 

Ji 3H3) Ji 1H3) 

a) another decision vertex or "F" is reached, or both, and 

b) no more m. 3 d., ,.N < m. or d . w . v << m. can be labeled. 

Step 4. If one or more decision vertices (or F) are reached, 
label them 

2, jk(j) (i.e., 2,31) 

where: 

2 indicates that this decision vertex (decision set) is element 

of the second stage (stage n-1) of the DP model, and jk(j) indicates 

that d., , . v (i.e., d o n ) is an element of the state variable of this 
31 

stage. 

Step 5. Repeat step 4- for all d_.̂ _.̂  of the decision vertex 

selected (i.e., for , d ). 
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Step 6. Repeat steps 4, 5 for all decision vertices labeled 

2, jk(j) (i.e., 2, 31, 2, 32 and 2, 33), labeling the new decision ver­

tices encountered 3, jk(j). 

Step 7. Continue until all decision vertices are labeled. 

Step 8. Using the critical path procedure, evaluate the length 

of time required by the longest path—denoted CP—from each d_.^_p asso­

ciated with the ith stage to all d., associated with the (i+1) stage, 
]k( j) 

provided there is at least one path between the two. This is done by 

considering for each d_.^_p only nu that have the label jk(j). Note 

that some activity nodes may have more than one label, and should be 

considered accordingly. When evaluating CP for decision nodes of the 

first decision vertex, ES for each decision node is the one obtained 

in step 2. For all other cases, ES=0. 

The last step of this algorithm evaluates t., , . >.—the time return 
]k(j) 

associated with decision node d., , . s . Thus, this algorithm yields the 

required elements of a DP model. (Note that during the application of 

this algorithm the stages are numbered forward. Once the stages are 

established, they are renumbered backward.) 

This algorithm has been applied to DDS of the decision network 
o 

of Fig. 17, producing the reduction of DDS^ to the decision network 

shown in Fig. 25. 

Note the addition of another dummy decision vertex added after 

decision node 31. This has to do with the nonserial DP model introduced 

in the following section. The specific case of Fig. 25 is handled in 

Appendix B. 
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Figure 25. DDS 
O 

Nonserial DP Models. The DP model is not necessarily a serial 

model. Due to the method of constructing the DDS, and since each DDS 

is acyclic, only two other major types of DP models are possible, 

namely: 

a) the diverging stages DP model, and 

b) feed-forward loop DP model. 

Two varieties of each one of these models are discussed in 

Appendix A, and they are: type I divergence, type II divergence, type 

I feedforward and type II feedforward. Later, type I divergence is 

introduced to show an example of the computational refinements required 

for nonserial stages. 
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An indication that a nonserial DP model exists is given whenever 

a decision vertex D. has two or more labels of the same DDS, relating 

this D. to a different stage, or whenever two different D. have two or 

more labels, out of which at least two are exactly the same. This is 

amplified more in Appendix A. 

Minimum Project Time. Consider the decision network of Fig. 17. 

The decomposed network can be schematically described as shown in Fig. 

26. 

For convenience, "S" and "F" are shown separately, as before. 

Let T 1 denote the minimum time to get from S to F, associated 

with DDS i. For CDDS, T 1 is equal to the critical path from S to F, and 

is denoted by T° as follows: 
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T° = Max L(Z, ) 
k k 

For each DDS^, T 1 is the minimum critical path from "S" to "F," 

i.e. 

T = Min(CP). = Min[Max L(Z. 
] ] k 

where ( c p)j i-s the critical path of the jth standard network of DDS 

The optimal policy for DDS. yielding T 1 is denoted by 

U. = {d.,,..}. 
1 ]k(]) i 

Inspecting Fig. 26, it is seen that all T 1 are associated with 

paths from S to F. Therefore, the project minimum time is given by: 

T = Max(T ) = Max[Min(CP)^] = Max{Min[Max L(Z, )].} 
1 . . , k ^ 

i i 3 J i ] k 

And the optimal policy for the whole project is 

U = {u.} = ( d . w M } max. slack i 

The sut)script "max.slack" indicates that this set of decision 

nodes will yield the maximum slack, but not necessarily the minimum 

cost of the project. Since T is a value of a specific DDS, it may 

be possible to select different set of decision nodes for some other 
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DDS, yielding a lower cost, without affecting the total project time. 

This is done later as part of the time-cost trade-off procedure. 

Thus, once T 1 is obtained for each DDS_^, it is simple to evalu­

ate the project minimum time. To obtain T 1 , the DP model of DDS^ has 

to be utilized, as described in the following section. 

DP Solution. If the DP model describing the DDS is a serial 

stage model, the solution procedure described for the simple formulation 

is applicable here, with t., being the time return obtained in step 

8 of the second level labeling algorithm. T 1 is obtained from: 

T 1 = f V , ( X ) n(t) n 

where f ^ V x C X ) is the minimum n stage time return obtained by solving n(t) n to 

the DP model of DDS.. Since X = {S}, then: 
1 n 

T 1 = f V x ( S ) n(t) 

To show the computational modifications required for a nonserial 

model, the case of type I divergence is described here, and other types 

of nonserial DP models are discussed in Appendix A. 

Type I divergence is defined as follows: Suppose that there are 

three decision vertices D^, T > 2 , such that 

and 
Dl = { dlk(l) } 



7 3 

Then, type I divergence (pure divergence) is the case when: 

and 

dlk(l) < D 2 * k ( 1 ) 

dlk(l) < D 3 * k ( 1 ) 

For example, consider the following decision network, 

Figure 2 7 . Type I Divergence 

This is type I divergence, with one diverging branch, and the 

equivalent DP model is as shown in Fig. 2 8 . 

{ 2 1 , 2 2 } 

{ 1 1 , 1 2 } i 
L I 

( 1 1 . 1 2 } { 3 1 , 3 2 } 

o 
{ 1 1 , 1 2 } _ 

1 
z 

Figure 2 8 . DP Model—Type I Divergence 
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Following the general procedure for a diverging branch system 

where 

W V = V W + M a x C f(LD(t) ( xk-i )' f(k-i)(t) (\-i ) ] 

and: 

k k-1 

The total minimum time for this DDS is: 

(n+Ll)(t) n n n n (n-l+Ll)(t) n-1 
n 

Similar modifications are required for the other types of 

divergence. Diverging stages DDS can be optimized with no more effort 

than would be required for a serial stage model with equivalent number 

of stages. 

given in Nemhauser (51), let stage k be the divergence stage, let LI 

represent the last stage of branch 1 (for a backwards approach and one 

branch type I divergence), and let: 

f, u A ) - minimum L stage time return of branch 1. \Li) (. t) k-_L 
f, >(X, ) - minimum total time return at the diverging (.k+LlJ(.tJ k 1 stage k. 

f, T . , w x(X ) - minimum (n+Ll) stage time return. (n+LlKt) n to 

Since time values are not additive at a diverging stage, one 

gets: 
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Computational. Refinements 

{d.n,d. } £ D. 

The following theorem resolves this problem. 

Theorem 2. If a certain decision vertex D. is both D. £ DDS ] ] 
and D. e DDS , then either: ] m' 

a) d . w . v £ U. and d. w.. £ U 
]k(]) I Dk(-j) m 

or b) d ? w . v £ U. and d . w . v <£ U ^k(j) ]k(]) I ]k(]) m 

c) d . k ( j ) 4 U ^ k ( j ) and C F J K ( J ) £ I F 

d) d 4 U % k ( j ) and d j k ( j ) k U % k ( j ) 

Dominating Path. In some cases there might be a path bypassing 

a decision vertex, and longer than any path going through the decision 

vertex. An example of such a path is the one bypassing decision vertex 

M- of Fig. 17. In cases like this, the decision node selected at this 

vertex will not affect the time value, and therefore the one yielding 

the smaller cost should be selected. 

Common Decision Vertices. It was observed before (Fig. 22) 

that in some cases there is dependency between various DDS in the 

sense that D. £ DDS. for some values of i: i.e., the same decision -j I 

vertex can belong to more than one DDS. The question now is whether 

it is possible that while solving for DDS. decision node d.n will be r ° i Tjl 

selected, whei^eas solving for DDS decision node d. will be selected, 
° m ] S 

where: 
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Proof. Two cases have to be considered, as follows: 

J, = {i.ID .<j. or D.<<j.} k Ji' 3 1 j 1 

then: J. c DDS. and J. e DDS . 
k 1 k m 

Thus, because of the backwards solution procedure for the DP 

model, if D. is an element of the decision variable of stage r of DDS_^, 

the same is ti?ue for DDS , i.e. 
m 

D. £ Y for DDS. J r 1 

D. £ Y for DDS : r m 

Let X be the input states for stage r of DDS., X the input 
i m 

states for stage r of DDS . Although X * X , the d.. , ., columns of to m to r. r lk(i) 
1 m 

Q (X ,Y ) of DDS. are equal to the d., columns of Q (X^ ,Y ), be-r r. r 1 ^ lk(i) r r r 
1 m 

cause of the state transformation: 

Now, the r-stage minimum time return is: 

1) D. is the first common decision vertex of DDS. and DDS . 
J 1 m 

2) Dj is any other decision vertex succeeding the first one. 

Case 1. Due to the method by which the DDS was constructed, 

all nodes succeeding D. are elements of both DDS. and DDS , i.e., let 
J I m 5 5 



77 

f i m ( X r . > = M i n Q ^ X , > V = Min[Min(X ,Y'), Min(X ,D )] rCt; r. y r r. r y I r. r Q > r. : 

r r ] 

where: 

Y n D . 
r 3 

Y ' u D . = Y 
r 3 r 

Also: 

f V . C X ) = Min Q m(X ,Y ) = Min[Min(X ,Y ') , Min(X ,D.)] r(t) r v r r ' r , r ' r ' _ r ' ] m Y m Y m D . m r r ] 

is 

Therefore, the decision alternative selected for each input state 

DDS DDS -m— 
( 1 ) y" * d. , .* k(j) and y" * d . w . . ^ k ( j ) Jrg 3 k ( ] ) Jrg :k(]) J 

or ( 2 ) y = d.. , . x with k( j) and y * d .. , . * ^k(i) Jrg 3 k ( 3 ) 7rg :k(-j) J 

or (3) y *d..,..v-k(j) and y = d.. , .. with k(i) 

A ,t. A • A 
or (4) y = d., , .. with k (j ) and y = d .. . .. with k (j ) rg J ^rg :k(-j) 

If d.. , . x * y it can never become an element of U. or U . If ]k(j) Jrg i m 
A A 

d., , - y it may or may not become an element of U. or U . Since -jk(-j) -'rg j j l m 
the only possible outcomes at stage r are the ones mentioned above, 

it is clear that only (a), (b), (c), or (d) of the theorem can happen. 

Case 2 . The proof of this case is essentially the same as that 

of the previous one. This proves the theorem. 
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The Minimum Time Network 

Once U n . has been established, the decision network can max.slack 
be reduced to a standard network by following the procedure described 

in Chapter III. All nodes of the standard network are regarded now as 

activity nodes, and the cost associated with this network is obtained by 

adding the cost of each node. As mentioned before, this is not the 

minimum cost possible for the minimum time solution. This minimum cost 

is evaluated later. 

This concludes the discussion of the minimum time problem. The 

procedure developed here has been applied to the decision network of 

Fig. 17 in Appendix B. 

Minimum Cost Problem 

The minimum cost problem is defined as follows: Given the 

decision network G(J,A), select for each decision vertex (decision set) 

D. at most one decision node d., , . D. , so that the total project cost 

will be minimized. Find the time associated with the minimum cost. 

The approach taken for solving this problem is basically the 

same one used for the minimum time problem, i.e. transforming the 

decision network into a DP model. Some modifications of the previous 

procedure have to be introduced to accommodate the fact that one deals 

here with cost returns vs. time returns before. 

Specifically, the solution procedure for this case involves 

three steps , as follows: 

1) DP model for each DDS 

2) DDS Minimum Cost 
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3) Project Minimum Cost and Time. 

DP Model 

Constructing the DP Model for this case is done in three steps: 

decomposing the network, establishing the reduced cost network, and 

evaluating the cost returns. 

Network Decomposition. Decomposing the decision network into 

DDS is done using the same procedure outlined for the minimum time 

problem. Thus, if the minimum time problem is solved first, the network 

decomposition is already available. 

Reduced Cost Network (RCN). Before establishing the notion of 

the reduced cost network and discussing its use, the notion of the 

permanent nodes has to be introduced. 

Definition. The set N of permanent nodes is the set of all 

nodes e M (i.e., NcM) such that: 

N c j" v- d.. , 
- D M ] ) 

Thus, permanent nodes are all nodes that their inclusion in the 

standard network is not affected by the selection of V —where V is 

the policy of the minimum cost solution. 

The set N can be easily identified during the second level 

labeling as follows: 

1) All nodes labeled "S" are permanent nodes. 

2) During the second level labeling, if a node m is such that 

D. < m. , and if this node is labeled with all node numbers of d._ e D., 

then this node is permanent if m, << D. is permanent. 
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The concept of reduced cost network can be introduced now. 

Activity node 2 is obviously a permanent node. Now, to evaluate the 

minimum cost network, one evaluates the cost associated with each deci­

sion node. This is: 

30 

Figure 29. Cost Decision Network 

= 20 

= 10 + 30 = 40 

Thus, for minimum cost one would select d ^ and eliminate d^« 

But the corresponding cost of the standard network is 20 + 30 = 50, and 

Definition. Reduced Cost Network (RCN) is the network obtained 

after reducing to zero the cost of each permanent node. 

The concept of RCN is essential for the minimum cost solution, 

as can be seen from the following example: 
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this is not the minimum, which is 40 and can be obtained by selecting 

d12' 

Obviously, solving with RCN (i.e., reducing the cost of node 2 

to 0) will eliminate this problem. The reason is that the cost associ­

ated with a certain d., should be the incremental cost over the 
]k(]) 

"fixed" cost which is not affected by the selection of a particular 

decision node.^ 

Evaluating Cost Returns. The stage returns can be evaluated by 

a modified version of the second level labeling algorithm of the minimum 

time problem (p. 67). The modified algorithm is: 

Steps 1-7. As before, with the elimination of step 2 and where 

the DDS is composed of elements of RCN. 

Step 8. If an activity node has two or more labels jk(j) asso­

ciated with decision nodes of different decision vertices, say D. and 
D , the label associated with the d., , .. connected with a smaller stage m' ]k(j) 6 

number is dominating, provided D. < D or D < D.. The rest of the 
& ' ^ j m m ] 

labels should be eliminated. If the labels are associated with d., , 

of the same D., the same stage number, or if D. \ D or D k D. , they -j to j 1 m m 1 j J 

• 5 

all remain. 
The cost return associated with each d., ... is then: 

) 

The problem does not exist for the minimum time problem, 
because time values are not strictly additive. Thus, if in Fig. 29 the 
values represent time, one would select d ̂  yielding a total time of 30 
vs. 40 if d ^ is selected. 

^The symbol \ means "does not precede." 
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c jk(j) I c. 
1 all nodes 

labeled 
jk(j) 

where c. is the cost of activity node m. , and c. , . also includes the 

initial cost of decision node d.. 
:k(] ) 

The idea behind step 8 above is the same as that of the RCN. If 

a certain cost has been committed at an early stage, later on only the 

incremental addition should be considered. The use of RCN eliminates 

the need of adding a dummy decision node as in Fig. 25, if a backwards 

solution approach is used. 

Application of this algorithm yields the required elements of 

a DP model. 

DDS Minimum Cost 

as that for the time problem. The DP model is equivalent, and the only 

difference is that instead of time returns one deals with cost returns. 

Let, for DDS : 

The solution procedure for the cost problem is exactly the same 

m 

be the cost matrix for stage i. 

R.(X.,Y.) 
l i i 

be the i stage cost return matrix. 

be the minimum i stage cost return. 

C ,ni be the minimum cost of DDS 'm* 

Then: 
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C m = f v ( X ) = Min R (X ,Y ) n(c) n n x n' n 
n 

where: 

R (X ,Y ) = C (X ,Y ) + f/ -i \ / \ (X . ) n n' n n n' n (n-l)(c)v n-1 

and f111, x is the total minimum cost return of DDS . n( c) m 
In contrast to time values, cost values are always additive. 

Therefore, the solution of nonserial stage models follows the standard 

procedure for these cases (see Nemhauser (51)). Thus, the procedure for 

type I divergence described previously would be in this case: 

f(k +Ll)(c) ( Xk ) = M
y
i n W V 
k 

where: 

v w = v w +
 f( k-i)(o) ( xk-i> + ^ L I X C ) ^ - ! ' 

and: 

C m = _ . w , = Min[C (X ,Y ) + ff n j . T l W ,(X . )] (n+Ll)(c) Y n n 9 n (n-l+Ll)(c) n-1 
n 

Other types of nonserial models are discussed in Appendix A. 

Project Minimum Cost 

Once the minimum cost solution of each DDS has been obtained, the 

project minimum cost can be evaluated. This is done as follows: 

Let: 
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C 1 - minimum cost of DDS. i * 

V. - optimum policy for DDS. yielding C 1. 

Then, the optimal policy for the project minimum cost is: 

V = {V.} = {d jk(j) } 1 

Note that the property discussed in Theorem 2 is valid also here. 
A 

The optimal policy V enables the reduction of the decision net-

work to the standard network G(J ,A ) for the minimum cost solution. 

Then, the project minimum cost is given by: 

where CL,T is the total cost of the permanent nodes. PN 
The value of T A--the time associated with the minimum cost 

solution—is found by evaluating the critical path of the standard net-

work G(j",A"). 

Computational Refinements. Some refinements of the minimum 

cost procedure are required for DDS's having common decision vertices. 

The problem is similar to the one discussed while introducing the RCN, 

and can be best described through the example of Fig. 30. 

Considering the costs represented by the upper case numbers and 
A 

solving for the minimum cost for each DDS, the outcome is V = {12,22,31} 

A 

m. £ JJi 'PN 
I 
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with a total minimum cost of 240. However, the minimum cost of this 
A 

network is 210, with v" = {12,31,21}. 

Figure 30. Cost Example 

The other difficulty is represented by the lower case numbers 

(in parenthesis). Solving for this case yields V = {11,22} with a 
A 

minimum cost of 230, whereas the true minimum cost is 210 with V = 

{12,21,31}. This leads to the following modification, which is, in a 

sense, an incremental analysis. There are three cases to be considered, 

as follows: 
Case 1, Let D represent the first common decision vertex for m r 

some DDS, i.e., D e DDS., i=l,2,... Then, if the outcome of the 
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minimum cost solution is such that all d . D of different DDS. 
]k(]) m 1 

are included in V , no further action is required. 

Referring to Fig. 30, this means that if {12,21} E V by solving 

separately for each DDS, then {11,22} cannot yield a lower value for 

the cost. 

Case 2. Let D^ be as before, and suppose that at least one 
d., , . s << D is not an element of V . Let this d., , be associated ]k(j) m ]k(]) 
with DDS., i.e. (d., , . . ) . . Let D be associated with the decision 

variable of stage r of the DP model of DDS^, i.e., 

D E Y m r 
or 

{d ' A E Y mk(m) r 

As mentioned in Theorem 2, D e Y for all other DDS's considered. 
m r 

Since one d , , .. namely d , , ^ was already committed for some mk(m) J mk(m) J 

other DDS, it is now a problem of checking only the incremental addition 

to the total cost contributed by the minimum cost path starting with 

(d., and leading to the first decision vertex of (DDS).. This is -jk(;j) i i 
done as follows: 

First, Q (X ,Y ) is modified to give: * r r i 

Q (X ,Y ) ' = Q (X ,Y ) - Q (X ,d" . ,) r r. r r r. r x r r. mk(m) 

g d., / *\ << D means here the decision nodes that precede D , so ]k(-j) m m 
that a path from d. w. x to D includes only activity nodes m.. r ]k(]) m J J

 I 
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Note that Q (X ,d , , has only one value for each input state r z\ mk(m) J * 
Once this is done, the DP solution proceeds as usual from stage 

sV 

(r+1) to n. This may yield a different than was obtained initially. 

If this happens, V is adjusted accordingly. 

Case 3. Let D ^ be defined as before, and suppose none of the 

decision nodes immediately preceding D M (in the sense defined before) 
A 

is initially selected for V . Then, for similar reasons as in case 2, 

in stage r the following r-stage return matrix is formed. 

Q r(X , Y r ) ' = Q r(X r,Y r) - Min(X r,D) 

The DP routine is reapplied now to stages (r+1) through n for 
A 

each D D S . If a new policy V is obtained, its cost is evaluated, and 

if it is less than the cost obtained before, this is the minimum cost 

policy. 

Applying this rule to the decision network of Fig. 30 amounts to 

having: 

c31 = 0 °32 = 1 0 

and thus d is selected for stage 1. This will yield a selection of 
A 

d 1 2 for DDS-L ( C

1 2

< C

1 1

) ' 9 1 1 ( 1 d

2 ± f o r D D S 2 ( c 2 1 < C 2 2 ) ' y I E L D I N S V " = 

{12,21,31} and C = 210 as before. 

Note that the three cases discussed here do not create any dif­

ficulty for the minimum time problem, because time values are not 

strictly additive. 
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This concludes the discussion of the minimum cost problem. 

The procedure developed here has been applied to the decision network 

of Fig. 17 in Appendix B. 

Time Cost Trade-Off 

The two procedures described previously yield the minimum 

project time and the minimum project cost with its associated time. 

The purpose of this section is to develop a procedure for finding the 

"Efficient Set," which is the collection of all admissible points, 

defined as follows. Let: 

0 = {o.} = set of all possible outcomes, i.e. 

0 = {o. |o_. = (T,C) where T,C e Reals and T>0 , C>0}. 

o. - an admissible point. 

0" = {o.} = the efficient set. 
3 
& ft 1 o. o. = (T.,C.) where T., C. e Reals, T.>0, C > 0 , 
2 3 i i i i i i 

0 = < T^ are arranged in ascending order of T^ values, 

and if T.>T. . , C.<C ^e=l...i-l. 
l l-l l e 

where 

T. 
I 

C. 
l 
T m 

1 

C T m 
i 

- the ith possible project time value. 

= Min{C T m}, and 
m i 

= the ith possible project time value obtained by selecting 
the mth subset of decision nodes. Note that for fixed i, 
T m is constant for all m. i 

- project cost associated with T™. 
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Obviously, 0 cO and it is the lower boundary of 0. 

n 
X , X. 

Y. 

Xi-1 *2 r \ 
-L 

x o 2 \ 1 x o 2 1 

T C n n T. C. 
l l 

T C l2 2 T C 1 1 

Figure 31. A Serial DP Model 

7 2 . 
A closed interval m E is defined as the set of points 

{ ( x x ) e E2|a.^X.<b., *i=l,2}. 1 2 1 l l l 

The point (T j.,CJ'0 obtained before is an admissible point, as 

well as the point (T5':,CT.,;), where only T* has been evaluated so far. 
7 2 

These two points define a closed interval in E so that any point out­

side this interval is of no interest. 

In order to obtain 0 for the problem at hand, first the general 

methodology for finding the efficient set is developed, and then it is 

applied to decision networks. 

A Methodology for Finding the Efficient Set 

Consider a serial dynamic programming model, where the decision 

variable of one stage is the state variable of the following one, and 

each input state and decision alternative has two discrete returns 

associated with it, say time and cost. This model can be described as 

illustrated in Fig. 31 (assuming the backward solution approach is to 

be used): 
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The recursive backward solution procedure described before treats 

the above model as two separate problems—one with time returns and one 

with cost returns, yielding 

A A 
T = f / J _ x ( X ) with U - the minimum time policy n(t) n xr j 

A A 
C = f , N(X ) with V - the minimum cost policy. n(c) n c j 

Note that for both problems g^(X^,Y^) is the same, i.e, 

i. , = g.(X. ,Y.) = Y. 
l-l ' i l l 1 

and X is an element set. n 
The value of C^can be easily obtained in this case by summing 

all values of C^(X^,Y^) associated with U . Similarly, the value of 

T_Ais obtained by summing all values of T.(X.,Y.) associated with V . O J ° i i i 
A 

Thus, the two extreme points of the efficient set 0 are obtained by 

solving two separate DP problems yielding: 

o 1 = (T ,C^{) 

°N = ( T C * ' C * } 

if the "Efficient Set" has N points. 

One way to find all other ô . e 0 is by complete enumeration of 

all possible outcomes, i.e., all o_. e 0. This method gets very fast 
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out of hand. For the example shown in Appendix E, this would mean 

evaluating 4096 elements of 0, whereas 0 has only 8 elements. 

The method introduced here reduces substantially the computa­

tional effort required. The method can be regarded as a sensitivity 

analysis or incremental analysis of a DP problem of the type shown 

above. It can be applied in two ways: starting at o^ and working 

towards o 9 or vice versa. This procedure is introduced first as an 

algorithm, followed by a discussion of optimality. 

Efficient Set Algorithm. The main idea behind this algorithm 

is the utilization of the information obtained in the minimum cost or 

minimum time solutions to generate a set of "promising" points, where 

the efficient set is contained in this set. This is done by utilizing 

the matrices of the DP solution to perform incremental analysis and 

find what the best ways to move away from the optimum are, so as to 

remain on the lower boundary 0 . Thus, the algorithm can be applied in 

two ways: starting with o^ progressing to o^ utilizing the DP matrices 

of the minimum time solution, or starting with o progressing to o 

utilizing the DP matrices of the minimum cost solution. Following is 

a description of the first approach, to be referred to as the "Efficient 

Set Algorithm---Time Version." The nature of the changes required for 

the cost version will be introduced later. The "Time Version" is as 

follows: 

Step 1. Solve the minimum cost problem, obtaining ( T ^ A 9 C S S ) 9 and 
A 

v ' \ 
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Step 2. Solve the minimum time problem, obtaining (T 9 C ^ A ) and 

U . As a consequence of this procedure, for each stage i, the i stage 

return matrix is available, having the following elements: 

Q.(X.,Y.) = (q. ) 
1 I l ijk 

Step 3,. Construct, for each stage i, the i stage cost matrix of 

the minimum time solution as follows: 

Let represent the optimum set of decision alternatives 

selected at stage i given each input state of X^, for the minimum time 

solution. Denote this by: 

Y. = {y |x..} 

i.e.: the element y ^ selected given input x^ . Thus, for example, if 

X. = {x..} j=l...4 
I 1 D 

Y. = {y.,} k=1...3 
l J ik 

The decision set Y. may look like: Y. = {(y._x._), (y..x. 0) 
l J l Ji3' ii J i i 1 i2 

( y i 2 | x . 3 ) , ( y i 3 | x i l t ) } . 

Now, 0.(X.,Y.) - the i stage cost matrix of the minimum time i l l 
solution is defined as follows: 



93 

V W = = ( 9ijk ) = (cijk> 

0 . (X.,Y.) = C . ( X.,Y.) + F . ^ X . ^ ) 1=2...n 

where: 

F. .(X. n ) = e . .(X. n ,Y? .) 1-1 1-1 1-1 1-1 1-1 

Since 

X. = Y. 
i-i I 

Then: 

0.(X.,Y.) = C.(X.,Y.) + F. _(Y.) = i=2...n 
i l l i l l l-l l I J K 

Step 4. Construct AQ.(X.,Y.)—the time increment matrix for r i i i 
stage i, as follows: 

A Q . ( X.,Y.) = (q l j k-Min q. j k) = ( q l j f c - q i j k . ) = ( A q i j f c ) 1=1...n-1 
K 

Note that A c l i j k - 0 ^ 

Step 5. Construct AO^(X^,Y^)—the cost increment matrix of the 

minimum time solution, for stage i, as follows: 

A 9 . ( X . , Y . ) = (e..,-6..,,) = (A6..,) i=l...n-l 
1 1 1 ^ - D ^ ^ - D ^ 
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where k' is the one obtained for AQ.(X.,Y.). 
1 1 1 

Note that A6. ., — o ̂  i,j ,k. 
ljk < 

Step 6. Eliminate in Q (X ,Y ) , 0 (X ,Y ) all entries which cor-r n n n n n n 
respond to y - e Y , where y -7 are all elements for which r -'n] n' Jn] 

V W y Tc* 

(Recall that X = {x ., }—i.e. an element set, and: n nl 

T = Min[Q(X ,Y )]) Y n n n 
n 

Eliminate in AC, , s(X .,Y . ) , AG ..(X .,Y .) all rows corre-(n-1) n-1' n-1 n-1 n-1' n-1 
sponding to {x/ , N T } . 

(n-l)j 
(Recall that X = Y .) 

n-1 n 
Step 7. Construct: 

ft™(X^,Y^) - the time change matrix for stage i when the procedure 

starts at stage m. 

$™(X^,Y^) - the cost change matrix for stage i, when the proce­

dure starts at stage m. Initially m = 1. 

These matrices are defined as follows: 

Qm(X ,Y ) = AQ (X ,Y ) i=m m m' m m m m 

fi^CX-.Y.) = AQTn(X.,Y.) + fi1? (x. _,Y. m<i$n-l 
1 1 1 1 1 1 l-l l-l l-l 
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^(X. ,Y.) = ( U K . , ) where the subscript r on k 
1 1 1 ink r . m indicates that co. ., may have l n.k r 

more than one element in each 
i i i i]k^ location (i.k) at stage I . 

Ax ,Y ) = A0 (X 9Y ) i=m m m m m m m 

> ™ ( X . , Y . ) = A0.(X.,Y.) + $™ _(X. . ,Y. m<i<n-l i i i i l l i-i i-l' i-i 

>?(X.,Y.) = (<$>m., ) l i i ilk r 

\ > m ( X . , Y . f = ((f)?.,*) 
I i i ilk r 

The starred matrices are formed using the following procedure. 

(a) Any element that is starred or eliminated for ftTCX..Y.), 
i i i 

the corresponding element in $™(X^,Y^) is starred or eliminated too, 

respectively, and vice versa. 

(b) Eliminate all elements for which: 

(1) a>™ > (T A-T") ilk O J r 

(2) (j)1?. > 0 ilk r 

A e(n-l)'k] 
(3) ,> were eliminated in Step 6 

Aq(n-l)jkj 
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(4) If, 

and 

m a co. ... ^ co. .. -;c ink ink J r r 

m , a 
ink ilk 

-1 }o r 

-v- a = 1. . .m-1 
*r- k* 

(c) The first starred element for each row is: (provided there 

is at least one element which has not been eliminated or is not equal 

to zero) 

co. ., • A = Min co. ., ijk ijk r k J r 

in case of more than one value for co. ., *, the one with the smallest cor-
1 1 k J r 

responding -̂--̂ v is starred, and the rest are eliminated. 

(d) Additional starred elements are all elements for which: 

. j- m m if: co. ., > co. . n ilk ill r s 

then: c}> < 6. . -, Tiik ljl r s 

where l s includes 
> v 1 , also all values s 

(except one) of k 

The above procedure has to be performed in the sequence de­

scribed. If, as a consequence of (b), all elements of ft™(X^,Y^) and 

$T(X.,Y.) are either eliminated or zero, then the next step is step 9. 
1 1 1 • 

Step 8. Evaluate the set of "promising points" (T SC ) as fol­

lows : 
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m 

P3 r nl: (n-l):kr 

The subscript j indicates that the specific values of T or C 
y P P 

are obtained from the value in the jth column of Q (X ,Y ) or 0 (X ,Y ) 
J n n n n n' n 

The subscript r on j indicates that there might be more than one value 

in column j. 

Note that Q (X ,Y ) and 0 (X ,Y ) are also elements of (T ,C ). 
n n n n n ' n P P 

Step 9. Repeat steps 7, 8 for m = 2,3,...n-1. 
Step 10. Initial Elimination. Given the set of promising 

points (T ,C ) , then: P P 
(a) Eliminate all pairs for which: 

T . > T , 
P3 C* 

or: 

CPJ > C T * 

(b) Eliminate all entries (T ,C ) for which 
pm pm 

If: 

then 

T = T . 
P m

r P3 r 

C > C . 
P™ P3. 

r r' J r 

PD^ nl] (n-Djk 
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Step 11. Admissible Point Test. Arrange (T . ,C . ) in ascend-

ing order of T . . Call these pairs now (T ,C ), where the index e 
P3 r

 e e 

increases with increasing values of T , i.e. 

T 1 = T 

T„ = T Pa if l<e<M M c 

The efficient set is composed of all points o. = (T ,C ) satis-

fying the following conditions simultaneously: 

T > T . e e-1 

C < C. l<i<e-l e 1 

The policy W^ associated with each o_. is found by tracing back 

v.. A according to TOT.,* or ft™.,* in the matrices FTT(X.,Y.) or 
J I K " I N K I L K I I I r r 
* ? ( x . , Y . r . 
I I S I 

The above algorithm is recapped in the flow chart of Fig. 32. 

Qptimality of the Algorithm. To show the optimality of this 

procedure, first the general concept is discussed in more detail, 

and then each step is discussed separately. While doing so, it will be 

helpful to refer to the following graphical description of the efficient 

set. 
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(1) 
Min. Cost 

T c * > c * 

| (2) 
Min. Time 
T" j ̂ '>pA 

Q . ( X . , Y . ) 
l i i 

| (3) 
e . ( x . , Y . ) 
i i i 

•v- i 

A Q . ( X . , Y . ) 

i 

jr ( 5 ) 
A G . ( X . , Y . ) 

l i i 
v- i 

^ ^ ~ ~ T ( 6 ) ; 
Eliminate 

appropriate elements 
in: 

V 0n 
AQn-l' AVl 

m=l 
i=m 

j=l 

k=k+l 

(7) 

m . m ^ 
ink i]l r s 
m ,m ^ 1 

k =1 

Eliminate 
m ,m 
°ijk > ̂ ijk 

Yes 

1) *T > ( V - T * ) * k r 

r 
2) (j).' >0 *-k ilk r r 
3) A0 , _ v .. j were (n-Dnkl . . felimi-

A q ( n - l ) j k J nated 
4) r m a A> co. ., ^co. . « ' 11k ilk r r 

Initial Elimination 
T . > T A 

c . > c T A

 < 

T =T . 
Pmr P r̂l 

c > c . r 

k Pmr P3rJ 
Arrange (T ,C ) e e 

Figure 32. Efficient Set Algorithm--Time Version; Flow Chart 
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1 ' ® * I X-Element of 0 
I ® I Y 

A / I ®- Admissible Point 
. _ J Q * 

L I _ X 
T 

Figure 33. The Efficient Set 

Obviously, the minimum time solution and minimum cost solution 
A A 

yield o^ and o , respectively. As mentioned before, any point falling 
2 

outside the closed interval in E is definitely of no interest, whereas 
2 

points within E may or may not be elements of the efficient set. 
Due to the nature of the DP solution, the values of Q (X ,Y ) = 

9 n n n 
Q^x^jY^) represent the minimum possible time value associated with each 

y , and were obtained by selecting the minimum value for each x.. and •'nk l] 
all y # 1 up to i=n. Furthermore, the values of Q.(X.,Y.) obtained for •'ik i l l 
E A C H S T A G E i R E P R E S E N T T H E minimum i - S T A G E T I M E F O R E A C H x̂ _. A N D y.^' 

Due to the way 0_^(X^,Y^) is constructed, its values represent 

the i-stage cost for each x̂ _. and y ^ if the i-stage minimum time policy 

is followed. Note that 0.(X.,Y.) is not the i-stage minimum cost 
i l l 

matrix, which is given by R.(X.,Y.). Accordingly, 0 (X ,Y ) yields the 
9 • ' I I I to ^ n n n 

costs of the minimum possible times associated with each y ̂« 

Consider now stage i. Let: 
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i.e., the optimal decision associated with input state x. . , and let y. 
^ * 1 3 9 j i m 

be some other decision alternative. The elements of Q.(X.,Y.) and 
1 1 1 

0.(X.,Y.) associated with the above would be as illustrated in Fig. 
1 1 1 • 

34(a). 

yik*l x(i+l)g y ( i + D j 

' ( i + D g 

AQ.(X.,Y.) 
1 1 1 

A0.(X.,Yi) 

(b) 

ik*' Xij = yil im 

x. .{ 

i 

! 

i 

q. . 
^ljm 
e . . 

e - C X - . Y . ) 

(a) 

Figure 34. DP Matrices 

Suppose that, instead of making the optimal decision y^a at 

stage i, the decision y. is selected. If all yV. |x.. for (i+1) £ i ^ n & Jim Jik' 1 1 . 

do not change, then one of two things may happen: 

1) Q (X ,Y ), 0 (X ,Y ) remain unchanged. x n n n ' n n n & 

2) One or more pairs of values of Q (X ,Y ), 0 (X ,Y ) will 
r n n n n n n 

change. 

If (1) happens, then moving away from the optimum decision at 

stage i will not affect the final result. The change associated with 

(2) will be: 
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The change in time: 

Aq. . = q.. - q . . < A q . . 
•̂i]s 11.1 . -̂ii.m 

A6 
I D S I D S 

). . < A6. . < 
ill iim 

Obviously, under these conditions, moving away to y. can never 
lm 

yield an admissible point, since moving to y. gives a higher decrease 
I S 

in cost for a smaller increase in time. 

If, on the other hand, 

Aq. . = q. . - q. . > 0 
•̂i]m i]m i]l 

since q..., < q.. ; and the change in the associated cost: 11.I i]m 

AS. . = 6. . - 6. . n - 0 
iim iim ill < 

The time values will never decrease, since the values of 

Q (X ,Y ) are the minimum possible and Aq > 0, whereas the cost values n n n r ^ 
may increase, decrease or remain the same, depending on the value of A6. 

Of course, if just the above change was made3 and A6 > 0, none of the 

new values obtained for (T ,C ) could be an admissible point. 
P P 

Refer again to stage i. Suppose that instead of moving away from 

the optimal y.n to y. , one moves to y. , for which r ii •7im -'is 
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Aq. . < Aq. . 
ijs i]m 

A 6. . > A 6.. and A 6.. , A 6. . < 0 
I T S iT.ni I T S 1 1 m 

Then both moves may yield admissible points. The above procedure 

is referred to as the "promising change procedure." 

If the procedure starts at stage i and A6^_.# > 0, then moving away 

from the optimal decision y ^ will never yield an admissible point. 

Now suppose that a move away from the optimum to y^m is made at 

stage i, and a move away from the optimum to y^+j_)j (w^̂ -c^ ^ s eQ. u al 

to x£j) f ° r x('i+j_)g ̂ s m a c^ e a _ t stage (i+1), and from there on all 

y. l A|x.. for (i+2) < i < n do not change. (See Figure 34(b)). As Jik" 1 i] 
before, if there is a change in one or more (T,C) pairs in stage n it 

will be 

time change: Aq.. + Aq,. ..,..> 0 
6 ^ii.m ^ ( i + l ) g i . 

cost change: AS.. + AS,. _ * . 
6 l-jm (i+l)g-j 

Again, only if the total change is negative, this may be an 

admissible point(s). Note that if AS.. > 0, the combined change will 
iT.ni 

never yield an admissible point, if the procedure starts at stage i, 

as considering the change of stage (i+1) alone will give a higher cost 

decrease for a smaller time increase. However, A6.. < 0, A6/.,,\ . > 0 
i i m d + D g i 

may yield an admissible point, if the combined cost change is negative. 

If both A6's are negative, then the combined change, as much as each 

http://iT.ni
http://iT.ni
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change considered separately, may yield an admissible point. 

By recursively repeating the above argument, the restriction of 

following the optimal decisions from a certain stage on can be removed, 

and the total change in the time and cost values of stage n will be the 

sum of changes at each stage, where the changes of stage i and (i+1) 

are summed according to the transition: 

Y. = X. 
l+l l 

Introducing all possible changes would amount to enumerating all 

possible outcomes. By carrying forward only the "promising" changes at 

each stage according to the "promising change procedure," only a small 

fraction of all possible outcomes has to be evaluated, and the efficient 

set can be easily identified. The stage is set now to explain the 

algorithm step by step. 

Steps lj 2, 3. These steps should be obvious from the previous 

discussion. 

Steps 4j 5. AQ^(X^,Y^) and A0^(X^,Y^) represent the amount of 

possible change in one or more (T,C) pairs at stage n if moving away 

from optimality was to be made at stage i only. Note that each row will 

contain at least one zero in both cases. 

Step 6. ^n^n'^n^ r e P r e s e i r t s the minimum possible value that can 

be obtained. If some of them are already greater than T A , they cannot 

be reduced by moving away from optimality in some stage i and therefore 

should be eliminated. 
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Step 7. The matrix ft™ represents the accumulated time change at 

stage i for each x „ and y^^s if "the "promising change procedure" has 

been applied to stage m through i-1, where m<i; likewise, the matrix 

$ m represents the same for the cost changes. 

The procedure initially starts at stage 1 (m=l) yielding 

ftl, <J>̂. Then it is reapplied starting at stage 2(m=2), etc. By doing 

so, all possible accumulated changes are considered, allowing for 

selecting only the promising ones at each step. Due to the tests made 

at this step, the process converges rapidly, and from m=2 and up, only 

a few values have to be carried to stage n. 

The reasoning behind the procedure for finding the starred 

elements (pg. 95) is as follows: 

(a) Obvious 

(b) (1) (T^A-T*) is the maximum allowable time change in stage n. 

Therefore, if J ? 1 . , > ( T - A - T * ) it will not yield an admissible ink O J 
J r 

point. 

(2) Should be clear from the initial discussion. 

(3) Obvious. 

(4) This test compares the accumulated changes at stage i, 

obtained when the procedure starts at stage m, with the 

previously chosen entries (starred elements) for the same 

x̂ _., when the procedure started at stages l...m-l. By the 

same reasoning as introduced before, if a previously chosen 

entry eliminates the possibility that the current one will 

become an admissible point, the current entry should be 

eliminated. 
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Obviously, if all elements of ^(X.jY.) are either 

eliminated or equal to zero (and therefore ^(X.,Y.) is the 
^ 1 1 I 

same), the process terminates for this m. 

(c) No point can dominate this one in the sense that a smaller 

time increase will yield a higher cost decrease. Therefore, 

it is always starred. 

(d) Follows from the general discussion presented on page 100. 

Step 8„ ( O K &J 4V , x ., A) is the accumulated promising r (n-l)ik (n-l)ik r to 

~p r 
change, and is added to the basis from which the change is made—the 

initial values of Q (X ,Y ), 0 (X ,Y ), obtained from the minimum time 
n n n ' n n' n ' 

solution. These values by themselves are promising points. 

Step 10. Obvious. 

Step 11. The reasoning behind the test for C g is that, as time 

increases, the cost cannot be higher than the cost associated with the 

previously selected (T^,Cg), which is not necessarily the point immedi­

ately preceding the one under consideration. 

The Efficient Set Algorithm-Cost Version is constructed in a 

similar manner to the Time Version. Instead of Q.(X.,Y.) S the matrix 
l I ' l ' R.(X.,Y.) is used, and the i-stage time matrix of the minimum cost solu-

1 1 1 ° 

tion is formed instead of 0.(X.,Y.). 
l i i 

Efficient Set Tableau. To reduce the computational effort asso­

ciated with obtaining the efficient set, the tableau shown in Fig. 35 

was developed. The tableau is used as follows: section 1 contains the 
matrices A0(X.,Y.) and AQ.(X.,Y.) that can be easily obtained by using i i i l l 
the results of the minimum time solution. The matrices are imbedded in 
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A Qn - l ( } 

: 
X. . 
11 

A8. ... Ae.., 

ui]k 
... ... 

z 

A 9 2 ( X 2 , Y 2 ) 

A Q 2 ( X 2 , Y 2 ) 
X. 1 

A 0 1 ( X 1 , Y 1 ) 

A Q 1 ( X 1 , Y 2 ) 

Y 
n lj(l) 

xil 
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Figure 35. Efficient Set Tableau: Time Version 2 

http://Secti.cn
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each other, so that each (x..,y., ) contains two values: the upper one 

is A9. , the lower one is Aq. ., . Sections 2 and up are used to gen-
l]k 1T.K 

erate 0m(X.,Y.) and ftm(X.,Y.) for m=l...n-l. Again, each (x..9y..,) 1 1 1 1 1 1 ° i] ̂  ik 
contains the values (<f>m., ,com., ) where each such slot is divided into a ilk ilk r J r 
few sections so that different values of the above pairs can be accommo­

dated. 
The last column (Y ) of section 1 contains the values of 0 (X ,Y ) n n n n 

and Q (X ,Y ). The same space in sections 2,3 contains the values n n n r ' 
(T ,0^) generated in the process. 

This whole procedure has been applied to a six-stage DP problem 

(see Appendix E) with a total of 4,096 possible outcomes. Only 22 

points had to be evaluated, 8 out of which are elements of the efficient 

set. 

The Efficient Set for a Decision Network 

The purpose of this section is twofold: 

a) to find the minimum cost of the minimum time solution, i.e.: 

C T ! V = Min{C ( T > 
m 

b) to develop time-cost trade-off for the case of certainty, 
A i.e., find the efficient set {o7}. 
1 

The method that achieves the above goals is an adaptation of the 

efficient set algorithm described previously. The procedure is discussed 

step by step, as follows. 

Step 1. Apply the efficient set algorithm to each DDS (excluding 

the admissible point test of step 11). 
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i i i The policy associated with the pair (T »C ) is denoted by W , 

where T 1 is the time of DDS., and C 1 is the cost of DDS. associated with e 1 e 1 

T 1 . For all T 1 < T", the one with the smallest C 1 is selected. Note e e e 
A 1 

that L\ is a specific entry for W . 

No difficulty arises when applying this procedure to a nonserial 

DP model of the DDS. Since the algorithm is based upon incremental 

analysis, any incremental increase in each branch should be considered. 

For a type II divergence, the value of 

A qijk = ̂ ijk " "£ n ̂ ijk 

is evaluated by taking for Min q.., the value selected at this point for 
k 1 3 k 

the time solution, which is not necessarily the minimum of the specific 

row (i.e., it was selected in another branch). This might create in some 

location Aq.., < 0, and these slots should be ignored. (See the example 
1 3 k 

of Appendix B.) 

The reason that the admissible point test of step 11 of the effi­
cient set algorithm is excluded is because (T ,C ) has to be evaluated 

& e' e 

for the project as a whole. 

Step 2. Construct the "DDS Efficient Set Table." 

This table is shown in Fig. 36, and is constructed as follows: 

the table is divided vertically into two main sections A and B. Section 

A includes all decision vertices that are common to two or more DDS, and 

section B includes all other vertices, arranges according to their 

respective DDS. For each vertex, its t., , . N and c, , . >. are given, and in 
* ]k(:) :k(:) 
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addition, the vertices of section A are related to the proper DDS's. 

A B 

I 

II 

Common Nodes DDS 1 
• • • DDS. 

L 
• • • 

D. 
: 

DDS D. 

t 

C : I W I ) 
• • • c 

DDS Cost Time 

• • • • • • • • • • • • • • • • • • • • • DDS 

( c 1 ) 
e 

(T 1) 
J E 

• • • • • • • • • • • • • • • • • • • • • 

A 
T " 

Project I 

Ascending 
order 

1 2 3 

Figure 36. DDS Efficient Set Table 

In column 3 all time values (T^) are arranged in ascending order, and 

underlined l's (1) are placed in the proper columns of of sections 

A and B. The values of C 1 , which are associated with a specific DDS., 
e I 

are entered in section I only. In column 1, the DDS^ associated with 

(T 1) is shown. 
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Step 3. Evaluate C^.,.—the minimum cost of the minimum time. 

This is done by using section I of the above table, as follows: no 

changes can be made in the DDS^ associated with T*, as any change would 

increase the project time. In all the rest of the (DDSK appearing in 

section I the decision nodes selected can be changed, if this will not 

change T*. Thus, for DDS., one selects the row with MinCC 1), and elimi-
e 

nates the rest of them. The 1_ in all the remaining rows indicate 

A 
i f = {d* 

associated with the minimum time T", and 

This procedure, as is, will take care of the case of two or more 

critical paths. 

Step 4. Evaluate 0* = 

This is done by using section II of the table as follows. 

a) Start with the first value of this section. Consider the 

DDS. associated with this T 1. Place an X in all columns of this DDS. 
I e J % 

that have 1_ above them and don't have 1_ in them from step 2. Place l's 

in all other columns of this row that have a 1 in some row above this 

one. 

b) If section A includes 1_ and X, that means that a different 

decision node is selected for a decision vertex that is common to two or 
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more DDS.. This creates different time values than the ones obtained 
1 

previously for the other DDS, and this time value may be greater than 

the one under consideration, and therefore dominating. 

To check this, all the values of t., associated with columns 
:k(i) 

with l's in them (both 1 and 1_) for a specific DDS^, are added, i.e.: 

^ j k ( j ) v i 

(All k(j) with l's) e (DDS)^ 

If one of these values is greater than the T under consideration, 
e 

this row is eliminated. This value will reappear in its proper place 

in the T Q sequence, if it is associated with a promising point. 

Step 5. Evaluate as follows. 

C = J c . . , . v 

e ]k(n) 
All k(j) with l's (both 1 and 1) 

If C g < C^,A, the pair (T^,^) is an admissible point (where T^ = 

T^), with W g—the policy for the whole project associated with this 

point—being composed of all d.^..^ which include 1 or 1 in their 

columns. 

Step 6. Repeat the procedure, starting at step 4, for the suc­

ceeding values of T^, with the following changes: 

(a) An X is placed in columns of the DDS. associated with the 
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specific T 1 , that do not have 1 in them, and have either a 1 or 1 above e — — 
them, with no X in between. 

(b) For all other DDS^, a 1 is placed in columns that have either 

a 1 or 1 above them with no X in between. 

(c) The test of step 5 is now: 

If: C < C. ^ e < i < e - 1, e I 

where e* is the subscript associated with T", 
i.e., T A = T*. 

Then: ( T

E J ^ E ) is an admissible point, with the policy 
as explained above. Note that U* and V* are 

specific entries for W . 

The above procedure and table combine the results of the Effi­

cient Set Algorithm applied to each DDS^ separately in such a way so 

as to eliminate all points that might be admissible for a particular 

DDS^, but are not admissible when the whole project is considered. 

Note that the "Cost Refinement" discussed on page 84 creates no 

problem here, as the procedure is basically incremental analysis of 

the whole project. This procedure has been applied to the example of 

Appendix B. 

Constraints and Sensitivity 

The solution procedure developed for the case of certainty has 

the advantage that budget and time constraints can be added, changed or 

dropped without any additional effort. 
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Once the Efficient Set is obtained, adding a time constraint 

amounts to a vertical line on the time-cost trade-off graphical 

description, whereas a budget constraint is a horizontal line on the 

same curve, as illustrated in Fig. 37. 

COST 

.Budget constraint 

1 
® 
W ® | 

W I 

2 | Time constraint 

TIME 

Figure 37. Constraints 

This approach has the added advantage in that the sensitivity of 

changing the constraint can be immediately obtained. For example, in 

Fig. 37, increasing the budget by a small amount would sharply reduce 

the total project time. 
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CHAPTER V 

THE CASE OF RISK WITH STOCHASTIC DECISIONS 

Introduction 

This case is an extension of the deterministic case, discussed in 

the previous chapter. As before, there are different alternatives of 

performing some of the activities, each having a different cost, differ­

ent duration and different technological dependencies. However, each 

alternative has now a probability associated with it. This probability 

is a measure of the relative chance that a certain alternative will be 

chosen as the work progresses. Thus, as was indicated in Chapter I 

(p. 6) in contrast to the case of certainty, where a selection among 

alternatives was possible during the planning phase, no such selection 

is possible now. The selection of a specific alternative depends upon 

the outcome of the preceding activities, and therefore no preliminary 

elimination can be made, but instead, the probability of selecting a 

certain alternative can be stated (typically, this would be a subjective 

probability). Situations like this are common in research and develop­

ment projects. 

In spite of the fact that neither elimination of alternatives is 

possible during the planning phase nor reduction of the decision network 

into a standard network, the decision maker is still in need of some 

information in order to decide whether to proceed with the project or 

not. 
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Specifically, it is suggested that the following information is 

of importance. 

1) Project time and cost extremes. 

2) Expected project time and expected project cost. 

3) Risk Evaluation. 

4) Most probable project network, its time and cost. 

It can be seen that this case is essentially an extension of the 

problem handled by Eisner (17), and is a different approach to the prob­

lem suggested by Dean (14). It is felt that the procedure suggested 

here is more adequate for the stated objective of providing a decision 

making tool during the planning phase. 

Project Time and Cost Extremes 

It was pointed out in Chapter I that for this case, developing 

time-cost trade-off is impossible, as no alternative elimination is 

possible during the planning phase. However, for decision making pur­

poses, information about the extreme values of project time and cost is 
2 

of major importance. These values define a closed interval in E , 

called "The Region of Possible Outcomes." 

No matter what the outcome will be, it is going to be included 

in the "Region of Possible Outcomes," as described in Fig. 38. To 

establish this region, four values have to be evaluated, as follows: 

minimum time, maximum time, minimum cost, maximum cost. 

It should be noted that the cost associated with the minimum 

time, the time associated with the minimum cost, etc., is of no impor­

tance, as one is interested here in setting the boundaries of the 
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"Region of Possible Outcomes," and not in a specific point, 

COST 

Max.Cost 

Min.Cost 

Min.Time Max.Time TIME 

Figure 38. Region of Possible Outcomes 

To evaluate these boundaries, the probabilities associated with 

each stochastic decision vertex are ignored, and the project decision 

network is handled as in the case of certainty, solving the following 

four problems. 

(1) Minimum time problem. 

(2) Minimum cost problem. 

(3) Maximum time problem. 

(4) Maximum cost problem. 

Obviously, the first two problems are exactly the ones solved 

for the case of certainty, with the exception that the values of C A and 

T ^ A do not have to be evaluated. 

The last two problems present no difficulty either, as the 
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solution procedure is exactly the same as for the minimum time and 

minimum cost problems, with the exception that the optimization process 

is a maximization one instead of minimization. This whole procedure 

is shown in Appendix C. 

Expected Project Time and Cost 

The purpose of this section is to develop another input to the 

project evaluation process during the planning phase. The procedure is 

based upon the concept of expected value. 

In the literature, there is some debate as to whether the 

expected value concept, which is based upon "long run average," is 

applicable in cases of "one time only" situation. Another criticism 

of the expected value concept is the fact that it bases decisions on 

the average only, and gives no consideration to the extremes. In spite 

of these criticisms, expected value is the principle of choice most 

often used. Furthermore, for this case and the one discussed in 

Chapter VI, it is going to be only one out of a few inputs to the 

decision making process. 

Expected Project Time 

No optimization process as such is involved in finding the 

expected project time for this case, since no selection among alterna­

tives can be performed during the planning phase. Thus, the decision 

network cannot be reduced to a standard network in the same way as in 

the case of certainty. 

The concept of expected project time needs some further elabora­

tion, before the method of evaluating it is introduced. Even in the 
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case of a standard network with individual activity times being a random 

variable (PERT network), the expected time of the project has been 

approached in various ways, based upon different sets of assumptions. 

This problem, for the PERT type network, has been discussed by Fulkerson 

(23) and Elmaghraby (20). Both methods are described as estimates of 

the true expected value. 

A similar approach is used here. Two methods are presented: 

evaluation of an optimistic expected time, i.e., approaching the true 

expected time from below, and a pessimistic expected time, approaching 

it from above,, The two methods are associated with different sets of 

assumptions concerning the project control policies during the execution 

of the project. The true expected value is somewhere between these two 

estimates. The two methods are the same and yield the expected value 

only when the network has independent DDS only, i.e. no common decision 

vertices. 

Optimistic Expected Time. The first case to be considered is the 

case where the project network can be decomposed into only one DDS 

and one CDDS as illustrated in Fig. 39. 

Associated with each decision node d., / . >. of the DDS is a proba­
n d : ) 

bility Pjj^j^. No probability is associated with the elements of CDDS. 

Obviously: 

k(j) 
= 1 
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CDDS 

Figure 39. A Stochastic Decisions Network 

Let: 

ECT 1] be the expected time to get from S to F, associated with 
DDS. . 

1 

E[T°] = T° be the time to get from S to F, for CDDS, and 

E[T] be the expected time of the stochastic decisions network. 

Then: E[T] = MaxCECT1],T°). 

For the case of more than one independent DDS, one gets: 

E[T] = MaxCECT1]) 1=0,1,... 
i 

To evaluate ECT 1] the process associated with this DDS is viewed 

as a Markov Process, as follows: Each decision node of the DDS is 

viewed as a "state." The probability associated with each decision node 
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is viewed as a transition probability. Thus, p ^ represents the transi 

tion probability from state "S" to state "11" (i.e., d ^ ) , and p̂ -̂  is 

viewed as the transition probability from state "12" to state "21." 

In general, let Pj|^ ̂ e "the conditional probability that a system which 

now occupies state i will occupy state j after its next transition. 

Thus, using the above notation: 

P12 = P12|S 

P22 P22I12 

and in general, for describing the Markovian transition probabilities, 

the probability Pj}c( j) °^ decision node d_.^_p is regarded now as the 

transition probability from state (mk(m)) to state (jk(j)) as follows: 

Pjk(j)|mk(m) 

where jk(j), etc., is regarded as one subscript. 

Since the system must be in some state after its next transition 

then: 

Y p. I . = 1 i • H i 
: 1 

Note that in this case, since the network is acyclic 
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and since the system is absorbed in F, 

PF|F = 1 

Associated with each state is a "return" or "reward." These 

returns are the time values associated with each decision node of the 

DDS as evaluated in step 8 of the second level labeling algorithm for 

the minimum time problem of the previous chapter. To comply with the 

notation used for the transition probabilities, the time return t , .. 

associated with decision node d., ,.N will take the following general 

format whenever used in relation with the Markov process. 

t.j. - the time return associated with the 
^ ' transition from state i to state j. 

Thus, in Fig. 39, when considered for the Markov process 

will be ± 2 2 | 1 2 , etc. 

The rationale of viewing the stochastic decision network of this 

case as a Markov process stems from the internal logic of the network. 

Referring to Fig. 39, during the planning phase it can be safely claimed 

that once decision node 12 is realized, the probability of selecting 

decision node "21" is no matter how decision node "12" is reached. 

Using the symbol to describe a state of the Markov process , 

the DDS of Fig. 39 can be described as shown in Fig. 40. 

Finding the expected time of the DDS of Fig. 39 is equivalent to 

finding the expected time of the Markov process of Fig. 40. 
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Figure 40. Markov Process of a DDS 

A solution procedure to this type of problem has been developed by 

Howard (31). He called it "Markov Process with Rewards." Using 

Howard's procedure, one gets: 

Let: 

£ = (t.i.) - mxm "time return matrix" associated with the 
Markov Process (m is the total number of states) 

P_ = (p.i.) - mxm transition matrix (stochastic matrix) asso-— ~i i 
J 1 ciated with the Markov process. 

t (i) - expected total time return in the next n transi­
tions if the system now is in state i. 

T = ( t ( i ) ) - expected total time return vector—mxl 3 if m is 
the total number of states. 

For the Markov process described by Fig. 39 the matrix £ is: 
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P = 

s Pll S P12 S P21 S P 2 2 S P F S 

P s 11 Pll 11 P12 11 P21 11 P 2 2 11 P F 11 

P s 12 Pll 12 P12 12 P21 12 P 2 2 12 P F 12 

P s 21 Pll| 21 P12 21 P21 21 P 2 2 21 P F 21 

Ps 22 P H | 22 P12 22 P21 22 P 2 2 22 P F 22 
P s F Pll F P12 F P21 F P 2 2 F P F F 

Note that the sum of the probabilities for each row is 1, so that 

some of the elements may be zero. In a similar way the matrix T can be 

constructed. 

Using a DP approach, Howard suggests the following recurrence 

relationships. 

t,(i) = 7 p. ..t.I. •¥- 1 

or: 

t (i) = I p.I.ft.I. + X, , i n=l,2 n L. *i i k ] 11 (n-1) J ; 

t n(i) = t x(i) + l P j l i t ^ ^ / j ) * i. n=l,2 

Using vector notation, the last equation can be rewritten as 

T = T n + PT . —n —1 =-n-l 

The above procedure always terminates (as proved later) for n* 

when 



125 

The expected time of the DDS is: 

EET 1] = I AS) 

where the superscript 1 indicates that there is only one DDS in this 

case. 

The following theorem shows that this process will always termi­

nate. 

Theorem 3. The recursive procedure for finding T t{ always ter­

minates for a finite n = n*. 

Proof. The Markov process associated with this procedure is 

composed of an absorbing Markov chain. This is so because the stochas­

tic matrix P_ has: 

a) exactly one absorbing state (state F). 

b) from every state it is possible to go to this state (not 

necessarily in one transition). 

Since the Markov chain is absorbing, the probability that the 

process will be absorbed is 1. Since there is a finite number of 

states, and all states except state "F" are transient, and since the 

original network has no cycles, therefore the matrix P_ has no cycles, 

thus the process will be absorbed in a finite number of steps. Once the 

process is absorbed, the expected return cannot change, and therefore: 
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Q.E.D. 

The discussion so far has not touched on the problem of the 

optimistic expected time. This problem appears when there is more than 

one DDS involved, and at least one common decision vertex. Suppose 

that the stochastic decision network of Fig. 41 is given: 

Obviously, there are two DDS, with D^ common to both. The 

optimistic expected time, and the one that follows—the pessimistic 

expected time--are based upon different assumptions regarding the poli­

cies of the project controller while the project is carried out. 

Project Control Policies. The policies considered here are 

concerned with a common decision vertex, like D q. Suppose that activity 

DDS 

Figure 41. Stochastic Decisions Network 
With a Common Decision Vertex 
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"12" is completed before any decision has been made concerning activity 

"21." Due to the uncertainty involved with the execution of activity 

"21," two possible courses of action can be taken as follows: 

(1) The project controller may decide to go ahead with activity 

"31" or "32" without waiting to see what happens with activity "21." 

This is especially true when "12" is completed quite a long time 

before a decision can be made about activity "21." 

(2) The project controller may decide to wait for the outcome 

concerning activity "21." 

The optimistic expected time which yields a lower value of the 

expected time, is associated with the first policy. The pessimistic 

expected time with the second. 

The Markov Process for the Optimistic Expected Time. If the 

first policy mentioned before is assumed, the meaning is that each DDS 

can be regarded as an independent Markov chain. Note that the two DDS 

cannot be regarded as one Markov chain, since then the "states" will 

not be mutually exclusive—a basic requirement for a Markov process. 

Thus, one gets the Markov Processes illustrated in Fig. M-2. 

In this case, states "31" and "32" are common to the two chains, 

and: 

P31 = P3l|l2 = P3l|21 

P32 " P32|l2 = P32|21 
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i.e., the transition probability from "12" to "31" and "32" is independ­

ent of the transition probabilities from "21." 

Figure 42. The Equivalent Markov Processes 

Generalizing this approach, first the project network is decom­

posed into DDS with the proper time returns. Then, each DDS is treated 

as a separate Markov process, and ̂ A ( S ) is evaluated for each DDS^. 

Thus: 

ECT 1] = t\.(S) n<v 

E[T] = Max(t\,.(s),T°] v n" J 

l 

The method described above yields the lower bound of the 
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optimistic expected time. This claim is proved in Theorem 4 in the 

next section. In order to obtain the exact value of the optimistic 

expected time, the probabilities of path combinations among the various 

DDS have to be evaluated (see the value of EV in Theorem 4). This 

amounts to an extensive computational effort even for small networks, 

and therefore this approach is not recommended. 

Theorem 4. The above method of evaluating the optimistic 

expected time gives a lower bound of this value. 

Proof. Consider a stochastic decision network as shown in Fig. 

43. 

Figure 43. Stochastic Decisions Network: Schematic Illustration 

Only the first decision vertex of each DDS is shown. The problem 

of a common decision node does not exist here, since for the optimistic 
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case each DDS is considered separately. 

I I p..t.. 
ii. 

which is equal to the value obtained by the Markov Process approach, 

Now, suppose 

ll p. .t. . > ll p, t, h h ii ii ^ u ^km km i i k m 

Then, ) Y p..t.. is the value of E[T] obtained before for this 
v . ii ii 
-. 1 

network. Let:: 

For simplicity of presentation, the subscript jk(j) used for a 
decision node is substituted with a single subscript i for this theorem. 

The solution procedure outlined above for finding the expected 

time of each DDS yields the same result as the process of enumerating 

all paths from each decision node to F, evaluating their times and 

probabilities, and taking the expected value at the first decision 

vertex. Thus, let: 

. - probability that the jth path to F of the ith decision 

node"'" will be realized. 

t.. - time associated with this path. 

Then the expected time of DDS^ is: 



1 3 1 

L B = y y p. .t.. 
1 3 

where LB stands for 
L V = I I P^km^' " L o w e r Bound" and LV k m 

LB > LV 

stands for "Lower Value" 

and 

11 Pij = 1 

i 3 

n p k m = i 

k m 

The true optimistic expected value of this network is given by 

EV = I II I p P k m M a X ( t t k m ) 
k m i 3 J J 

Thus, it has to be shown that, EV £ L B . Now since: 

Max(a,b) = \ (|a-b| + a + b). 

Then: 

E V = k I I I I P - - P L . (I t--- tv I + t.. + t, ) = 
2 L L L L r- r-^.m \ km i n km 
k m i 3 J 

= k II P , ( H P - •( It. .-K I ) + II P - -t. • + K I I P . • ) 2 f L F k m ^ L . 1 3 1 1 3 km1
 H h r i 3 1 3 km h h ^ i i - > k m 1 3 J J 1 3 J J 1 3 J 

k m 1 3 J 
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e v = k y 111 p- - P i h- --K i+
 T L B y y P i + k 11 p, ^ 

2 . . . ̂ li^km1 in km1 2 f L rkm 2 *• L *km km 
k m I ] J k m k m 

E V = T y y y y p- - P i it- --tn i + k l b + k l v 

2 L L L L ^2.i^km' ii km1 2 2 k m I ] 

Since: 

(a-b) < |a-b 

Then: 

1 
E V * T y y P u y y p- -t- • - T y y p- • y y P u ^ + ^ l b + ^ l v 

2 ? L ^km ? ^ *ii in 2 h h *ii ^ ^ ^km km 2 2 k m i l J J 1 - ]
 J k m 

EV > j LB - j LV + j LB + |- LV 

EV > LB Q.E.D. 

The proof can be easily extended to more than one DDS. 

The above procedure for the optimistic expected time has to be 

somewhat modified when diverging stages are considered. The case of 

type II divergence is shown in Appendix C. 

Pessimistic Expected Time. This method is based upon the second 

project control policy discussed before. Thus, referring to Fig. 41, if 

"12" is completed before any action can be taken concerning "21," the 

project controller will wait until a decision is made about "21," and if 

"21" is selected, he will wait until its completion. 
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To evaluate the expected time in this case, one has to evaluate 

the probability and expected time of reaching decision vertex D^. This 

is done as follows: 

P(reaching Dg) = P(12u21) = P(12) + P(21) - P(12n21) 

= P(12) + P(21) - P(12)P(21) 

P12 + P21 ' P12 P21 

The expected time of reaching is composed of three elements, 

as follows: 

Activity 
Occurrence 

12 but not 21 

21 but not 12 

12 and 21 

Probability 

P(12) - P(12n21) = p 1 2 - P 1 2 P 2 1 

P(21) - P(12n21) = p 

P(12n21) = p 1 2 p 2 1 

21 P12 P21 

Equivalent 
Time 

'12 
u21 
Max(t 1 2,t 2 1) 

and the expected time is: 

'12t12 + P21 t21 + ^ ^ l ^ ^ i ^ o i ) " t i 9 " t o J 12' 21' 12 21' 

Noticing that the other set of probabilities associated with this 

network is: 

P(12u21) = P(12n21) = P(lln22) = P i : L P 2 2 
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The total expected time becomes 

E[T] = p t + p t + P 1 2P 2 1[Max(t 1 2,t 2 1) - t - t ] + 

+ ( p12 + P21 " P12 P21 ) ( p31 t31 + P32 t32 ) + 

+ P P [Max(t ,t22):i 

The value obtained using this method is higher than the one in 

the previous case. The true expected value lies somewhere in between 

the optimistic and pessimistic expected values. 

Generalization of this method is possible; however, it seems 

that even for a moderate size network there is an immense amount of 

calculations involved. A simulation approach seems to be more appro­

priate for this case. This is discussed later. 

Example 

In Fig,. 41, let: 

p., = 0.3 p.. = 0.7 P o_ = 0.4 P o o = 0.6 p „ = 0.2 p Q O = 0.8 

Optimistic Expected Time. It is easy to convert the above 

probabilities and returns to their Markovian equivalent, yielding, for 

DDS 1: 
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P = 

S 
11 
12 
31 
32 
F 

11 12 31 32 
0.3 0.7 Q 

0.2 0.8 

0 
T = 

S 
11 
12 
31 
32 
F 

S 11 12 31 32 F 
10 15 q 

5 10 

0 

Thus: 

tj_(S) 13.5 

t j U D 0 

^(12) CD
 

^(31) 0 

^(32) 0 

t^F) 0 

and T , for different n is: -n 

t (S) n 
t (11) n 

t n(12) 

t n(31) 

t n(32) 

i n(F) 

1 2 

13.5 19 

0 0 

9 9 

0 0 

0 0 

0 0 

3 

19 

0 

9 

0 

0 

0 

n* = 2 



136 

E[T ] = t A(S) =19.8 

By the same method, 

E[T 2] = 17.6 

E[T] = Max(19.8,17.6) = 19.8 (The lower bound) 

Pessimistic Expected Time. 

E[T] = (0.7)(15) + (0.4)(20) + (0.4)(0.7) (Max(15,20) - 15 - 20) + 

+ (0.7 + 0.4 - 0.4 x 0.7)[(0.2)(5) + (0.8)(10)] + 

+ (0.3)(0.6)[Max(10,10)] = 23.48 

Expected Project Cost 

The same comments that were made before relative to the expected 

time problem are applicable here. In the same way, two values of the 

expected cost will be given: an optimistic value and a pessimistic 

value. The two values are the same and give the true expected cost when 

the network has independent DDS. It should be noted that the pessi­

mistic estimate of the cost is associated with the optimistic estimate 

of the time, and vice versa. 
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The first step for both methods is decomposing the RCN into DDS, 

and evaluating the cost return associated with each alternative (disre­

garding the probabilities), as was done in the previous chapter. 

Pessimistic Expected Cost. The same assumptions that were made 

for the optimistic expected time are valid here. 

The expected cost of each DDS is evaluated using the Markovian 

procedure introduced for the optimistic expected time with the following 

obvious change in notations. Let: 

C = (c.i.) - mxm "cost return matrix associated with the — ~l i 1 Markov Process. 

c (i) - expected total cost return in the next n transi­
tions if the system now is in state i. 

C^ = (c
n(i)) ~ expected total cost return vector - mxl. 

Then, in the same way as before: 

and 

C = C. + P C . -n -1 = -n-1 

E E C 1 ] = c\(S) n" 

if C 1 is the cost of DDS 

E E C ] = I c^(S) + c p N 

where C p^ is the total cost of the permanent nodes. 

The problem of a lower bound does not exist here, as in this case, 

using the notations of Theorem 4 for Cost Value, one has: 



138 

EV = LB + LV 

The above procedure has to be somewhat modified when diverging 

stages are considered. The case of type II divergence is shown in 

Appendix C. 

Optimistic Expected Cost. The assumptions associated with this 

case are the same as those of the pessimistic expected time. Referring 

to Fig. 41, the difference between this case and the previous one is in 

considering activities "31" and "32." According to the previous case, 

these two activities are viewed as performed separately for each D D S , 

i.e. as a continuation of "12" regardless of "21" and vice versa. The 

approach here is that if both "12" and "21" are performed, the cost of 

"31" and "32" should be included only once to avoid "double counting." 

This means that from the expected cost obtained before, the expected 

cost of "31" and "32," when both 12 and 21 occur, has to be subtracted; 

i.e. for the network of Fig. 41, one gets: 

EEC] = c1,.^) + E2.,.(S) - P(12n21)(pQ.cQ_ + p q o c q o ) n" n*- o l o l o z 32 
or: 

E[C] = ^ ( S ) * 5^(S) - P 1 2 P 2 1 ( P 3 1 C 3 1 + P 3 2 c 3 2 ) 

Generalization of this procedure is relatively simple. The 

probabilities P-^' P2j_ °f t n e Previous example will be the probabilities 

of realizing the decision nodes (states) immediately preceding the com­

mon decision vertices. When these states stem from independent Markov 
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processes, the probability of realizing each one of them is obtained 

as follows: 

Let: 

tt (i) - probability that the system will occupy state i 
after n transitions, if its state at n = o is known. 

Then: 

I tt (i) = 1 h n 
1 

l J 1 

The above set of difference equations is solved separately for 

each DDS for S through k, where k represents the specific decision node. 

The expected cost of the mutual states is readily available from 

the expected cost solution of the DDS. This is the value of c
n:'c(k) if 

k is the state immediately preceding the common decision vertex. This 

value can be taken from the C A of any DDS, as it is going to be the 

same. 

In evaluating the common states1 expected cost that has to be 

deducted in order to avoid "double counting" one has to consider the 

possibility of more than two preceding states, as follows: 

Let: 

k 1 - the state immediately preceding the common decision 
vertex associated with (DDS)^. 

tt (k 1) - probability of being in this state, after n transitions 
n (note that n can be different for different DDS). 

E[C - total expected cost of all common decision nodes that 
should be deducted. 
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Then: 

E[C 1 = [- I TT (kV (kj) + I TT (k1) TT (kj) TT ( k * ) 
CN . ^ 0 n n . _ n n n i<]=2 K]<r=3 

+ . . . + ( - I ) " 1 " 1 TT ( k 1 ) TT ( k 2 ) ... TT ( k m ) ] C A ( k ) 
n n n no­

where the decision vertex is common to m DDS's and c ,(k) can be taken 
n" 

from the C , of any DDS. -n« 
The total expected cost is then: 

EEC] = I C > ) - E[C C N] + C p N 

1 

Example 

Suppose that in the example solved for the expected time, the 

numbers represent cost values. Then: 

1 2 k = 1 2 k = 21 

c A(12) = c A(21) = 9 n" n" 

TT (12) = 0.7 tt (21) = 0.4 

E[C C N] = (0.7)(0.4)9 = 2.52 

E[C] = T c1,(S) = 19.8 + 17.6 = 37.4 ps . n" l 
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CPN = 0 

E[C] = 37.4 - 2.52 = 34.88 
op 

Some modifications have to be introduced for the case of diverg­

ing branches., This is shown in Appendix C. 

Risk Evaluation 

A different approach to evaluating the project is by obtaining 

the probability distribution of the time and cost. Analytically, this 

can be done by enumerating all independent path combinations from "S" 

to "F" and evaluating their probability, time and cost. This method is 

impractical even for small networks, especially when common decision 

vertices are present. Simulation would be a more efficient approach, 

where each decision vertex with its probability distribution is viewed 

as a stochastic vertex, so that Monte Carlo simulation can be applied. 

This approach is demonstrated in the next chapter, for the minimum time 

and minimum cost networks, which are essentially the equivalent of the 

stochastic decision network discussed herein. Once the probability 

distribution of time and cost is obtained, the respective expected 

values can be easily evaluated avoiding the difficulty of a common 

decision vertex. 

Most Probable Project Network 

Another approach to project evaluation during the planning phase 

is to consider the most probable course of action that might be followed. 
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Once this is done, the stochastic decisions network is reduced to a 

standard network, and its time and cost are evaluated. 

The procedure of finding the most probable project network is 

rather simple. Again, the stochastic decisions network is divided into 

DDS. For each DDS, one starts with the first decision vertex evalu­

ating: 

p l k ( D * = " £ j p l * ( i ) 

and accordingly, decision node ^jj^jj* ^ s selected for this decision 

vertex. Once this is done, the rest of the decision nodes d., / l N are 
lk(l) 

eliminated, together with the nodes associated with them, according to 

the procedure described in Chapter III. 

The process continues with the next decision vertex (i.e. a 

forward approach) until node "F" is reached. This is done for each DDS, 

and in general, decision node d., / . w. is selected so that: 

: k (:)" 

p j k ( : ) * = ^ - ) P : « J ) 

Notice that during this process, a decision vertex that is com­

mon to two or more DDS may be eliminated from one DDS; however, one of 

its decision nodes might be chosen while repeating this selection 

process for a different DDS (see the example in Appendix C. Decision 

vertex 6 fits this description). 
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Once this process is finished, all probabilities are elimi­

nated, and the outcome is a standard network, referred to as the "most 

probable network." The time and cost of this network are evaluated in 

the regular fashion, yielding the most probable time and cost. An 

example showing the above procedure is shown in Appendix C. 

It should be noted that this procedure does not yield the maximum 

probability path(s) from "S" to "F," but the most probable path(s) from 

"S" to "F." The difference between the two is that the latter seeks 

the alternative with the highest probability at each decision vertex, 

whereas the first seeks the path with the highest probability, and this 

does not necessarily correspond to selecting the most probable set of 

decision nodes. The reason for selecting the approach presented here is 

that, since in this case each decision node has a probability of being 

selected, it is more realistic to assume that the most probable route 

will be followed. 

Concluding Remarks 

The four methods presented here should not be viewed as mutually 

exclusive, but rather complementing each other. It is anticipated that 

the first method--project time and cost extremes—will usually be the 

first to be applied. If the Region of Possible Outcomes turns out to 

be narrow enough, in many cases a decision can be made upon this basis 

only. If this region leaves some doubt, the other three methods can be 

used for obtaining additional input to the decision making process. 

It should be noted that the "Region of Possible Outcomes" can be 
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used also for cases of uncertainty--when no probability distribution 

available,. 
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CHAPTER VI 

THE CASE OF RISK WITH STOCHASTIC OUTCOMES 

Introduction 

This case is a different extension of the case of certainty. In 

this case each decision node is followed by a stochastic vertex with a 

finite number of outcomes and known probabilities. Once a decision node 

is selected, the outcome of the stochastic vertex cannot be controlled 

by the decision maker. During the planning phase, a complete selection 

among alternatives is not possible anymore. Instead, a strategy"'" can 

be determined, based upon some desired criteria. As a consequence, 

neither final elimination of alternatives is possible during the plan­

ning phase, nor is reduction of the decision network into a standard 

network. 

In spite of this, a decision has to be made during the planning 

phase whether to proceed with the project or not. To assist in this 

decision, seven inputs to this process are developed, as follows: 

1) Minimum expected project time and its expected cost. 

2 ) Minimum expected project cost and its expected time. 

3) Region of possible outcomes. 

4) Range of outcomes for the minimum expected time strategy 

"'"When dealing with stochastic processes it is preferable to re­
place the term "policy" by the term "strategy." It is now a question 
of determining a set of optimal decisions to meet every possible out­
come . 
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and the minimum expected cost strategy. 

5) Most probable outcome for the minimum expected time strategy 

and the minimum expected cost strategy. 

6) Evaluation of risk in an optimal strategy. 

7) Simulation of the stochastic outcomes network. 

These inputs complement each other, and therefore should provide 

a broad basis for decision making. Furthermore, some of these methods 

can be used when the decision has to be made in the face of uncertainty--

i.e. when no probabilities are available. 

Minimum Expected Project Time 

The procedure of evaluating the minimum expected project time is 

an extension of the procedure described for the case of certainty. 

Instead of evaluating the policy U* as in the case of certainty, a 

strategy is determined. The solution procedure is composed of three 

steps , as follows: 

1) Network decomposition. 

2) Evaluation of minimum expected project time. 

3) Evaluation of the expected project cost associated with the 

minimum expected project time. 

Network Decomposition 

The decomposition process for this case is a slight modification 

of the one described in Chapter IV. 

The first level labeling algorithm described for the case of 

certainty remains unchanged. The outcome of this algorithm is the vari­

ous DDS's associated with the network. 
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The second level labeling algorithm of Chapter IV has to be modi­

fied. 

jk(j)l(k) 

Figure 44. Elements of a Stochastic Outcomes Network 

Steps 1-7 remain essentially unchanged, where the stochastic vertices 

and the outcome nodes are treated like any other node during the label­

ing process. Step 8 is changed to read as follows: 

Step 8. Evaluate the longest path (CP) from each <5 j ) 

associated with the ith stage to all d # 1 associated with the (i+l)th 
]k(]) 

stage, provided there is at least one path between the two. In doing 

so, the duration of d.. associated with the ith stage is added to 
]k(]) 

each of its succeeding S ... >. . When evaluating CP for outcome 
]k(])l(k) 

nodes of the first decision vertex, ES for each outcome node is the one 

of step 2. For all other cases, ES = 0. 

This Last step evaluates t., / > the time return associated r ]k(])l(k)' 
with outcome node 6 # 1 >.. Thus, the outcome of the decomposition 

]k(])l(k) 
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process is the required elements for the stochastic DP model of this 

DDS. 

Minimum Expected Project Time 

Stochastic discrete dynamic programming is the solution procedure 

used to find the minimum expected project time. The procedure is best 

described using the illustration of Fig. 45. 

Figure 45. Stochastic Outcomes Network with 
a Common Decision Vertex 
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Associated with outcome node 6., / - NT/ I \ of a decision node 
]k(])l(k) 

d , .. there is a probability p., / . \ -, /., N and a return t... , . s - . x , which 
^ J ^]k(])l(k) Dk(])l(k)9 

is the value of the critical path obtained during the decomposition 

process. Following the approach suggested by Nemhauser (51) for a 

stochastic system, the probability distribution associated with each 

stochastic vertex is described by a random variable that effects the 

stage return and transformation. To avoid cumbersome notations, the 

notation used to denote a stochastic vertex and an outcome node will 

be used to denote this random variable. Thus: 

Let: 

A 1 , ., be the random variable associated with decision 
node d., / .v at stage i. 

6 1 / * \ i /1 \ be an element of the random variable (associated with 3k(])l(k) . .* outcome node 5 .-, / • \ i / i \ a"t stage I ) . 3k(3)l(k) 
A 1 be the set of random variables of stage i. 

Then: 

. 1 Al 

* j k ( j ) K k ) e A j k ( j ) 

The random variables A_.̂ _.̂  are assumed to be independently 

distributed with probability distribution 

P ( AJk(j) = 6jk(j)l(k) ) = Pjk(j)l(k) 
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Note that 

j k )
 pjk(j)i( k) = 1 * j k ( ^ 

Modifying the notations used for the case of certainty to include 

the random variable A 1, the minimum expected time for each DDS is ob­

tained as follows: 

f . R . . ( X . ) = Min Q . ( X . , Y . ) i=l...n 
i(t) 1 I i 5

 I 

i 

V Xi 'V = Q i(X i,Y i,A 1)P 1 

and: 

Q . C X . j Y ^ A 1 ) = T . C X . J Y . J A 1 ) + f, . , W ( X . J mx n matrix i i i i l l (i-l)t i-i 

where 

Q 1(X 1,Y 1) = T 1(X l JY 1,A 1)P 1 

f./^xCX.) denotes the minimum expected time at stage i as a i(tj I function of the input variable. 

Q^(X^jY^) denotes the mxr i-stage expected time matrix. 

T^CX^jY^jA1) is the mxn time return matrix of stage i, composed 
° f tjk(j)l(k)' 

P 1 is an nxr stochastic matrix of stage i. 

Y. = (y. .} 
I
 J i : 

Yil = djk(j) 



1 5 1 

a n d d . . . i s f o l l o w e d b y 

' j k ( j ) l ( k ) 

a l s o : 

xi-i = Y i = { V = { 6 j k ( j ) K k ) } 

F o r s t a g e 2 o f D D S ^ o f t h e n e t w o r k i l l u s t r a t e d i n F i g . 4 5 , P_" 

a n d a r e a s f o l l o w s : 

( X 2 , Y 2 , A ' Z ) = S 

1 1 1 2 

1 1 1 1 1 2 1 2 1 1 2 2 

t t t t 
1 1 1 1 1 2 1 2 1 1 2 2 

f K t ) ( 1 2 2 ) 

1 1 1 2 

1 1 1 
P l l l 

0 

p 2 = 1 1 2 
P 1 1 2 

0 

1 2 1 0 
P 1 2 1 

1 2 2 0 
P 1 2 2 

a n d 

1 1 1 2 

Q 2 ( X 2 , Y 2 ) - S [ t i a _ t 1 2 ] 

L e t f , . ( X ) b e t h e m i n i m u m e x p e c t e d t i m e f o r D D S . , w h i c h i s 
n ( t ) n I 

e q u a l t o 

E [ T l ]"" = ^ ( t ) ( V 

T h e n , t h e m i n i m u m e x p e c t e d t i m e f o r t h e w h o l e p r o j e c t i s : 
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E[T]" = M a x C E C T 1 ] * ) i=0,l... 
i 

where E[T°]" = T° is the critical path of CDDS. 

Associated with the optimal solution is the minimum expected 

time strategy 0 which gives the set of optimal decisions to meet every 

possible outcome. The optimal strategy for DDS^ will be denoted by 

tL. It is convenient to describe 0 by a "strategy tree," as shown 

in a later section. Again, for a common decision vertex, Theorem 2 

of Chapter IV holds true also here. 

Optimistic and Pessimistic Minimum Expected Time. The problem of 

two estimates of the minimum expected time—optimistic and pessimistic— 

encountered in the previous chapter, may arise in some cases here, too. 

Consider, for example, the project represented by Fig. 45. There are 

two DDS, and solving for each DDS can yield the following results for 

the first decision nodes to be selected. 

1) {11,21} 2) {12,22} 3) {11,22} 4) {12,21} 

The fourth case is different than the first three. For the first 

three the solution procedure discussed yields the lower bound of the 

minimum expected time provided T° is not the dominating value (see 

Theorem 4). The fourth case creates the problem of optimistic or pes­

simistic expected time. The procedure previously presented will yield 

the lower bound of the optimistic expected time. In order to obtain the 

pessimistic expected time, the problem has to be reworked in a similar 
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way to that described in Chapter V. For the same reasons discussed 

there, it is not recommended that this approach be taken. Instead, the 

expected value can be obtained by simulation, as discussed later in 

this chapter. 

Expected Cost of the Minimum Expected Time. Once the strategy 

yielding the minimum expected time is known, it is possible-to evaluate 

the expected cost associated with this strategy. 

The first step in obtaining the expected cost is generating the 

"Partially Reduced Network" (PRN) defined as follows: 

Definition. Partially reduced network (PRN), G ( J ^ P \ A ^ ) of a 

network G(J,A) is a connected network such that J^ P^cj 9 A^ P^cA, and: 

1) Nodes S and F are elements of this network. 
A 

2) All d" / * \ ~the decision nodes which are elements of the 

minimum expected time strategy are elements of this network. 

3) All nodes J, such that (d.,/.>.} < J, are elements of this 
k J K A j) k 

network, except as in (4). 

4) All decision vertices are eliminated. 

The network reduction is performed using the procedure discussed 

in Chapter III. Thus, suppose that for the network illustrated in Fig. 

45 one gets 

djk(j) = {11.21.311 

Then, the PRN is as shown in Fig. 46. 
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Figure 46. PRN 

Once the PRN is obtained, it can be viewed as a network equiva­

lent to the one described in the previous chapter, where each stochastic 

vertex is now equivalent to a stochastic decision vertex before. Asso­

ciated with each outcome node 6.. / . >. w , v there is a cost c. / . s W i \ 
]k(])l(k) ]k(])l(k) 

(the method of obtaining this cost is described in the minimum expected 

cost procedure). Thus, finding the expected cost of the minimum 

expected time is equivalent to the procedure described for the expected 

cost of a stochastic decisions network, described in Chapter V. 

When a non-serial DP model exists, some modifications are 

required in order to evaluate the minimum expected time and its associ­

ated cost. An example for doing this is shown in Appendix D. 

Strategy Tree. For large networks, it is convenient to describe 

the optimal strategy 0 using a strategy tree. This is in a sense, a 

PRN where only the decision nodes and the outcome nodes of the optimal 
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strategy are shown. The strategy tree of the PRN of Fig. 46 is 

illustrated in Fig. 47 

Probability 

Figure 47. Strategy Tree 

Minimum Expected Project Cost 

The same comments that were made while discussing the minimum 

expected time problem are true also for this case. Again, the solution 

procedure is composed of three steps as follows: 

1) Network decomposition. 

2) Evaluation of minimum expected project cost. 

3) Evaluation of the expected project time associated with 

the minimum expected project cost. 

Network Decomposition 

The decomposition procedure for the minimum expected cost is 

similar to that for the minimum expected time, and is a modification of 

the minimum cost decomposition procedure of the case of certainty 

(Chapter IV). Specifically referring to the latter, the decomposition 

is applied to the RCN, and step 8 is replaced by the following. 
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Step 8. Starting with the first decision vertex of each DDS, 

label all successors of each outcome node 6.. / . x W l with (ik(j)l(k)] 
]k(])l(k) k J J ; 

in the manner described in steps 3 and 4 of the second-level labeling 

algorithm of Chapter IV. If an activity node has two or more labels 

associated with 6... / . X W l x of different D., the label associated with ]k(i)l(k) J J 

the ĵ]<:( j )!_(]<-) connected with a smaller stage number is dominating, 
and the rest of the labels should be ignored. If the labels are asso­
ciated with 6.. / .x,/, x of the same D. , or the same stage number, they 

jk(j)l(k) ] ' & 

all remain. 

The cost return c. , ., W l \ associated with each outcome node is: jk(j)l(k) 

Cjk(j)l(k) = E C i 

all nu labeled (jk(j)l(k)) 

and c / . s w. > includes the cost of d , . . ik(i)l(k) D k(u) 
The outcome of the decomposition process is the required elements 

for the stochastic DP model of each DDS. 

Evaluation of Minimum Expected Project Cost 

The procedure for evaluating the minimum expected cost for each 

DDS is essentially the same as that of the minimum expected time, with 

some notational modifications. Thus, 

Let: 

"^i(c)^'L? k e the minimum expected cost at stage i as a func­
tion of the input variable. 

R\(X^,Y., ) be the mxr i-stage expected cost matrix, and 
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Then: 

C. (X. :)Y. jA 1) be the mxn cost return matrix of stage i, composed 
1 1 1 of jk(j)l(k). 

f. ( AX. ) = Min R(X. ,Y. ) 
I ( C ) 1 I S 1 

i 

R.(X.,Y. ) = R.(X.,Y.jA1)?1 

I L L I L L = 

R.CX.jY.^ 1) = C.(X. ,Y. jA 1) + ff. 1 W AX. . ) an mxn 1 1 1 1 i I (i-l)(c) i-i ^ . matrix 

Let f 1, N(X ) be the minimum expected cost for DDS., which is n(c) n I 

equivalent to: 

EEC 1]" = f\ ,(X ) n(c) n 

The minimum expected cost of the total project is: 

E E C ] " = I E E C 1 ] " + c p N 

i 

where Cp^ is the cost of the permanent nodes. 

Associated with the optimal solution is the minimum expected cost 

strategy V . The optimal strategy for DDS^ will be denoted by v \ . As 

before, it is convenient to describe this strategy by a "strategy tree." 

Also, for a common decision vertex, Theorem 2 of Chapter IV is valid here 

too. 
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Optimistic and Pessimistic Minimum Expected Cost. When a deci­

sion vertex is common to two or more DDS, the problem of two estimates 

of the minimum expected cost can arise here too. (Note that the prob­

lem of a lower bound does not exist here.) 

Referring to the network illustrated in Fig. 45, in the same way 

as for the minimum expected time, the problem of optimistic or pessi­

mistic estimate is encountered only for the fourth case, i.e. when the 

solution yields alternatives 12 and 21. The procedure outlined above 

gives the pessimistic estimate of the minimum expected cost. To find 

the optimistic estimate, a similar procedure to the one described in 

the previous chapter has to be followed. Thus, the optimistic minimum 

expected cost of the project of Fig. 45, assuming that decision node 31 

is the optimal strategy if D^ is realized, is given by: 

EEC]* = EEC 1]" + EEC 2]" - p 1 2 2p 2 1 1(f^ ( c )(122)} 

Note that 

f^, ,(122) = f 2 ,(211) 1(c) 1(c) 

For the general case, the procedure outlined for the expected 

cost in Chapter V has to be followed where c A(k) is substituted with 

the proper value of ^^(cy The outcome of this process will yield the 
A 

value of EEC^VT].--the minimum expected cost of the jth first common CN 3 r 

decision vertex, that should be deducted. Thus, for the general case, 

the optimistic estimate is given by: 
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EEC]" = I E E C 1 ] " - I EEC ] * + c p N 

i 3 

It is convenient to obtain the PRN before the optimistic esti­

mate is evaluated. The two estimates will yield different values, but 

will lead to the same strategy. The following theorem proves this 

assertion. 

Theorem 5. Solving for the optimistic minimum expected cost or 
A 

pessimistic minimum expected cost yields the same optimal strategy V . 

Proof. Referring to Fig. 45, suppose that the optimal strategy 

resulting from solving for the pessimistic minimum expected cost is: 

A 
v" = {12,21,31} 

(Recall that by Theorem 2, if "31" is part of the optimal strategy 

obtained by solving for DDS^, it is going to be part of the optimal 

strategy when solving for DDS 2«) 

Let: 

EEc., / .., ] - expected cost associated with decision node d., 

Then, if the optimum strategy turned out to be as stated above, 

this would mean that: 

(1) E C c l 2 ] + E [ c 3 1 ] < E [ C 1 1 ] (DDS) 1 

(2) E [ c 2 1 ] + E [ C 3 1 ] < E C c 2 2 ] (DDS) 2 
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Since all values are positive, then: 

(E[c 1 2] + E[c 3 1]) + (E[c 2 1] + E[c 3 1]) < E[c i ; L] + E[c 2 2] 

The left side of the above inequality is the pessimistic minimum 

expected cost. 

Let 

E[C] - optimistic minimum expected cost, op 
E[C]* - pessimistic minimum expected cost, ps 
Obviously: 

E[C] < E[C] op ps 

and therefore:: 

EEC]" < E[C ] + E[C 9 9] op 11 11 

For a different strategy, the following three alternatives should 

be considered: 

(a) {11,22,31} (b) {11,21,31} (c) {12,22,31} 

Case (a) can be immediately ruled out, as E[C] , E[C] , follow -
ps op 

ing the original strategy, are better. 

For case (b), 
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E[C] = ECc^] + ( ECc 2 1] + E t c
3 1 ^ 

From Equation (1) above, since all values are positive, one can 

form the following inequality. 

(E[c 1 2] + E[c 3 1]) + ( Et c2i ] + E [ c
3 i ] ) * E [ c H ] + ( E [ c21 ] + E [ c 3 1 ] ) 

or 

E[C] < EEC] ps 

and obviously 

E[C] < EEC] op 

The same results can be shown for case (c) above. 

Viewing the network of Fig. 45 as a section of a bigger network 

with more than two DDS and one common decision vertex, and by repeatedly 

applying the approach shown above, it can be shown that the same result 

holds true for the general case. This proves the theorem. 

Expected Time of the Minimum Expected Project Cost. The first 

step in evaluating the expected time of the minimum expected cost is 

obtaining the PRN associated with the optimal strategy V . Once this is 

done, the procedure outlined for the expected time problem in the previ­

ous chapter can be used, where the stochastic vertex is now the equiva­

lent of a stochastic decision vertex of the previous case, and the 

return associated with each outcome node 6 . w . N W l N is the time return 
jkCj)l(k) 
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"tjk(j)l(k) e v a-'- u a" t : e d ^ n s"tep 8 of the decomposition procedure for the 

minimum expected time problem. Notice that, again, the value obtained 

is the lower bound of the expected time. For obtaining the exact value 

simulation is recommended, as discussed in a later section. 

Some modifications are required when nonserial DP models arise. 

An example is shown in Appendix D. 

Region of Possible Outcomes 

As was indicated in Chapter V, the extreme possible values of 

the project time and cost are an important input to the decision making 

process. This argument also holds true here. However, two types of 

"Region of Possible Outcomes" can be developed: the first is as 

before, for the whole project. The second is the region of possible 

outcomes for each "Opening Policy," where an opening policy H is 

defined as the set of decision nodes selected for the first decision • 

vertex of each DDS_^. Referring to the stochastic outcomes network of 

Fig. 4-5, it is possible to have four opening policies as follows: 

H 1 = {11,21} H 2 = {11,22} H 3 = {12,21} H^ = {12,22} 

Since an opening policy commits the decision maker to a certain 

course of action for the rest of the project, it is important for him 

to know what night be the consequences of such a commitment. 

Region of Possible Outcome for the Whole Project 

In order to establish this region, the probability distribution 

associated with each stochastic vertex is ignored, and each stochastic 
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vertex is regarded as a decision vertex. By doing so, the stochastic 

outcomes network is transformed into a decision network, as illustrated 

in Fig. 48. 

(a) Original Network (b) Transformed Network 

Figure 48. Network Transformation 

Once this is done, the problem is treated in the same manner as 

that of the case of certainty, where four problems are to be solved: 

Minimum Time Problem 

Minimum Cost Problem 

Maximum Time Problem 

Maximum Cost Problem 

The procedure developed for the case of certainty is used to 

solve these four problems, as was done for the case of risk with sto­

chastic decisions. 

In addition to the time and cost extremes, this procedure gives 

the information about the sequence of decisions and stochastic outcomes 

that will lead to the extreme values, as follows: 
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(1) Extreme Time Values. The DDS that yields the extreme value 

has to be examined. First the optimal set of decision nodes of the 

transformed network is transformed back into decision nodes and sto­

chastic outcomes. The same procedure is applied to the rest of the 

DDS, realizing that a change of strategy there may still yield the 

same extreme value. The result yields the chain of events giving the 

extreme value, and can be viewed as a curtailed strategy tree. 

(2) Extreme Cost Values. The process is the same as the pre­

ceding one. 

Region of Possible Outcomes for an Opening Policy 

The procedure is essentially the same as the previous one, with 

the modification that all nodes succeeding the decision nodes not 

selected for the first decision vertex are eliminated according to the 

network reduction procedure of Chapter III. 

The above two procedures have been applied to the example of 

Appendix D. 

Range of Outcomes for the Optimal Strategies 

One of the common criticisms of the expected value as a criterion 

of choice is the fact that it does not consider the extremes which might 

be more important to the decision maker than the expected value. The 

discussion that follows corrects this deficiency. 

Once the minimum expected time or cost are found with their 

respective strategies, the proper PRN is formed. From here on, the 

procedure described in the previous section is applied, solving the 
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four problems discussed there for each PRN, yielding the following 

results: 

(a) Time and cost extremes of the minimum expected time strategy. 

(b) Time and cost extremes of the minimum expected cost strategy. 

An example is shown in Appendix D. 

Most Probable Outcome 

To further supplement the expected value criterion, the most 

probable outcome is evaluated for the minimum expected time and minimum 

expected cost strategies. In a similar manner to that discussed for 

the case of risk with stochastic decisions, the most probable outcome 

is preferred to the maximum probability outcome. This is further 

amplified by considering Fig. 49, where a portion of the PRN of Fig. 45 

is shown, with specific values for the probabilities. 

/ \ 

Figure 49. PRN: An Example 
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Clearly, the maximum probability outcome is 21-212. However, 

considering the way the process is going to unfold, first decision node 

21 is selected, where 211 is more likely to occur, and then decision 

node 31 is selected, and 312 is more likely to occur. So the most 

probable path is 21-211, 31-312 with a total probability of 0.36, which 

is less than 0.4. 

To find the most probable outcome, the procedure described in the 

previous chapter is applicable here, where the PRN of each of the 

optimal strategies is used. 

Evaluation of Risk in an Optimal Strategy 

The discovery of the optimal strategy may be further supplemented 

in a case involving risk by knowledge of the probability distribution 

of time and cost values which may be obtained with this optimal strategy. 

The method requires enumeration of all path combinations between S and F 

for the optimal strategy, i.e. using the PRN. 

The PRN of Fig. 46 is used as an example to show how this proba­

bility distribution can be obtained. Table 1 on the following page is 

used to evaluate the probability of each path from S to F. For each 

path, t., / . v . , , , \ and c. , ., W l s represent the time and cost values, r 3k(])H,k) ]k(])l(k) 
respectively, obtained during the decomposition process. 

The sum of all the probabilities is, of course, 1. If a decision 

node is common to two independent paths from "S" to "F," the probabili­

ties (and expected values) should be adjusted according to the procedure 

outlined in Chapter V, depending on whether the optimistic or pessi­

mistic values are desired. 
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Table 1. Path Enumeration 

111 112 211 212 311 312 Probability Time Value Cost Value 

X X X P111 P211 P311 M a x { t l l l ' ( t 2 1 1 + t 3 1 1 ) } Clll + C211 + C311 
X X X P111 P211 P312 Max{t 1 1 1/t 2 1 1tt 3 1 2)} Clll + C211 + C312 
X X P111 P212 • • 

X X P111 P211 • • 

X X X P112 P211 P311 • • 

X X X P112 P211 P312 • • 

X X P112 P212 • • 

X X P112 P212 Max{t 1 1 2,t 2 1 2} C112 + C212 

Once the distribution is obtained, it is easy to evaluate the 

expected value. The expected cost obtained is the same as the one 

obtained by the solution procedure described previously, whereas the 

expected time obtained is the true value which is higher than the 

lower bound obtained before. An example using the above method is 

shown in Appendix D. 

Obviously, even for a moderate size problem the number of combi­

nations for a complete path enumeration may become so high as to make 

analytical evaluation impractical. In cases like this it is recommended 

that simulation be used, as discussed in the next section. 

Simulation 

Simulation techniques are an attractive approach to stochastic 
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outcomes networks, and supplement the various other approaches discussed 

before. Specifically, simulation is used to obtain the evaluation of 

risk in an optimal strategy, and the probability associated with an 

"opening policy." 

Evaluation of Risk in an Optimal Strategy 

As has been indicated before, obtaining the time and cost dis­

tributions of the optimal strategy requires enumeration of all paths 

from S to F. The analytical approach can be replaced by a Monte Carlo 

simulation, applied to the PRN. By using a Monte Carlo selection for 

each stochastic vertex, only one outcome node is left at each vertex 

and the rest are eliminated. Once this is done, the PRN can be reduced 

to a standard network. Thus, for each simulation run the stochastic 

elements are removed, and the time and cost of the standard network can 

be easily evaluated by finding its critical path and adding the costs 

of each node of the standard network (including the cost of the 

permanent nodes). 

Repeating this process a large number of times gives the time 

and cost distributions associated with the optimal strategy that yielded 

the PRN. 

It should be noted that the use of simulation eliminates the 

problems of optimistic and pessimistic expected values, and that of the 

lower bound, as for each simulation run the decision network is 

deterministic. 

Since the stochastic decision network of Chapter V is essentially 

the same as a PRN, the same approach can be used there, too, to obtain 
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project time and cost distributions, thus avoiding the problems associ­

ated with the analytical approaches. 

Simulation Results. A Monte Carlo simulation, as discussed 

here, has been applied to the minimum expected time and minimum 

expected cost strategies of the example of Appendix D. The results of 

2000 simulation runs came out to be rather close to the distribution 

obtained by solving analytically. 

As this simulation is relatively simple to apply, it seems to 

be superior over the analytical approach, even for moderate size net­

works . 

Probability Associated with an Opening Policy 

Simulation can be a very powerful technique when applied in 

connection with the possible opening policies. 

In a previous section, the region of possible outcomes of each 
2 

opening policy was evaluated. This is a deterministic region in E in 

the sense that no matter what happens after the initial move (repre­

sented by the opening policy) is made, the project time and cost values 

will never be outside this region. 

The use of simulation can add another dimension to this region, 

as follows: Eased upon a certain criterion, namely minimum project time 

or minimum project cost, it is possible to divide the region of possible 

outcomes into "probability zones," where a probability zone is a sub-

region of the region of possible outcomes, yielding the following 

information: 
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(a) The probability p that the selection of the specific open-
1 

ing policy H.. will yield the optimum result based upon the chosen cri­

terion (either minimum time or minimum cost). 

(b) The boundaries of the probability zone. 

(c) The probability distribution and expected value of project 

time and cost if the optimum curtailed strategy of (d) can be followed 

after the initial move according to I-L has been made. 

(d) A curtailed strategy that will lead to the optimum result. 

This strategy will be denoted by 0 " for the minimum time criterion, and 

by V w for the minimum cost criterion. 

A probability zone for opening policy and its related region 

of possible outcomes is illustrated in Fig. 50. The four parameters of 

the probability zone need further amplification. 

max 

m m 

m m max 

Figure 50. Probability Zone for Policy H, 

The probability P^ can be interpreted also as the probability 
i 

that the stochastic outcomes network will unfold in such a way that, 

starting with H. will yield the optimum result based upon the chosen 
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criterion. Since the network can unfold in a numerous number of ways, 

even if selection of will lead to the optimum outcome, the value of 

this outcome varies according to the various patterns the network can 

have. That is the reason for the distribution in (c) above. The 

boundaries of the probability zone are simply the extreme values of 

this distribution. 

The curtailed strategies, 0 and V , give the set of optimal 

decisions for all outcomes that lead to the optimal result. They are 

different from U or V of the minimum expected value criterion in the 

sense that they do not show decisions to meet every possible outcome. 

What should be done in case an outcome not represented in 0 or V 

occurs is a problem of the execution phase rather than the planning 

phase; however, no matter what happens, the decision maker still knows 

that he is bounded by the region of possible outcomes. 

Generally speaking, if two opening policies tL and H_. have the 

same region of possible outcomes, the one with a higher p^ , for a nar-
i 

rower probability zone, should be preferred. 

The Simulation Process. The mapping of a probability zone into 

the deterministic region of possible outcomes is done by simulation, 

and for all practical purposes, simulation is the only way by which it 

can be done. 

The procedure for each simulation run is as follows: using Monte 

Carlo selection process for each stochastic vertex, only one outcome 

node is left. Then the network reduction procedure of Chapter III is 

applied, yielding a decision network. The procedure of the case of 
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certainty is applied now, according to the chosen criterion (minimum 

time or minimum cost) yielding the optimum time and cost values for 

this simulation run, along with H. and 0 or V . 

Repeating this process for a large number of simulation runs 

yields the previously described four parameters of the probability zone 

for each opening policy H^. 
—*v — 

Keeping tally of 0 or V for all might create some excessive 

storage requirements and complicate the simulation program. Therefore, 

it is recommended that curtailed optimal strategy be obtained only for 
the chosen H. after this choice has been made (recall that the curtailed 

I 

optimal strategy is not required for decision making during the planning 

phase). 

Simulation Results. The previous procedure has been applied to 

the stochastic outcomes network of Fig. 69 in Appendix D, using both 

a minimum time criterion and a minimum cost criterion with results of 

1,000 simulation runs, as shown there. Some interesting conclusions 

emerge, as follows: 

(1) It is possible to identify dominating opening policies. 

Thus, for the minimum time criterion, is always better than H and 

H . Even more striking are the results for the minimum cost criterion: 
o 

H 2 and H g are the dominating opening policies, and no other opening 

policy will ever lead to an optimal result. 

(2) The minimum expected value strategy is not necessarily the 

one to be preferred by the decision maker. Referring to the results of 

the minimum cost simulation, H is the opening policy suggested by the 
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minimum expected value criterion. However, it seems that a cost con­

scious decision maker would prefer H^. 

Thus, as can be seen, simulation yields valuable inputs to the 

decision making process. 

Concluding Remarks 

All the methods described in this chapter are complementing each 

other, and in many cases a decision can be made on the basis of part of 

the inputs suggested, without having to evaluate all of them. A sug­

gested decision making routine utilizing the suggested inputs is 

indicated below. The process can terminate at any point if the decision 

maker feels that the amount of information obtained up to such point is 

sufficient to make a final decision. 

Region of Possible Outcomes 
(1) For the whole project 
(2) For H. 

l 
-

Probability Zones 

Minimum Expected Values 

* * 

Range of Outcomes for 
0* or V* 

Risk in an Optimal Strategy 

Most Probable Outcome 

Figure 51. A Decision Making Routine 



174 

CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The results and conclusions evolving from this study are sum­

marized in the following paragraphs. 

A study of the literature of project management and decision 

networks resulted in the following conclusions: 

1. For decision networks, the problem of time cost trade-off, 

for different sets of decisions, has not been investigated. 

2. Solution of decision networks, in terms of optimizing one 

variable only, has been tried using integer programming or branch and 

bound techniques, but not dynamic programming. 

3. The stochastic cases of decision networks received only 

slight attention in the literature. All these approaches use expected 

value as a sole criterion of choice, only one parameter at a time is 

considered, and a project decision network is rarely treated explicitly. 

The research presented herein centered on the planning phase of 

network based project management, emphasizing the managerial decision 

making process of evaluating projects. The approach used made no 

assumptions about the nature of the decision maker, but rather concen­

trated on generating inputs to the decision making process, enabling 

the decision maker to reach a decision based upon more than one criter­

ion of choice. These inputs can be summarized as follows: 
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1. Time cost trade-off for the case of certainty. 

2. Region of possible outcomes, expected project time and cost, 

risk evaluation and the most probable outcome, for the case of risk with 

stochastic decisions. 

3. For the case of risk with stochastic outcomes the following 

inputs were developed: Region of possible outcomes, probability zones, 

minimum expected value strategies, range of outcomes for an optimal 

strategy, risk in an optimal strategy, and the most probable outcome 

for an optimal strategy. 

The research conducted to generate these inputs yields the fol­

lowing conclusions: 

1. A decision network can be represented by a dynamic program­

ming model. 

2. Dynamic programming is a solution technique that can be 

applied, with some variations, to all three types of decision networks 

presented in this research, so as to generate most of the inputs 

described before. The computation procedure is not complex, and is 

practical. 

3. For the case of certainty, it is possible to introduce budget 

and time constraints, without any additional effort, after the solution 

is obtained. The added advantage of the procedure presented herein is 

that the sensitivity of changing the constraint can be immediately 

obtained. 

4. Dynamic programming proved to be a very efficient approach in 

locating the efficient set for the case of certainty. One of the claimed 
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shortcomings of dynamic programming is the fact that a lot of data 

generated during the solution procedure is not needed for the final 

result. This additional data turned out to be an important advantage 

of the dynamic programming method when applied to evaluating the time-

cost trade-off. 

5. The application of Monte Carlo simulation to the two types 

of stochastic networks proved to be a very valuable technique. It is 

especially useful in mapping the probability zones into the region of 

possible outcomes. 

6. It is possible to use the combination of the region of pos­

sible outcomes and probability zones to identify dominating opening 

policies in the case of stochastic outcomes networks. 

During the course of this research, at least three important new 

techniques or concepts were developed, as follows: 

1. The Efficient Set algorithm. This algorithm can be applied 

to any problem where a trade-off among two variables exists and where 

the problem can be structured as a DP model so that 

Y. = X. 
l l-l 

2. The labeling algorithms for formulating the decision networks 

problems as a DP model. 

3. The concept of mapping a probability zone into a determinis­

tic region. 

Thus, it can be concluded that this research has developed a 

methodology for planning with decision networks. 
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Recommendations 

In the course of carrying out this study, several potentially 

useful areas of research were revealed, as discussed in the remainder 

of this section. 

The immediate extension of this research would be to consider a 

decision network composed of a mix of activity nodes, decision vertices, 

stochastic decision vertices and stochastic vertices. The three cases 

considered in this investigation were "pure cases," consisting of only 

one type of decision vertex. 

Another extension of this research would be the investigation of 

decision networks during the scheduling and control phases of the 

project life. 

This study did not consider the time value of money. It would 

be worthwhile to introduce this concept and see how it can be incor­

porated into the methodology developed here. 

For further investigation, it is suggested that the assumption 

of a single project be relaxed so as to consider the multiproject case. 

Also, it is suggested that the problem of resource constraints be 

explored. 

The concept of mapping a probability zone into a deterministic 

zone requires further investigation. Of special interest is the case 

of overlapping probability zones, when different criteria are used. 

Finally, it is felt that the Efficient Set algorithm developed 

has many applications for other problems. Investigation of such pos­

sible applications should prove to be a valuable research effort. 
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Furthermore, extending this algorithm from the case of two returns to 

the case of n-returns with trade-off relationships seems to be a worth­

while generalization. 
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APPENDICES 
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APPENDIX A 

NON-SERIAL DP MODELS 

Diverging Branch Models 

Two general types of diverging branch models will be considered 

as follows: type I divergence and type II divergence. 

Type I Divergence 

Type I divergence has been treated in detail in Chapter IV. All 

that remains to be shown is how type I divergence can be identified 

using the second level labeling algorithm. Introducing again the deci­

sion network of Fig. 27, and applying to it the second level labeling 

algorithm, the result is as shown in Fig. 52. 

Figure 52. Type I Divergence 

Thus, type I divergence exists whenever aft decision vertices 

associated with the same stage number of the DP model have exactly the 

same multiple labels, associated with the same DDS. 
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Type II Divergence 

Type II divergence is defined as follows: Suppose that there are 

four decision vertices D^, D^, D^, D^, such that: 

Dl < D2 

Dl < D3 

Dl < \ 

and let 

D i = { d i r d i 2 } 

Then, type II divergence is the case when: 

dll < D 2 

dll < D 3 

d12 < DH 

For example, consider the following decision network: 
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Figure 53. Type II Divergence 

The equivalent DP model is as illustrated in Fig. 54. 

{21,22} 
11 {11} 1 
11 

{11,12} {31,32,41,42} 
2 1 2 {11,12} 1 

Figure 54. Type II Divergence Equivalent DP Model 

Note that it is possible to have a combination of Type I and 

Type II divergence. 

Type II divergence exists whenever part of the decision vertices 

associated with the same stage number have the same labels, as shown in 

Fig. 53. 
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Some modification of the solution procedure for type I divergence 

is required for this case. Referring to Chapter IV (p. 7 4 ) , now let: 

X, be the input variable to stage k - 1. 

X ' be the input variable to stage L I of the diverging 

branch, X ^ c x ^ . 

X be the input variable to stage k-1 without the elements 
K - J. 

of X ^ . 

Then, for the minimum time problem one gets for stage k. 

W V = W V + ^k-ixt/W + 

+ M"Cf<Ll)<t)(3Cl>'f(k-l)<t)(Xk-l);l 

For the minimum cost problem the equations are essentially the 

same as before, yielding: 

W V = W V + f(k-i)(C)(xk-i) +
 ^ L I X O K - I ' 

Type I Feedforward 

This is an extension of type I divergence, and is treated in a 

similar way. Fig. 55 illustrates an example of this case, and Fig. 56 

shows the equivalent DP model. 



184 

Figure 55. Type I Feedforward 

21,22. ;41,42; 

{11,12} {31,32} {51,52} 
S • 

Figure 56. Equivalent DP Model 

To solve for the minimum time problem, the DP model of Fig. 56 is 

transformed into a type I divergence as follows: 

{21,22} {41,42} {51,52} 

S * 
{11,12} {31,32} {51,52} 

Figure 57. Transformed DP Model 
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The type I divergence solution procedure for the minimum time 

problem can be applied now. 

The same approach is used for the minimum cost problem, with a 

different transformed DP model as shown in Fig. 58. 

{11,12} 

{21,22} {41,42} 

{31,32} {51,52} 

Figure 58. Transformed DP Model-Cost 

Type II Feedforward 

This is an extension of type II divergence, as illustrated in 

Fig. 59. The equivalent DP model is shown in Fig. 60. It is trans­

formed into type II divergence in a similar manner to that of type I 

feedforward. Then, the solution procedure of type II divergence can 

be applied. 
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Figure 59. Type II Feedforward 

{21,22} 

{11,12} 

H 

{31,32} 

{41,42} {11,12} 

y 

{31,32} 

{41,42} 

y y y y 

Figure 60. Equivalent DP Model 

It is possible to have a mix of the various non-serial models. 

Cases like this have to be handled along the guide-lines presented 

above. An excimple of such a mixed case is given in Appendix D. 
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APPENDIX B 

THE CASE OF CERTAINTY: AN EXAMPLE 

General 

This appendix includes a complete solution of the decision net­

work of Fig. 17. First, the minimum time problem is solved, then the 

minimum cost problem, and finally, the time-cost trade-off is developed, 

Minimum Time Problem 

The decomposition of this decision network was discussed in 

Chapter IV, yielding DDS , DDS , DDS DDS . 
J . -̂ o 4-

Fig. 61 shows the second level labeling algorithm as applied to 

DDS^. The bracketed number adjacent to each label is the time return 
associated with the proper d_.^_p of the previous stag e. 

DDS^ has a type II divergence, as discussed in Appendix A. The 

divergence occurs at stage 2, and: 

X ± = {11,12} 

X = {11} 

X I = {12} 

Since the diverging branch is a path from 11 to F, a dummy deci­

sion node F is added between 11 and F, to create a stage for the diverg­

ing branch. The time return associated with this stage is the critical 
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Figure 61. Second Level Labeling Algorithm--Time 
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path from 11 to F, minus the critical path from 11 to decision vertex 

2, i.e. 

129 - 79 = 50 

By doing so, the computational procedure of type II divergence 

can be applied. 

DDS has also a type II divergence (see Fig. 25), and it is 

handled in the same manner. 

The time returns of all DDS were evaluated in the same way as 

those of DDSj , and are shown later along with the DP model of each DDS. 

Minimum Time Solution for DDS.,. 

{F} 
LI >-

{11} ' LI 

{11,12} {51,52,61,62} 

2 
-

{11,12^ 1 

T . ( X .,Y.) 
l i i 

Stage 2 Stage 1 Stage LI 
11 12 51 52 61 62 F 

S 79 61 
11 

12 

85 49 

X X 

X 

86 

X 

69 
11 50 



Max(50,49) 

T 1 = f2( t)( S) = 1 2 9 

U 1 = {11,52} 

Minimum Time Solution for DDS^ . 

{21,22} {61,62} 

T.(X.,Y.); Q.(X.,Y.) 
l i l l i' I 

Stage 2 Stage 1 
21 22 61 62 

21 86 (69) 

CO
 (F) +

92 

\69/ 69 
21 

V ' 

86 (69) 

T 2 = f ^ / S ) = 1 2 7 

U 2 = {21,62} 
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Minimum Time Solution for PPS^ . 

{31,32,33} 

{31} LI 

{21,22,71,72} 

{31,32,33}! 

61,62,81,82,91,92} 

T.(X.,Y.); 
l i i 

Stage 3 
31 32 33 

54 /70\ 72 
+ 83* V32/ +32 

Stage 2 
21 22 71 72 

31 

32 

33 

+69>69 X X 

, 7\ 11 
X X l +25>25 

, 7\ 11 
X X t +25>25 

Stage 1 
61 62 81 82 91 92 

21 

22 

71 

72 

86(6?)x x x x 

86(6?)x x x x 

x x x x (25)27 

x x l ^ y S O x x 

Stage LI 

31 

Max(83,58). 

T 3 = f3 ( t )(S) = 102 

U 3 = {32,71,81} 

Minimum Time Solution for DPS . Since there is a dominating 

path by-passing decision vertex 4, this PPS cannot yield any different 

time value tha.n that of PPS^. Therefore, the decision node with the 

smaller cost is selected for vertex 4, leading to: 



192 

A 
= {41,21,62} 

The Critical Path of CDDS. Evaluating the critical path of CDDS 

(see Fig. 17) yields: 

T° = 102 

Minimum Project Time. 

T = Max(T X) = Max(129,127,102,102) = 129 
i 

A 
U" , = {11,52,21,62,32,71,81,41} max slack 5 5 5 5 5 5 s 

Minimum Cost Problem 

The DP model for this problem is essentially the same as that of 

the minimum time problem, with the exception that stage returns are 

values of c, Fig. 62 shows how the second level labeling algorithm D k I J ) 
is used to find c, ,.N for each decision node of DDS n. All activity -JK(J) 1 
nodes of Fig. 62 for which the cost has been reduced to zero are perma­

nent nodes. 

The diverging branch of DDS^ is not required for the cost problem, 

since cost elements are additive. For the more general case this means 

that the cost of the input to the diverging branch is zero. Same argu­

ment holds true for DDS„. 
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Minimum Cost Solution for DDS •1-

{11,12} {51,52,61,62} 

C.(X.,Y.); R.(X.,Y.) 
l i i l i i 

C = 155 

= {12,61} 

Minimum Cost Solution for DDS^ . 

{21,22} {61,62} 

C.(X.,Y.); R.(X.,Y.) 
i i i l i i 

S t a r e 2 S t a g e 1 

2 1 2 2 61 62 

c L78\ 1 1 2 

\ i i o / n o 

2 1 ( 1 1 0 ) 1 1 1 

o 
L78\ 1 1 2 

\ i i o / n o 2 2 ^ L O ) 1 1 1 
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C = 188 

V 2 = {21,61} 

Minimum Cost Solution for DDS 0 . 
- — • o — 

{31,32,33} ^{21,22,71,72}^ ^{61,62,81,82,91,92 

C.(X. ,YJ; R.(X. ,Y.) l l 1 l i i 
Stages 3 Stage 2 Stage 1 

31 32 33 21 22 71 72 61 62 81 82 91 92 

95 90 
188 7' 171 171 

31 

32 

33 

78\112 
l +iioAio x x 

70 / 6$ 
x + i 3 5 V i o a 

70/ 65" 
X +135V106> 

21 

22 

71 

72 

X10)111 x x x x 

(lio) 111 x x x x 

x x 138 ̂ 35) x x 

x x x x (106)108 

C = 218 

V 3 = {31,21,61} 

Minimum Cost Solution for DDS . 'I— 

r, 
CO 

i « 
CN 

i 

1 

r, 
CO 

i « 
CN 

i 

1 
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C.(X.,Y.); R.(X.,Y.) 
1 1 1 I i i 

4 
C = 191 

= {41,21,61} 

Minimum Project Cost. 

V = {12,61,31,21,41} 

C" = T c. + C_ T = 1138 
T A 1 

m. € J< 

I 

PN 

and evaluating the critical path of the minimum cost standard network 

yields: 

Time Cost Trade-Off 

Time cost trade-off is first solved separately for each DDS using 

the methodology developed in Chapter IV, and then the time cost trade­

off of the whole project is developed. 
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Time Cost Trade-Off for DDS^ . 

0.(X.,Y.) i=l...n 
1 1 1 

Stage 2 Stage 1 Stage Ll 
11 12 51 52 61 62 F 

CO
 /227Y 45 

\^J53/lll 
11 

12 

92 (6?) x x 

x x 110 (ill) 
11 0 

AO.(X. ,Y.) i=l...n-1 
1 1 1 

AQ.(X.,Y.) i=l...n-1 
1 1 1 

Stage 1 Stage Ll 
51 52 61 62 F 

11 29 0 X X 
35* 

11 0 
12 X X -1 0 

17 

(85-50)—see remark in 
step 1 (p.108) of the 
Efficient Set for a 
Decision Network. 

Efficient Set Tableau 

0 (X ,Y ) • 
n n n 
Q (X ,Y ) • 
n n n 

11 12 51 52 61 62 
290 

129 

156 

130 
11 % 

11 12 12 
-1 
17 

11 

155 
147 12 

-1 
17 

m=l 

ink C" - T 

(T 1 C 1) 

(T 1 C 1) 

( T 3 ' C 3 } 

(129,290) 

(130,156) 

(147,155) 

{11,52} 

{12,62} 

{12,61} 



Time Cost Trade-Off for DDS 

e . ( x . , y . ) 
i 1 1 

Stage 2 Stage 1 
61 62 

s 112 
111 

21 

22 

110 

110 

© 
© 

Efficient Set Tableau 

21 22 61 62 
189 T 21 -1 

17 

127 A -1 
17 22 -1 
17 

188 21 -1 
17 

144 22 -1 
17 

\ i k > T c * 

(T 2,C 2) = (127,189) W 2 = 

(T 2,^) = (144,188) W 2 = 

199 

A0.(X. , Y . ) 
l i i 

A Q . ( X . , Y . ) 
l i i 

Stage 1 
61 62 

21 -1 17 0 

22 -1 17 0 

m=l 

{21,62} 

{21,61} 
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Time Cost Trade-Off for DDS 

0.(X.,Y.) i=l...n 

Stage 3 Stage 2 Stage 1 
31 32 33 21 22 71 72 61 62 81 82 91 92 

CO 30 /"~95\ 9 0 
+189 f 20 8/f20 8 

31 

32 

33 

/^78\ 112 
l(lll/+lll X X 

/^70\ 65 
X X \^138/106 

/^70\ 65 
X X V\L38/"l06 

21 

22 

71 

72 

110 ^Ll) x x x x 

110 ̂ Ll) x x x x 

x x ^38) 135 x x 

x x x x (l06) 108 

A0.(X.,Y. ) 
l i i 

AQ.(X.,Y.) 1 _ 

Stage 2 Sta 1 
21 22 71 72 61 62 81 82 91 92 

31 0 

CO
 
CO
 

-F
 -
F 

X X 21 - i 17 0 X X X X 

32 X X 0 -34 4 22 
-1 
17 0 X X X X 

33 X X 0 -34 4 71 X X 0 -3 5 X X 

72 X X X X 0 

CM 
CM 
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Efficient Set Tableau 

Stage CM Stage I 1 
31 32 33 21 22 71 72 61 62 81 82 91 92 

/219s 30 3 29 8 31 34 
34 X X 21 -1 17 X X X X 

102 104 
32 X X 

-34 
4 22 

-1 
17 X X X X 

33 X X 
-34 

4 71, X X 
-3 
5 X X 

31 32 33 72 X X X X i 
269 31 

32 

fix 33 
X 

-3 

X 

Q 
21 

22 

X 

X 

X 

X 

X 

X 

X 

X 

106 w 31 
32 X 

51 

X 

X 

-3 

X 

Q 
21 

22 

X 

X 

X 

X 

X 

X 

X 

X 

*33 X X 
-3 71 

i 
72| 

X 

X 

X 

X 

<§> 

X X 

X X 

269 ̂ 264\ I 3 1 A X X 

106 y CM 
CO 

CO 
CO 

X 

X 

X 

X 

m=2 

For all T < T*, the one with the lowest cost is 

(108,264) W 3 = {33,72,91} 

(137,219) W 3 = {31,21,62} 

(154,218) W 3 = {31,21,61} 

Time cost trade-off for DDS, does not have to be evaluated for 
4 

the same reason that the minimum time of DDS h w.as not evaluated. 

selected. 

(T 3 C 3) 

(T 3,C 3) 

(T 3 C 3) 
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Time Cost Trade-Off for the Whole Project. The DDS efficient set 

table is used for this purpose as shown in Table 2 on the following page. 

Thus : 

tf = {11,52,21,62,33,72,91,41} 

with T* = 129 and: 

C m A = Y c + n = 7 50 + 865 = 1615 
Alld* *<D> P N 

) 

Adding C p^ = 865 to the project costs of Table 2: 

(T 1,C 1) = (130,1370) with ^ ± = {21,62,12,41,33,72,91} 

(T 2,C 2) = (137,1139) with W 2 = {21,62,12,41,31} 

obviously, the final point is 

(T % 9C*) = (154,1138) with V* = {21,61,12,41,31} 



Table 2. DDS Efficient Set Table 

DDS Common Vertices DDS-^ DDS^ DDS 3 

Vertex 2 6 
1 5 4 3 7 8 9 DDS 2,3,4 1,2,3,4 1 5 4 3 7 8 9 

14 
(58) 

48 
(92) 86 69 79 61 85 49 35 34 54 70 72 7 11 25 30 25 27 

cik(i) 78 112 110 111 227 45 92 63 10 14 30 95 90 70 65 138 135 106 108 

21 22 61 62 11 12 51 52 41 42 31 32 33 71 72 81 82 91 92 

DDS 
Cost 
DDS TIME 

_1 

n o n o m i 

_1 3 
2,4 

ou o 
264 
189 

108 
127 _1 _1 _1 

± 
1 
' 1 

1 
1 

_1 

1 290 129 1 1 

1 
3 
.. o 

PROJECT 
505 
274 

130 
137 
i iiii 

1 
1 
T 

1 
1 

X 1 
1 
I 

X 1 
1 
I 

1 
1 
X 

1 
X 

1 
X 

— 3 — T Ji 1 
-L 
1 

±-
i 

u - ± — — ± r 
n 

-±-

1 
X 

1 
X 

1 
X 

A. 

3 273 154 
-L 

1 
± 
1 X 

~T— 

1 
— i r 

1 
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® 
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(137,1139) (154,1138) 
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Figure 65. Time Cost Trade-Off 
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APPENDIX C 

THE CASE OF RISK WITH STOCHASTIC DECISIONS: AN EXAMPLE 

General 

The example treated in this appendix is the network of Appendix 

B, which is treated as a stochastic decisions network by adding the 

following probability distribution to each decision vertex. 

Decision 
Vertex Probability Distribution 

Dl Pll 
= 0.3 P12 = 0.7 

D 2 P21 = 0.4 P 2 2 = 0.6 

D 3 P31 = 0.2 P32 = 0.5 

\ P41 - 0.4 P42 = 0.6 

D 5 P51 = 0.3 P52 = 0.7 

D6 P61 = 0.2 P62 = 0.8 

D 7 p71 = 0.8 P 7 2 = 0.2 

D 8 p81 = 0.3 P82 = 0.7 

D9 P91 = 0.4 P 9 2 = 0.6 

The solution of this case follows the sequence described in 

Chapter V. 
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Project Time and Cost Extremes 

Minimum Time Problem 

From the solution of the case of certainty in Appendix B: 

T* = 129 

Minimum Cost Problem 

From the solution of the case of certainty in Appendix B: 

C* = 1138 

Maximum Time Problem 

This problem is solved in a similar manner to the minimum time 

problem of the case of certainty, substituting the minimization process 

with a maximization one. The result obtained by doing so is: 

T*, = 188 Max 

Maximum Cost Problem 

In this case, a maximization process is applied to the cost DP 

model of the case of certainty, yielding the following result: 

0 = 1714 Max 
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COST 
1800 

1600 

1400 

1200 

1000 

"Max 

max 
130 140 150 160 170 180 190 

Figure 66. Region of Possible Outcomes 

TIME 

Expected Project Time 

Optimistic Expected Time 

Before presenting the solution itself, the method of dealing with 

type II divergence is introduced. Consider the schematic representation 

of DDS., , shown in Fig. 67. The values shown near each d., ... are t , . N. 1 DM]) W D ) 

Figure 67. DDS 



209 

The expected time of this DDS^ is: 

c 
E[T] = 0.3{Max([(0.3x85+0.7x49) + 79],129)} + 0.7(86x0.2+69x0.8)+ 6l) = 

= Max[(0.3a+0.7c),(0.3b+0.7c)] 

The right side of the above equality suggests how a type II 

divergence can be treated as a Markov process. This is done by con­

sidering two separate Markov processes, one for the states {11,51,52, 

12,61,62} and one for {11,12,61,62}. The maximum of the two results is 

the expected time of this DDS. 

Similar modifications are required for other types of non-serial 

models. 

Expected Time of DDS^ . On the basis of the data of the case of 

certainty, the following matrices can be constructed. Note that two 

Markov processes are handled, as explained above. 

Case 1 

P = 

S 11 12 61 62 F CO 11 12 61 62 F 

CO 'o 0.3 0.7 0 0 0̂  s 'o 129 61 0 
11 0 0 0 0.2 0.8 1 11 86 69 

12 0 0 0 0 0 0 12 
T = 

61 0 0 0 0 0 1 61 0 
62 0 0 0 0 0 1 62 

F 0 0 0 0 0 h F 
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n = 

T = -n 

t (S) 
r. 

t (11) n 

t (12) n 
t (61) n 
t (62) n 
t (F) n 

1 

81.4 

0 

72.4 

0 

0 

0 

132.08 

0 

72.4 

0 

0 

0 

132.08 

0 

72.4 

0 

0 

0 

t ,(S) = 132.08 

Case 2 

S 11 12 51 52 61 62 F 

P = 

S 
11 
12 
51 
52 
61 
62 
F 

0.3 0.7 0 0.3 0.7 
0.2 0.8 

0 
T = 

S 
11 
12 
51 
52 
61 
62 
F 

S 11 12 51 52 61 62 F 
79 61 Q ] 

85 49 
86 69 

0 

n = 1 2 3 

t (S) 
n 

66.4 134. 72 134.72 
t (11) 
n 

58.8 58. 8 58.8 
t (12) n 72.4 72. 4 72.4 
t (51) n 0 0 0 
t (52) 

ii 
0 0 0 

t (61) n 0 0 0 
t (62) n 0 0 0 
t (F) n 0 0 0 

t ,(S) = 134.72 
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E[T X] = Max(132.08,134.72) = 134.72 

DDS^ does not have any divergence, and therefore the procedure 

described in Chapter V is applicable. DDS has a type II divergence and 

can be treated as DDS^. DDS^ does not have to be considered for the 

reasons discussed in the case of certainty. Thus, utilizing the data of 

Appendix B, and applying it as described before to DDS^ and DDS^ yields 

the following results: 

DDS_2_ E[T 2] = 150.8 

DDS 0 Case 1 t A(S) = 107.67 3— n" 

Case 2 t A(S) = 117.43 n« 

E[T 3] = Max(107.67,117.43) = 117.43 

Recalling that T° = 102, the expected project time is: 

E[T] = Max(134.72,150.8,117.43,102) = 150.8 

Pessimistic Expected Time. For the reasons discussed in Chapter 

V, the pessimistic expected time is not evaluated. Instead, a simula­

tion has to be used, as was done for the example of Appendix D. 
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Expected Project Cost 

Pessimistic Expected Cost 

Evaluation of the pessimistic expected cost follows the procedur 

described in Chapter V. Since decision vertex 2 is certain to occur, i 

should not be considered for DDS^, DDS^. Decision nodes 61 and 62 are 

common to DES^ and DDS^. 

DDS^ . On the basis of the data of the case of certainty, the 

following matrices can be formed. 

S 11 12 51 52 61 62 F 
0.3 0.7 

0.3 0.7 0 

0 

0.2 0. 

C = 

S 
11 
12 
51 
52 
61 
62 
Fl 

11 12 51 52 61 62 F 
227 45 

92 63 0 
110 111 

0 

C = -n 

n = 1 2 3 
c (S) n 99.6 198.67 198.67 
5n(ii) 71.7 71.7 71.7 

110.8 10.8 10.8 
= n(51) 0 0 0 
c (52) n 0 0 0 
c (61) n 0 0 0 
c-n(62) 0 0 0 
c-n(F) 0 0 0 

c A(S) n" = 19 8.67 
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EEC 1] = 198.67 

Applying the same method to DDS 2, D D S 3 » D D S n . » where decision ver­

tex 2 is not considered for DDS 3 and DDS^ yields the following results: 

EEC 2] = 209.20 

EEC 3] = 293.02 

EEC1*] = 12.4 

Recalling that C p^ = 865, the pessimistic expected cost is: 

EEC] = 198.67 + 209.20 + 295.02 + 12.4 + 865 = 1580.29 

Optimistic Expected Cost 

The only common decision vertex that should be considered is 

"6." 

IT (12) = 0.7 

TT 1(21U22) = 1 

c 2(22) = c 2(12) = 110.8 

(0.7)(1)(110.8) = 77.56 

c 2(21) = 

E [ C C N ] = 
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E[C] = 1580.29 - 77.56 = 1502.73 

Most Probable Project Network 

The most probable project network is shown in Fig. 68. Its time 

and cost is: 

T = 161 

C = 1437 



Figure 68. Most Probable Project Network 
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APPENDIX D 

THE CASE OF RISK WITH STOCHASTIC OUTCOMES: AN EXAMPLE 

General 

This appendix includes a complete solution of the stochastic 

outcomes network of Fig. 69. Decomposition of the stochastic outcomes 

network into DDS was done following the first level labeling algorithm 

of Chapter IV. The cost return and time return associated with each 

stochastic outcome were obtained following the procedure of Chapter VI, 

and are shown in the time and cost matrices of the various DDS. 

The solution of this case follows the sequence described in 

Chapter VI. 

Minimum Expected Project Time 

Following is an evaluation of the minimum expected project time. 

Shown are the return matrices only. Note the addition of the dummy 

decision F and the time associated with it, for DDS^, DDS^. This was 

done for the same reasons discussed in the case of certainty. 
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Figure 69. Stochastic Outcomes Network 
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DDS •1-

{11,12} 

{122} 

{F} 
21 

{21,22} r> Maximum 

{122} 11 
{212,221,222} 

{211} 

{111,112,121} 
{41,42,51,52} 

1 

Figure 70. DDS^ (Type II Divergence and Type II Feedforward) 

In order to achieve a compact presentation of the solution, the 

stochastic matrices P J 1 have been imbedded in Q . ( X . ,Y. j A 1 ) . Thus, P"^ 

for example, which is equal to: 
*i i' l 

P " = 

41 42 51 52 F 
411 r0.4 
412 
421 

0.6 
0.5 0 

422 0.5 
511 0.2 
512 0.8 
521 0.3 
522 0 0.7 
F 



Table 3. T ^ X ^ Y ^ 1 ) ; (̂ (X.. ,Y± ,A 1) ; CuCX^Y..) for DDS 1 

Stage 2 Stage 21 Stage 11 Stage 1 
11 12 F . 21 22 41 42 51 52 F 

111 112 121 122 211 212 221 222 411 412 421 422 511 512 521 522 
0.3 0.7 0.2 0.8 1 0.5 0.5 0.6 0.4 0.4 0.6 0.5 0.5 0.2 0.8 0.3 0.7 

111 51 44 48 49 X X X X X 

CO 

80 54 
+ 46. 8 +

5 1
 +

5 2 , 58.5 58* 122 58 122 16 67 
58.5 

30 75 112 

121 

211 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

49 71 

49 71 

X X 

69 54 

69 54 

0 

111 (46.8) 48.5 

112 X X X X 0 

CO (75.84J 109. 8 122 122 69.75 © 121 

211 

X 

X 

X 

X 

66.6 

66.6 

( 5 8 ^ 5 ) 

( 5 8 . 5 ) 

'*Max(58,48). 
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1 "I E[T ]* = f_, .(S) = 75.84 2(. c) 

411^ 
111— 41 ^ 

11^ ^ 4 1 2 
^ 1 1 2 

DDS^ (Type II Divergence) 

{F} 
(311} 

31,32 

11 

,-311,312, 
321,322 

{21,22,61,62} {51,52} 
1 

DDS 3-

E[T 2]* = 103 (See Table 4.) 

U 2 = <̂ 32 
321 61' 

322 

.611 

-612 

{21,22} {51,52} 
* 2 > 1 • 



Table 4, T.(X.,Y. 9L\ X); Q.(X. , Y . 5 A 1 ) ; Q.(X.,Y.) for DDS_ 
1 1 1 , ' ' i l l i i i i 

Stage CO
 Stage 2 C 4 - ^ ^ - "J Stage 11 

F 
311 312 321 322 211 212 221 222 611 612 621 622 F 511 512 521 522 
0.4 0.6 0.8 0.2 0.5 0.5 0.6 0.4 0.3 0.7 0.9 0.1 1 0.2 0.8 0.3 0.7 1 

311 14 67 
58.5 

30 75 X X X X X 

GO
 69 99 

+ 58* 
66 

+ 35.5 
109 312 

321 

322 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

32 37 

X X 

X X 

36 41 

X X 

0 

0 

211 49 71 69 54 311 58 

311 69.75 © X X X 

s—\ 312 X X X X X cn 110.2 (103) 
321 

322 

X 

X 

X 

X 

^5?5) 

X 

36.5 

X 

X 

0 

211 66.6 (58.5j 311 0 

"Max(48,58). 



Table 5. T.(X. , Y . ; Q.(X.,Y.,A 1); Q.(X.,Y.) for DDS„ 
1 1 1 1 1 1 1 1 1 3 
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Stage CM Stage 1 
21 22 51 52 

211 212 221 222 511 512 521 522 
0.5 0.5 0.6 0.4 0.2 0.8 0.3 0.7 
29 82 

+ 58.5 
45 90 211 49 71 69 54 

cn 84.75 © 211 66.6 ^ 5 ) 

E[T 3]* = 63 

U = ^ 2 2 ^ '> 
d [ ^ - 2 2 2 

CDDS T° = 73 

Minimum Expected Project Time 

E[T]* = Max(75.84,103,63,73) = 103 

I T = <̂  

11-

22 

32 

111 41-

•112 
221 

411 

412 

222 
321- 61' 

611 

612 
322 



223 



224 

Expected Cost of the Minimum Expected Time 

Using the PRN of Fig. 71 one obtains: 

DDS 1 

P = 

S 
111 
112 
411 
412 

F 

S 111 112 411 412 F 
0 0.3 0.7 Q 

0.4 0.6 
1 
1 
1 
1 0 

T = 

S 
111 
112 
411 
412 

F 

S 111 112 411 412 F 

69 38 0 ̂  
60 53 

0 

C = -n 

n = 1 2 CO
 

c (S) n 47.3 64.04 64.04 

c n(lll) 55.8 55.8 55.8 

c (112) n 0 0 0 

c (411) 
n 

0 0 0 

c (412) n 0 0 0 

="n(F) 0 0 0 

c 2(S) = 64.04 

E C c l ] E [ T 1 ] A = 6 l + , 0 l + 

Using the same approach for DDS^s ^DS^, the following values are ob­

tained: 

E [ C ^ ] e [ t 2 ] * = 210.72 
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E[C 3] 'EETS]* = 72.4 

since: 

C 
PN 

= 207, 

then: 

EEC] 'EET]* = 64.04 + 210.72 + 72.4 + 207 = 554.16 

Minimum Expected Project Cost 

Decision vertex 2 is common to DDS^, DDS^ s DDS^. However, since 

cost is additive (unlike time), and since decision vertex 2 is certain 

to be encountered, it should be considered for DDS^ only. (See the 

"Cost Refinement" of the case of certainty.) 

DDS, -1-

{11,12} {41,42,51,52,F} 
2 1 

EEC"]* = 54.56 (See Table 6.) 



Table 6. C.(X.,Y.,A 1); R.(X.,Y.,A 1); R.(X.,Y.) for DDS, 
1 1 1 ' 1 1 1 ' ' 1 1 1 1 

Stage 2 Stage 1 
11 12 41 42 51 52 

111 112 121 122 411 412 421 422 511 512 521 522 F 
0.3 0.7 0.2 0.8 0.4 0.6 0.5 0.5 0.2 0.8 0.3 0.7 1 

111 60 53 63 62 X X X X X 

c 69 38 45 40 112 X X X X X X X X 0 
o + 55.8 67.8 121 X X X X 47 73 111 83 X 

122 X X X X X X X X 0 

y -
111 ( 5 5 . 8 ) 72.5 X X X 

CO
 64.04 (54.56) 112 ^ ' 

X 
X X 

f N 
X 0 

121 X X (67. 8j 91.4 X 

122 X X 
>—/ 

X X 0 

DDS_2_ (A Two-Stage Model) 

Table 7. C.(X.,Y.,A 1); R.(X.,Y.,A 1); R.(X.,Y.) for DDS 0 1 1 1 1 1 1 ' 1 1 1 2 

Stage 2 Stage 1 
31 32 61 62 F 

311 312 321 322 611 612 621 622 
0.4 0.6 0.8 0.2 0.3 0.7 0.9 0.1 

311 X X X X 0 

CO 58 60 35 90 
+155.5 312 

321 

X X 

208 205 

X X 

171 164 

0 

322 X X X X 0 

311 

CO s 170.4 312 

321 

322 

205.9 ^ 5 5 ? ^ 



E[C 2]* = 59.2 

DPS (A Two-Stage Model) 

Table 8. C.(X. ,Y.jA 1); R.(X.,Y.,A 1); R.(X.,Y.) for DDS 0 1 1 1 1 1 1 ' ' l i ' i 3 

Stage 2 Stage 1 
21 22 51 52 

212 212 221 222 511 512 521 522 F 
211 47 73 111 83 X 

CO 

150 125 
+ 67.8 

72 73 212 
221 

X X 

X X 

X X 

X X 

0 
0 

222 X X X X 0 
211 (67.8) 91.4 
212 V / 

X 
X 0 

CO
 171.4 U2.4J 221 X X 0 

222 X X 0 

E [ C 3 ] A =72.4 

Minimum Expected Project Cost 

Since C D = 207, the minimum expected project cost is: 

E[C]* = 54.56 + 59.2 + 72.4 t 207 = 393.16 
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Expected Tine of the Minimum Expected Cost 

Using the PRN-Cost of Fig. 72, and following the procedure 

described in Chapter V, the following values are obtained: 

DDS., 

Case 1 t (S) = 103.52 

Case 2 t 2(S) = 111.52 

then: 

E [ T l ]E[cl]* = M ^ 1 0 3 - 5 2 ' 1 1 1 - 5 2 ) = 1H.52' 

DDS 2 

Case 1 t 2(S) = 106.2 

Case 2 t 2(S) = 110.2 
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then: 

E[T 2] £ |- c2- ] i V = Max(l06.2,110.2) = 110.2 

D D S o -

E [ T 3 ] E [ c 3 ] i V = 63 

CDDS 

T° = 73 

The expected time of the minimum expected cost is: 

E [ T - 1 E [ C ] A = M a x ( l i : L - 5 3 » 1 1 0 - 2 > 6 3 » 7 3 ) = 111-53 

Region of Possible Outcomes 

Region of Possible Outcomes for the Whole Project 

Following the method described in Chapter VI and the procedure 

for the case of certainty (Chapter IV), the following results are 

obtained. 

Time Extremes. 

Maximum Time: T M = Max(137,154.90.73)= 154 

and the associated curtailed strategy is: 
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{31-311,21-211,51-512} 

Minimum Time: T„. = Max(54,98,45,78) = 9 8 M m 

and the associated curtailed strategy is: 

{11-112,22-221,32-321,61-611} 

Cost Extremes. 

Maximum Cost: C„ = 132 + 243 + 261 + 207 = 843 Max 

and the associated curtailed strategy is: 

{11-111,21-211,32-321,42-421,52-521,61-611} 

Minimum Cost: C... = 38 + 58 + 72 + 207 = 375 M m 

and the associated curtailed strategy is: 

{11-112,22-221,31-311} 

The region of possible outcomes for the whole project is 

illustrated in Fig. 73. 
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COST 

9 8 100 111 120 130 140 150 TIME 

Figure 73. Region of Possible Outcomes 

Region of Possible Outcomes for an Opening Policy 

Applying the procedure described in Chapter VI to each stochastic 

outcomes network resulting from the selection of an opening policy, the 

values summarized in Table 9 are obtained. 

Table 9. Region of Possible Outcomes for H. 
l 

Opening Minimum Maximum Minimum Maximum 
Policy Time Time Cost Cost 

H1={11,21,31} 99 154 408 660 
H2={11,22,31} 99 144 375 472 
H3={11,21,32} 98 131 460 843 
H4={11,22,32} 98 131 407 655 
H5={12,21,31} 100 154 430 573 
H6={12,22,31} 100 144 377 496 
H?={12,21,32} 100 137 462 756 
HQ={12,22,32} 100 137 409 679 

843 
800 

700 

600 

500 

400 
375 
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These regions are illustrated in Figs. 74 and 75 along with 

the simulation results. 

Most Probable Outcome 

Minimum Expected Time Strategy 

Referring to Fig. 71, the most probable path for each DDS is 

DDS 1 (11-112) with T 1 = 5 4 C 1 = 38 

DDS_2__ (32-321,61-611) with T 2 = 104 C 2 = 240 

DDS 0 (22-221) with T 3 = 45 C 3 = 72 o— 

Recalling that T° = 73 and C p^ = 207, the most probable values 

for the minimum expected time strategy are: 

T = Max(54,104,45,73) = 104 

C = 38 + 240 + 72 + 207 = 557 

Minimum Expected Cost Strategy 

Referring to Fig. 72, the following values are obtained, 

DDS 1 (12-122,22-221) with T 1 = 110 C 1 = 40 

DDS_2_ (31-312) with T 2 = 99 C 2 = 60 

DDS 3 (22-221) with T 3 = 45 C 3 = 72 
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The most probable values for the minimum expected cost strategy-

are : 

T = Max(110 ,99 ,72,73) = 110 

C = 40 + 60 + 72 + 207 = 379 

Evaluation of Risk in an Optimal Strategy 

Tables 10 and 11 show the paths probabilities for the two optimal 

strategies. For comparison, the simulation results discussed in the 

following section are shown here, too. 

Evaluating the expected values for the minimum expected time 

strategy (Table 10), one gets: 

E[T] = 110.14 

E[C] = 347.16 + 207 = 554.16 (where C m , = 207) 
PN 

Note that the expected cost is the same as the one obtained 

before, where the value of E[T] is the exact value vs. the lower bound 

(103) that was previously obtained. 

The expected values for the minimum expected cost strategy 

(Table 11) are: 

E[T] = 123.7 

E[C] = 186.16 + 207 = 393.16 (where C n M = 207) 
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Table 10. Path Enumeration for the Minimum 
Expected Time Strategy 

111 112 211 412 221 222 321 322 611 612 

Time Cost 

Simula­
tion 

Results 

80 54 51 44 45 90 66 109 32 37 

Time Cost 

Simula­
tion 

Results 
69 38 60 53 72 73 35 90 208 20 5 Proba­

Time Cost 

Simula­
tion 

Results 0.3 0.7 0.4 0.6 0.6 0.4 0.8 0.2 0.3 0.7 bility Time Cost 

Simula­
tion 

Results 

X X X X 0.0144 131 291 0.017 
X X X X 0.0096 131 292 0.004 
X X X X X 0.01728 131 444 0.013 
X X X X X 0.04032 131 441 0.029 
X X X X X 0.01152 131 445 0.008 
X X X X X 0.02688 131 442 0.044 
X X X X 0.0216 124 284 0.012 
X X X X 0.0144 124 285 0.018 
X X X X X 0.02592 124 437 0.020 
X X X X X 0.06048 124 434 0.072 
X X X X X 0.01728 124 438 0.026 
X X X X X 0.04032 124 435 0.029 

X X X 0.084 109 200 0.082 
X X X 0.056 109 201 0.058 
X X X X 0.1008 98 353 0.085 
X X X X 0.2352 103 350 0.278 
X X X X 0.0672 98 354 0.082 
X X X X 0.1568 103 351 0.123 

1.0000 1.000 
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Table 11. Path Enumeration for the Minimum 
Expected Cost Strategy 

121 122 511 512 221 222 311 312 

451 
(110) 

52 49 71 
(45) 
30 

(90) 
75 69 99 

45 40 47 73 72 73 58 60 Pr ob a- Simulation 
0.2 0.8 0.2 0.8 0.6 0.4 0.4 0.6 bility Time Cost Results 

X X X X 0.0384 122 251 0.030 
X X X X 0.0576 122 250 0.067 
X X X X 0.0256 144 249 0.011 
X X X X 0.0384 127 248 0.044 

X X X 0.19 20 127 173 0.190 
X X X 0.2880 110 172 0.296 
X X X 0.1280 144 171 0.135 
X X X 0.1920 127 170 0.19 8 

X X X X 0.0096 100 225 0.010 
X X X X 0.0144 100 224 0.001 
X X X X 0.0064 144 223 0.018 
X X X X 0.0096 127 222 0.000 

1.000 1.000 

Simulation 

Evaluation of Risk in an Optimal Strategy 

Using the PRN-Time and PRN-Cost of Figs. 71 and 72, 2000 simula­

tion runs were performed, as described in Chapter VI, in order to obtain 

the probability distribution of time and cost values. The results of 

these simulation runs are shown in Tables 10 and 11. 
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Probability Associated with an Opening Policy 

Following the procedure described in Chapter VI, 1000 simulation 

runs were performed for each of the two criteria, namely the minimum 

time criterion and the minimum cost criterion. The results are sum­

marized in Tables 12, 13, 14, 15, and Figs. 74, 75. 

The curtailed strategies 0 * are shown for policies H through 

only, because of the reasons mentioned in Chapter VI. 

Table 12. Simulation Results: Minimum Cost Criterion 

H. 
l H 2 H 6 

0.705 0.29 5 

T 99 127 144 100 110 122 127 144 

P(T) .594 .236 .17 .026 .315 .101 . 396 .162 

E[T] 113.25 123.18 

C 168 169 170 171 170 171 172 173 222 224 248 249 250 251 

P(C) .235 .172 .327 .266 .15 .135 .315 .20 .02 .023 .033 .027 .047 .05 

E[C] 169.45 186.07 

NOTE: C m T = 207 should be added to all values of EEC]. 



Table 13. Simulation Results: Minimum Time Criterion 

H. 
T 

H l H 2 H 3 H„ 4 H_ 
D 

0.15 0 172 0 145 0.239 0 046 

T 99 99 124 98 102 103 109 98 102 103 109 105 115 119 120 

P(T) 1 .994 .006 .406 .42 .151 .023 .39 .40 .07 .14 .195 .154 .347 .304 

E [ T ] 99 99 .1 100.67 101 47 115.7 

C 223 295 331 170 171 255 253 325 361 369 406 441 475 477 478 514 200 316 317 350 353 225 29 7 313 333 338 341 

P(C) 0. 58 0.167 .263 .965 0 03 .005 .09 .03 .03 .213 .234 .019 5 .019 5 .193 .02 .151 .138 .37 .045 .067 .38 .347 .152 .108 .282 .086 .025 

EEC] 262.2 170.04 413 85 316.26 288.5 

H. 
l 

H 6 H8 
P H . 

l 
0.098 0.067 0.083 

T 100 105 110 120 127 105 109 115 119 120 100 102 105 109 110 120 

P(T) .03 .112 .775 .013 .07 .09 .05 .07 .42 .37 .06 .05 .012 .012 .746 .120 

E [ T ] 110.35 117.33 110.06 

C 172 173 224 260 288 363 371 375 408 443 451 459 479 480 496 516 521 524 202 290 318 352 355 370 407 434 443 471 

P(C) .775 .07 .03 .112 .013 .149 .223 .0135 .194 .0135 .0135 .06 .10 .06 .03 .06 .0135 .07 .072 .012 .313 .072 .325 .05 .05 .084 .011 .011 

EEC] 184.96 426.8 343.57 

Note: C = 2 0 7 should be added to all values of E E C ] . 
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Table 14. Simulation Results: U 

H. 
1 

T C H. 
i 

U 

99 223 

99 29 5 

99 331 

11-112 1 
V21-211-51-511f 
31-312 v. J 
11-112 1 <21-211-52-522$ 
L31-312 1 

99 170 
11-112] 
<22-221 
31-312 

1 

fii-112 
99 171 <22- 222^ 

[31- 312 
* 

124 255 
Pll-111-41-412*1 
J 2 2 - 2 2 2 r 
1̂ 31-312 J 

102 316 

98 353 

103 350 

109 200 

f l l - 1 1 2 ] 
<' 2 2 - 2 2 1 j" 
[ 3 2 - 3 2 1 - 6 2 - 6 2 l J 

1 1 - 1 1 2 
2 2 - 2 2 1 
3 2 - 3 2 1 - 6 1 - 6 1 1 

11-112 
< 22-221 
32-321-61-6121 

11-112 
22-221 
32-322 

98 

98 

98 

102 

102 

102 

103 

109 

109 

109 

514 

478 

406 

477 

369 

441 

475 

253 

325 

361 

fll-112 
21-211-52-522? 
J32-321-61-611 

111-112 
21-211-51-511i> 
(32-321-61-611 

fll-112 
<J21-212 
32-321-61-611 

[11-112 
21-211-52-
32-321-62-

522 
621 

fll-112 
[21-212 
[32-321-62-621 

fll-112 
21-211-51-
[32-321-62-

fll-112 
21-211-51-
J32-321-61-

"II-II2' 
21-212 
32-322J 

11-112 
21-211-51-511 
32-322 

11-112 
21-211-52-522 
32-322 
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Table 15. Simulation Results: V 

T C 

99 

99 

127 

144 

'171 

170 

168 

169 

p . 1 - 1 1 2 
{ 2 2 - 2 2 1 . 
l 3 1 - 3 1 2 j 

[ll -112] 
2 2 - 2 2 2 
3 1 - 3 1 2 

11-112 
<22- 221 
31- 311 

f u - 112' 
<22- 222 
|31-311 

1 0 0 

110 

122 

122 

127 

127 

127 

127 

144 

144 

224 

172 

250 

251 

222 

170 

248 

173 

249 

171 

1 2 - 121-•51 
2 2 - 221 
[31- 312 

1 1 2 - 122' 
2 2 - 221 > 

[31- 312 
j 

f l 2 - 121--51 
22- 221 
31- 312 

[12-121-51-512 
J22-222 
(31-312 

(l2-121-51-51l| 
22-221 
(31-311 

p.2-122" 
22-222 
[31-311^ 

(12-121-51-512 
22-221 . 
[31-311 J 

1 
[ 1 2 - 1 2 2 1 
2 2 - 2 2 2 

J 3 1 - 3 1 2 ^ 

1 1 2 - 1 2 1 - 5 1 - 5 1 2 
2 2 - 2 2 2 

1^1-311 

[ l 2 - 1 2 2 
{ 2 2 - 2 2 2 
1 3 1 - 3 1 1 
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Figure 74. Region of Possible Outcomes and Probability Zones 
for Opening Policy : Minimum Time Criterion 
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APPENDIX E 

EFFICIENT SET ALGORITHM: AN EXAMPLE 

This appendix includes an example of a six-stage DP model of the 

type shown in Fig. 31 of Chapter IV. The efficient set algorithm-time 

version is used. Table 16 shows the return matrices of this model, 

along with Q.(X.,Y.), 0.(X. ,Y.) and AO. (X.,Y.), AQ.(X.,Y.). The mini-
TO I i i i i i 1 1 1 1 1 1 

mum cost solution (not shown) of this problem yields: 

Tc* = 5 6 

C* =99 

The efficient set tableau is shown in Table 17. Note that all 

starred elements are circled. For ease of reading the table, only 

elements conforming to condition b(4) of step 7 of the algorithm 

are crossed. 

Table 18 shows the admissible point test, and Fig. 76 illustrates 

the efficient set. 



Table 16. DP Model Matrices 

T . < X . , Y . ) ; Q . ( X . , Y . ) 

S t a g e 6 

23 29 30 

3 1 30 35 39 

S t a g e 5 

10 8 7 
2 1 24 + 2 7 

6 9 5 
2 1 24 + 2 7 

9 ( 5A 7 
2 1 V 2 4 / 2 7 

14 10 6 
2 1 24 + 2 7 

S t a g e 4 
10 1 1 12 

l ^ ~ 4 \ 7 6 4 
^ 1 4 / ^ 1 8 + 1 5 + 2 2 

15 8 F 6 \ 10 
+ 1 4 + 1 8 V 1 5 / 2 2 

1 1 1 4 / 9 
14 + 1 8 V l 5 / ' 2 2 

14 15 CY2\ 10 
+ 1 4 + 1 8 \ ! j 5 y + 2 2 

S t a g e 3 
13 14 15 16 

10 

1 1 

12 

6 14 
+ 1 1 + 9 

9 1 1 
+ 1 1 + 9 

8 9 
+ 1 1 + 9 

12 / 13 
+ 1 1 ( + 

LLJ 10 

7 A . 1 0 
1 1 / 10 

+ i V i o , 

1 4 15 
1 1 10 

S t a g e 2 
_LZ 18 19 ?n 

13 

14 

15 

16 

7 ) 8 10 5 
\ > 6 + 8 + 1 0 

5 A 9 6 6 \ K + 8 + 1 0 

S t a g e 1 
2 1 22 23 24 

17 

18 

19 

20 

© 6 7 5 

© 8 15 

9 14 10 

10 12 15 13 

C . ( X . , Y . ) ; e . ( X . , Y . ) 

2 1 / 2 4 V 22 16 
I17V 1 2 7 / 102 142 

138 1 5 1 124 158 

+ 2 0 Y 17 + 5 0 + 2 5 
9 7 / 100 80 93 

3 0 \ 35 40 25 
9 7 / 100 80 93 

18 1 5 / 2 2 \ 3 0 
97 100 ^ 8 0 / 9 3 

> 5 \ 30 25 20 
1^97 / ^100 80 93 

1 1 \ 15 
+ 8 6 / + 8 4 

+ 25 18 
86 84 

20 15 
+ 8 6 + 8 4 

42 1 8 , 
+ 8 6 + 8 4 ' 

12 30 
+ 6 8 + 9 1 

3 2 \ 40 
_ 6 8 / 9 1 

I ^ N 30 
6 8 / 9 1 

2 5 \ 12 
+ 6 8 > 9 1 

10 

1 1 

12 

34 18 
55 55 

+ 25 24 
55 55 

32 42 
+ 5 5 + 5 5 

24 / 36 
55 V55. 

32A. 20 
5 4 / 50 

3 0 Y 2 8 
5 4 / 50 

2 8 / ^ 

42 28 
54 + 5 0 

13 

14 

15 

16 

2 5 \ 50 15 20 
+ 3 0 / f 3 2 + 3 0 + 1 2 

2 5 ^ 4 0 35 30 
+ 3 0 / + 3 2 + 3 0 + 1 2 

30 / 2 2 Y . 1 5 18 
+ 3 0 V 3 2 / ' 3 0 12 

2 0 \ 25 30 45 
' 3 0 / " 3 2 30 12 

17 

18 

19 

20 

3 0 ) 12 15 10 

40 32 18 25 

3 0 ) 12 15 20 

1 2 ) 25 18 42 

A 0 1 ( X i , Y . ) 

A Q i ( X i , Y . ) 

1 0 0 
8 

13 
9 

1 
11 5 0 2 

7 
- 1 7 

3 
24 

8 9 3 
3 

- 1 3 
9 

0 - 1 6 
2 13 0 27 

3 
- 1 0 

7 
- 2 3 

4 17 0 - 1 8 
2 

- 1 5 
3 

- 2 0 
1 

2 0 10 
3 

- 7 
9 

-9 
8 6 1 1 

8 
- 2 

5 
0 3 1 

1 10 - 4 
2 

- 5 
2 

0 - 6 
2 14 0 17 

6 
10 

5 
- 1 3 

7 18 8 
3 

0 - 1 4 
2 

- 7 
9 

3 13 
1 

12 
1 

0 21 
5 7 26 

1 
19 

8 
0 4 1 

6 1 1 19 
4 

29 
3 

14 
2 

0 15 6 
1 

0 - 9 
5 

- 2 4 
1 1 19 0 - 1 8 

1 
- 1 5 

6 
- 1 0 

2 

4 0 - 1 0 
5 

- 3 7 
4 

-29 
3 8 35 

1 
9 
6 

0 10 
5 12 - 1 2 

1 
0 5 

3 
- 1 3 

3 16 0 7 
6 

10 
12 

7 
12 20 0 13 

2 
6 
5 

30 
3 

ro 



Table 17. h'rricient Set Tableau 

Step 7, (b), (4) 

Step 7, (b), (4) 

NO 
-P 
cn 



Table 18. Admissible Point Test 

T C 
A 
o. 
: 

W 
e 

1 30 151 (30,151) {2,5,9,15,18,22} = U* 

CM 31 138 (31,138) {1,5,9,15,18,22} = W 
3 32 135 (32,135) {2,5,9,16,17,21} = W 2 

4 32 137 
5 33 115 (33,115) {2,5,9,16,17,24} = W g 

6 33 122 
7 33 124 
8 34 102 (34,102) {1,5,9,16,17,24} = 
9 34 114 
10 35 101 (35,101) {1,5,11,16,17,24} = W 5 

11 35 124 
12 36 104 
13 39 101 
14 39 158 
15 40 100 (40,100) {3,5,11,16,17,24} = W g 

16 41 142 
17 41 144 
18 42 122 
19 43 109 
20 44 101 
21 52 112 
22 56 99 (56,99) {4,8,12,13,19,22} = V * 
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30 
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40 50 60 

N 
Figure 76. The Efficient Set 
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APPENDIX F 

NOTATIONS AND ABBREVIATIONS 

A - set of arcs. 

B = (b. .) - the predecessor matrix. 

C - project cost. 

C* - minimum project cost. 

- project ith cost value. 

C 1 - cost of DDS.. 
1 

CT.,. - minimum cost of the minimum time solution. 

Cp^ - cost of the permanent nodes. 
C = (c.i.) - mxm cost matrix associated with the Markov Process. = Dll 
C = [c (i)] - expected total cost return vector - Nxl. -n n ; * 
C.(X.,Y.) - cost matrix for stage i. i i i & 

C.(X.,Y..A1) - cost matrix for stage i for the stochastic outcomes i l l 
network. 

(CP) - critical path. 

CDDS - conjunctive decision dependent subnetwork. 

c^ - cost associated with activity node itk. 
c . w . v - cost associated with decision node d., , ]k(]) ]k(]) 
c, / - N T / I N

 - cost associated with outcome node 6 . w . N W l v . ]k(])l(k) ]k(])l(k) 

DDS^ - the ith decision dependent subnetwork. 

D = {D.} - the set of decision vertices. 

D. = {d., / . N } - the ith decision vertex (decision set). 
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djk(j) - the k(j)th decision node (decision alternative) of 
decision vertex D.. 

: 
2 

E - a two-dimensional space. 

E[ ] - expected value. 

E[ ]" - minimum expected value. 

F - the last node of the network. 
f./^\(X.) - the minimum time at stage i as a function of the input i(t) 1 . to ^ variable. 
f , *(X ) - minimum n stage time return. n(t) n 
f 1

/ j N ( X ) - minimum n stage time return for DDS.. n(t) n l 
f . f N(X.) - the minimum cost at stage i as a function of the input i(c) 1 . 

variable. 

f , *(X ) - minimum n stage cost return. n(c) n 
f 1, X(X ) - minimum n stage cost return for DDS.. n(c) n to l 
f..( ) - expected values for all f's above. 

G( ) - a directed network. 

g.(X.,Y.) - state transformation at stage i. i i i 
- t h e i t h o p e n i n g p o l i c y . 

J = {i.} - set of nodes of a decision network. J l 
(c) 

J - set of nodes of CDDS. 
i / P ^ - set of nodes of P R N . 

j(s) _ {-(s}j_ g e t Q f n o d e s o f a D D S > 
Ji 

- set of nodes of the standard network. 

L(Z k) - the length of the kth path from S to F. 

M = {m.} - set of activity nodes, l J 

N - set of permanent nodes. 

0 = {o.} - set of all possible outcomes. 
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0 : : = {o.} - the efficient set. 
: 

P( ) - probability of . . . 
P = {p.i.} mxm transition matrix (stochastic matrix) associated — ~l I 

J 1 with the Markov process. 

P 1 - nxr stochastic matrix of stage i. 

PRN - partially reduced network. 

p. ... - the probability associated with decision node jk(j) 
djk(j)-

p_. | . - the conditional probability that a system which 
now occupies state i will occupy state j after 
its next transition. 

p . , / . v /, v - probability associated with outcome node 
]kl] j m k J ~ 

jk(j)Kk)* 
Q.(X.,Y.) = (q..,) - the i-stage time matrix, l i i i]k 
Q.(X.,Y.) - mxr i-stage expected time matrix, i l l 
Q.tX.jY.jA1) - i-stage time matrix for the stochastic outcomes 

network. 

AQ.(X.,Y.) = (Aq . .., ) - the time increment matrix for stage i. l l l i]k 
R.(X.,Y.) = (r. ., ) - the i-stage cost matrix. 
i i i 1 3 k 

R.tX.jY.jA1} - the i-stage cost matrix for the stochastic out-
1 1 1 comes network. 

R.(X.,Y.) - mxr i-stage expected cost matrix. 
1 1 1 

RCN - reduced cost matrix. 

S - the first node of the network. 

T - project time. 

T* - minimum project time. 

T\ - project ith time value. 

T 1 - time of DDS.. 
1 

T , - time of minimum cost solution. C : : 
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T = (t...) 

= : |i 

f = (t ( D ) 
-n n 
T.(X.,Y.) 
1 1 1 T.(X.,Y.,A1) l i i 
(T ,C ) 
P P 

t. 
l 

t j k ( j ) K k ) 

A 

i 
u* 

A 
0? 
1 
A 

0" 

0" 
A A A A 

v^,v",v^,v",^ 

e 
W 
e 

X. = {x..} 
i i: 

Y. = {y. .} 

A 1 

A j k ( j ) = { 6 j k ( j ) l ( k ) } 

6 j k ( j ) l ( k ) 

mxn time matrix associated with the Markov 
process. 

expected total time return vector - Nxi. 

time matrix for stage i. 

time matrix for stage i for the stochastic 
outcomes network. 

time-cost pair of a promising point, 

duration associated with activity node I T K . 

duration associated with decision node d.., / . N. 
:k(:) 

duration associated with outcome node 
6jk(j)l(k)* 
optimal minimum time policy for DDS^. 
optimal minimum time policy for the whole 
proj ect. 

optimal minimum expected time strategy for DDS_^. 

optimal minimum expected time strategy for the 
whole project. 

curtailed strategy for the minimum time 
criterion. 

same as above for cost values. 

the policy associated with the pair ( T^ 9C^). 

the policy associated with ( T
e S C e ) . 

state variable of stage i. 

decision variable of stage i. 

the set of random variables of stage i. 

the random variable associated with decision 
node d., , . >. at stage i. ]k(]) 
outcome node associated with decision node 
djk(j)-
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0.(X..Y.) = (6.., ) - the i-stage cost matrix of the minimum time 
1 i i ijk ° solution. 

A0.(X..Y.) = (AS..,) - the cost increment matrix of the minimum time l i i ijk n . . 
J solution. 

fi?(X.,Y.) = (co™ ) - the time change matrix for stage i when the 
1 1 1 1 ~] .K r procedure starts at stage m. 

$™(X^,Y^) = (^'k ) " the cost change matrix for stage i, when the 
^ r procedure starts at stage m. 
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