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SUMMARY

The general purpose of this research is to develop a methodology
for evaluatirg projects during the planning phase, when there are alter-
native methocCs of achieving the stated goals of a given project. The
emphasis in this study i1s on the managerial decision making process
invelved iIn approving or rejecting a project.

A network model is used to represent the project, and since this
network includes all possible élternatives of performing the project,
it is called a decision network.

Three types of decision networks are considered in this research.
The first type is a case where all alternatlives are known with certainty
during the planning phase, and the other two types describe cases where
uncertainty is associated with each alternative, described by a proba-
bility distribution. Thus, this study handles both deterministic and
stochastic decision networks.

No assumptions are made relative to the decision maker. Instead,
inputs to the decision making process are developed. The two parameters
considered are time and cost.

For the deterministic network, the problem is that of selecting a
particular set of alternatives to be performed, each represented by its
time and cost values. The input to the decision making process developed
for this case takes the shape of a time-cost trade-off relationship,
where the interesting sets of alternatives are those that yield a lower

cost value for a higher time wvalue.
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For the stochastic networks, a variety of inputs to the decisiecn
making process is developed, utilizing various criteria of choice.
These inputs supplement each other and enable the decision maker to
make his evaluation on the basis of a broad information base.

The procedure introduced in this research is based upon discrete
dynamic programming concepts for the deterministic network, and
stochastic discrete dynamic programming for the stochastic networks.

In addition, Monte Carlo simulation is applied to the stochastic net-
works.

A series of numerical exémples is used to supplement the method-
ology developed in this study, demonstrating that the computation pro-
cedure is not complex, and is practical.

Recommendations are made that a project represented by a mixed
deterministic and stochastic network be investigated, and that the
multi-project case be explored. Also, further investigation of some of
the techniques developed in this research is suggested, with the main

purpose of applying these techniques for other types of problems.



CHAPTER I

INTRODUCTION

PurEose

The purpose of this research is to develop methodoclogy for evalu-
ating projects during the planning phase, when there are alternative
methods of achieving the stated goals of a given project. Such method-
ology would permit an cobjective and systematic approach to the problem

of project assessment.

Problem Formulation

The area of project management experienced a major change in 1957
Wwith the introduction of new techniques, commonly known as CPM {critical
path methed) and PERT (program evaluation and review technique)}. These
techniques are characterized by their use of a project model consisting
of an acyclic network representing dependencies among the activities to
be performed in order to achieve a given geal. The network includes
additional information, typically the duratien and cost of each activity.
Thus, a project network may lock like that of Fig. 1, where the nodes
represent activities, and arrows indicate precedence relationships among
the activities. This type of network is referred to as a "standard net-

work."



Figure 1. A Project Network

In network based project management there exists distinct separa-
tion between the planning phase; the scheduling phase and the control
phase, The nlanning phase is usually identified with the censtruction
of the project network, during which time specific decisions are made
cn the method of performing the various activities. Thus, if there is
a number of competing methods of performing scme of the activities, an
elimination process takes place before the project network is con-
structed. The scheduling phase is concerned with establishing commence-
ment and completion times for each activity. The control phase provides
the basic for adjusting the schedule throughout the life of the project.

Sometimes during the planning-scheduling phases, management 1is
interested in finding out the time and cost of the project. These are
the two most crucial elements of the project evaluation process, the
outcome of which determines whether the project is going to be under-
taken.

Evaluation of the project time and cost is relatively simple for

the CPM type network, where the elimination of alternatives i1s completed



before the project network is constructed. However, this elimination
process dees not guarantee that the most desirable network representing
the project will be selected. When a few alternatives exist for per-
forming the croject, it is not hard toc visualize that management would
like to know the available options, For the purpose of this research
these options will be in terms of project time and cost for the various
alternatives. The a-priori elimination process results in presenting to
management just one of these options, which may or may not be the most
desirable. Thus, the decision making process of management is basically
reduced to accepting or rejectiﬂg this one option out of the many, most
cf which are not even known.

A more desirable approach would be to perform a posterior elimi-
nation of alternatives, after all options are known. This can be
achieved by intrcducing explicitly all alternatives into the prcject
network, resulting in a decisicn network,

Decision Network

Suppose that, during the planning phase, there are different
alternatives for performing some of the activities, with each alternative
having a different cost, a different time duration, and different depend-
encies. Alsc suppose that #no elimination process takes place before the
project netwerk is ccnstructed. The result is a different type of
project model--cne which imeludes all the possible alternatives. Fig.

2 is an example of such a network. The triangular nodes are referred
to as "decision vertices" and imply that a decision must be made to

select gt most cne of the possible alternatives, called decision nodes,



emanating from the decision vertex. This type of project network is

called '"Decision Network."

Figure 2. A Decisicn Network

The Case of Certainty. Consider the decision netweork of a proj-

ect, as presented in Fig. 2. In this example, the scheduling phase can-
not start until at most cone decision node is selected at each decision
vertex. This selection is done during the planning phase. By elimi-
nating all decision nodes that were not chosen, the decision network

can be reduced to a standard network.

The problem then is that of selecting a particular set of alter-
natives to be performed. Since each activity is quantitatively described
by its duration and cost, then the set of alternatives selected should be
that set yielding the most desirable time--cost combination for the whole
prcject. This does not necessarily mean that the combination yielding

the minimum project time or minimum project cost is the most desirable



one. However, the only combinations of interest are those that for a
higher preocject time value have & lower cost value. Thus, a time-cost
trade-cff is required to enable management to make the selection that
meets its desires or constraints. It is definitely a planning problem.

This problem is referred to as "The Case of Certainty" because
all possible alternatives are known during the planning phase, it is
possible tco eliminate all undesired alternatives, and the outcome of
selecting each alternative is known with certainty. Situations like
this arise in conventional projects or in development projects.

The mathematical formulation of this prcblem is as follows:
Let:

Ti - the ith possible project time wvalue

77 - the ith possible project time value obtained by selecting
the mth subset of decision nodes

. . . m
C.m-project cost assoclated with Ti

T
2
¢, = M%n (CT?).

Then, the time-cost trade-off is given by all points satisfying

the following inegualities.

if T, > T and T;'s are arranged in
ascending order of T; values.

and Wi is the policy associated with this point, i.e. the set of deci-

sion nodes that, if selected, will yield the above (T,C).



Computational Magnitude. If there are 15 decision vertices

each having twe decision ncdes, there are 215 = 32,768 decision patterns.

- . s 5
If there are 3 decision nodes per decision vertex, there are Bl =

9,084,497 decision patterns.

Certain types of projects, especially R & D projects, are char-
acterized by the uncertainty of the outcomes of performing some of the
activities, The problem formulation given above would not fit these
cases. Therefore a different approach has to be used,

The Case of Risk With Stochastic Decisions. This problem formu-

laticn considers the case where all possible alternatives are known
during the planning phase; however, preliminary selection is impossible
because there is a probability asscciated with each alternative. A

situation like this is represented by the decision network of Fig. 8.

Figure 3. A Stochastic Decisions Network

A network of this type is referred to as a "Stochastic Decisions



Network.'" The prebabilities asscociated with, say, decision vertex 3
represent the fact that during the planning phase there i1s not sufficient
information to decide whether "31" or "32" should be performed, although
as the project unfolds and vertex 3 is reached the decision maker is
able to eliminate either one and proceed with the other one. Thus, the
probabilities in this case represent the uncertainty during the planning
phase, Note that it is not certain at the outset which of these alter-
natives will be chosen. This is representative for example of a devel-
opment project where, say, node 1 can represent a certain state of
knowledge that has to be acguired before "31" or "32" can be selected.

In contrast to the case of certainty, where selection among
alternatives and network reduction were possible during the planning
phase, no such appreach is possible here.

Due to the nature of this problem, time-cost trade-cff has no
meaning here. However, the decision maker is s1till in need of some
information in order to decide whether or not to proceed with the
project. Thus, the problem here is to develop decision making tools
for evaluating projects with known alternatives and uncertain future.

The Case of Risk With Stochastic Outcomes. This problem formu-

lation considers a different case than the previcus one. Again, all
possible alternatives are known during the planning phase, however, each
alternative, if selected, is followed by a finite number of stochastic
outcomes. An example of this type of project is represented in Fig. 4.

The decision network associated with this case is called "Stochastic

Outcomes Netwerk.'



‘ stochastic vertex

Figure 4. A Stochastic Outcomes Network

The decision maker, either during the planning phase or during
the executiorn of the project, is able to control the alternative
selected, but he is unable to control the stochastic outcome associated
with the selecticn of a certain aiternative. The stochastic outcomes
associated with each alternative are represented by a preobabilivy dis-
tribution. Each outcome has associated with it a duration and cost
values, in the same manner as a regular node. Thus, this case differs
from the previous one in the amount of control that can be exerted
during the planning and execution of the project. This situation is
common to R & I projects or conventional projects, where certain events
are uncontrollable (for example, in a construction project the weather

would be uncontrollable).



Due t2 the nature of this case, only partial eliminaticn of
alternatives is possible during the planning phase, once a criterion
for such elimination is established. Again, a declision has to be made
during the planning phase as to whether to proceed with the project or
not. The time-cost trade-coff apprcach is not applicable here because
of the uncertainty of the future. Therefore, the problem here is to
develop inputs to the decision making process to enable the evaluation

of a stochas=ic outcomes project during the planning phase.

Importance of the Problem

Network based project management technigues are widely used today
in al1 phases of industry and business. The vast amount of literature
available, and the fact that there are over 50 computer programs avail-
able in this area are an Iindication of the diversified use of these
techniques.

Cne of the shortcomings of the existing techniques is in handling
cases where a selection among alternatives has to be made, or whenever a
decision has to be made in the face of an uncertain future.

Whenever a new venture is to be undertaken, management 1s seeking
information relative to at least two factors: time and money. The
proper combination of the two which is acceptable to management may vary
from case to case, but, unless there is such an acceptable combination,
the venture will never take place,

Practically thousands of decisions of this type are made every
day. When the venture at hand is a project with a few alternatives

available for some of its elements, and when the future is either
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certain or uacertain, management dces not have adequate information in
crder to make the proper decision. The few available techniques, which
are applicable to only some of the previously mentioned cases, concen-
trate on only one criterion of choice for decision making. However,
not less important is presenting to management information based upon
various decision making criteria and let management decide what the

optimal option is.

Scope and Limitaticns

The research reported herein considers problems associated with
the planning phase of project management, emphasizing the managerial
decision making process involved in approving or rejecting a project.

No assumptions are made relative to the decision mzker. Instead, in-
puts to the decision making process are developed.

The present study is confined to the planning phase only and does
not consider the scheduling and control phases..

Although this research is restricted to the analysis of project
networks, it is recognized that some of the techniques to be developed
might have some other applications, as suggested in Chapter VII.

The research effort presented herein is restricted to the single
project case, and no resource constraints or nonsimultaneity constraints
are considered., Time and cost are the only parameters examined here,
and no other factors affecting the project evaluation process are intro-
duced. The time value of money is not considered explicitly.

It is assumed that activity duration and cost are known with

certainty and¢ are single valued. Also, it is assumed that all
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alternative ways of performing a certain activity and all possible
stochastic outcomes following a certain activity (where applicable), as
well as the probability distributions for the stochastic cases, are

known during the planning phase.

The research is of a general nature and applies to all projects

fitting the general model presented herein.

Crganization

Chapter II gives a general review of project management and
related literature and a detailed review of the literature relevant
to the present study.

Chapter III discusses some mathematical concepts of project
management and decision networks.

Chapter IV treats the case of certainty. A dynamic programming
model of a decision network is introduced, and a solution procedure
for finding time-cost trade-off is developed.

Chapter V discusses the case of risk with stochastic decisions,
Various analvtical techniques are discussed. Among others suggested,
the problem is formulated as a Markov Process with rewards.

Chapter VI analyzes the case of risk with stochastic outcomes.
Again, various approaches are discussed, where dynamic programming and
stochastic dynamic programming are the dominant techniques used. This
chapter also examines Monte Carlo simulation as a possible approach to
this type of problem.

Chapter VII concludes the research with summary of the results

and recommendations for further research. The appendices include
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examples demonstrating the solution procedures developed.

Objectives
The primary objective of this research is to develop methods by
which problems attendant to planning with decision networks can be

resolved without examining every possible outcome., The secondary objec-

tive is the extension and application of Operations Research techniques

to a class cof real world problems,
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CHAPTER II

LITERATURE SURVEY

Introduction

The literature associated with network based project management
is very extensive. The purpose of the survey presented herein is to
give an overview of representative literature in this area, followed
by a more detailed discussion of the literature closely related tc the
topic of this research. Socme additional items which have a bearing on
the problem area under consideration are included toc. Thus, this sur-
vey 1s divided into four sections as follows:

CPM and PERT
Network Aigebra
Digital Simulation
Decision Networks
For a more extensive literature survey, the interested reader is

referred to Krishnamoorthy (39).

CPM and PERT

Initially, most of the research attenticn that has been directed
towards network based project management dealt with the "single" project
type--i.e. only one large complex work program is involved.

It was for this type of project that the now widely used PERT

(Program Evaluation & Review Technique) and CPM (Critical Path Method)
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procedures were developed. This was the origin of the network approach
to project management, and it can be attributed to two separate proj-
ects: one uadertaken by industry, the other by the U. S, Government,

Both groups advocated the use of a network depicting explicitly
the relaticnships among various activities. This was a significant
change from *the then existing technique of using bar-charts.

PERT {45) and CPM (33,34,35) were developed independently and at
about the same time in 1958, PERT was originally designed for the
Navy's Polar:is research and develcpment program, whereas CFM was
designed for a construction project at DuPont.

CPM {Critical Path Methcd)

This method was initiated by Kelly and Walker (33,34,35). It
was completely different from the previously known project planning
techniques in the sense that the functions of planning and scheduling
were separated. In this methed, activity durations are considered to
be deterministic for a certain level of rezource utilization. This
level can be varied by varying the amount of money spent for direct
cost factors, and accordingly there is a change in the activity dura-
tion. In (33) Kelly and Walker introduced the functional relaticnship
between project cost and time, by defining, for each activity, limits
for time and cost called '"normal" and "crash.'" Kelly (35) developed
this further to a parametric linear programming formulation to obtain
the project cost curve. Fulkerson (22) developed a similar analysis.
Both Kelly and Fulkerson assumed that a project's time-cost relationship
is a continuous, cenvex function, and that this function can accurately

be represented by a plece-wise linear approximation.



1%

Some original simplifications and modification of Fulkerson's
algorithm may be found in an article by Roper (57), who has also bor-
rowed ideas from Kelley. Roper's algorithm produces sub-project cost
curves in addition to the project cost curve.

A somewhat similar approach was taken by Alpert and Orkland (1),
and refined by Moder and Phillips (43, p.109). Their procedure con-
siders only discrete time-cost points. This method does not reguire
the assumption of & convex cost function. However, the method used will
not give 31l possible minimum-cost project time reduction; conseguently,
it is not necessarily an optimél procedure,

Meyer and Shaffer (u4B) used integer linear programming to study
project cost functions. However, with present algorithms they state
that projects of 50 or more activities cannot be handled.

Some extensions of CPM include the work of Gessford (24), who
found that "medium and large construction firms may find it economically
and administratively, advantageous to add cost constraints to thelir
existing CPM/Time systems,’ and the article by Kleinschmidt, Mcore and
Tamashanas (38), who introduced cash flow into CPM and applied it to
"make" or "buy" decisiocns.

The mathematical basis for CPM was established by Kelley (35)
and later extended by Levy, Thompson and Wiest (40).

PERT (Program Evaluation and Review Technique)

PERT was fermally defined by Malcolm, Roseboom, Clark and Fazar
(45). PERT was originally designed to be time oriented--it paid little

explicit attention to factors of cost and resource availability. The
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basic difference between PERT and CPM is that in CPM activity durations
are deterministic, whereas in PERT activity durations are subject to a
probability distribution. An integral part of this prcbability distri-
bution is the system of three time estimates--normal, cptimistic and
pessimistic., The paper by Malcolm et al. (45) assumes a Beta distribu-
tion for activity duration., It suggests that the probability of com-
pleting a project by & given date can be computed by calculating the
critical path using an expected activity duration as deterministic
quantity and then invoking the central limit theorem.

PERT assumptions were discussed by Murray (50) and MacCrimmon
and Ryavec (41,42). They have performed rigorous analyses of the PERT
assumptions and have suggested metheds which may lead to better time
estimates and probability statements. Clark (8) develaped an itera-
tive procedure to get the expected value and variances of a network.

He uses different assumptions than the original PERT assumptions, the
main difference being assuming that the elements of the network are
normal randem variables. Moder and Phillips (49, p.229-239) provide
an illustrative application of this procedure.

In a different article, Clark (9) makes an attempt to validate
the probability statements of PERT. Grubbs (286) has pointed out the
subjective nature of the PERT estimation problem and the restrictions
on the Beta distribution.

While Macrimmon and Ryavec were working on a comprehensive
analysis of PERT assumptions, Van Slyke (59,60) was exploring the use

of Monte Carlo methods to yield solutions to the PERT problem. He
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observed that the Monte Carleo estimate of the mean project length is
unbiased. Another outcome of his research is "criticality index" for
each activity expressed in terms of the probability that the activity
will be on the critical path.

An attempt to remove the biases in PERT assumptions was made
by Hartley and Wortham (27). The novel feature of this article is the
attempt to synthesize varicus contributions in this direction and
evolve a statistical theory for the derivation of unbiased distribution
of the project completion times, with & provision for sensitivity analy-
sis relating to assumptions.

A research into the behavioral aspect of time estimating was per-
formed by King and Wilson (37) and King, Vittebrongel and Hazel (36).
The second paper is more or less a continuation of the first ome.

These two papers fulfill a long felt need to initiate research on the
estimating behavior of individuals in relation to PERT assumptions.
The conclusion of these two papers is that there is ne significant
change in the accuracy of estimating the remaining portion of an
activity as the portion of activity remaining becomes smaller.

Some extensions of PERT include PERT/cost {15} and PERT/
Reliability (46). PERT/cost adds the considerations of resource costs
to the schedule produced by PERT/Time; however, it does not provide
probability information relative to cost. There is no attempt to use
cost data in such a way as to cptimize total project costs. PERT/
Reliability is an exiension of PERT into reliability management.

For the computer aspects of PERT, the article by Phillips (53)
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gives a wealth of informaticn concerning various CPM and PERT computer
programs,

To conclude this discussion of PERT, the folleowing quote from
Caruthers and Battersby (3) is of interest: '"In spite of the initial
success of PERT, its distinguishing feature of a statistical distribu-

tion of activity time, i1s seldom used."

Network Algebra

It is not the purpose here to cite all work done in network
algebra, but only a few references having some relationship te the
research presented herein.

Charnes and Cooper (4) applied the subdual algorithm of linear
programming to critical path scheduling. The project graph is con-
verted to a network by imposing a flow on it. Then, a pair of linear
programming problems is synthesized so that pertinent applications of
the theory of subdual algorithms can be applied. Another illustration
of this approach is given in Moder and Phillips (49, p.135-139}.

Application of chance constrained programming methods to examin-
ing some staristical properties of PERT networks is reported by Charnes
and Thompson (5). The main fecus of this paper is on the statistical
distributions of the project completion times.

The idea of decomposing a project network into subnetworks is
discussed by Parikh and Jewell (52). Their paper considers a "eritical
path" networks, and presents a method to decompose a project network
intc subnetworks, schedule the subnetworks and then put the project net-

work back together. First, time-only networks are handled. Then, the
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method is extended to cost-time networks by a method which is a gener-
alization of Fulkerson's (21, p.151-169) project cost curve method and
"out of kilter" algorithm,

Martin (47) presents a method of computing the density functicn
of the passage time from source to sink of an acyclic network. An
interesting technique in this paper is an algorithm reducing z series-
parallel network to a single arc whose density function is that of the
time through the original network.

The problem of finding a mini-maximal path in a disjunctive PERT
network was solved by Balas (2}. The procedure is iterative and con-
sists of a two-stage solution: In stage 1 a 0-1 integer programming
problem is solved to select a subset of the disjunctive pairs of arcs
between all pairs of nodes. In stage 2 the critical path is found, and
a simple test shows whether it is minimaximal or not, If it is not,

each critical path of stage 2 defines a new constraint for stage 1.

Digital Simulation

The application of digital simulation to project management has
been discussed previously in connection with PERT assumptions (ref. 59,
B0). A few more references that are of Interest are cited here.

Trilling (58) deseribes a job shop simulation of orders that are
networks. This work describes & coding procedure based on binary numbers
while defining the networks represented by the routings or line-ups of
shop orders. Several decision rules are tested.

The application of GPSS to Project management is reported by

Hicks and Jain (28). They considered a number of examples of complex
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precedence relaticnships employing GPSS/360 program. Their conclusion
is that GPSS/360 can be employed to develop project management informa-
tion not readily attainable employing standard project management
programs.

An interesting application of Monte Carlo simulation to invest-
ment risk analysis is reported in the work of Hess and Quigley (30).
They worked out an example where the distribution of a certain profit-
ability criterion was obtained using Monte Carlo, for the case of a
Few variables with given distributions, where analytical techniques
fail because of complexity. Ciark (10) made a similar analysis for
the case of two investments, where the cash flows have a probability
distribution. Using Mconte Carlo simulation he obtained the probability
distribution of the rate of return of each investment.

Hespos and Strassman (23) applied simulation to the case of

stochastic decision trees. This is discussed in the following section.

Decision Networks

A somewhat more detailed discussion is going to be presented
here, as this area is the most relevant to the present study.

Fig. &5 summarizes the flow of ideas in this area. Thus, in
1962 Eisner (17) introduced decision boxes into PERT network, while
Magee (u3,44) published his decision tree analysis in 1964. Elmaghraby
(19} added feedback loops to the network, while Hespos (29) followed
Magee with stochastic decision trees. Pritsker et al. (16,54,55,56,
B81) developed GERT, and Elmaghraby (18) further developed his previous

work. Chillcot and Thursfeld (6,7) illustrated applications of Eisner's
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ideas to research management and project evaluation. Dean (14) investi-
gated the application of stochastic networks to research planning.

Graham (25) extended the ideas of Eisner to analyze R and D expenditures,
and finally, Crowstone and Thompson (11,12) introduced "Decision CPM."

Generalized Networks

Eisner (17) describes his method as a generalization of the FERT
network for R and D that allows alternative procedures for accomplishing
research tasks to be considered. Thus, he proposes a network with deci-

sion vertices (termed decision boxes--DB) to represent such situations:

Fig. 6. Eisner's Decision Boxes

If decision vertex D. is reached, then d,. occurs with proba-

1 11

bility Py and de with probability Dy Note that it is not certain at
the outset which of these alternatives will be chosen. Eisner solved a
simple example by enumerating the outcomes and evaluating their respec-
tive probabilities. To evaluate the favorable outcome, he introduced
the notion of "entropy." Time values are introduced only after the
entropy calculations.

Essentially Eisner constructs a decision tree with time values.

The proposed solution by enumeration cannot be regarded as very useful.
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Alsc, using the "entropy" as a means of evaluating the outcomes is
questicnable. At the time, this work had some value as being one of
the first works in this direction.

Elmaghraby's important papers (18,19) account for a significant
departure from the well-known directed acyclic network having either
deterministicz or probabilistic activity durations. Based on the ideas
of Eisner (17) regarding the prcbabilistic branching of activities from
a given event, Elmaghraby evolves an algebra for generalized activity
networks. He introduces a series of logical relations to network formu-
lation. Each event has probability of occurrence, and some parameter-
time, attached to it. In (19) only deterministic values for this
parameter were discussed, whereas in (18) the formulation was extended
to the case of probabilistic times. Elmagrahby defines logical rela-
tions that may exist between events, and a graphical symbol is defined
for each relation, so that the relations can he expressed graphically.

The relations and their symbols are summarized in Fig. 7 and Fig. 8.

Graphic
Symbol Type of Receiver Type of Source

() And Must-follow
<:) Inclusive-cr Must-follow
K:) Exclusive-or Must-follow
(:> And May-follow
<::> Inclusive-or May-follow
k::> Exclusive-or May-follow

Figure 7. Logical Relations (18)
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Figure 8. Network Algebra (18)
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Elmaghraby suggests a complete enumeration of paths, and shows
algebraically that for each such path a time and probability of occur-
rence may be determined. He concludes by combining path time and
probability information for an overall expected value for project com-
pletion. Note that Elmaghraby combines time and prcbability information,
whereas Eisner did not.

The applicability of this method to PERT-CPM network is rather
limited. These networks are composed mainly of "AND'" nodes, and as

Elmaghraby himself notes:
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. an AND node can be replaced with two Exclusive-or ncdes,

. Therefeore, it seems that the price paid for the use of an
already established theory is the enlargement of the original
logic of the network. Whether such trade-off is advantageous or
not can be answered only from empirical experience.

The werk of Elmaghraby received further momentum as a result of
four recent papers by Pritsker (56), Pritsker and Happ (55), Drezner
and Pritsker (16) and Whitehouse (61). A new term was given to the
exploration of stochastic activity network: "GERT" - for Graphical
Evaluation and Review Technigue.

Whitehouse (&1, p.l) describes GERT as a procedure which combines
the disciplines of flow graph theory, moment generating functions and
PERT to obtain solution to stochastic problems. In (55}, a stochastic
network is defined as having the following properties:

a) A branch has associated with it a probability that the
activity represented by the network will be performed.

b} Other parameters describe the activities which the branches
represent. These parameters may be additive, such as time, or multi-

plicative such as reliability.

c) A realization of a network is a particular set of branches

and nodes which describe the network for one experiment.

Note that property (b) above creates difficulty for CPM-PERT
type networks, as time is not purely additive,

GERT derives both the probability that a node will be realized,
and the conditional moment generating function (M.G.F.) of the elapsed
time required to traverse between any two nodes.

With the help of Signal Flow Graphs, Pritsker and Happ (55) have

been able to cutline an algebra for the sclution of stochastic networks.

They formalized node-symbols as in Fig. 9.
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Input Exclusive-or Inclusive-or and

Qutput

< <

d
Deterministic, [) k:::) <:::) (:::>
ProbabilistiC,[>> k:::} l <:::> (:::>

Exclusive-or

Inclusive-or

and

Deterministic

Probabilistice

The realization of any branch leading into the node
causes the node to be realized; however, one and only
one of the branches leading into this node can be
realized at a given time.

The realization of any branch leading into the node
causes the node to be realized., The time of realiza-
tion is the smallest of the completion times of the
activities leading into the Inclusive-or node.

The node will be realized only if all the branches
leading into the node are realized. The time of
realization is the largest of the completion times of
the activities leading into the and node.

All branches emanating from the node are taken if the
node is realized, that is, all branches emanating from
this node have a p-parameter equal to one.

At most one branch emanating from the node is taken if
the node is realized.

Figure 9. Node Characteristics and Symbols--GERT (55).

Pritsker and Happ consider the principles of network reduction

for exclusive or nodes only. Essentially they employ a moment gener-

ating function (M.G.F) Mt(s), continuous or discrete, associated with

activity duration (t) which is further transformed by the conditional

probability p oriented to the branch to form a W function where:
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W(s) = th(s)

The cutcome of this two-stage transformation results in a system
of limnear independent eguations which is amenable to solution by flow-
graph techniques. The two key features of network reduction at the
transform level are: (1) The M.G.F. of the sum of time values is the
product of the M,G.F, of individual time values; (2) the M.G.T. of a
mixture of two distributions is the sum of M.G.F. of individual dis-
tributicns, sach one being weighted by their conditional probabilities.
At the two-stage transformation level this is reduced to simple addi-

tion of the corresponding funrctions as in Fig. 10.

Network Type Equivalent w-Function
w_(8) W (8)
a b
Series %M WE(S) = wa(S)w.b(S)
\ \
N \
. \
w_{8)
a
Parallel m wp(8) = w (8) +w (5)
' (
M b s)

Figure 10. w Function (55)

Whitehouse (61) has investigated different approaches for obtain-
ing the distribution functicn from an M.G.F. so as to ascribe confidence
limits to system performance.

In (16) the application of GERT to a space vehicle countdown is

reported. The authors ended up using simulation for system performance.
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An attempt to solve a network with "AND" nodes was made, and the
reported result is: ". . . the programming and storage problems
associated with computations appear formidable. The area, however, is
one for future research.”

The applicability of GERT to CPM-PERT networks is doubtful.
Pritsker (56, p.l0l) notes that '"the analysis of AND nodes is similar
to the analysis of PERT-type networks. To date there is no exact sclu-
tion to the analysis of PERT networks that is computaticnally tractible.”

The same cbservation was reiterated later by Wolfe (62) who wrote
his Ph.D. dissertation under Pritsker. He states that "Although CGERT
appears to hcld promise in aiding the analysis of stochastic networks;
at present nc general method for analyzing PERT and CPM type networks
has been incorporated in this procedure."

The reason for the difficulty encountered with CPM-PERT networks
is that an "AND" node is regarded as nonlinear, and therefore GERT can-
not transform it in a simple fashion to a linear independent equation
and apply flow graph techniques to it,

The works of Chilcott and Thursfield (6,7) i1llustrate applica-
tions of Eisner's ideas in research management and project evaluation.
Graham (25) applies Eisner's decision box ideas to analyze R and D
expenditure. Solving a simple example, he enumerates all paths and
takes the expected cost of each path. A discounted cash flow analysis
is alsc introduced. No time element in the sense of CPM-PERT is con-

sidered.
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Dean (14) concentrates his efforts on the analysis of stochastic
networks for research planning. After discussing the three planning
techniques of CFM, CPM-minimum cost, and PERT Time, he concludes that
these techniques are not applicable to research projects, because the
sequence of events and activities is known with certainty. A research
preject is viewed as a process of acquiring knowledge sequentially.
This leads tc the development of the stochastic network concept--
stochastic because the nodes of the network are not known with certainty
in advance, The stochastic network represents the researcher's planned
acguisition cf knowledge. The‘change in this plan is represented by a
configuratiocnal change in the research network.

Four models are presented for solving four decision problems in
research planning:

a) Sequencing of research tasks

b) Selection of technical alternatives

c) Funding of compcnents concepts

d) Cost allocation across systems.

The sclution of the first model yields that nigh risk tasks
should be performed first if the costs are the same, and the cheaper
tasks should be performed first if the risks are the same. Models (b)
through (d) are solved sequentially in that the results of each decision
problem are used in the next decision problem. Discrete Dynamic Pro-
gramming is used to solve each one of these models--for a specific
example. The solution cobtained is cost vs. maximum probability of

success for various alternatives. Dean states that sclutions may be
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obtained manually if the number of alternatives is less than 20, and
otherwise may be programmed for an electronic computer. Nate that none
of the models considers the time element directly.

Decision Trees

The two papers by Magee (43,44) are an extension of decision
tree analysis developed in various texts of statistical decision theory,
The ides is that a choice among alternatives can be made, and this
choice of a specific alternative is followed by certain stochastic
events, with known probabilities, where the decision maker has no
control over the outcome. Eacﬂ combination of decisions and stochastic

events has a different outcome.

. Stochastic Event

p
1
Decision
Point
P
p
Py

Figure 11. Decision Tree

One can see that this case is different from the decision box
method presented by Eisner. Magee used this method for analysis of
capital investments, by using discounted cash flows and expected values,

Hespos and Strassmann (29) introduce the concept of "Stochastic

decision trees," with the following features:
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a) All gquantities and factors, including stochastic events,
can be represented by continucus, empirical probability distributions.

b) The information about the results from any or all possible
compinations of decisions made at sequential points in time can he
cbtained in a probabilistic form.

c¢) The prcbebility distribution of possible results from any
particular combination of decisions can be analyzed using the concepts
of utility and risk.

This method calls feor eliminating the stochastic node and
replacing it with a probability distribution. Using simulation, a
single branch is selected at each node for which a probability distribu-
tion exists. The result of the simulation is a probability distribution
of the variable of interest. The authors report the results of solving
a stochastic decision tree problem with GPSS simulation.

Deterministic Networks

Crowstone and Thompson (11), based upon the idea of Eisner,
introduced the activity alternatives into CPM network. A new term was
coined for this analysis: Decision CPM. Thus, if there is a number of
competing methods of performing some of the activities, each method
having a different cost, a different time duration and different tech-
nological dependencies, these possibilities are included in the project
network., Among all these alternative, the ones minimizing total project
cost are selected. The authors recommend the repeated use of the same

method during the execution phase of the project.
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Using activity-on-node representation of a network, and following
Levy (40), they define a decision project graph G as a graph with nodes
representing activities and directed line segments connecting two nodes
8- (in activity set i) and 5 (in activity set m}, if and only if Sij
18 an immediate predecessor of Smn’ i.e., Sij << s - Additional inter-
dependencies of contingent relations between activities are defined too
(Crowstone (12) later calls these interdependencies "other constraints."
Their nature is not disclesed, but this might be, for example, the non-
simultaniety constraint discussed by Davis (13))., A decision project is
defined as a set J (a set of activity-sets Si) together with the speci-
fied interdependencies and the precedence relationships. In addition,
all alternatives for a given activity have identical predecessor suc-
cessor relations. Exactly one of the activities of each decision set
must be performed--and in contrast to Eisner, this activity is performed
with certainty.

The cutcome of decisions based on project cost analysis would be
to eliminate a cluster of activities from the decision project network
to obtain the final project network used in regular CPM analysis. Two
methods are suggested to achleve this pruning: 0-1 integer programming,
and heuristics with partial enumeration. Crowstone and Thompsen illus-
trate with a few examples the severzl ways in which the 0-1 variable can
be used to represent interdependencies among decisions.

This work has two main shortcomings: the fact that all alterna-
tives of a given decision set have identical predecessor-successor

relations makes the problem very unrealistic. The exponential growth
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of constraint sets as the number of activities are increased poses
severe practical problems for a 0-1 integer programming solution. The
authors recognized this by stating:

In very large problems the integer programming solution tech-

nique becomes impractical because of the resulting large

number of censtraints and variables. For that reascn we

have developed heuristic solution techniques for solving

the problem.

The heuristic method 1s a modification of the cone given by Moder
and Phillips (43, pp.109-122).

Crowstone's paper (12) is an extension of the previous work.

He removed the above requiremeﬁt of identical predecessor-successor

relations, and added a method that is supposed to reduce the size of
the integer programming formulation and also suggested a branch and

beund solution.

The reduction method amounts to enumerating Qh paths through the
network, where h is the total number of decision alternatives. Some of
these paths are not feasible, because cof the ﬁother constraints." The
author developed a reduction algorithm, however, it is not certain
whether the time saved in the integer programming solution is not con-
sumed by this reduction algorithm.

The branch and bound technique developed solves, at a particular

node of the tree, an integer programming problem of the form:
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h k(i)
Min ¢. =

ci'di'
i=]1 j:l J J

subject to
Acceptance d,. = 1
13
Exclusion d,, = O
1]
interdependency
k(i)
g =1
j=1

plus "other interdependency constraints."

cy. is the cost associated with decision node ij. This is the
cost of node (ij) plus the cost of regular nodes asscciated with deci-
sion ij., No method iz given, here or in the regular 0-1 sclution,
indicating how this cost cij should be evaluated.

Crowstone (12) states (p.40)} that "In order to complete the
project, one of the jobs from each job set must be completed . . ."

This is a limiting assumption. There might be cases where a
decision node will not be considered at all, and therefore at most one
activity (job) from each decision set (job set) must be selected.

The rest of this paper discusses resource constrained decision

networks, and shows some applications of Decision CPM.
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Concluding Remarks

The following conclusions may be drawn freom the literature survey
presented herein:

1. Although some research has been done in decision networks,
the problem of time-cost trade off, for different sets of decisions has

not been investigated. For the regular CPM analysis, this prcblem has

been treated by introducing "crash time," and "normal time'" for each
activity. (See, for example: (1,22,33,48,45,57).}) The works of Crow-
stone and Thompscn are a first step in this direction for decision
networks.

2. The attempts made so far for the case of certainty centered
on minimizing cost only, utilizing integer programming, branch and
bound or heuristic programming.

3. The stecchastic cases of decision networks received some
attention in the literature. All these approaches use expected value
as the sole critericn of choice, only one parameter at a time is con-
sidered (cost or time), and a project decision network is rarely treated

explicitly.
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CHAPTER 11II

MATHEMATICAL BACKGROUND

Introduction

The purpose of this chapter is to present some of the defini-

tions, concepts and theorems relevant toc this research.

Definitions
Project
A project is a collection of well-defined activities which, when
completed, merk the end of the project. These activities are partially
ordered; i.e., certain subsets must be performed in a given sequence.

The Project Network

Each project can be modeled by a project network (or graph).
This necessitates the following definiticn. A directed network cor
directed linear graph G is a set M = {m |i=1...n} together with A which
iz a subset of MxM, where MxM = {mi,mj|mieM,mjeM}. The elements of M
are called nodes, and the elements of A are called arrcws {(or arcs).
In the research that follows, a directed network G will be denoted by
3(M,A), and the term directed will be suppressed.

There are two different methods of modeling a project—-activities
on arrows and activitie= on nodes,

Activities on Arrows (A-0-A)

In this method, arrows represent activities, and nodes represent
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events. All immediate predecessors of a given activity connect to a
node at the tail of the activity arrow, and all immediate successor
activities emanate from the nede at the head of the activity arrow.
Thus, a node marks the event of completion of all activities leading
into the node. The precedence relationships among activities is shown
by the manner in which the activities are connected through events,

In order to portray accurately all predecessor relationships, "dummy
activity" must often be added to the project graph.

Activities on Nodes (A-0-N)

In this method, nodes represent activities and arrows indicate
the precedence relationships among the activities. For convenience,
all ncdes without predecessors are connected to a node marked "Start."
All nodes with no successors are connected tc & node marked "Finish."
Throughout this research, the A-0-N method will be used. Additional
parameters which will be included in the network are the duration of
each activity and its cost. The duraticn and cost of "Start" and
"Finish" are taken to be zero.

Types of Nedes

Throughout this research, six different types of nodes will be
encountered. Definitions of each type follow (refer to Fig. 12).

Activity Node. This node describes one and only cne activity.

This is the basic node for an A-0-N network, and is represented by a
circle. Zach activity node is denoted by m,, and the set of all

activity nodes is:

M= {m.}
1
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M actually contains more than one m, but the range of i was
omitted for notational simplicity. The same approach has been used for

the rest of the nodes' notations.

«—— activity node m,

4————— decision vertex Dj

( +———— decision node 4d.. ..
jk{(3)

«~—— stochastic vertex A, ..
jk(3)

<— outcome node éjk(j)l(k)

Figure 12. Types of Nodes--Schematic Illustration

Decision Vertex. From this node emanates a decision set with a

finite number of elements, out of which at most one element must be
selected. This nede iz illustrated by a triangle, and is denoted by

Dj' Lach activity node may or may not have a decision vertex following
it; also, each activity node may have more than one decision vertex.
Note that the subscript j on the decision vertex is not directly related
to the subscript 1 on the activity node, for example, at m . one could

15

have D2.

The set of all decision vertices is:

D= {D,}
3
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Decision Nede. This node describes a decision alternative which

is an element of the decision set Dj' It is illustrated by a circle
and denoted by djk(j)' In the subscript on d, k(j) means that k depends

on j also.

Dj = {djk(j)}

Stochastic Decision Vertex. This is essentially a decision ver-

tex with a probability function distributed over its elements. The
notation and graphical symbol are the same as that of the decision
vertex Dj' Hence, it is not illustrated in Fig. 12.

Stochastic Vertex. [rom a stochastic vertex emanates a finite

set of mutually exclusive stochastic elements with a probability func-
tion distributed over its elements. If the stochastic vertex is
encountered, exactly one of its elements is realized. Of course, if
this vertex i1s not encountered, none of its elements is realized. This
node is illustrated by a small shaded triangle and is denoted by Ajk(j)’
since, i1f this node exists, i1t always follows a decision node djk(j)'

Also:

Qutcome Node. This node describes an outcome which 1s an element

of the stochastic vertex. A probability is associated with each outcome

node. This node is i1llustrated by a circle and is denoted by ij(j)l(k)'
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In the subscript on an outcome node, 1(k) means that 1 depends on k.

Also ncte that

Sy T Yskeprao!

The hierarchy among these nodes is as follows:
M= {m,}
1

D > {d.

]k(j)} > {Ajk(j)} > {8

(1)
where > 1s the usual set notation for contains.

The duration and cost of a decision vertex, stachastic decision
vertex and stochastiec vertex is always zero. Note that the decision
maker can centrol, at some stage of the project life, the alternative
selected at a decision vertex (deterministic or stochastic); however,
he can never control the outcome associated with a stochastic vertex.

Types of Networks

Four major types of networks will be encountered throughout this
research (two less important types will be introduced later). The fol-
lowing are definitions of each type.

Standard Network. This is the acyclic directed network previ-

ously defined where all nodes are activity nodes m, . The network has
one "Start" node (labeled "S") and cne "Finish" node (labeled "F"). The

duration and cost of "$" and "I" are zero. Thus, this network is the
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ordinary project network of the CPM variety (see Fig. 1).

Decision Network. A decision Network G{(J,A) is a directed

acyclic network as defined before, where the set of nodes J is given by:

J = MUD

()

and

|
=

MnD

Essentially, this is a deterministic decision network (see Fig. 2).

Stochastic Decisions Network. This 1s the decision network

G(J,A) with a probability distribution associated with the elements of
each Dj (see Fig. 3).

Stochastic Outcomes Network. A Stochastic Qutcomes Network

G(A,A) is a cdirected acyclic network where the set of nodes A is given

by:

A = JuA = MuDuA = {Ai}

where MnDna = @

and there is a probability distribution associated with each Ajk(j)

(see Tig. 4).
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Mathematical Basis

The concepts of this section are developed mainly for the deci-
sion network G{J;A). A modification of these concepts will be used in
Chapters V and VI for the stochastic decisions network and stochastic

outcomes network.

Reduction of a Decision Network to a Standard Network

Civen a decision network G(J;A), then a certain set of activities
must be performed in order to complete the project. These activities
are as follows:

a) At most one djk(j) for each Dj’ call this d;k(j)'

b) Choose all or part of M = {mi}, denote this subset

of ¥ by 1 = {m}).

Then, it is possible to reduce the decision network tc a standard

network G(J“,AH).

where G(J ,A ) is the standard network obtained by
decision network reduction.

Hence, J afy A cA

The reduction of G(J,A) to G(J ,A ) is done using the following

procedure:

ik(3)

b) Any activity node with at least one of its immediate prede-

a) All nodes d become elements of the standard network.

cessors being an element of the standard network, is also an element of

the standard nestwork.
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c) All decision vertices are eliminated as follows: If at
least one of the immediate predecessors of Dj is an element of the
standard network, then it is connected with an arrow to d?k(j)' If no
predecessor of Dj is an element of G(J*,A*), then Dj is eliminated
along with all its djk(j)'

d) Any node other than Dj that is eliminated from the network,
then all its incoming and outgeing arrows are eliminated. If this
leaves some adjacent node without incoming arrows, this node 1s elimi-
nated too and the process continues until no further nodes can be
eliminated. Note that "S" and ﬁF” are always elements of the standard

network.

Following is an example of the above procedure.

Figure 13, Decision Network Reduction

Referring to Fig. 13, one has:

J = {8,1,2,3,D,F}



i

and

D. = {d }

1 ll’dl2

Now if

T
w

ey T 4

2

then dll is eliminated since there can be at most one djk(j) for each

D..
J

Hence

M = {$,1,3,F}

and the standard network is:

o,

35 = {8,1,3,d. ,F}

lQ’F

Since dll was eliminated, then, following rule (d) the three
arrows entering into and emanating from dll are also eliminated, and
correspondingly are marked with an "X.'" As a consequence, activity
node 2 and the arrow emanating from it are alsc eliminated. Note that
because of rule (b), activity node 3 remains an element of the standard
network.

Throughout this research, no interdependencies are considered

among djk(j) for different j, as of the type mentioned by Crowstone (12).
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Precedence Relations

The following discussion considers precedence relation in a
standard network; however, the concepts and notations hold true for all
other types of networks, with some minor differences, as indicated.

Let "<<" denote a precedence relation between two nodes; for
example, if for some m. mj e M, either m, is an immediate predecessor
of mj, or, eguivalently, mj is an immediate succgessor of m, and this is

dencted by

The set

(IP), = {mi|mi<<mk}
is the immediate predecessor set of some m - Similarly:
(183 = {mj |m <<}

is the immediate successor set of some m -

The network G{M;A} is a planar graph with nodes representing
activities, and a directed line segment exists from some node m, to some
node m if and only if My << M. Note that SeM is the only activity
without predecessor, and FeM is the only activity without successor,

A path in G iz a set of nodes mi,mj...mr for which the immediate

predecessor relation hclds as follows:
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m, << m. << << ses << oY
i 3 e r

A cycle in G is a closed path of the form:

m, << m, << mote << m_ << m,
i 3 r 1

A graph is acyctic if and only if 1t has no cycles.
m. < my means that m, must precede m but must not immediately
precede m . This is possible if and only if there is a set of nodes

{nj} such that:

m. << n << N s <N << [
r

i.e., m, o <omy if and only if there is a path from m, tom in the net-
work G.

All the above concepts and definitions hold true if M i1s replaced
with J, J* or A, Some differences, however, do exist hetween the stand-
ard network and the other networks.

For a standard network, my << mj means that m, must be completed
before the commencement of mj. For all types of decision networks, this
is still true for the activity nodes; however, m, << Dj means that

m, << d for all k(j) where j is fixed.

i 3k (1)
Let:
m, 7( m, mean that ms is not the immediate predecessor of mj.

Then, the following precedence relations held for the various

decision networks,
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D, <<

5 Y9
L5y < B9k
Baxsy < S5xH100

D. %mi
M % 4(d)

m, §.. ..
QR ENEIS

The above precedence relations always exist for the varicus deci-
sion networks. Other relations may or may not exist.

Finally the predecessor matrix B for a project with n nodes is

the nxn matrix with components bij defined as follows:

[l if m. << L

b.. =
= IO octherwise

This is essentially a "From To" matrix. Note that BT is the suc-
cessor matrix.

Critical Path Computation

For the purpose of this research, only a short form of the criti-

cal path computation is required. Once the decision network has been
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reduced *to a standard network, normal CPM analysis can be applied
whenever applicable, and it is possible to evaluate early start, late
start, slack, etc. These terms will not be defined here, and the
interested reader should consult Moder (49),

The following discussion describes concepts used in standard
networks. The same concepts will be used in the formulation of the
three problems discussed in this research.

A critical activity is an activity which contributes directly
to the overall project time.

Obviously, every project has at least one critical activity.
This leads to the following theorem:

Theorem 1. a) There is at least one path, called "critical
path," from "S" to "F" such that every activity con the path is critical.
b} Every critical activity lies on such a path. <) The sum of the
activity durations on every critical path is T, which is at least as
large as the sum of the activity durations on every other path from "S"
to "F.M [For proof, see Levy (40)).

Let t, be the duration of activity my (this is the time required
to complete activity mi). Let Zk represent the kth path from "S" to
"E," and let L(Zk) represent the length of this path. Thus, if Zl'=
S << m, << m, **+* << M << F, where m, = 5, m = F, then:

2 3 n-1 1

t.

L(Zl) B I

ne~1

i

Then, the length T of the critical path is
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T = Max L(Z, )
k
k
The critical path can be determined after using a forward pass
to evaluate ES (early start), and EC (early completion). The following
algorithm, due in part to Davis (13), will be used:
1) Assign ES of "S8" as 0.
2) Proceed along any path from "S." To each activity assign

ES and EC as follows:

Es(m ) + t, = EC(m ),

where ES(m ) is the early start of activity m , etc.

ES(mk) = Max EC{mj)
all mie(IP)k

3) If an activity m. is encountered such that cne or more mem-
bers of (IP)k have not been assigned an ES and EC, temporarily defer
further consideration of this path.

4) Find any other activity whose predecessors have all been
assigned an EC but which have not been assigned an ES.

5) Proceed along any path starting with such an activity until
an impasse is reached as cited above, or until "I'" is assigned an EC.

) The forward pass l1s complete when "F" is assigned an EC.

7) Start with "F" and proceed backwards through the network.

8) Whenever a merge event is encountered, the critical path(s)
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follows the activity(s) for which
EC(m.} = ES(m.) for m. << m,
1 ] 1 J

The ccncept of the critical path can be extended to the case of
two nodes, m. s mj, provided there is at least one path from m. to mj.
If there is such a path, the critical path will give the time required

*to reach m, from m,..
i i
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CHAPTER IV

THE CASE CF CERTAINTY

Introduction

This chapter develops the methodology for the case of certainty,
as defined previcusly. The apprcach used evaluates first the two
extreme points satisfying the conditions of this problem (referred to
later as oi and o;), and then evaluates all points in between, together
yielding the time-cost trade-off desired. This is done by solving three
separate problems, as follows:

a) Minimum time problem

b) Minimum cost problem

c¢) Time-cost trade-off problem

The problems are discussed in this order. The basic approach

used i1s a dynamic programming formulation.

Minimum Time Problem

The minimum time problem is defined as follows: Given the deci-
sion network G(J,A), select, for each decision vertex (decisicn set) Dj’
at most one decision node d?k(j)eDj so that the completion time of the
project will be minimized. Find the minimum cost associated with the

minimum time.

The approach taken in solving this problem is to transform the
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decision network into a dynamic programmingl model, To structure a DP
model of the decision network, one defines the following elements and
conventions:

1} The decision variables are grouped in stages, and the
stages considered sequentially.

ii} The only information about previous stages relevant to
selecting optimal values for the current decision variables is summar-
ized by a so-called state variable (or input variable).

iii) The current decision; given the present state of the system,
has an influence on the state at the next stage, and it is represented
by a "return.”

In the following section a DP model of a simplified decision
network is introduced, along with a short review of DP concepts, and
this is later extended to the general case of a decision network.

DP Model--Simple Formulation

A simplified decision network as shown in Fig. 14 can be
described by the standard seriz]l DP model. In this case, the model will
have three stages, as shown in Fig. 15 (the stages are numbered back-
wards). .

The decision variables associated with each stage are composed
of the proper decision sets of the network. (For a more complicated
problem, it is not immediately obvious how to form the decision variable
of a particular stage of the DP model. An algorithm to achieve this is

introduced later.)

lThroughout this research, dynamic programming will be denoted
as DP.



53

Figure 14, A Simplified Decision Network

{D.} {DQ,Ds} {Dq,DS,D6,D7}
g - 3 F—+ 2 — 1 — F

Figure 15. A DP Model for the Simplified Network

%n X, —JYi X, X lYl X

}

n i 1

Figure 18. Serial DP Medel
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The next step in developing a DP model is defining the stage
transformation of the state variable. Referring to Fig. 16, for the

standard serial DP model one has (stages are numbered backwards)

where X. is the state variable of stage i, defined as:

and

is the decision variable of stage 1. g; is the forward state transfor-
mation at stage i. This transformation, for a decision network, has the
convenient form of:
. = g.(Y,) =Y,
Xl—l gl(Yl) i

i.e., the decision variable of stage i is the state variable of stage

(i-1). Both can be n-dimensional. Also, one always has

s
It

{8}
and X = {r}

where both Xn and XO are element state variables.
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Tc complete the DP model formulation, the returns associated with
each stage have to be defined. OCbviously enough, if the objective is to
minimize the total project time, the return matrix of stage i would be
composed of the durations of the decision nodes assoclated with stage 1.

Let: Ti(Xi,Yi) be the return matrix for stage i--time, and let
tjk(j) be the time return of decision node djk(j) (this is the duration

in this case). Then, if:

= di4)e

y* whenever the transformation

Yi1 the 1lth column of Ti(Xi,Yi),
for all Xi, would be equal to tjk(j
gi(Xi,Yi) exists. Thus, for stage 2 of Fig. 15, this would be:

dop 9o gy dap
T;(Xp¥e) = dy |ty Ty,

12 31 32

Note that each row of Ti(Xi,Yi) has entries only for columns
associated with the same Dj. This statement is true also for the more
general case introduced later.

A1]1 possible project times for this case will be obtained by
evaluating the length of all paths from § to F.

Let: Um be the mth set of decision nodes dj ) associated with

k(]
the mth path., Then, the length of the mth path is:

where 0 are the time values associated with the mth path. To

k()
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minimize the total project time, one has to evaluate:

L(z*) = Min[L(Zm)] = Min(z t

o)
o o Jk(3)

The optimal policy, indicating the decision node (if any) to be

selected for each Dj is given as:

wla ot
Ww i

9x(s)’

This procedure is equivélent to minimizing the sum of stage
returns of the DP model. A formulation of this type is generally known
as the "Stage Ccach" problem.

Using Bellman's principle of optimality, it is possible to write
the recursive equations for solving this case, assuming that a backward

solution approach is used.

fi(t)(xi) = min Qi(xi’Yi) i=l...n

Y.
1

Q (X ,Y)) = T (X .Y )
QoY) = Ty Y )+ Ky

where fi(t)

the input wvariable, and Qi(Xi,Yi) denote the i-stage time matrix.

(Xj) denotes the minimum time at stage i as a function of

Note that:
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Fa-nm o) = finyo Yy

DP Model--Extended Formulation

The general case of a project decision network is more complicated
than the simple example of the previcus section, where the equivalence
with a DP model was almest obvious. Thus, for the decision network of
Fig. 17 it is not immediately clear what the equivalent DP medel is,
with its inpun variable, decision variable and returns for each stage.
The model for the general case is not necessarily composed of serial
stages, and as a conseguence eﬁaluating the optimal policy is somewhat
different. This section develops the methodology for the general case,
which includes four steps, as follows:

1) Network Decomposition into Decisiaon Dependent Subnetworks,
dencted DDSi, i=1,..m;

2} Formulation of a DP model for each DDSi;

3) Determination of the minimum project time; and

4) Development of the DP sclution.

Decision Dependent Subnetwork (DDE). Pricr to rigorously defin-

ing the notion of DDS, a few examples are discussed to introduce the
concept on an intuitive basis.

Suppose that the decision network of Fig. 18 is given.

Cne can immediately observe that there are two independent sub-

networks, one associated with the decision vertex Dj, the other

2Throughout this research, whenever no ambiguity arises, D5 will
be denoted by i, and djk(j) by jk(3}).
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A Decision Network: An Example

Figure 17.
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associated with the decision vertex DQ. Thus, schematically this net-
work could be illustrated as shown in Fig. 19. (For a clearer illus-
tration, F is shown separately, but it is actually &n element of both

subnets 1 and 2.)

Figure 18. Decision Network

Figure 15. Decision Network--Schematic Description
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Now, suppose the above decision network is modified as shown in

Fig. 20.

Figure 20. Modified Decision Network

Clearly, in this case there are three independent subnetworks;
that is, two subnetworks as previously described and a third subnetwork
not dependent on any decision vertex. To be consistent with the previ-
ous case, where every subnetwork was associated with a decision vertex,
the first activity node S is regarded as a conjunetive deeiaion node,
where a conjunctive decision node is a node that all activities

. . 3
emanating from it are to be performed.

Thus, subnetwork 3 can be regarded as dependent upon the

3This definition is similar to that of Eisner (17).
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conjunctive decision nede "S," and the decision network of Fig. 20 can

be reduced to the one shown in Fig. 21.

4 ) (
D, S D, A
Subnet Subnet Subnet
1 3 2
. J N —d \ J

Figure 21. Decision Network--Schematic Description

Finally, assume the decision network of Fig. 18 is modified as

shown in Fig. 22.

It remains possible to identify two subnetworks, 1 and 2; how-
ever, they are no longer independent, as decigion vertex D2 belongs to
both subnetworks. The network of Fig. 22 is illustrated schematically
in Fig. 23.

It is now possible to define the concept of a decision dependent
subnetwork (DD3).

Definition. The decision dependent subnetwork G{J(s);A(S)} of a
(s)_ (s)

J, A <A, and the

network G{J;A} is a connected network such that J



Figure 22. Decision Network with a Common Decision Vertex

1 1nZ2 2

Figure 23. Decision Network--Schematic Description
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following conditions hold:

(1) Exactly one decision vertex Dj is preceded by the con-

(s)

junctive decision node "S," and S4J
(2) For exactly one node ]i )e (s ), the set (IS)k =@ (i.e.,
this is the rode "F").
(3} TFor every node ]i )E (s ), DDS includes all elements of the
set (IS)k (the immediate successors) but not necessarily all elements

of the set (IP), (the immediate predecessor).

Thus, referring to Fig. 22, one has:

{s)
{dll’de’dQl’dQQ’F} € Jl for DDSl
{a,.,d..,48 F} e J( s) for DDS
31°732*21° 22’ p.

Fl are elements of both DDS. and DDS

Note that nodes {d 1 5

Ql’d22’
Note alse that {dQl’ e DDS; because {dQL’ } € (IS)lQ’ ut,

d 1 ¢ DDSl, because dsy ¢ (IS)lz, although dSl € (IP)Ql and dSl € (IP)22

Clearly, since G{J,A} is a directed, acyclic network, so is

TERLNSS

The previous definition has to be supplemented tc include the
case of subnetwork 3 of Fig. 20, i.e. the case where there is at least
one path such that:

= < < sse < =
S ml < m, < < mn F
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where all nodes are activity nodes.
Definition. The conjunctive decision dependent subnetwork (CDDS)
(c) ,(c) i .
G{J LA } of a network G{J;A} is a connected network such that
(c) (e) . . _
J' ‘e J, A'7'cA and the following conditions hold:
(1) The conjunctive decision node '"S" is the initial node of
this netwerk, and SeCDDS,

(2) TFor every node (jk=mk) ¢ J define:

m./mk << m,, and
(c) i i
(IS)k = ¥ K

m. << 1. << wer << F
i itl

Then, if (15)¢®) » P, and m cCDDS, then (Is)ic)ecDDs.

k
(c)
(3) (.IS)k

Conditions {2) and (3} above need some more elaboration. Condi-

=@ if k = T,
tion 2 guarantees that all nodes which are elements of CDDS are going

to be elements of some path from S to P that does not include any Dj.

This implies condition 3. Thus, in the following example:

Figure 24. CDDS--An Example
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(IS)&C) = # and therefore, node 4 should be eliminated. As a
consequence, (IS);C) = §; in other words, nodes 3 and % are not ele-

ments of some path from S to F. Therefore

{s,1,2,F} « CDDS

Clearly, every decision network has at most one CDDS associated
with it (which may include more than one path from "S" to "F"). Also,
the standard network 1s CDDS,

It remains to be shown now how a decision network can be decom-
posed into its DDS and CDDS. The following labeling algorithm was
developed for this purpese.

Algorithm for Network Decomposition: Tirst Level Labeling. The

algorithm initially i1dentifies the first decision vertices that can be
reached from 3, and then finds all possible paths from each decision
vertex to "F." Each such vertex is the origin of a DDS, and elements of
all paths emanating from it are elements of this specific DBS. A simi-
lar approach is used for CDDS. This is done as follows:

Step 1. Tirst S receives the label "S." S is now labeled.

Step 2. Check the set (IS)Su—all immediate successors of S, If
this set contalins activity nodes m. they are labeled "S." If it con-
tains decision vertices D., they are labeled i=1,2,...m consecutively.
At the end of this step, all (IS)S is labeled.

Step 3. Repeat step 2 for each node My labeled "S8" and its
proper (IS)k. If more decision vertices are encountered, they are

labeled i=m+l,m+2,... consecutively.
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Step 4. Labeling with "S" stops when:
a) nc more "S" labeling is possible from an "S"-labeled node,
Or:

b)Y if (a) holds and "F" has been labeled "S."

Step 5. Go to the decision vertex Dj labeled i=1l. Starting with
this Dj’ label all jk el Dj<jk or Dj<<jk with "1" (even if some of them
carry a different label already). This process continues until:

a) no more labeling is possible, and

b) "F"™ is labeled "1."

Step €. Repeat step 5 for the Dj labeled 1i=2,3,...

Step 7. TFrom the set of nodes labeled "S" for every node m
(c)

K -

Thus, steps 1, 2, 3, U, 7 generate the CDDS, if it exists; all

eliminate all nodes mié(IS)

nodes labeled "S8" are elements of CDDS.

Steps 5 and 6 generate the various DIS; all nodes with the same
label belong ~o the =ame DDS. Note that, as was menticned before, some
nedes may belong to more than one DDS.

The algorithm has been applied to the decision network of Fig.

17, yielding DDS DDSQ, DDSS, DDS, and CDDS. In Fig. 17, only DDS

4 1

lB

and CDDS are shown {the rest are discussed in the example of Appendix

B). The decision vertices asscclated with each DDS are:

{Dl,DS,D6} e DDS,
{D2,D6} e DDS,
{Da,Dz,DB,D7,D8,D9} € DDS3
{Dq,DQ,DB] € DDS,
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DP Model of a DDS. Once the decision network has been decomposed

into its DDS, each DDS is transformed into a DP model. As was indicated

before, this requires the definition of stages, decision variables,

state variables and returns. This is achieved through the following

algorithm, called the Second Level Labeling Algorithm. This procedure

has to be applied to each DDS separately. For the sake of clarity of

presentation, it is shown for DDS3 of the decision network of Fig. 17.
Step 1. Start with the first decision vertex Dj = {djk(j)}’

i.e. D3 = {d d..} Dj is always the decision variable of the

3129322933 -
first stage of the DP model (stage n in a backward solution).
Step 2. LEvaluate ES for this decision vertex.
Step 3. Select one of the above djk(j)’ say dal' Label jk(j)
(i.e., 31) all i; a djk(j) < j; or djk(j) << j until:
a) another decisicn vertex or '"F'" is reached, or both, and
b) no more mi q djk(j) < mi oY djk(j) << mi can be‘labeled.
Step 4. I1f one or more decision vertices (or F) are reached,

label them

2, jk(3) (i.e., 2,31)

where:

2 indicates that this decision vertex (decision set) is element
of the second stage (stage n-1) of the DF medel, and jk(j) indicates
that d,, ,., (i.e., d..) is an element of the state variable of this

k() 31
stage.
Step &. Repeat step 4 for all djk(j) of the decisiaon vertex

selected (i.e., for dons das).
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Step 6. Repeat steps 4, 5 for all decision vertices labeled
2, ik(3) (i.e., 2, 31, 2, 32 and 2, 33), labeling the new decision ver-
tices encountered 3, Jk(j).

Step 7. Continue until all decision vertices are labeled.

Step 8. Using the critical path procedure, evaluate the length
of time required by the longest path--denoted CP--from each djk(j) asso-

ciated with the ith stage to all d associated with the (i+l) stage,

Jx(3)
provided thers is at least one path between the two. This is done by

considering for each djk(j)

that some activity nodes may have more than cone label, and should be

only m, that have the label jk(j). DNote

considered accordingly. When evaluating CP for decision nodes of the
first decision vertex, ES for each decision node is the cne cbtained
in step 2. For all other cases, ES=0.

The last step of this algorithm evaluates tjk(j)—-the time return
associated with decision nocde djk(j)' Thus, this algorithm yields the
required elements of a DP model. (Note that during the application of
this algorithm the stages are numbered forward. Cnce the stages are
established, they are renumbered backward.)

This algeorithm has been applied to DDS, of the decision netwaork

3
of Fig. 17, producing the reduction of DDS3 to the decision network
shown in Fig. 25,
Note the addition of ancther dummy decision vertex added after
decision nede 31, This has to do with the nonserial DP model introduced

in the following secticn. The specific case of Fig. 25 is handled in

Appendix B.
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4,61 481 491
462 4,62 492

Figure 25, DDS3

Nonserial DP Models. The DP model is not necessarily a serial

model. Due tc the methed of constructing the DDS, and since each DDS
is acyeclic, only two other major types of DP models are possible,
namely:

a) the diverging stages DP model, and

b) feed-forward loop DP model.

Two varieties of each one of these models are discussed in
Appendix A, and they are: type I divergence, type II divergence, type
I feedforward and type II feedforward. Later, type I divergence is
introduced to show an example of the computaticnal refinements required

for nonserial stages.
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An indication that a nonserial DP model exists is given whenever
a decision vertex D. has two or more labels of the same DDS, relating
this D, to a different stage, or whenever two different Dj have two or

more labels, out of which at least two are exactly the same. This is

amplified more in Appendix A.

Minimum Project Time. Consider the decision network of Fig. 17.

The decomposed network can be schematically described as shown in Fig.

26.

DDSanDSBnDDSl+ = {DQ’DG}

.

//},m/
NN

DDS DDS CDDS

7
e

\ L

DDSlnDDS2 = {D6}

Figure 26. Decomposed Network

For convenience, "S" and "F" are shown separately, as before.
Let T' denote the minimum time to get from S to F, associated

with DDSi. For CDDS, T' is equal to the critical path from S to F, and

is denoted by 7° as follows:
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T° = Max L(Z. )
; k

For each DDSi, T is the minimum critical path from "S" to "F,"

T' = Min(CP): = Min[Max L(z )1}
. . k™73
j ik
where (CP); is the critical path of the jth standard network of DDSi.
The optimal policy for DDSi yvielding Ti is denoted by
vl = {d. .3,
i t ]k(])}l
Inspecting Fig. 26, it is seen that all T' are associated with
paths from S to F. Therefore, the project minimum time is given by:

T° = Max(T") = Max[Min(CP)*] = Max{Min[Max L(zk)]%}
i i J 1§k N

And the optimal policy for the whole project is:

oTa
w

ik(3)

oo
-

= (0°) = (4 }
1

Umax.slack
The subscript "max.slack" indicates that this set of decision

nodes will yield the maximum slack, but not necessarily the minimum
cost of the project. Since T  is a value of a specific DDS, it may

be possible to select different set of decisicn nodes for some other
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DDS, yielding a lower cost, without affecting the total project time.
This is done later as part of the time-cost trade-off procedure.

Thus, once T' is obtained for each DDSi, it is simple tc evalu-
ate the project minimum time. To obtain Tl, the DP model of DDSi has
to be utilized, as described in the following section.

DP Solution. If the DP model describing the DDS is a serial
stage model, the soluticn procedure described for the simple formulatiocn
is applicable here, with tjk(j) being the time return obtained in step
8 of the seccnd level labeling algorithm. T is obtained from:

i 3
= fn(t)(xn)
where f;(t)(xn) is the minimum n stage time return cbtained by solving
the DP model of DDSi. Since X, = {5}, then:
i
T™ = fn(t)(s)

To show the computaticnal modificaticens required for a nonserial
model, the case of type I divergence is described here, and other types
of nonserial [P models are discussed in Appendix A,

Type I divergence is defined as follows: Suppose that there are

three decision vertices Dl’ D2, D3 such that

and



Then, type I divergence {pure divergence) is the case when:

dx(zy < Do * k()

and

dlk(l) <D, * k(1)

For exemple, consider the following decision network.

Figure 27. Type I Divergence

This is type I divergence, with one diverging branch, and the

equivalent DP model is as shown in Fig. 28.

{21,22})
{11,12} 11 | £
{11,12} 191,32}
3
N ) {11,123} - 1 -

Figure 28. DP Model--Type I Divergence
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Fcllowing the general procedure for a diverging branch system
given in Nemhauser (51), let stage k be the divergence stage, let L1
represent the last stage of branch 1 (for a backwards approach and one
branch type I divergence), and let:

f(Ll)(t)(Xk—l) - minimum L stage time return of branch 1.

f(k+Ll)(t)(Xk) - minimum total time returm at the diverging
stage k.

f(n+Ll)(t)(Xn) - minimum (n+Ll) stage time return.

Since time values are not additive at a diverging stage, one

gets:

(xk) = Min Qk(x

%

fL1) (1) RN

where:

Qk(Xk,Yk) = Tk(Xk,Yk) + Max[f )

(Ll)(t)(Xk—l ’f(k—l)(t)(Xk~l)]

and:

The total minimum time for this DDS is:

T = f(n+Ll)(t)(Xn) = Min[Tn(Xn,Yn) + f

v (n—l+Ll)(t)(Xn—l)]
n

Similar modifications are required for the other types of
divergence. Diverging stages DDS can be optimized with no more effort

than would be required for a serial stage medel with equivalent number

of stages.
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Computational Refinements

Dominating Path. In some cases there might be a path bypassing

a decision vertex, and longer than any path going through the decision
vertex. An example of such a path is the cne bypassing decision vertex
4 of Fig. 17. In cases like this, the decision node selected at this
vertex will not affect the time value, and therefore the one yielding
the smaller cost should be selected.

Common Decision Vertices, It was observed before (Fig. 22)

that in some cases there is dependency between wvarious DDS in the
sense that Dj € DDSi for some falues of 1i; i.e., the same decision
vertex can belong to more than one DDS. The question now is whether
it is possible that while solving for DDSi decision node djl will be
selected, whereas solving for DDSm decision node djs will be selected,

where:

{djl’djs} € Dj

The following theorem resolves this problem.
Theorem 2. If a certain decision vertex Dj is both Dj € DDSi

and Dj € DDSm, then either:

’
W e
¥ o

a) djk(j) € Ui and djk(j) € Um

ot

or ) d.

3%(5) € Ui and d ¢ Um * k(3)

Jk(5)
or c) djk(j) s U, # k(j) and djk(j) e U
¢ Umar-k(j)

or d) djk(j) ¢ U, * k(3j) and djk(j)
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Two cases have to be considered, as follows:

1) Dj is the first common decision vertex of DDSi and DDSm.

2) D.
J

Case 1.

is any other decision vertex succeeding the first cne.

Due tc the method by which the DDS was constructed,

all nodes succeeding Dj are elements of both DDSi and DDSm, i.e., let:

= ] < <<
I {jile j; or Dj ]i}

then: J

K € DJSi and J

K € DDSm.

Thus, because of the backwards solution procedure for the DP

medel, if Dj is an element of the decision variable of stage r of DDSi,

the same is true for DDSm, i.e.

for

for

Let Xr be the input states for stage r of DDSi, Xr

i
states for stage r of DDSm.

Qr(xri’Yr) of DDS, are equal to the d.
cause of the state transformation:
Yr = Xr—l

z
Although Xr Xr )

Jk(

DDS,

DDS

the input
m
the 4., ,., columns of
i - k(i)
) columns of QP(er,YP), be-

Now, the r-stage minimum time return is:
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e i s . ' .
r(t)(x 1) = Min Qr(xr ’Yr) = Mln[Mln(Xr ’Yr)’ Mln(Xr ’Dj)J

Y i Y i D. i
r r 3

where:

Also:

£ (%) = Min Q(X_ ,Y ) = Min[Min(x_,Y'), Min(X_ ,D.)]
r T r T r >3

r{t) Y T Y' Tnm D, m
T r j

Therefore, the decision alternative selected for each input state

is:
DDS. DDS
e —m—
U oy #de . wx( Y oea, . '
(1) Ypg se(z) ¥ (3) and Vg k() ¥ k(3)
or (2) Vpg = djk(j) with k{(j) and Yrg z djk(j) * k(3)
or (3) Vg djk(j) = k(j) and Ypg djk(j) with k(i)
b % . Lon LR . Lo
or (4) Ypg = () A k(3) and Vg = Y(y) With k(1)
If d “ it can never become an element of U? or Ux. If
]k( ) 1 m
diy ey = * it may or may not become an element of U or U.. Since
Jk(3) m

the only possible outcomes at stage r are the ones mentioned above,
it is clear that only (a), (b), (c¢), or {d) of the theorem can happen.
Case 2. The proof of this case is essentially the same as that

of the previous one. This proves the theorem.
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The Minimum Time Network

Once Uﬁax.slack has been established, the decision network can
be reduced to a standard network by following the procedure described
in Chapter III. All nodes of the standard network are regarded now as
activity nodes, and the cost asscciated with this network is cbtained by
adding the cost of each node. As menticned before, this is not the
minimum cost possible for the minimum time solution. This minimum cost
is evaluated later.

This concludes the discussion of the minimum time problem. The

procedure developed here has been applied to the decision network of

Fig. 17 in Appendix B.

Minimum Cost Problem

The minimum cost problem is defined as follows: Given the

decision network G{J,A), select for each decision vertex (decision set)

3k(3)° 75

will be minimized. TFind the time associated with the minimum cost.

Dj at most one decision node d » S0 that the total project cost

The approach taken for solving this problem is basically the
same cne used for the minimum time problem, i.e. transforming the
decision netwerk into a DP model, Some modifications of the previous
procedure have to be introduced to accommodate the fact that one deals
here with cost returns vs. time returns before.

Specifically, the solution procedure for this case involves
three steps, as follows:

1) DP mnodel for each DDS

2) DDS Minimum Cost
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3) Project Minimum Cost and Time.
DP Model

Constructing the DP Model for this case is done in three steps:
decomposing the network, establishing the reduced cost network, and
evaluating the cost returns.

Network Decomposition. Decomposing the decision network into

DDE is done using the same procedure cutlined for the minimum time
problem, Thus, if the minimum time problem is solved first, the network
decomposition is already available.

Reduced Cost Network (RCN). Before establishing the notion of

the reduced cost network and discussing its use, the notion ¢f the
permanent nedes has to be intreduced.
Definition. The set N of permanent nodes is the set of all

nodes m: € M (i.e., NcM) such that:

Ned wd. .
= v-djk(])

Thus, permanent nodes are all nodes that their inclusion in the

B3

standard network is not affected by the selectien of V*--where Vv is
the policy of the minimum cost scolutiocn.

The set N can be easily identified during the second level
labeling as follows:

1} All nodes labeled "S" are permanent nodes,

2) During the second level labeling, if a node m is such that
Dj <m., and if this node is labeled with alil node numbers of djk(j) £ Dj’

then this node is permanent if m << D:.| is permanent.
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The concept of reduced cost network can be introduced now,

Definition. Reduced Cost Network (RCN) is the network obtained
after reducing to zerc the cost of each permanent node.

The concept of RCN is essential for the minimum cost soluticn,

as can be seen from the folleowing example:

Figure 29. Cost Decision Network

Activity node 2 is obviously a permanent node. Now, to evaluate the
minimum cost network, one evaluates the cost associated with each deci-

sion node. This is:

Thus, for minimum cost one would select dll and eliminate de.

But the corresponding cost of the standarxrd network is 20 + 30 = 50, and
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this 1s not the minimum, which is 40 and can be obtained by selecting
dl2‘

Cbvicusly, selving with RCN (i.e., reducing the cost of node 2
te ) will eliminate this problem, The reason is that the cost associ-
ated with a certain djk(j) should be the incremental cost over the
"fixed" cost which is not affected by the selection of a particular

. . i
decision node.

Evaluating Cost Returns. The stage returns can be evaluated by

a2 modified version of the second level labeling algorithm of the minimum
time problem (p. 67). The modified algorithm is:

Steps 1-7. As before, with the elimination of step 2 and where
the DDS is composed of elements of RCN.

Step 8. If an activity node has two or more labels jk(j) asso-
ciated with decision nodes of different decision vertices, say Dj and

Dm’ the label associated with the 4 connected with a smaller stage

k(i)
number is dominating, provided Dj < Dm or D < Dj' The rest of the

labels should be eliminated. If the labels are associated with djk(j)

of the same Di’ the same stage number, or 1f Dj * Dm or Dm + Dj’ they

all remain.5

The cost return associated with each dj ) is then:

k(]

L}The problem does not exist for the minimum time problem,
because time wvalues are not strictly additive. Thus, if in Fig. 29 the
values represent time, one would select dll yielding a total time of 30
vs, 40 if de is selected.

>The symbol 4 means "dces not precede."
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k(3 all nodes *
labeled

ix{(3)}

where 4 is tke cost of activity node m s and Cjk(j) also includes the
initial cost of decision node djk(j)'

The idea behind step 8 above is the same as that of the RCN, If
a certain cost has Deen committed at an early stage, later on only the
incremental addition should be considered. The use of RCN eliminates
the need of adding a dummy decision node as in Fig. 25, if a backwards
sclution approach is used.

Application of this algorithm yields the required elements of

a DP model.

DDS Minimum Cost

The solution procedure for the cost preblem is exactly the same
as that for the time problem. The DP model is equivalent, and the only

difference is that instead of time returns one deals with cost returns.

Let, for DDS_:
m

Ci(Xi,Yi) be the cost matrix for stage 1.
Ri(Xi,Yi) be the i stage cost return matrix.
fi(c)(Xi) be the minimum i stage cost return.
m

C be the minimum cost of DDSm.

Then:
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m m

c o= fn(c)(xn) = Min Rn(Xn,Yn)

Y
n

where:

Rn(xn’Yn) - Cn(xn’Yn) * f(n-l)(c)(xn—l)

and £ is the total minimum cost return of DDS_.
n(c) m
In contrast to time values, cost values are always additive.
Therefore, the sclution of nonserial stage models follows the standard
procedure for these cases (see Nemhauser (51)). Thus, the procedure for

type I divergence described previously would be in this case:

f(k+Ll)(c)(Xk) = %in Rk(Xk,Yk)
k
where:
Rk(Xk,Yk) = ck(xk’Yk) + f(k*l)(c)(xk_l) + f(Ll)(c)(Xk_l)
and:

m_ .m

= FneL1)(e) )]

= Mln[Cn(Xn,Yn) + f

Y
n

(n—l+Ll)(c)(Xn—l

Other types of nonserial models are discussed in Appendix A,

Project Minimum Cost

Once the minimum cost sclution of each DDS has been obtained, the
project minimum cost can be evaluated. This is done as follows:

Let:
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Cl - minimum cost of DDSi.

wta
-

Vi - optimum policy for DDSi yielding ct.

Then, —<he optimal policy for the project minimum cost is:

v e (V) = (a
1

ofa
]

jk(j)}

Note that the property discussed in Theorem 2 is valid also here.
The optimal policy V" enables the reduction of the decision net-
work to the standard network G(J“,A") for the minimum cost solution.

Then, the project minimum cost is given by:

¢ = ZCi. + CPN
mieJ==

where CPN ig the total cost of the permanent nodes.

The wvalue of T. .--the time associated with the minimum cost

c:':
solution--is found by evaluating the critical path of the standard net-
work G(J ,A").

Computational Refinements. Some refinements of the minimum

cost procedure are required for DDS's having common decisicn vertices,
The problem is similar to the one discussed while introducing the RCN,
and can be best described through the example of Fig. 30.

Considering the costs represented by the upper case numbers and

solving for the minimum cost for each DDS, the outcome is vy = {12,22,31}
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with a total minimum cost of 240. However, the minimum cost of this

network is 210, with V = {12,31,21}.

Figure 30. Cost Example

The other difficulty is represented by the lower case numbers

(in parenthesis), Solving for this case yields V = {11,22} with a

)

minimum cost of 230, whereas the true minimum cost is 210 with v© o=
{12,21,31}. This leads to the following modification, which is, in a
sense, an incremental analysis. There are three cases to be considered,
as follows:

Case 1, Let D represent the first common decision vertex for

some DDS, i.e., Dm € DDSi, 1i=1,2,... Then, if the outcome of the
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minimum cost solution is such that a116 dj << Dm of different DDSi

k()

are included in V*, no further zction is required.

Referring to Fig. 30, this means that if {12,21} € V"r= by sclving
separately for each DDS, then {11,22} cannot yield a lower value for
the cost.

Case £. Let Dm be as before, and suppose that at least one

<< D_ is not an element of V Let this d, be associated

4351(5) m : 3x(5)

with DDSi, i.e. { Let Dm be associated with the decision

d. N
]k(]))l
variable of stage r of the DP model of DDSi, i.e.,

or

{ ey

dmk(m) r

As menticned in Theorem 2, Dm € Yr for zall other DDS's considered.

S- " -
ince one dmk(m)’ namely dmk(m) was already committed for some

other DDS, it is now a problem of checking only the incremental addition
to the total cost contributed by the minimum cost path starting with
(djk(j))i and leading to the first decision vertex of (DDS)i. This is
done as follows:

First, Qr(xr ’Yr) is modified to give:
i

ots

Qr(xr.’Yr) - Qr(xr.’Yr) - Qr(xr.’dmk(m))
1 1 1

6
L3k(5)
that a path from dj

<< Dm means here the decision nodes that precede Dm’ S0

. o i ly activi m,.
K(3) t Dm includes only activity nodes 5
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.’dmk(m)
1

Once <his is done, the DP sclution proceeds as usual from stage

Note that Qr(xr ) has only one value for each input state.

{(r+l1) to n. This may yield a different V; than was obtained initially.

If this happens, v is adjusted accordingly.

Case 8. Let Dm be defined as before, and suppcse none of the
decision nodes immediately preceding Dm {(in the sense defined before)
is initially selected for V*. Then, for similar reasons as in case 2,

in stage r the following r-stage return matrix is formed.

0 (X_,¥p) = Q(X_,¥,.) - Min(Xp,D_)
m
The DP routine is reapplied now to stages (r+l) through n for
each DDS, If a new policy V* is obtained, its cost is evaluated, and
if it iz less than the cost obtained before, this is the minimum cost
policy.
Applying this rule to the decision network of Fig. 30 amounts to

having:

31 az =

and thus dal is selected for stage 1. This will yield a selection of

é,, for DDS, ), yielding V =

12 ©12°°11
{12,21,31} and C = 210 as before.

), and d2l for DDS2 (c21<c22

Note that the three cases discussed here do not create any dif-
ficulty for the minimum time problem, because time values are not

strictly additive.
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This concludes the discussicn of the minimum cost problem.

The procedure developed here has been applied to the decision network

of Fig. 17 in Appendix B,

Time Cost Trade-Cff

The two procedures described previously yield the minimum

project time and the minimum project cost with its associated time.

The purpose of this section is to develop a procedure for finding the

"Efficient Set," which is the cecllection of all admissible points,

defined as follows,

where

Let:

{oj} = set of all possible outcomes, i.e.

0= {Ojloj: (T,C) where T,C € Reals and Tz0, Cz01}.

an admissible point.

{o.} =
]

ot 1.
W

o.
J

o. =
J

the efficient set.

(T,.,C,) where T., C. € Reals, T.20, C,=20,
1 1 1 1 1 1
Ti are arranged in ascending order of T; values,

and if T,>T, C.<C we=1,..i-1.
11 i 7e

-1?

the ith possible project time value.

Min{CT_m}, and

m

the ith possible project time value obtained by selecting
the mth subset of decision nodes. Note that for fixed i,
T? is constant for all m,

project cost associated with T?.
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Obviously, O*CO and it is the lower houndary of 0.

The point (TC*’C*) obtained before is an admissible point, as
well as the point (T*,CT*), where only T¥* has been evaluated so far.
These two points define a closed interval7 in E? 5o that any point out-
side this interval is of no interest.

In order to obtain O* for the problem at hand, first the general
methodology for finding the efficient set is developed, and then it is
applied to decision networks,

A Methodology for Finding the Efficient Set

Consider a serial dynamic programming model, where the decision
variable of one stage is the state variable of the following one, and
each input state and decision alternative has two discrete returns
associated with it, say time and cost. This model can be described as

illustrated in Fig., 31 (assuming the backward sealution approach is to

be used):
Yn Yi -Y2 Yl
X J X X ‘l X X l X l X

B on R ke, L) |5

Figure 31. A Serial DP Model

7A closed interval in EQ is defined as the set of points

2
< < 1=
{(xl,xz) e E lai—Xi—bi, ¥ i=1,2}.
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The recursive backward solution procedure described before treats
the above mocel as two separate problems--one with time returns and one

with cost returns, yielding

= fn(t)(xn) with U - the minimum time policy

c =f (Xn) with V. - the minimum cost policy.

n(e)

Note that for both problems gi(xi’Yi) is the same, i.e.:

X1 = g% Yy) = Y
and Xn is an element set.

The value of CT*can be easily obtained in this case by summing
all values of Ci(Xi,Yi) associated with U*. Similarly, the value of
Tc*is obtained by summing all values of Ti(xi,Yi) associated with V*.
Thus, the two extreme points of the efficient set O* are obtained by
solving two separate DP problems yielding:

ot s
[ ”»

(T ,C...)

O
1l

ta
cy

(o]
i

(T s sCH)

if the "Efficient Set" has N points.
One way teo find all otner 03 c 0 is by complete enumeration of

all possible ocutcomes, i.e., all oj € 0. This method gets very fast
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out of hand. For the example shown in Appendix E, this would mean
evaluating L4036 elements of 0, whereas O:'= has only 8 elements,

The method introduced here reduces substantially the computa-
tional effort reguired. The method can be regarded as a sensitivity
analysis or incremental analysis of a DP problem of the type shown

above, It can be applied in two ways: starting at oy and working

Ty
i

towards Oy» ©F vice versa. This procedure is introduced first as an
algorithm, followed by a discussion of optimality.

Efficient Set Algorithm. The main idea behind this algorithm

is the utilization of the information obtained in the minimum cost or

minimum time solutions to generate a set of '"promising" points, where

the efficient set is contained in this set. This is done by utilizing
the matrices of the DP solution to perform incremental analysis and

find what the best ways to move away from the optimum are, so as to

remain on the lower boundary 0 . Thus, the algorithm can be applied in
two ways: starting with 01 progressing to o§ utilizing the DP matrices

of the minimum time solution, or starting with o; progressing to o:
utilizing the DP matrices of the minimum cost solution. FPollowing is

a description of the first approach, to be referred to as the "Efficient
Set Algorithm--Time Version." The nature of the changes required for
the cost version will be introduced later. The "Time Version'" is as

follows:

Step 1. Solve the minimum cost problem, obtaining (Tc*,C*), and
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Step 2. Solve the minimum time problem, obtaining (T“,CT*) and

U . As a consequence of this procedure, for each stage i, the i stage

return matrix 1s available, having the following elements:
Qi(xi,Yi) = (qijk)

Step 3. Construct, for each stage i, the 1 stage cost matrix of
the minimum time solution as follows:
Let Y; represent the optimum set <f decision alternatives

selected at stage 1 given each input state of Xi’ for the minimum time

solution. Denote this by:

Y5 o= dygpdngy!

ule
i.e.: the element Yix selected given input xij' Thus, for example, if

e
1]

{x,.} J=l...4
i3

<
11

{yik} k=1...3

The decision set Yi may lock like: Yi = {(yi3|xil), (yil|xi2)’
(v;90% 05 (5540%5,03
Now , Oi(Xi,Yi) - the i stage cost matrix of the minimum time

solution is defined as follows:



where:

Since

Then:

4 = o = .. i
@i(xi,Yi) ci(xi,Yi) + }i_l(Yi) { l]k) i

Step 4.

@l(xl,Yl) = cl(xl,Yl) = (eljk) = (cljk)

Oi(Xi,Yi) = Ci(xi,Yi) + Pi_l(X. ) i=2...n

i-1

5-1%%501 i-1 1Y

1l

Construct AQi(Xi,Yi)——the time increment matrix for

stage 1, as fcllows:

AQi(Xisyi) = (qijk"Mln q

y ijk) = (qijk—qijk!) = (Aqijk)

Note that Aqijk =0 #1i,].k.

Step o.

2..

93

i=1l...n-1

Construct Aei(xi,Yi)——the cost increment matrix of the

minimum time solution, for stage i, as follows:

Aei(xi,Yi) = (6

) = (A8,.,.)
i]

9% 81a0 K

i=l...n-1



4

where k' is the one obtained for AQi(Xi,Yi).

> .
T O ¥ i,i.k.

k

Step 6. Eliminate in Qn(Xn,Yn), On(Xn,Yn) all entries which cor-

Note that A6.,

1]

respond to ynf € Yn’ where ynﬁ are all elements for which
Qn(xn’Yn) g TC*

(Recall that X, = {xnl}--i.e. an element set, and:

T = Min[Qn(Xn,Yn)])

Y
o!
Eliminate in AQ(n—l)(Xn-l’Yn—l)’ Aen—l(xn—l’Yn-l) all rows corre-
sponding to {X(n—l)ﬁ}'
{Recall that Xn—l = Yﬂ)

Step 7. <Construct:
Q?(Xi,Yi) - the time change matrix for stage i when the procedure

starts at stage m.

@T(Xi,Yi) - the cost change matrix for stage i, when the proce-
dure starts at stage m. Initially m = 1.

These matrices are defined as follows:

m _ .
Qm(Xm,Ym) = AQm(Xm,Ym) i=m

m ..M m % .
Yy = A (XY + 2y (X g0Yy ) medsn-l
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QX ,Y.) = (uha, ) where the subscript r on k
17711 J.]kr n
indicates that w,., may have
ijk,
0 % m more than cne element in each
ni(xi’Yi) N (wijki) location (jk) at stage 1i.

m _ L
e (X LY ) = 86 (X ,Y ) i=m

m _ m w —
0, (X, ,Y,) = 20, (X ,Y.) + o, (X, 1LY, ) m<isn-1
m _ m
¢i(xi,Yi) = (¢ijk )
r
m ¥ o_o..m

The starred matrices are formed using the follcwing procedure.

(a) Any element that is starred or eliminated for QT(Xi,Yi),
the corresponding element in ¢?(Xi,Yi) is starred or eliminated too,
respectively, and vice versa.

{b) Eiiminate all elements for which:

m

(1) Ty ” (T 4T
m
(2) ¢ijk > 0
r
A8 135k

(3)

> were eliminated in Step B.
2 (n-1)4x
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3
m a
> "
(4) 1If, Wi 2 W)y
r r
% a = l...m1
>
m a ¥ K
and: ¢ijk 2 ¢ijk*
r I‘)

(¢) The first starred element for each row is: (provided there

is at least one element which has not been eliminated or is not equal

to zero)

wijk* = Min wijk

in case of more than one value for wijk*’ the one with the smallest cor-
T
responding ¢ijk* is starred, and the rest are eliminated.

(d) Additional starred elements are all elements for which:

if w?.k > m?'l
Iy I25 where lg includes
>% 1 , also all values
{except one) of k_.
then: ¢ < ¢m~ .
’ k 131
r s

The above procedure has to be performed in the sequence de-
scribed. If, as a consequence of (b), all elements of Q?(Xi,Yi) and
@?(Xi,Yi) are either eliminated or zero, then the next step is step 9.

Step 8. Evaluate the set of "promising points" (Tp,cp) as fol-

lows:



a7

m
. P ]
ij 9n15 w(n—l)jkr

¥, k;

. =68
P]

T ;
nlj (n-1)4k”
r
The subscript j indicates that the specific values of Tp or C
are obtained from the value in the jth column of Q (X ,Y )} or @ (X_,Y ).
n''n’n n'n’n
The subscript r on j indicates that there might be more than one value
in column J.
Note that Qn(Xn,Yn) and-@n(xn,Yn) are also elements of (TP,CP).
Step 8. Repeat steps 7, 8 for m = 2,3,...n-1.
Step 10. Inmitial Elimination. Given the set of promising
points (TP,CP), then:

(a) Eliminate all pairs for which:

or:

{b) Eliminate all entries (T ,C ) for which:
pm pm

If: T =T

then: C > C



98

Step 11. Admissible Point Test., Arrange (T_, ,C_, } in ascend-
PJ.." PI1,
ing order of T . . Call these pairs now (Te,Ce), where the index e
r
increases with increasing values of Te, i.e,

Ty, = Tox if  1<e<M

The efficient set is composed of all points og = (T;,c;) satis-

fying the following conditions simultaneously:

The policy We associated with each O; is found by tracing back

according to wr.. s op ¢m » in the matrices QT(X,,Y )*

Yiyw dccoraling wijk; 5K * EANS LEF R

m 3
The above algorithm is recapped in the flow chart of Fig, 32.

Optimality of the Algorithm. To show the optimality of this

procedure, first the general ccncept is discussed in more detail,
and then each step is discussed separately. While doing so, it will be
helpful to refer to the following graphical description of the efficient

set.
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(1)
Min. Cost
Togs CF
T )
Min., Time
T"", CT*
Qi(Xi,Yi)
¥ (3)
5,(%,,Y,)
i
¥ Tes - Test: (7)
* {i) Ng Jall Eliminated 1) wijk >(Tcﬂ_T*) *’kr
or 0 r
AQ.(X,,Y,) n
1171 No 2) ¢.., »0 =k
= 1 1jkr r
- ksk(l) o5 1a) se | were
_i (5 {n-1)jk .
Aq i elimi-
AD. (X, ,Y.) (n-1)3k| nated
114 Eliminate N moo,a 1
¥ 1 wm qu Yes ) wijk —wijk;j ¥ Kp
i3k, iik, (k) . >¥ ky
v ¢..k 2¢?.k* ¥ a
(¥ >Y) > T \],]/
(6)} No
— CJ ¥ o)
Eliminate _ Initial BElimination
appropriate elements T . > T.. IT =T .
. 1né Pl CH pm - Pl
c . > LC. .. 1C >C .
n’ 2 iy Tﬁ!l_pmr Pl
AQD 1? A n-1
l Arrange (EE,Ce)

i (7) -"EEET§;Z:t‘¥EE¥?‘-.

wijk% Te>Te—l
T m C <0, & 1
W, . 2w, . e 1
ljk l]l 1 N \/
r S
- o - ls
¢ < ¢, ., J) &
gk, Tl 05y W,

Figure 32. Efficient Set Algorithm--Time Versicn: Flow Chart
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¢l

X - Element of O
X | ®- Admissible Point

Figure 33. The Efficient Set

Obviously, the minimum time soluticn and minimum cost solution

and O;’ respectively. - As mentioned before, any point falling

afs
(13

. . . 2, . s .
outside the closed interval in E° is definitely c¢f no interest, whereas

yield o

points within 52 may or may not be elements of the efficient set.

Due to the nature of the DP solution, the values of Qn(Xn,Yn) =
(%5Xﬁl’Yn) represent the minimum peossible time value associated with each
Yok and were obtained by selecting the minimum value for each Xij and
all yik up to i=n. Furthermore, the values of Qi(Xi,Yi) obtained for-
each stage i represent the minimun i-stage time for each Xij and Y3y

Due to the way ei(Xi,Yi) is constructed, its values represent
the i-stage cost for each X; s and Yix if the i-stage minimum time policy
is followed. Note that Oi(Xi,Yi) is not the i-stage minimum cost
matrix, which is given by Ri(Xi,Yi). Accordingly, On(Xn,Yn) yields the
costs of the minimum possible times associated with each Yok

Consider now stage i. Let:

Yia © yik*|xij
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i.e., the optimal decision associated with input state xij’ and let Yim
be some other decision alternative. The elements of Qi(Xi,Yi) and

@i(Xi,Yi) associated with the above would be as illustrated in Fig.

34(a).
Yikwlx(i+1)g Y(i+1)3 Vikx %1574 Yim
| ; |
| ? s
A .
® { . - — e q§i+l).~gk9“.k X. -{ N
(i+1)g N ij
(i+1)gj
i

AQi(Xi,Yi)
A0, (X, ,Y.)
1 1 1

(b)

Figure 34. DP Matrices

Suppose that, instead of making the optimal decisien Viis at

i i * 1 < i g
stage i, the cecision Vig 18 selected. If all yiklxij for (i+l) =i =n
do not change, then one of two things may happen:

1) Qn(Xn,Yn), On(Xn,Yn) remain unchanged.

2) One or more pairs of values of Qn(Xn,Yn), On(Xn,Yn) will

change.

If (1) happens, then moving away from the optimum decisicn at

stage i will not affect the final result. The change associated with

(2) will be:
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The change in time:

. < . . . :
since qijl < qijm’ and the change in the associated cost

8% 5m ™ Bgm 7 8i51 0
The time values will never decrease, since the values of
Qn(Xn,Yn) are the minimum possible and Aq 2 0, whereas the cost values
may increase, decrease or remain the same, depending on the value of A8,
Of course, if just the above change was made, and 48 > 0, none of the
new values obtained for (Tp,CP) could be an admissible point.
Refer again to stage i. BSuppose that instead of moving away from

the optimal Viq to Y;p? One moves to Yig» for which

Obvicusly, under these conditions, moving away to Y;p can never
yield an admissible point, since moving to Yig gives a higher decrease
in cost for a smaller increase in time.

If, on the other hand,
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Then both moves may yield admissible points. The above procedure
is referred to as the "promising change procedure.™

If the procedure starts at stage i1 and Aeij'z 0, then moving away
from the optimal decision Vi1 will never yield an admissible point.

Now suppose that a move away from the optimum to Vim is made at
stage i, and a move away from the optimum to y(i+l)j (which is equal

to Xij) for x.. is made at stage (i+l), and from there on all

Litl)g

Xs s for (i+2) < 1 < n do not change. (See Figure 3u4(b)). As

Yik

before, if there is a change in one or more (T,C) pairs in stage n it

will be

time change: Aqijm t Aq(i+l)gj > 0

: .. B, . .
cost change Ael]m + A (i+1)g]

Again, only if the total change is negative, this may be an
admissible point(s). Note that if Aeijm > 0, the combined change will
never yield an admissible point, if the procedure starts at stage 1,
as considering the change of stage (i+l) alone will give a higher cost

& i i . - . . 0
decrease for a smaller time increase However, Aeljm < 0, &8(1+l)gj >
may yield an admissible point, if the combined cost change is negative.

If both AB's are negative, then the combined change, as much as each
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change considered separately, may yield an admissible point,

By recursively repeating the above argument, the restriction of
following the optimal decisions from a certain stage on can be removed,
and the total change in the time and cost values of stage n will be the
sum of changes at each stage, where the changes of stage i and (i+l)

are summed accerding to the transition:

Introducing all possiblé changes weuld amount to enumerating all
possible outcomes. By carrying forward only the "promising' changes at
each stage according to the '"promising change procedure," only a small
fraction of all possible cutcomes has to be evaluated, and the efficient
set can be easily identified. The stage is set now to explain the
algorithm step by step.

Steps I, 2, 3. These steps should be cbvicus from the previous
discussion.

Steps 4, 5. AQi(Xi,Yi) and Aei(xi,Yi) represent the amount of
poessible change in one or more (T,C) pairs at stage n if moving away
from optimality was tc be made at stage i only. Note that each row will
contain at least one zero in both cases.

Step 6. Qn(Xn,Yn) represents the minimum possible value that can
be cbtained. If some of them are already greater than TC*’ they cannot
be reduced by moving away from optimality in some stage i and therefore

sheuld be eliminated.
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Step 7. The matrix Q? represents the accumulated time change at
stage i for each xij and Yio if the "promising change procedure' has
been applied to stage m through i-1, where m<i; likewise, the matrix
@? represents the same for the cost changes,

The procedure initially starts at stage 1 (m=1) yielding
Qi, @i. Then it is reapplied starting at stage 2(m=2), etc. By doing
so, all possible accumulated changes are considered, allowing for
selecting only the promising ones at each step. Due to the tests made
at this step, the process converges rapidly, and from m=2 and up, only
a few values have to be carried to stage n.

The reasoning behind the procedure for finding the starred

elements (pg. 95) is as follows:

(a) Obvious
(b)Y (L) (TC?_T*) is the maximum allowable time change in stage n.

¥

Therefore, if wm.

i3k > (TC*_T*) it will not yield an admissible
r

point.

(2) Should be clear from the initial discussion.

(3) Obvious.

(4) This test compares the accumulated changes at stage i,
obtained when the procedure starts at stage m, with the
previously chosen entries (starred elements) for the same
Xij’ when the procedure started at stages l...m-1l. By the
same reasoning as introduced befeore, if a previously chosen
entry eliminates the pessibility that the current one will
become an admissible point, the current entry should be

eliminated,
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Obviously, if all elements of ﬂ?(xi,Yi) are either
eliminated or equal to zero (and therefore ¢T(Xi,Yi) is the
gam2), the process terminates for this m.

(¢} No point can dominate thig one in the sense that a smaller
time increase will yield a higher cost decrease. Therefore,
it is always starred.

{(d) TFollows from the general discussicon presented on page 100.

Step 8. (w? %) 1s the accumulated promising

¢m

o Tty .

n l)jkr (n l)jkr

change, and is added to the basis from which the change is made--the

initial values of Q (X ,Y ), 6 (X _,Y ), obtained from the minimum time
n'n’n n'n’n

solution. These values by themselves are promising points.

Step 10. Obvious.

Step 11, The reasoning behind the test for Ce is that, as time
increases, the cost cannot be higher than the cost asscciated with the
previously selected (Tg,ci), which is not necessarily the point immedi-
ately preceding the one under consideration.

The Efficient Set Algorithm-Cost Version is constructed in a
similar manner to the Time Version. Instead of Qi(Xi,Yi), the matrix
Ri(Xi,Yi) is used, and the i-stage time matrix of the minimum cost solu-
tion is formed instead of Oi(Xi,Yi).

Efficient Set Tableau. To reduce the computational effort asso-

ciated with obtaining the efficient set, the tableau shown in Fig. 35
was developed. The tableau is used as follows: section 1 contains the
matrices AG(Xi,Yi) and AQi(Xi,Yi) that can be easily obtained by using

the results of the minimum time solution. The matrices are imbedded in
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Figure 35. Efficient Set Tableau: Time Version

LOT


http://Secti.cn

io8

each cther, so that each (xij,yik) contains twe values: the upper one

is A8,

i3k° the lower one is Aqijk' Sections 2 and up are used to gen-

)

m m _ ,
erate Oi(Xi’Yi) and Ri(xi,Yi) for m=1...n-1. Again, each (Xij’yik

contains the wvalues (¢?jk ’w?jk ) where each such slot is divided into a
few sections sc that diff:rent :alues of the above pairs can be accommo-
dated.

The last column (Yn) of section 1 contains the values of On(Xn,Yn)
and Qn(xn’Yn)' The same space in secticns 2,3 contains the values
(TP,CP) generated in the process.

This whole procedure has been applied to a six-stage DP problem
(see Appendix E) with a total of 4,096 possible outcomes. Only 22
points had to be evaluated, 8 out of which are elements of the efficient

set.

The Efficient Set for a Decision Network

The purpose of this section is twofold:

a) to find the minimum cost of the minimum time solution, i.e.:

. = Min{C

1 (T’

o
T

b) to develop time-cost trade-off for the case of certainty,
i.e., find the efficient set {o?}.

The method that achieves the above goals 1s an adaptation of the
efficient set algorithm described previously. The procedure is discussed
step by step, as follows.

Step 1. Apply the efficient set algorithm to each DDS (excluding

the admissible point test of step 11).
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The policy associated with the pair (T;,Cz) is denoted by W;,

where T; is the time of DDSi, and C; is the cost of DDSi associated with

Ti. Tor all Ti < T*, the one with the smallest Ci is selected. Note
that Uj is a specific entry for wi.

No difficulty arises when applying this procedure to a nenserial
DP model of the DDS. Since the algorithm is based upon incremental

analysis, any incremental increase in each branch should be considered.

For a type II divergence, the value of

is evaluated by taking for Min qijk the value selected at this peint for
the time solution, which is not necessarily the minimum of the specific
row (i.,e., it was selected in another branch). This might create in some
location Aqijk < 0, and these slots should be ignored. (See the example
of Appendix B.)

The reason that the admissible point test of step 11 of the effi-
cient set algorithm is excluded is because (Te,Ce) has to be evaluated
for the project as a whole.

Step 2. Construct the "DDS Efficient Set Table."

This table is shown in Fig. 36, and is constructed as follows:
the table is divided vertically into two main sections A and B. Section
A includes all decision vertices that are common to two or more DDS, and

section B includes all cther vertices, arranges according to their

respective DDS. For each vertex, its tjk(j) and cjk(j) are given, and in
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addition, the vertices of section A are related to the proper DDS's,

110

In column 3 all time values (T;) are arranged in ascending order, and

underlined 1's (1) are placed in the proper columns of (W;O of sections

A and B. The values of C;, which are associated with a specifie pDSs.,

are entered in section I only.

(T;) is shown.

In column 1, the DDSi associated with

A B
N N\
’ NS
Common Nodes DDSl o DDSi .
D,
J
DDS D,
|
T5(4) t
“jk(3) B
d, .. d., ..
ik(q) ik(g)
DDS| Cost Time
DDS L BN LI I ] - & ® a & 8 “ o9 - & -
(chH (th
e e
x*
T
Project|
Ascending
crder
1l 2 3

Figure 36. DDS Efficient Set Table




111

Step 3. Evaluate CT*—-the minimum cost of the minimum time.

This is decne by using section I of the above table, as follows: no
changes can be made in the DDSi associated with T#, as any change would
increase the project time. In all the rest of the (DDS)i appearing in
section I the decision nodes selected can be changed, if this will not
change T*., Thus, for DDSi, one selects the row with Min(Ci), and elimi-

e
nates the rest of them. The 1 in all the remaining rows indicate

UV = {d‘j'k(j)}

associated with the minimum time T , and

C

T# = Z)*Cjk(j)*

k(j

This procedure, as is, will take care of the case of two or more
critical paths,

Step 4. Evaluate 0¥ = {o?}.

This is done by using section II of the table as follows.

a) Start with the first value of this section. Consider the
DDS; associated with this Ti. Place an X in all columns of this DDSi
that have 1 above them and don't have 1 in them from step 2. Flace l's
in all other cclumns of this row that have a 1 in some row above this
one.

b} If gsection A includes 1l and X, that means that a different

decision node is selected for a decision vertex that is common to two or
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more DDSi. This creates different time values than the ones obtained
previcusly for the other DDS, and this time value may be greater than
the one under consideration, and therefore dominating.

To check this, all the values of tjk(j) associated with columns

with 1's in them (both 1 and }) for a specific DDSi, are added, i.e.:

L t3k(3)

(A1l k(3) with 1's) € (DDS)i

If one of these values is greater than the Te under consideraticn,
this row is e.iminated. This value will reappear in its proper place
in the Te sequence, if it is assoclated with a promising point.

Step 5. Evaluate Ce as follows.

Ce = Z Cjk(j)

All k(j) with 1's (both 1 and 1)

If C, < CT*’ the pair (Te,Ce) is an admissible point (where Te =
Tz), with We-—the pelicy for the whole project associated with this

point--being composed of all d.

.+ Which include 1 or 1 in their
Ik(3) =

columns.
Step 6. Repeat the procedure, starting at step 4, for the suc-
ceeding values of T;, with the following changes:

{a) An X is placed in columns of the DDSi associated with the



113

specific Ti, that do not have 1 in them, and have either a 1 or 1 above
them, with no X in between.

(b) For all other DDSi, a 1 is placed in columns that have either
a 1 or 1 above them with no X in between,

(c¢) The test of step 5 1s now:

If: cC =<¢C; #¥e <ic<e-1,

where e®* is the subscript associated with T%,
i.e., T , = Tw=,
eii )

Then: (Te,Ce) is an admissible point, with the policy
We as explained above. Note that U® and V* are

specific entries for We.

The above procedure and table combine the results of the Effi-
cient Set Algorithm applied to each DDSi separately in such a way so
as to eliminate all points that might be admissible for a particular
DDSi, but are not admissible when the whole project is considered.

Note that the "Cost Refinement'" discussed on page 84 creates no
prcblem here, as the procedure is basically incremental analysis of
the whole project. This procedure has been applied to the example of

Appendix B,

Constraints and Sensitivity

The solution procedure developed for the case of certainty has
the advantage that budget and time constraints can be added, changed or

dropped withcut any additional effort.
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Once the Efficient Set is obtained, adding a time constraint
amounts to a vertical line on the time-cost trade-off graphical
description, whereas a budget constraint is a horizontal line on the

game curve, as illustrated in Fig. 37.

COST

Budget constraint

e T

U
el
Wl g
QLt///,Time constraint
[ ® V"
P,
TIME

Figure 37. Constraints

This approach has the added advantage in that the sensitivity of
changing the constraint can be immediately obtained. For example, in
Fig., 37, increasing the budget by a small amount would sharply reduce

the total project time.
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CHAPTER V

THE CASE OF RISK WITE STQOCHASTIC DECISIONS

Introduction

This case is an extension of the deterministic case, discussed in
the previous chapter. As before, there are different altermatives of
performing some of the activities, each having a different cost, differ-
ent duration and different technological dependencies. However, each
alternative has now a probability associated with it. This probability
is a measure of the relative chance that a certain alternative will be
chosen as the work progresses. Thus, as was indicated in Chapter I
(p. 6) in contrast to the case of certainty, where a selection among
alternatives was possible during the planning phase, no such selection
is possible now. The selection of a specific alternative depends upon
the outcome of the preceding activities, and therefore no preliminary
elimination can be made, but instead, the probability of selecting a
certain alternative can be stated (typically, this would he a subjective
probability). Situations like this are common in research and develop-
ment projects.

In spite of the fact that neither elimination of alternatives is
possible during the planning phase nor reduction of the decision network
into a standard network, the decision maker is still in need of some
information in order to decide whether to proceed with the project or

not.
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Specifically, it is suggested that the following information is
of importance.

1) Project time and cost extremes,

2) Expected project time and expected project cost.

3) Risk Evaluation.

4) Most probable project network, its time and cost.

It can be seen that this case 1s essentially an extension of the
problem handled by Eisnmer (17), and is a different approach to the prob-
lem suggested by Dean (14). It is felt that the procedure suggested
here is more adequate for the stated cbjective of providing a decision

making tool during the planning phase.

Project Time and Cost Extremes

It was pointed out in Chapter I that for this case, developing
time-cost trade-off is impossible, as no alternative elimination is
possible during the planning phase. However, for decision making pur-
poses, information about the extreme values of project time and cost is
of major importance. These values define a closed interval in EQ,
called "The Region of Possible Outcomes."

No matter what the cutcome will be, it is going to be included
in the "Regiorn of Possible Gutcomes," as described in Fig. 38. To
establish this region, four values have to he evaluated, as follows:
minimum time, maximum time, minimum cost, maximum cost.

It should be noted that the cost associated with the minimum
time, the time associated with the minimum cost, etc., is of no impor-

tance, as one is interested here in setting the boundaries of the
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"Region of Possible Outcomes,” and not in a specific peint.

Max.Costl— —

Min.Cest | — ——

COsT

i

|
|

I
J

Min,Time Max.Time TIME

Figure 38, Region of Possible Outcomes

To evaluate these

edach stochastic decision

network is handled as in

four problems.

(1L
(2)
(3)
(4)

Minimum time

Minimum cost

Maximum time

Maximum cost

boundaries, the prcbabilities associated with
vertex are ignored, and the project decision

the case of certainty, solving the following

problem.
problem,
problem.

problem,

Chviously, the first two problems are exactly the cones solved

for the case of certainty, with the exception that the values of CT* and

e

% de not have to be evaluated.

The last two problems present no difficulty either, as the
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solution procedure is exactly the same as for the minimum time and
minimum cost problems, with the exception that the optimization process
is a maximization one instead of minimization. This whole procedure

is shown in Appendix C.

Expected Project Time and Cost

The purpose of this section is to develop another input to the
ppoject evaluation process during the planning phase. The procedure is
based upon the concept of expected value.

In the literature, there is some debate as to whether the
expected value concept, which is based upon "long run average," is
applicable in cases of "one time only" situation. Ancther criticism
of the expected value concept is the fact that it bases decisions on
the average only, and gives no consideration to the extremes. In spite
of these criticisms, expected value is the principle of choice most
often used., Furthermore, for this case and the one discussed in
Chapter VI, it is going toc be only one out of a few inputs to the
decision making process.

Expected Project Time

No cptimization process as such is involved in finding the
expected project time for this case, since no selection among alterna-
tives can be performed during the planning phase. Thus, the decision
network cannot be reduced to a standard network in the same way as in
the case of certainty.

The concept of expected project time needs some further elabora-

tion, before the method of evaluating it is introduced. Even in the
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case of a standard network with individual activity times being a random
variable (PERT network), the expected time of the project has been
appreached in variocus ways, based upon different sets of assumptions.
This problem, for the PERT type network, has been discussed by Fulkerson
(23) and Elmaghraby (20). Both methods are described as estimates of
the true expected value.

A similar approach is used here, Two methods are presented:
evaluation of an optimistic expected time, i.e., approaching the true
expected time from below, and a pessimistic expected time, approaching
it from above. The two methodé are associated with different sets of
assumptions concerning the project control policies during the execution
of the project. The true expected value is somewhere between these two
estimates, The two methods are the same and yield the expected value
only when the network has independent DDS only, i.e. no common decision
vertices.

Optimistic Expected Time. The first case to be considered is the

case where the project network can be decomposed into only one DDS
and one CDDS as illustrated in Fig. 39.

Associated with each decision node djk(j) of the DDS is a proba-
bility pjk(j)' No probability is associated with the elements of CDDS.
Obviously:

k%j)pjk(j) s
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Figure 39. A Stochastic Decisions Network

Let:

ELT"] be the expected time to get from S to P, associated with
DDS, .
i

£[T°] = T° be the time to get from S to F, for CDDS, and
E[T] be the expected time of the stochastic decisions network.
. _ 1 o
Then: E[T1 = Max{E[T],T").

For the case of meore than one independent DDS, one gets:

E[T] = Max(E[T"]) 1=0,1,...
i
To evaluate E[T*] the process associated with this DDS is viewed
as a Markov Process, as follows: Each decision node of the DDS is

viewed as a "state." The probability associated with each decision node



121

is viewed as a transition probability. Thus, P1; represents the transi-
tion probability from state "S" to state "11" (i.e., dll)’ and p,,; is
viewed as the transition probability from state "12" to state "21."

In general, let pj|i be the conditional probability that a system which
now occupies state 1 will occupy state j after its next transition.

Thus, using the above notation:

P12 7 P1o|s
Paz T Pog|12
and in general, for describing the Markovian transition probabilities,

th babilis P f decisi de d. .., i ded th
e probability pjk(]) of decision node $K(3) is regarded now as the

transition probability from state (mk{m)) to state (jk(j)) as follows:

Pik(4) [mk(m)

where jk(j), etc., is regarded as one subscript.

Since the system must be in some state after its next transition,

then:
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and since the system is absorbed in F,

Pplr = 1

Agsoclated with each state is a "return'" or "reward.!" These
returns are the time values associated with each decision nede of the
DDS as evaluated in step 8 of the second level labeling algeorithm for
the minimum time problem of the previous chapter. To comply with the
notation used for the transition probabilities, the time return tjk(j)
asscociated with decision nede djk(j) will take the following general

format whenever used in relation with the Markov process.

t.l - the time return associated with the
J transition from state i to state j.

Thus, in Fig. 39, t,,, when considered for the Markov process

22
will be *

22|12 €te

The rationale of viewing the stochastic decision network of this
case as a Markov process stems from the internal logic of the network.
Referring to Fig. 39, during the planning phase it can be safely claimed
that once decision node 12 is realized, the probability of selecting
decision node "21" is Pyyo DO matter how decision node '"12" is reached.

Using the symbol <:> to describe a state of the Markov process,
the DDS of Fig. 39 can be deseribed as shown in Fig. 40.

Finding the expected time of the DDS of Fig. 39 is equivalent to

finding the expected time of the Markov process of Fig. 40,
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Figure 40, Markov Process of a DDS

A solution procedure to this type of problem has been developed by

Howard (31). He called it '"Markov Process with Rewards." Using

Howard's procedure, one gets:

Let:

(-
T
o

lav}
1l

—_
Yt
=

'_'.

~

e

—
i

For the Markov

mxm "time return matrix" associated with the
Markov Process (m is the total number of states).

mxm transition matrix (stochastic matrix) asso-
ciated with the Markov process.

expected total time return in the next n transi-
tions if the system now is in state i.

expected total time return vector--mxl, if m is
the total number of states.

process described by Fig. 39 the matrix P is:
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B

Ps|s  Pui|s  Piz]s Pai|s Pa2|s  Pr|s
Ps|11 Priji1 Prz]i1 Porj11 P22|11 Prjn
Ps|12 Piiliz Piz]12 Pa1|12 Pz2|12 Pr|1z

Pgl21 Pii]21 Piz|21 Poij21 Paz|21 Prjai

Psl2z2 Pi1|z2 Piz|22 Po1jo2 Pazj2z Prj22

Ps|r Pi1|r  Pi2|r Poailr Pa2|r  Pr|r
Note that the sum of the probabilities for each row is 1, so that

some of the elements may be zero. In a similar way the matrix T can be

censtructed.

Using a DP approach, Howard suggests the following recurrence

relationships.
t,(i) = T
15 = L py sty

T (i) = § Pj|i{tjli T ) w1 nel2..

or:

(0 = TG0+ Doy f () + 4, mel2e

3 J

Using vector notatiocn, the last equation can be rewritten as:

The above procedure always terminates (as proved later) for n%

when:
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=T |,
_n*-'-l —nt

The expected time of the DDS is:

E[T7] = £ (5)
n¥
where the superscript 1 indicates that there is only one DDS in this
case,
The following theorem shows that this process will always termi-
nate. |

Theorem 3. The recursive procedure for finding in* always ter-

minates for a finite n = n%*.

Proof. The Markov process associated with this procedure is
composed of an absorbing Markov chain. This is so because the stochas-
tic matrix i has:

a) exactly one absorbing state (state F),

b) from every state it is possible tc go to this state (not
necessarily in one transition).

Since the Markov chain is absorbing, the probability that the
process will be absorbed is 1. Since there is a finite number of
states, and all states except state "I" are transient, and since the
original network has no cycles, therefeore the matrix E:has no cycles,

thus the process will be absorbed in a finite number of steps. Once the

process is absorbed, the expected return cannot change, and therefore:
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Tosel © In* Q.E.D.

The discussion so far has not touched on the problem of the
optimistic expected time. This problem appears when there is more than
one DDS involved, and at least cne common decision vertex. Suppose

that the stochastic decision network of Fig. 41 is given:

Figure 41. Stochastic Decisions Network
With a Common Decision Vertex

Obviously, there are two DDS, with D3 common to both. The
optimistic expected time, and the one that follows--the pessimistic
expected time--are based upon different assumptions regarding the poli-

cies of the project controller while the project is carried out,

Project Control Peclicies. The policies considered here are

concerned with a common decision vertex, like D3. Suppose that activity
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"12" is completed before any decision has been made concerning activity
"21." Due to the uncertainty invelved with the execution of activity
"21," two possible courses of action can be taken as follows:

(1) The project controller may decide to go ahead with activity
"31" or '"32" without waiting to see what happens with activity "21."

This is especially true when "12" is completed quite a long time
before a decision can be made about activity "21."

(2) The project controller may decide to wait for the outcome
concerning activity "21."

The optimistic expected-time which yields a lower value of the
expected time, is assoclated with the first policy. The pessimistic
expected time with the second.

The Markov Process for the Optimistic Expected Time. If the

first pelicy mentioned before is assumed, the meaning is that each DDS
can be regarded as an independent Markov chain. Note that the two DDS
cannot be regarded as one Markov chain, since then the '"states" will
not be mutually exclusive--a basic requirement for a Markov process.
Thus, one gets the Markov Processes illustrated in Fig. 42,

In this case, states "31" and "32" are common to the two chains,

and:

Pa1 T Parf12 T Pa1|2:

Pao = Pgol12 © Pazl21
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i.e., the transition probability from "12" to "31" and "32" is independ-

ent of the transition probabilities from "21."

Figure 42. The Equivalent Markov Processes

Generalizing this approach, first the project network is decom-
posed into DDS with the proper time returns. Then, each DDS is treated
as a separate Markov process, and E;*(S) is evaluated for each DDS..

Thus:
i, =i
E[T7] = ()
_ -1 0
E[T] = M?x[tn*(s):T )

The method described above yields the lower bound of the
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optimistic expected time. This claim is proved in Theorem 4 in the
next section. In order to obtain the exact value of the optimistic
expected time, the probabilities of path combinations among the various
DDS have tc be evaluated (see the value of EV in Theorem 4). This
amounts to an extensive computational effort even for small netweorks,
and therefore this approach is not recommended.

Theorem 4. The above method of evaluating the optimistic
expected time gives a lower bound of this wvalue.

Proof. Consider a stochastic decision network as shown in Fig.

43,

Figure 43. Stochastic Decisions Network: Schematic Illustration

Only the first decision vertex of each DDS is shown. The problem

of a common decision node does not exist here, since for the optimistic
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case each DDS is considered separately.

The solution procedure outlined above for finding the expected
time of each DDS yields the same result as the process of enumerating
all paths from each decision node to F, evaluating their times and
probabilities, and taking the expected value at the first decision
vertex. Thus, let:

pij -~ probability that the jth path to F of the ith decision

nodel will be realized.

t.., - time associated with this path.

i3

Then the expected time of DDSl is:

; § Pistig

which is equal to the value obtained by the Markov Process approach.
Now, suppose

g § Pisti5 2 E g Pymkm

13713

Then, E ) P..t.. is the value of E[T] obtained before for this
2]

network. Let:

lFor simplicity of presentation, the subseript jk(j) used for a
decision node is substituted with a single subscript 1 for this theorem.
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LB = ) J Pustss
i3 ij71ij
L where LB stands for
IAAEN) Pymtim( "Lower Bound" and LV
k m stands for "Lower Value"
L3 =2 LV

and

[1pgy=1
ij

Yip. =1
k m km

The true optimistic expected value of this network is given by

EV = % é ) Z pijpkmMax(tij,tkm)

113

Thus, it has tc be shown that, EV 2 LB. Now since:
Max(a,b) = %—(Ia—b, + a + b).

Then:
" -
BV =511 00 PP ltys iyl + tgy * ) =
kmi3]
1
=5 LD p (L DpgsUltse D+ 0 bpgyto v 5 T 1ps)
k m 173 i3 i3

1
EV = E-E ) pkm[Z Z ltij~tkm| + 1B + t, ]
m i3
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_ 1l 1
EV = 5’3 Z Z Z pl]pkml 1j_tkm| ¥ 2 LB I 2 Pxm * 5'2 Z pkmtkm
kmij m km
1
EV=§ZEEEpi]pkm| 14 k|+§-LB+ELV
kmij
Since:
(a-b) < |a-b]|
Then:
vy ip I0po.t..-=80p.. 17 +Z LB + =LV
“2f Prm Pijti3 ~ 24 L Pyij Prn'km 7 2 2
m i3 i3 k

EV = LB Q.E.D.

The proof can be easily extended to more than one DDS,.

The above procedure for the optimistic expected time has to be
somewhat modified when diverging stages are considered. The case of
type II divergence is shown in Appendix C.

Pessimistic Expected Time. This method is based upon the second

project control policy discussed before. Thus, referring to Fig. 41, if
"12" is completed before any action can be taken concerning "21," the
project controller will wait until a decision is made about "21," and if

21" is selected, he will wait until its completion.
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To evaluate the expected time in this case, one has to evaluate

the probability and expected time of reaching decision vertex D This

3

is done as follows:

P(12u21) = P(12) + P(21) - P(1l2n2l1)

1

P(reaching D3)

It

P(12) + P(21) - P(12)P(21)
= P1p TPy 7 ProPyy

The expected time of reaching D, is composed of three elements,

3

as follows:

Activity Equivalent
Occurrence Probability Time

12 but not 21 ) P(i2) - P(12n21) t

P1p = P1oPoy ) Ty

21 but net 12 | P(21) - P(12n21) = Py = PioPpy | Toy
12 and 21 -P(l2021) = PPy Max(tlQ,th)
and the expected time is:
Piotip ¥ PoyTor t PlQPQl[MaX(tlQ’t2l) "t T t21)

Noticing that the other set of probabilities associated with this

network is:

P(12021) = P(12n21) = P(1ln22) = Py1Poy
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The total expected time becomes

Y-t -t ]+

[Max(t 12 21

E[T] =

Protio T Portar ¥ PioPyy 12° %21

t (pyy * Pyy = PioPpy)(Paytyy * Pyotyy) +

[Max(t )]

* P13Poo 11° 22

The value obtained using this method is higher than the one in
the previous case. The true e#pected value lies somewhere in between
the optimistic and pessimistic expected values.

Generalizaticon of this methed is possible; however, it seems
that even for a moderate size network there is an immense amount of
calculations involved. A simulation approach seems to be more appro-
priate for this case. This is discussed later.

ExamEle
In Fig. 41, let:
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Optimistic Expected Time. It is easy to convert the above

probabilities and returns to their Markovian equivalent, yielding, for

DDSl:
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BT} = t 4(8) = 19.8
By the same method,

E(T°] = 17.6

E[T] = Max(19.8,17.6) = 19.8 (The lower bound)

Pessimistic Lxpected Time.

E{T] = (0.7)(15) + (0.4)(20) + (0.4)(0.7) [Max(15,20) - 15 - 20) +

+ (0.7 + 0.4 - 0.4 x 0.7){(0.2)(5) + (0.8)(10)] +

+ {0.3)(0.6)[Max(10,10)] = 23.48

Expected Project Cost

The same comments that were made before relative to the expected
time problem are applicable here. In the same way, two values of the
expected cost will be given: an optimistic value and a pessimistic
value, The two values are the same and give the true expected cost when
the network has independent DDS. It should be noted that the pessi-
mistic estimate of the cost is associated with the optimistic estimate

of the time, and vice versa.
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The first step for both methods is decomposing the RCN intc DDS,
and evaluating the cost return associated with each alternative (disre-
garding the probabilities), as was done in the previous chapter.

Pessimistic Expected Cost. The same assumptions that were made

for the optimistic expected time are valid here.
The expected cost of each DDS is evaluated using the Markovian
procedure introduced for the optimistic expected time with the following

obvious change in notations. Let:

¢ = (c.|i) - mxm "cost return matrix associated with the

- J Markov Process.

En(i) - expected total cost return in the next n transi-
tions if the system now is in state 1.

§n = fEn(i)] - expected total cost return vector - mxl.

and

if ¢* is the cost of DDSi
_y gl
Elc] = ; e x(8) + Cpy

where CPN is ~he total cost of the permanent nodes.

The problem of a lower bound does not exist here, as in this case,

using the notations of Theorem 4 for Cost Value, onme has:
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EV = LB + LV

The above procedure has to be somewhat modified when diverging
stages are considered. The case of type I1 divergence is shown in
Appendix C,

Optimistic Expected Cost. The assumpticns associated with this

case are the same as those of the pessimistic expected time. Referring
to Fig. 41, the difference between this case and the previous one is in
considering activities "31" and '32." According to the previcus case,
these two activities are viewed as performed separately for each DDS,
i,e. as a continuation of "12" regardless of '"21" and vice versa. The
approach here is that if both "12" and '"21" are performed, the cost of
31" and "32" should be included only once to avoid '"double counting."
This means that from the expected cost obtained before, the expected
cost of "31" and "32," when both 12 and 21 occur, has to be subtracted;

i.e. for the network of Fig. 41, one gets:

E[C]

-1 -2
cn*(S) + cn*(S) - P(l2n2l)(palCSl + p32c32)
or:

E[C] )

-1 -2
c #(8) + e ,(8) - py by (pgica + PgsCa,

Generalization of this procedure is relatively simple., The
probabilities Pyy» Poy of the previous example will be the probabilities
of realizing the decision nodes (states) immediately preceding the com-

mon decision vertices. When these states stem from independent Markov
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processes, the probability of realizing each one of them is obtained

as follows:

n+l

Let:
T (1) - probability that the system will occupy state i
after n transitions, if its state at n = o 1s known.
Then:
Z ﬂn(l) =1
i
(j) = z T (1)p 514 n=0,1,2...

The above set of difference equations 1s solved separately for
each DDS for S through k, where k represents the specific decision node.

The expected cost of the mufual states is readily available from
the expected cost solution of the DDS. This is the value of En*(k) if
k is the state immediatély preceding the common decision vertex. This
value can be taken from the En* of any DDS, as it is going to be the
same.

In evaluating the common states' expected cost that has to be
deducted in order to aveid "double counting' one has to consider the

possibility of more than two preceding states, as follows:

Let:

- the state immediately preceding the common decision
vertex associated with (DDS)..

m (k ) - probability of being in this state, after n transitions
{note that n can be different for different DDS).
E[C... ] - total expected cost of all common decision nodes that

CN should be deducted.
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Then:
Blegd = - J wahmod s 7w o) aod) x o
1<j=2 1<j<pr=3
fot GO ) w8 L 6T E L0

where the decision vertex is common to m DDS's and En*(k) can be taken
from the gn* of any DDS.

The total expected cost is then:

E[Cc] =) Ei*(s) - E[C 1 + Coy
i

ExamEle

Suppose that in the example solved for the expected time, the

numbers represent cost values. Then:

21

=
1

1z

=
1l

¢ . (12) = ¢ .(21) = 9
nli nt\
nl(l2) = 0.7 vl(21) = 0.4

ELC,.,.1 = (0.7)(0.4)3 = 2,52

CN

E[C] =) c.(8) = 19.8 + 17.6 = 37.4
ps ¢ n¥
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E[C]op = 37.4 - 2.52 = 34.88

Some modifications have to he introduced for the case of diverg-

ing branches. This is shown in Appendix C.

Risk Evaluation

A different approach to evaluating the project is by obtaining
the probability distribution of the time and cost. Analytically, this
can be done by enumerating all independent path combinations from "S"
to "F'" and evaluating their probability, time and cost. This method is
impractical even for small networks, especially when common decision
vertices are present., Simulation would be a more efficient approach,
where each decision vertex with its probability distribution is viewed
as a stochastic vertex, sc that Monte Carlo simulation can be applied.
This approach is demonstrated in the next chapter, for the minimum time
and minimum cest networks, which are essentially the equivalent of the
stochastic decision network discussed herein. Once the probability
distribution of time and cost is obtained, the respective expected
values can be easily evaluated avoiding the difficulty of a common

decision vertex.

Most Probable Project Network

Another approach to project evaluation during the planning phase

is to consider the most probable course of action that might be followed.
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Once this is done, the stochastic decisions network is reduced to a
standard network, and its time and cost are evaluated.

The procedure of finding the most probable project network is
rather simple. Again, the stochastic decisions network is divided into

DDS. TFor each DDS, one starts with the firet decision vertex evalu-

ating:
P & = Max p
1k(1) K1) 1k(1)
and accerdingly, decision node dlk(l)* is selected for this decision

vertex. Once this i1s done, the rest of the decision nodes dlk(l) are
eliminated, together with the nodes associated with them, according to
the procedure described in Chapter III.

The process continues with the next decision vertex (i.e. a
forward approach) until node "F" is reached. This is done for each DDS,

and in general, decision node djk(j)* is selected so that:

Pervgsne = Max p., ..
k(j)* .
ik (3) k(3) k()

Notice that during this proceés, a decision vertex that is com-
mon to two or more DDS may be eliminated from one DDS; however, one of
its decision nodes might be chosen while repeating this selection
process for a different DDS (see the example in Appendix C. Decision

vertex 6 fits this description).
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Once this process 1s finished, all prcobehilities are elimi-
nated, and the outcome is a standard network, referred tc as the "most
probable network.'" The time and cost of this network are evaluated in
the regular fashion, yielding the most probable time and cost. An
example showing the above procedure 1s shown in Appendix C.

I+ should be noted that this procedure does not yield the maximum
probability path(s) from "$" to "F," but the most probable path(s) from
"S"™ to "F." The difference between the two is that the latter secks
the a@lternative with the highest probability at each decision vertex,
whereas the first seeks the paﬁh with the highest probability, and this
does not necessarily correspond to selecting the most probable set of
decision nodes. The reason for selecting the approach presented here is
that, since in this case each decision node has a probability of being
selected, it is more realistic to assume that the most probable route

will be followed.

Concluding Remarks

The four methecds presented here should neot be viewed as mutually
exclusive, bu: rather complementing each other., It is anticipated that
the first method--project time and cost extremes--will usually be the
first to be applied. If the Region of Possible Cutcomes turns out to
be narrow enough, in many cases a decisicn can be made upon this basis
only. If this region leaves some doubt, the other three methods can be
used for obtaining additional input to the decision making process.

It should be noted that the "Region of Possible Outcomes'" can be
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be used also for cases of uncertainty--when no probability distributiocn

is available.
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CHAPTER VI

THE CASE OF RISK WITE STOCHASTIC OUTCOMES

Introduction

This case is a different extension of the case of certainty. In
this ¢ase each decision node is followed by a stochastic vertex with a
finite number of outcomes and known probabilities. Once a decision node
is selected, the outcome of the stochastic vertex cannot be controlled
by the decision maker. During the planning phase, a complete selection
among alternatives is not possible anymore. Instead, a strategyl can
be determined, based upon some desired criteria. As a consequence,
neither final elimination of alternatives is possible duving the plan-
ning phase, nor is reduction of the decision netwerk into a standard
network.

In spite of this, a decision has to be made during the planning
phase whether to proceed with the project or not. To assist in this
decision, seven inputs to this process are developed, as focllows:

1) Minimum expected project time and its expected cost.

2) Mirimum expected project cost and its expected time.

3) Region of possible outcomes.

4) Range of outcomes for the minimum expected time strategy

J'When dealing with steochastic processes it is preferable to re-
place the term "policy" by the term "strategy." It is now a gquestion
of determining a set of optimal decisions to meet every possible out-
come.
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and the minimum expected cost strategy.

5) Most probable outcome for the minimum expected time strategy
and the minimum expected cost strategy.

6) Evaluation of risk in an optimal strategy.

7) Simulation of the stochastic outcomes network.

These inputs complement each other, and therefore should provide
a broad basis for decision making. Furthermore, some of these methods
can be used when the decision has to be made in the face of uncertainty--

i.e. when no probabilities are available.

Minimum Expected Project Time

The procedure of evaluating the minimum expected project time is
an extension of the procedure described for the case of certainty.
Instead of evaluating the policy U% as in the case of certainty, a
strategy is determined. The sclution procedure is composed of three
Steps, as follows:

1) Network decomposition.

2) Evaluation of minimum expected project time.

3) Evaluaticn of the expected project cost assoclated with the
minimum expected project time.

Network Deccmposition

The decompesition process for this case is a slight modification
of the one described in Chapter IV.

The first level labeling algorithm described for the case of
certainty remains unchanged. The outcome of this algorithm is the vari-

ous DDS's associated with the network.
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The second level labeling algorithm of Chapter IV has to be modi-

fied.

%3k ()1(k)

Figure b4, Elements of a Stochastic Outcomes Network

Steps 1-7 remain essentially unchanged, where the stochastic vertices
and the outcome nodes are treated like any other node during the label-
ing process. Step B is changed to read as follows:

Step 8. Evaluate the longest path (CP) from each ij(j)l(k)
associated with the ith stage to all djk(j) associated with the (i+l)th
stage, provided there is at least one path between the two. In doing

so, the duration of 4 associated with the ith stage is added to

3k(3)
each of its succeeding 6jk(j)l(k)' When evaluating CF for outcome
nodes of the first decision vertex, ES for each outcome node is the one
of step 2. For all other cases, ES = O,

This last step evaluates tjk(j)l(k)’ the time return associated

with outcome node § Thus, the outcome of the decomposition

Fk(3)1(k) "
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process is the required elements for the stochastic DP model of this
DDS.

Minimum Expected Project Time

Stochastic discrete dynamic programming is the solution procedure
used to find the minimum expected project time. The procedure is best

described using the illustration of Fig. 45,

Figure 45, GStochastic Cutcomes Network with
a Common Decision Vertex
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Associated with outcome node sjk(j)l(k) of a decision ncde
djk(j) there is a probability pjk(j)l(k) and a return tjk(j)l(k)’ which
is the value of the critical path cbtained during the decompesition
process. Following the approach suggested by Nemhauser (51) for a
stochastic svstem, the probability distribution associated with each
stechastic vertex is described by a random variable that effects the
stage return and transformation. To avoid cumbersome nctations, the

notation used to dencte a stechastic vertex and an outcome node will

be used to denote this random variable. Thus:

Let:
A;k(j) be the random variable associated with decision
d., .. i.
node $k(5) at stage i
6%k(')l(k) be an element of the random variable (associated with
IR outcome node Sjk(j)l(k) at stage 1).
At be the set of random variables of stage 1.
Then:

i i
AT, A
Jk(3) ©

i i
Sik(r101) € 25k(3)

The randem variables A% .
3xC3

distributed with probability distribution

y are assumed to be independently

i i

_ i
P45y T S5x(2007 T Pik(Hacx)
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Note that

L PG T KD

Modifying the notations used for the case of certainty to include
the random variable Al, the minimum expected time for each DDS is ob-

tained as follows:

fi(t)(Xi) = Min Qi(xi,Yi) i=l,..n

Y,
i

~ ioi
Q(X;,Y.) = Q;(X,,¥ ,87)F

and:

iy _ i .
Qi(Xi,Yi,A ) = Ti(Xi,Yi,A ) + f(i-l)t(xi—l) mxn matrix

= - 1.1
Ql(xl,Yl) z Tl(Xl,Yl,A JE

where:

) denotes the minimum expected time at stage i as a

£, (X,
i) i . . ;
function of the input variable.

Qi(Xi,Yi) denctes the mxr i-stage expected time matrix.

Ti(Xi,Yi,A ) 1s the mxn time return matrix of stage i, composed
of t., .. .
3k (3)2(k)

is an nxr stochastic matrix of stage i.

g



151

and d.

k() is followed by
6i
Ik(3)1(k)
alsc:
K. . =Y, = ly..} > {6F }
-1 7 i T s Fk(5)1(k)
For stage 2 of DDSl of the network illustrated in Fig. 45, E?
and Q2 are as follows:
11 12 11 12
111 112 121 122 111 plll 0
_ 2. _ 2 _112p 0

Q= (Xu¥ps8™) = St g, Ty, tio) Tygp £ o1 0112

+ : P1o1

fl(t) 122) 12200 P122
and

11 12
QQCXQ,YQ) =Sty t,]
Let I+ {X_) be the minimum expected time for DDS,, which is
n{t) "n i

equal to

L)

i:‘:__
ELTRL = fn(t) n

Then, the minimum expected time for the whole project is:
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BIT]" = Max(E[T 1*)  i=0,1...
i

o}

where E[TO]x = T  is the critical path of CDDS,

Associated with the optimal solution is the minimum expected

time strategy U which gives the set of optimal decisions to meet every

possible outcome. The optimal strategy for DDSi will be denoted by

o

ot
Ui' It is convenient to describe U by a "strategy tree," as shown
in a later section. Again, for a common decision vertex, Theorem 2

of Chapter IV heolds true also here.

Optimistic and Pessimistic Minimum Expected Time. The problem of

two estimates of the minimum expected time--optimistic and pessimistic—-
encountered in the previcus chapter, may arise in some cases here, too.
Consider, for example, the project represented by Fig. 45. There are
two DDS, and solving for each DDS can yield the following results for

the first decision nodes to be selected.

1y {11,21} 2y {12,22} 3y {11,222} 4y {12,211}

The fourth case is different than the first three. For the first
three the solution procedure discussed yields the lower bound of the
minimum expected time provided T is not the dominating value (see
Theorem 4). The fourth case creates the problem of optimigtic or pes-
simistic expected time. The procedure previously presented will yield
the lower bound of the optimistic expected time. In order to obtain the

pessimistic expected time, the problem has to be reworked in a similar
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way to that described in Chapter V. For the same reasons discussed
there, it is not recommended that this approach be taken. Instead, the
expected value can be cbtained by simulation, as discussed later in
this chapter.

Expected Cost of the Minimum Expected Time. Once the strategy

yielding the minimum expected time is known, it is possible. to evaluate
the expected cost associated with this strategy.

The first step in obtaining the expected cost is generating the
"Partially Reduced Network" (PRN) defined as follows:

Definition. Partially reduced network (PRN), G(J(p),A(p)) of a
(p) {(p)

network G(J,A) is a connected network such that J <J, A cA, and:
1) Nodes S and F are elements of this network.
2) All d* -- the decision nodes which are elements of the

$x(3)

minimum expected time strategy are elements of this network.

3) All nodes J, such that {df .} < J, are elements of this

k k(1) k

network, except as in (4).

L) All decision vertices are eliminated.

The network reductlion is performed using the procedure discussed
in Chapter III. Thus, suppose that for the network illustrated in Fig.
45 one gets

ot

a.. ... = {11,21,31
Jk(3) ¢ J

Then, the PRV is as shown in Fig. 46,
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Figure 46. PRN

Once the PRN is obtained, it can be viewed as a network equiva-
lent to the cne described in the previous chapter, where each stochastic
vertex is now equivalent to a stochastic decision vertex before. Asso-

ciated with each cutcome node § there is a cost c

Jk(3)L(k) ik(3)1(k)
(the method of obtaining this cost is described in the minimum expected
cost procedure). Thus, finding the expected cost of the minimum
expected time is equivalent to the procedure described for the expected
cost of a stochastic decisions network, described in Chapter V.

When a non-serial DP model exists, some modifications are
reguired in order to evaluate the minimum expected time and its associ-

ated cost. An example for doing this is shown in Appendix D.

Strategy Tree. For large networks, it is convenient to describe

the optimal strategy g° using 2 strategy tree. This is in a sense, a

PRN where only the decision nodes and the outcome ncdes of the optimal
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strategy are shown. The strategy tree of the PRN of Fig. 46 is

illustrated in Fig. #7

Probability

Decisiocon

(2)
04
(=)

Probability

u Decision @

Figure 47. Strategy Tree

Minimum Expected Project Cost

The same comments that were made while discussing the minimum
expected time problem are true also for this case. Again, the soluticn
procedure is ccmposed of three steps as follows:

1) Network decomposition.

2) Evaluation of minimum eXpected project cost.

3) Evaluation of the expected project time associated with
the minimum expected project cost.

Network Decomposition

The decomposition precedure for the minimum expected cost is
similar to that for the minimum expected time, and is a modification of
the minimum cost decomposition procedure of the case of certainty
(Chapter IV). Specifically referring to the latter, the decomposition

is applied to the RCN, and step 8 is replaced by the following.
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Step 8. Starting with the first decision vertex of each DDS,

label all successors of each outcome node & with (§k(3)1(x))

Jk(3)1(k)

in the manner described in steps 3 and 4% of the second-level labeling
algorithm of Chapter IV. If an activity node has two or more labels

associated with & of different Dj, the label associated with

Jk(3)1(k)

the djk(j)l(k) connected with a smaller stage number is dominating,
and the rest of the labels should be ignored. If the labels are asso-

ciated with & of the same Dj’ or the same stage number, they

jk(3)1(k)

all remain.

The cost veturn ¢ associated with each outcome node is:

Jk(§)1(k)

(100 T L%
all m, labeled (ik(3)1(k)]

and c includes the cost of d., ,...
Jk(3)

JR(3) (k3
The outcome of the decomposition process is the required elements

for the stochestic DP model of each DDS.

Evaluation of Minimum Expected Prcject Cost

The procedure for evaluating the minimum expected cest for each
DDS is essentially the same as that of the minimum expected time, with

some notational modifications. Thus,

Let:

%i(c)(xi) be the minimum expected cost at stage i as a func-
’ tion of the input variable.

ﬁi(Xi,Y:) be the mxr i-stage expected cost matrix, and
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C.(X.,Y.,Al) be the mxn cost return matrix of stage i, composed
i 71 1
of jk(§)1(k).

Then:

fi(c)(xi) = %3n R(Xi,Yi)

i
= - i,.1
Ri(Xi,Yi) = Ri(Xi,Yi,A )2

iy . i =
Ri(Xi,Yi,A ) = Ci(Xi,Yi,A ) + f(i_l)(c)(xi_l) an mxn
matrix

Let E;[C)(xn) be the minimum expected cost for DDSi, which Iis

equivalent to:

Elct]™ =

n(c)(xn)

The minimum expected cost of the total project is:

E[c]” = ] EIC'T + ¢y
i

where CPN is the cost of the permanent nodes.

Associated with the optimal solution is the minimum expected cost

"

strategy 7. The optimal strategy for DDSi will be denoted by v As

’E
before, it is convenient tec describe this strategy by a "strategy tree."

Also, for a common decision vertex, Theorem 2 of Chapter IV is valid here

too.
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Optimistic and Pessimistic Minimum Expected Cost. When a deci-

sion vertex is commen to two or more DDS, the problem of two estimates
of the minimum expected cost can arise here too. (Note that the prob-
lem of a lower bound does not exist here.)

Referring to the network illustrated in Fig. 45, in the same way
as for the minimum expected time, the problem of optimistic or pessi-
mistic estimate is encountered only for the fourth case, i.e. when the
solution yields alternatives 12 and 21. The procedure outlined above
gives the pessimistic estimate of the minimum expected cost. To find
the optimistic estimate, a similar procedure to the one described in
the previous chapter has to be followed. Thus, the optimistic minimum
expected cost of the project of Fig. 45, assuming that decision node 31

is the optimal strategy if D, is realized, is given by:

_ & _ 1% D% -1
ELeT” = BICTT + BLCTD - pyoopyy (B () (222))
Note that
=1 _ =2
fl(c)(l22) = fl(c)(Qll)

For the general case, the procedure outlined for the expected
cost in Chapter V has to be followed where En*(k) is substituted with
the proper value cf §i(c)' The outcome of this process will yield the
value of E[CCNjyn—the minimum expected cost of the jth first common
decisicn vertex, that should be deducted. Thus, for the general case,

the optimistic estimate is given by:
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oty
-

CN]j + CPN

erel” = § erc1® - ] ke
i ]

It 1s convenient to cbtain the PRN before the optimistic esti-
mate is evaluated. The two estimates will yield different values, but
will lead to the same strategy. The following theorem proves this
assertion,

Theorem 5, Solving for the optimistic minimum expected cost or
pessimistic minimum expected cost yields the same optimal strategy V*.

Proof. Referring to Fig. 45, suppose that the optimal strategy
resulting from solving for the pessimistic minimum expected cost is:

o

¥ o= {12,21,31}

(Recall that by Theorem 2, if "31" is part of the cptimal strategy
obtained by solving for DDSl, it is going tc be part of the optimal

strategy when solving for DDSQ.)

Let:

EL ] - expected cost associated with decision node d

“3K () jk(3)"
Then, if the optimum strategy turned out to be as stated above,
this wculd mean that:

(1) E[c12] + E[°31] < E[cll] (DDS)l

(2) E[ch] + E[Cal] < E[c22] (DDS)2
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Since all values are positive, then:
(Ele ] + Elegyl) + (Efeyq ] + ELeg 1) < Blepyd + Eley,]

The left side of the above inequality is the pessimistic minimum

expected cost,

Let:
E[C];P - optimistic minimum expected cost.
B[C];s - pessimistic minimum expected cost.

Obviously:

03 < B3
E[C]op E[C]pS
and therefore:

E[C]Op < E[Cll] + E[C22]

For a different strategy, the following three alternatives should

be considered:
(a) {11,22,31} (b) {11,21,31} (e} {12,22,31}

Case (a) can be immediately ruled out, as E[C];S, E[C];p, follow-
ing the original strategy, are better.

For case (b),
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E[C] = Efcy ]+ (E[C2l] + E[cal])

From Equation (1) above, since all values are positive, one can

form the following inequality.

(Eley,3 + Eleg, 1) + (Eley ] + Eleyyd) < Eley 1+ (Bleyy ] + Eley, 1)

or
E[cJPS < E[C]
and obviously:

E[C]zp < E[C]

The same results can be shown for case (c) above.

Viewing the network of Fig. 45 as a section of a bigger network
with more than two DDS and cone common decision vertex, and by repeatedly
applying the approach shown above, it can be shown that the same result
holds true for the general case. This proves the theorem.

Expected Time of the Minimum Expected Project Cost. The first

step in evaluating the expected time of the minimum expected cost is
obtaining the PRN associated with the optimal strategy V*. Once this is
done, the procadure outlined for the expected time problem in the previ-
ous chapter can be used, where the stochastic vertex is now the equiva-
lent of a stochastic decision vertex of the previous case, and the

return asscciated with each ocutcome node § is the time return

ik{(3)1(k)
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t., .. evaluated in step 8 of the decomposition procedure for the
5k(3)1(K) P P P

minimum expected time problem. Notice that, again, the value obtained
is the lower bound of the expected time. For obtaining the exact value

simulation is recommended, as discussed in a later section.

Some medifications are required when nonserial DP models arise.

An example is shown in Appendix D.

Region of Possible Qutcomes

As was indicated in Chapter V, the extreme possible values of
the project time and cost are an important input to the decision meking
process. This argument alsc holds true here. However, two types of
"Region of Possible Outcomes" can be developed: the first is as
before, for the whole project. The second is the region of possible

' where an opening policy H is

outcomes for each "Opening Policy,!
defined as the set of decision nodes selected for the first decision

vertex of each DDSi. Referring to the stochastic outcomes network of

Fig. 45, it is possible to have four opening policies as follows:

= {12,212} Hy = {11,22) Hy = {12,21} H, = {12,22}

H
1
Since an opening policy commits the decision maker to a certain

course of action for the rest of the project, it is important for him

to know what might be the consequences of such a commitment,

Region of Possible Outcome for the Whole Project

In order to establish this region, the probability distribution

associated with each stochastic vertex is ignored, and each stochastic
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vertex is regarded as a decision vertex. By doing so, the stochastic

outcomes network is transformed into a decision network, as illustrated

/\
9 H @
/N /N
® O @

(a) Original Network (b) Transformed Network

in Fig. u8.

Figure 48. Network Transformation

Once this is done, the problem is treated in the same manner as
that of the case of certainty, where four problems are to be solved:
Minimum Time Problem
Minimum Cost Problem
Maximum Time Problem
Maximum Cost Problem
The procedure develcped for the case of certainty is used to
solve these four problems, as was done for the case of risk with sto-
chastic decisions.
In addition to the time and cost extremes, this procedure gives
the information about the sequence of decisions and stochastic outcomes

that will lead to the extreme values, as follows:
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{1) Extreme Time Values. The DDS that yields the extreme value

has to be examined. First the optimal set of decision nodes of the
transformed network is transformed back into decision nodes and sto-
chastic outcomes. The same procedure is applied to the rest of the
DD5, realizirg that a change of strategy there may still yield the
same extreme value. The result yields the chain of events giving the
extreme value, and can be viewed as a curtailed strategy tree.

(2) Extreme Cost Values. The process is the same as the pre-

ceding one.

Region of Possible Outcomes for an Opening Policy

The procedure is essentially the same as the previous cne, with
the modification that all nodes succeeding the decision nodes not
selected for the first decision vertex are eliminated according to the
network reducrtion procedure of Chapter III.

The above two procedures have been applied to the example of

Appendix D.

Range of Outcomes for the Optimal Strategies

One of the common criticisms of the expected value as a criterion
of choice is the fact that it does not consider the extremes which might
be more important to the decision maker than the expected value. The
discussion that follows corrects this deficiency.

Once the minimum expected time or cost are found with their
respective strategies, the proper PRN is formed. From here on, the

procedure described in the previous section is applied, solving the
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four problems discussed there for each PRN, yielding the following
results:
(a) Time and cost extremes of the minimum expected time strategy.
(b) Time and cost extremes of the minimum expected cost strategy.

An example is shown in Appendix D.

Most Probable Qutcome

To further supplement the expected value criterion, the mest
probable outcome is evaluated for the minimum expected time and minimum
expected cost strategies. In a similar manner to that discussed for
the case of risk with stochastic decisions, the most probable outcome
is preferred to the maximum probability cutcome. This is further
amplified by considering Fig. %49, where a portion of the PRN of Fig. 45

is shown, with specific values for the prcbabilities.

Figure 49. PRN: An Example
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Clearly, the maximum probability outcome is 21-212, However,
considering the way the process is going to unfold, first decision node
21 is selected, where 211 is more likely to occur, and then decisicn
node 31 is selected, and 312 is more likely to occur. So the most
probable path is 21-211, 31-312 with a total probability of (.36, which
is less than 0.4.

To find the mest probable outcome, the procedure described in the
previcus chapter is applicable here, where the PRN of each of the

optimal strategies is used.

Evaluation of Risk in an Optimal Strategy

The discovery of the optimal strategy may be further supplemented
in a case involving risk by knowledge of the probability distribution
of time and cost values which may be obtained with this optimal strategy.
The method reguires enumeration of all path combinations between S5 and F
for the optimal strategy, i.e. using the PRN.

The PRN of Fig. 46 is used as an example to show how this proba-
bility distributicn can be cbtained. Tdable 1 on the following page is
used to evaluate the probability of each path from 5 to F. For each

path, t represent the time and cost values,

K1) ™ S5k(5)1K)
respectively, obtained during the decomposition process.

The sum of all the probabilities is, of course, 1. If a decision
node is common to two independent paths from "S" te "F," the probgbili-
ties (and expected values) should be adjusted according to the procedure

outlined in Chapter V, depending on whether the optimistic or pessi-

mistic values are desired.
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Table 1. Path Enumeration

111 112|211 212|311 31Z2|Probability Time Value [ Cost Value
x % x P111Po11Pgyy [Maxtty ) oty ¥t gy 0 d|0g  ¥esy %eqy,
% % X |P131Po11Par2 | Maxlty Lt Ftgy o0 d ey en 1t s,
x % P111P212 ) |
% * P112F211 ] |

S kS % P119P211P311 | )

O ® | P112P212P312 ) )

x * P112P219 | |

% x P115P212 Max{ty) ;551! 112%%212

Once the distribution is obtained, it is easy to evaluate the
expected value. The expected cost obtained is the same as the one
obtained by the solution procedure described previously, whereas the
expected time obtained is the true value which is higher than the
lower bound obtained before. An example using the above method is
shown in Appendix D.

Obviously, even for a moderate size problem the number of combi-
nations for a complete path enumeration may become so high as to make
analytical evaluation impractical. In cases like this it is recommended

that simulation be used, a8 discussed in the next section.

Simulation

Simulatiocn technigues are an attractive approach to stochastic
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outcomes networks, and supplement the various other approaches discussed
before. Specifically, simulation is used to obtain the evaluation of
risk in an optimal strategy, and the probability asscciated with an
"opening policy."”

Evaluaticn of Risk in an Optimal Strategy

As has been indicated before, obtaining the time and cost dis-~
tributions of the optimal strategy requires enumeration of all paths
from S to F, The analytical apprcach can be replaced by a Monte Carlo
simulation, applied to the PRN. By using a Monte Carlo selection for
each stochastic vertex, only cone outcome node is left at each vertex
and the rest are eliminated. Once this is done, the PRN can be reduced
to a standard network. Thus, for each simulation run the stochastic
elements are removed, and the time and cost of the standard network can
be easily evaluated by finding its critical path and adding the costs
of each node of the standard network (including the cost of the
permanent nodes).

Repeating this process a large number of times gives the time
and cost distributions associated with the optimal strategy that yielded
the PRN.

It should be noted that the use of simulation eliminates the
problems of optimistic and pessimistic expected values, and that of the
lower bound, as for each simulation run the decision network is
deterministic,

Since the stochastic decision network of Chapter V is essentially

the same as a PRN, the same approach can be used there, too, to cbtain
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project time and cost distributions, thus avoiding the problems associ-
ated with the analytical approaches.

Simulation Results. A Monte Carlec simulation, as discussed

here, has been applied to the minimum expected time and minimum
expected cost strategies of the exampie of Appendix D. The results of
2600 simulation runs came out to be rather close o the distribution
obtained by solving analytically.

As this simulafion is relatively simple to apply, it seems to
be superior over the analytical apprcach, even for moderate size net-
works.

Probability Associated with an Opening Policy

Simulation can be a very powerful technique when applied in
connection with the possible cpening policies.

In a previcus section, the region of possible outcomes of each
cpening policy was evaluated. This is a deterministic region in E2 in
the sense that no matter what happens after the initial move (repre-
sented by the opening policy) is made, the project time and cost values
will never be outside this region.

The use of simulation can add another dimension to this region,
as follows: Eased upon a certain criterion, namely minimum project time
or minimum prcject cost, it is possible to divide the region of possible

' where a probability zone is a sub-

outcomes into '"probability zones,'
region of the region of possible outcomes, yielding the following

information:
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(a) The probability Py 'that the selection of the specific open-
2
ing policy Hi will yield the optimum result based upon the chosen cri-
terion (either minimum time or minimum cost).

(b} The boundaries of the prcbability zone.

(¢} The probability distribution and expected value of project
time and cost if the optimum curtailed strategy of (d) can be followed
after the initial move according to Hi has been made.

(d) A curtailed strategy that will lead to the optimum result,
This strategy will be denoted by 0% for the minimum time criterion, and
by V¥ for the minimum cost criterion. |

A probability zone for opening policy Hi and its related region
of possible outcomes is illustrated in Fig. 50. The four parametérs of

the probability zone need further amplification.

Cj
° .. -
max
///,/’//f
]
/pH:'Lj
c . | -l<=
min | t
I l
1 | P
TmJ_n Tmax T

Figure 50. Prcbability Zone for Policy Hi

The probability P, can be interpreted also as the probability
i
that the stochastic outcomes network will unfold in such a way that,

starting with Hi will yield the optimum result based upon the chosen
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criterion. Since the network can unfold in a numerous number of ways,
even if selection of Hi will lead to the optimum outcome, the value of
this outcome varies according to the various patterns the network can
have. That is the reason for the distributicn in (¢} above. The
boundaries of the probability zone are simply the extreme values of
this distribution.

The curtailed strategies, U

-~

and ﬁﬁ, give the set of cptimal
decisicns for all outcomes that lead to the optimal result. They are
different from ﬁ* or ﬁ* cf the minimum expected value criterion in the
sense that they do not show decisions to meet every possible cutcome.
What should be done in case an outcome not represented in ﬁ* or 5*
occurs 1s a problem of the execution phase rather than the planning
phase; however, no matter what happens, the decision maker still knows
that he is bounded by the region of possible outcomes.

Generally speaking, if two opening policies Hi and Hj have the
same region of possible outcomes, the one with a higher Py > for a nar-
i

rower prcbability zone, should be preferred.

The Simulation Process. The mapping of a probability zone inte

the deterministic region of possible outcomes is done by simulation,
and for all practical purposes, simulation is the only way by which it
can be done.

The procedure for each simulation run is as follows: using Monte
Carlo selection process for each stochastic vertex, only cne outcome
node is left. Then the network reduction procedure of Chapter III is

applied, yielding a decision network. The procedure of the case of
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certainty is applied now, according to the chosen criterion {minimum

time or minimum cost) yielding the optimum time and cost values for

P

<l

this simulation run, along with Hi and U or
Repeating this preccess for a large number of simulation runs
yields the previously described feour parameters of the probability zone

for each opening policy H..

[

23

P

"

Keepirg tally cof U or ﬁﬁ for all Hi might create some excessive
storage requirements and complicate the simulation program. Therefore,
it is recommended that curtailed optimal strategy be obtained only for
the chosen Hi after this choice has been made (recall that the curtailed
optimal strategy is not required for decision making during the planning

phase).

Simulation Results. The previous procedure has been applied to

the stochastic outcomes network of Fig. 69 in Appendix D, using both
a minimum time criterion and a minimum cost criterion with results of
1,000 simulation runs, as shown there. Some interesting conclusions
emerge, as follows:

(1) It is possible to identify dominating cpening policies.
Thus, for the minimum time criterion, H4 is always better than H7 and
H.. Even more striking are the results for the minimum cocst criterion:

8

H2 and H6 are the dominating opening policies, and no other opening

policy will ever lead to an optimal result.
(2) The minimum expected value strategy is not necessarily the
one to be preferred by the decision maker. Referring to the results of

the minimum cost simulation, H. is the opening policy suggested by the

6
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minimum expe¢ted value critericn. However, it seems that a cost con-
scious decision maker would prefer H2.
Thus, as can be seen, simulation yields valuable inputs to the

decision making process.

Concluding Remarks

All the methods described in this chapter are complementing each
other, and ir many cases a decislon can be made on the basis of part of
the inputs suggested, without having to evaluate all of them. A sug-
gested decision making routine utilizing the suggested inputs is
indicated helow. The process can terminate at any point if the decision
maker feels that the amount of information chtained up to such point is

sufficient to make a final decision.

Region of Possible Outcomes
(1) For the whole project
(2) For H,

Probability Zones

!

Minimum Expected Values

I

Range of Outcomes for
U% or V&

!

Risk in an Optimal Strategy

!

Mest Probable Cutcome

Figure 51, A Decision Making Routine
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The results and conclusions evolving from this study are sum-
marized in the following paragraphs.

A study of the literature of project management and decision
networks restulted in the following conclusions:

l. FYor decision networks, the problem of time cost trade-off,
for different sets of decisions, has not been investigated.

2. BSclution of decision networks, in terms of optimizing one
variable only, has been tried using integer programming or branch and
bound techniques, but not dynamic programming.

3. The stochastic cases of decision networks received only
slight attention in the literature. All these approaches use expected
value as a sole criterion of cheice, only one parameter at a time is
considered, and a project decision network is rarely treated explicitly.

The research presented herein centered on the planning phase of
network based project management, emphasizing the managerial decision
making processz of evaluating projects. The approach used made no
assumptions about the nature of the decision maker, but rather concen-
trated on gensrating inputs to the decision making process, enabling
the decision maker to reach a decision based upon more than one criter-

ion of choice. These inputs can be summarized as follows:
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1. Time cost trade-off for the case of certainty.

2. Region of possible cutcomes, expected project time and cost,
risk evaluation and the most prcbable cutcome, for the case of risk with
stochastic decisions.

3. Tor the case of risk with stochastic outcomes the following
inputs were developed: Region of possible outcomes, probability =zones,
minimum expected value strategies, range of outcomes for an optimal
strategy, risk in an optimal strategy, and the most probable cutcome
for an optimel strategy.

The research conducted to generate these inputs yields the fol-
lowing conclusions:

1. A decision network can be represented by a dynamic program-
ming model.

2. Dynamic programming is a solution technique that can be
applied, with some variations, to all three types of decision networks
presented in this research, so as to generate most of the inputs
described before. The computation procedure is not complex, and is
practical.

3. Tor the case of certainty, it is possible to introduce budget
and time constraints, without any additional effort, after the solution
is obtained. The added advantage of the procedure presented herein is
that the sensitivity of changing the constraint can be immediately
cbtained.

4. Dynamic programming proved to be a very efficient approach in

locating the efficient set for the case of certainty. One of the claimed



176

shortcomings of dynamic programming is the fact that a lot of data
generated during the solution precedure is not needed for the final
result, Thisz additional data turned out to be an important advantage
of the dynamic programming method when applied to evaluating the time-
cost trade-oiff.

5. The application of Monte Carlo simulation to the two types
of stochastic networks proved to be a very valuable technique. It is
especially useful in mapping the probability zones into the region of
pessible outcomes.

6. It is possible to use the combination of the region of pos-
sible outcomes and preobability zones to identify deminating opening
policies in the case of stochastic outcomes networks.

Puring the course of this research, at least three important new
techniques or concepts were developed, as follows:

1. The Efficient Set algorithm. This algorithm can be applied
to any problem where a trade-cff among two variables exists and where

the problem can be structured as a DP model so that

2. The labeling algorithms for formulating the decision networks

problems as a DP model,

3. The concept of mapping a probability zone into a determinis-
tic region.

Thus, it can be concluded that this research has developed a

methodology for planning with decision networks.
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Recommendations

In the course of carrying out this study, several potentially
useful areas of research were revealed, as discussed in the remainder
of this section.

The immediate extension of this research would be to consider a
decision network composed of a mix of activity nodes, decision vertices,
stochastic decision vertices and stochastic vertices. The three cases

" consisting of only

considered in this investigation were "pure cases,
one type of decision vertex.

Another extension of this research would be the investigation of
decision networks during the scheduling and control phases of the
project life.

This study did not consider the time value of money. It would
be worthwhile to introduce this concept and see how it can be incor-
porated into the methodolegy developed here.

For further investigation, it is suggested that the assumption
of a single project be relaxed so as to consider the multiproject case.
Also, it is suggested that the problem of resource constraints be
explored.

The concept of mapping a probability zone intc a deterministic
zone requires further investigation. Of special interest 1s the case
of overlapping probability zcnes, when different criteria are used.

Finally, it is felt that thé Efficient Set algorithm developed

has many applications for other problems. Investigation of such pos-

sible applications should prove to be a valuable research effort.
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Furthermore, extending this algorithm from the case of two returns to
the case of n-returns with trade-off relationships seems to be a worth-

while generalizaticn.
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APPENDICES
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APPENDIX A

NON-SERIAL DP MODELS

Diverging Branch Models

Two general types of diverging branch models will be considered
as follows: +type I divergence and type II divergence.

Type I Divergence

Type 1 divergence has been treated in detail in Chapter IV. All
that remains to be shown is how type I divergence can be identified
using the second level labeling algorithm. Introducing again the deci-
sion network of Fig. 27, and applying to it the second level labeling

algorithm, the result is as shown in Fig. 52,

Figure 52. Type I Divergence

Thus, type I divergence exists whenever gll decision vertices
associated with the same stage number of the DP model have exactly the

same multiple labels, associated with the same DDS.



181

Type II Divergence

Type II divergence is defined as follows: Suppose that there are

D D such that:

four decision vertices D D 35 D>

l: 23

and let
D, = {4 d. .}

1 117712

Then, type II divergence is the case when:

For example, consider the following decision netweork:
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Figure 53. Type II Divergence

The equivalent DP model is as illustrated in Fig. 54,

{21,22}
v i "
{11,12} {31,32,41,42}
B 2 {11,127 +

Figure 54. Type II Divergence Equivalent DP Model

Note that it is possible to have a combination of Type I and
Type II divergence.

Type II divergence exists whenever part of the decision vertices
assoclated with the same stage number have the same labels, as shown in

Fig. 53.
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Some modificaticn of the sclution procedure for type I divergence
is required for this case. Referring to Chapter IV {(p. 74), now let:
Xk—l be the input variable to stage k - 1.

T

Re-1

be the input variable to stage L1 of the diverging

!
branch,Xk_l < Xk—l'

Rk-l be the input variable to stage k-1 without the elements
'
of Xk-l'

Then, for the minimum time problem one gets for stage k.

Qk(Xk,Yk) = Tk(Xk,Yk) + f(k-l)(t)(xk—l) +

(x! )]

+ Max[f Xk—l

(1) (1) Fr-1 T k1) (1)

For the minimum cost problem the equations are essentially the

same as before, ylelding:

1

R (X 50y = S XY )+ 0y 9) + £y (K s)

Type I Feedforward

This is an extension of type I divergence, and is treated in a
similar way. Fig. 55 illustrates an example of this case, and Fig. 56

shows the equivalent DP medel,
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Figure 55. Type I Feedforward

{21,22}{u1,u2}

—~—

{11,12} {31,32} {51,52}
S e N

Figure 56. Egquivalent DP Mcdel

To solve for the minimum time prcblem, the DP model of Fig. 56 is

transformed into a type I divergence as follows:

{21,22} {81,482}

| {41, {51,52}

(11,12} {31,32} {51,52}

Figure 57. Transformed DP Model
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The type I divergence sclution procedure for the minimum time
problem can be applied now,
The same approach is used for the minimum cost problem, with a

different transformed DP model as shown in Fig. 58.

{21,272} (41,u20}

{11,12} {31,32} {51,52}
S —s —_ J——*

Figure 58. Transformed DF Model-Cost

Type 11 Feedforward

This is an extension of type II divergence, as illustrated in
Fig., 53. The equivalent DP model is shown in Fig. 80. It is trans-
formed into type II divergence in a similar manner to that of type I
feedforward. Then, the solution procedure of type II divergence can

be applied.
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Figure 59. Type II Feedforward

{21,22}

{31,321 {51,52}

{11,121 ful,u2}

1’
|
|

Figure 60, Equivalent DP Model

It is possible to have a mix of the varicus non-serial models,
Cases like this have to be handled along the guide-lines presented

dbove., An example of such a mixed case is given in Appendix D.
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APPENDLX B

THE CASE OF CERTAINTY: AN EXAMPLE

General
This appendix includes & complete solution of the decision mnet-
work of Fig. 17. First, the minimum time problem is solved, then the

minimum cost problem, and finally, the time-cost trade-off is developed.

Minimum Time Problem

The decomposition of this decision network was discussed in

DDS DDS

Chapter IV, yielding DDSl, DDSQ, 30 it

Fig., €1 shows the second level labeling algorithm as applied to

DDSl. The bracketed number adjacent to each label is the time returm

associated with the proper dj of the previous stage.

k(3)
DDSl has a type II divergence, as discussed in Appendix A. The

divergence occurs at stage 2, and:

xl = {11,12}
]

X, = {11}

X, = {12}

Since *he diverging branch is a path from 11 to F, a dummy deci-
sicn node I is added between 11 and T, to create a stage for the diverg-

ing branch. The time return associated with this stage is the critical
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N

uy
™~

-3 -

.?/Jz

;]

m/// 2

Second Level Labeling Algorithm--Time

Figure 61.
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path from 11 to I, minus the critical path from 11 to decision vertex

2, 1.e,

129 - 79 = 50

By doing so, the computational proccedure of type II divergence
can be applied.

DDS3 has also a type II divergence (see Fig. 25), and it is
handled in the same manner.

The time returns of all DDS were evaluated in the same way as
those of DDSl, and are shown later alcng with the DP model cof each DDS.

Minimum Time Solution for DDS._.

a
{r}
1 f——+
{11} L
{11,12} {51,52,61,62}
1
2 (11,127
Ti(xi,Yi)
Stage 2 Stage 1 Stage L1
11 12 51 52 61 62 F
1185 49 X X
5| 79 61 11 50
120 % x B6 69




Q, (X,,Y.)
Stage 2 Stage 1 Stage L1 |
11 12 51 52 61 62 F

11185 q!' X X
61
69 121x x 86

“Max(50,49)

1 1

T° = f2(t)(8) = 129

r,

“

V1

{11,521}

Minimum Time Solution for DDS2 .

{21,221} 161,62}

— 2 1 —

Ti(Xi,Yi); Qi(Xi,Yi)

Stage 2 Stage 1
21 22 61 62

21|86 ‘i’
B 92
59/ Te9
21|86 GI'

2 _ 22 -
TS = f2(t)(8) = 127

"

U {21,62}

130
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Minimum Time Solution for DDSS_:

F
iy ’
{31,32,33} {21,22,71,72} {61,62,81,82,91,92}
— — —
3 {31,32,33}H 2 .
Stage 3 Stage 2 Stage 1 Stage L1
31 32 33 21 22 71 72 61 62 81 82 91 92 F

48 21 86x X X X
31+69 b4 X

22 miclbx X X X
S +54 +7OI+72 32] % e + 3
AN ARY 2571 % x @30 x x |°F

sl % x <::>+11 720k x x x (::)27

“Max(83,58).

3 3

TV = £3(8) = 102
Ug = {32,71,81}
Minimum Time Solution for DDS . Since there is a dominating

path by-passirg decizion vertex 4, this DDS camnot yield any different

time value than that of DDSQ. Therefore, the decision node with the

smaller cost is selected for vertex 4, leading to:
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w

Yy

{41,21,62}

The Critical Path of CDDS., Evaluating the critical path of CDDS

(see Fig, 17) yields:

T = 102

Minimum Project Time.

T = Max(T") = Max(129,127,102,102) = 129
i

ot
w

Uax slack = {11,52,21,62,32,71,81,41}

Minimum Cost Problem

The DP model for this problem is essentially the same as that of
the minimum time problem, with the exception that stage returns are

values of ¢ Fig., 62 shows how the second level labeling algorithm

jk(3)°
is used to find cjk(j) for each decision node of DDSl. All activity
nodes of Fig. 62 for which the cost has been reduced to zero are perma-
nent nodes.

The diverging branch of DDSl is not required for the cost problem,
since cost elements are additive. For the more general case this means

that the cost of the input to the diverging branch is zero. Same argu-

ment holds true for DDSS.
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Second Level Labeling Algorithm--Cost

Figure 62.
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Minimum Cost Solution for DDSL_.

{11,120} {51,52,61,62}

— 2 — 1 —*

Ci(Xi,Yi); Ri(Xi,Yi)

Stage 2 Stage 1
11 12 51 52 61 62
5|, 227 1192" %
T 63
12|1x x i!l’ ll%J
Cl = 155
VI = {12,61}

Minimum Cost Solution for DDSQ_:

{21,22} {61,627}

T

C.{X.,Y.}; R.(X.,Y.)
1 1 1 1 1 i

Stage 2 Stage 1
21 22 61 62

12 21 11l
1 22| 111
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cC 188

"

V2

{21,61}

Minimum Cost Sclution for DDS. .

3
{31,32,33} {21,22,71,72} {61,62,81,82,91,92}
—y 3 — 2 —— 1 | S
Ci(Xi,Yl); Ri(Xi,Yi)
Stage 3 Stage 2 Stage 1
31 32 33 21 22 71 U2 61 62 81 82 91 92
a1 112 « x Qllll % b4 X X
110
22.'Lll X bt X bt
30 95 80 70
17’1 32 x ¥ +13573. x  x 138@ x %
70 BEY72| x x X % .108
33| x +135@
C3 = 218

o~

v; = {31,21,61}

Minimum Cost Solution for DDSJWP_.

{41,42}

{21,22} {61,621}

3 2 1




n 63

17, 51

5 100

ﬁ critical path oo

Figure 63. Minimum Ceost Standard Network
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Ci(Xi’Yi); Ri(Xi,Yi)

Stage 3 Stage 2 Stage 1
41l b2 21 22 61 62

%1 #112121 111
10\, 1

S
42

+
188 /7188
112
+170122 111

V; = {41,21,61}

Minimum Project Cost.

K

v© = {12,61,31,21,41}

¢ = ¥ ©; + Cpy = 1138
m, eJ®

1

and evaluating the critical path of the minimum cost standard network
yields:
T . = 154

ot

Time Cost Trade-0Off

Time cost trade-off is first solved separately for each DDS using
the methodology developed in Chapter IV, and then the time cost trade-

off of the whole project is developed.
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Time Cost Trade-Off for DDS, .

] —
AGi(Xi,Yi) 1=1...n-1
Oi(Xi,Yi) i=l...n AQi(Xi,Yi) i=1...n-1
Stage 2 1 Stage 1 Stage L1 Stage 1 Stage L1

il 12 51 52 61 &2 P 51 52 61 62 F

s J-192X b4 11129 0 x x

8 T 11 © 35%
111

12 = = 110 = 0

) 12/x = -140

17

{85-50)--see remark in
step 1 (p.108) of the
Efficient Set for a
Decision Network.

Efficient Set Tableau

11 12 51’52 61|62

en(x ,Yn)——+ 230 156
o 11.§g'*
Q_ (X ,Y )—|129 130
n " n
-1
12 1212 17
11
15| -1 m=1
147 17
isk ~ Tox T T
1.2, 1
(T1°C1) = (129,290) W) = {11,52}
(rl,ely = (130,156) Wh o= (12,62}
270 2
(Té,Cé) = (147 ,155) wé = {12,61}



Time Cost Trade-0ff for DDSQ_.

e.(X.,Y.)
177171
Stage 2 Stage 1
61 62
211110 @
112
111
221110 @
Efficient Set Tableau
21 22 AAJ 61 62
% -1
189 Zﬁi 21| |
B
127 o -1
17
-1
188 21 17
-1
144 22 17
Uik ” Tex
2 2. 2
(T7,07) = (127,189) Wl o=
2 .2y _ 2
(T7,07) = (144,188) Wy =

{21,62}

{21,61}

40.{X,,Y.)
1771771

AQi(Xi,Yi)

Stage 1
61 62
-1

21 17 0
-1

22 17 0

198




Time Cost Trade-0ff for DDSS_.

9. (¥,,Y.) i=l...n
itt101

200

Stage 3 I Stage 2 Stage 1
31 37 33 21 22 71 72 6l 62 g2
112 211110 @::) X
22110 (::) X
. 30 A g5 + 90 a9 % < 65
189 \ 208,/ 208 10671 % x 135 x X
65,72 % X X X 108
33 X X +106
AB,(X.,Y.)
oot Ut i=l...n-1
AQi(Xi,Yi)
Stage 2 Stage 1
21 22 71 72 61 €2 81 B2 91 92
34 -1
31| © 31 x| 21 17 0 ®x ®x x X
-34 -1
32 = x O 4 22 17 D X X X X
-34 -3
33 x x 0 i 71 = =% O s X %
T2 v % ®x x 0 g




Efficient Set Tableau

1,

selected.

(T

(T

(7T

w w N O = w

»C

3
1
3
.C3)
3
g

“For all T < T%,

)

)

Stage 2 Stage 1
_}l‘ ?2 33 21|22 7} 72 ‘61 62(81182(91|92
ﬁ2§5 303|298 31; 3uf .
AL, X 17 x| x| x| x
\L37]:02|104
-3y -1
32| x| x L 22 17 x| %l x| x
i
-3y Z -3
33| x| x L 71 x| % 5 X X
31| 32| 33 72 x| x| x| x E{
- = ; ek B - %
518\ 260 Goov: | YCDY 23 )
131 7151 X X221 7 X x| x! x
Qiiw 106 \108
-3/-3y -1
I32 x| % 5(:;;&2 - X! X| X X
-3-3y -3
E33 X| X 5 (:;;'712 X X 5 X X
z ;
| 72 x| x| x| x
265 261\ 31 3< x| x
wsfuos )l of Ll (iii
: £
33 x) % (jh\
! p4

the one with the lowest cost is

(108,264)

(137,219)

(154,218)

W

wWw KW W

{33,72,91}

{31,21,62}

{31,21,61}

201

Time cost trade-off for DDSL+ does not have to bhe evaluated for

the same reascn that the minimum time of DDS

y

was not evaluated.
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Time Cost Trade-Off for the Whole Project. The DDS efficient set

table is used for this purpose as shown in Table 2 on the following page.

Thus :

U = {11,52,21,62,33,72,91,41}
with T% = 129 and:

c, .y + C = 750 + 865 = 1615
jk(3) BN

All 4%
Jk(3)

Adding CPN = 865 to the project costs of Table 2:

(T )

1]

(130,1370) with W. = {21,62,12,41,33,72,91}

l’tl 1

(T.,C.)

2°72

(137,113¢) with W, = {21,62,12,41,31}

cbviously, the final point is:

(TogsC*) = (154,1138) with V¥ = {21,61,12,u1,31}
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o,
w

Table 2.

DDS Efficient Set Table

DDS Common Vertices DDSl DDSu DDS3
Vertex ?
7
DDS 2,3,4 [1,2,3,4 1 # 3 8 9
t 1k 48 861 B9 79(61 85490351 34|(5470|72 7i11| 25| 301 25| 27
k() {(58)|(92)
C'k(j) 78 1112 [110[111({2271u45|92 63|10 |4f30(85i90(70(651138(135|106|108
d'k(j) 21 22 61| 62 21{12{51({52{41|42{{31(32¢133|71|72{ 81| 82| 91| 92
Cost
DDS DDS TIME
-3——593 152 T . T
3| 264 108 1 1 1
2,4 189 127 | 1 1 1
1 290 129 1 1
PROJECT
1| 505 130 | 1 1 % |1 xj 1 1 1 1
3 274 137 1 1 1 1 1 X %
5 1 1 —x 3 o
- THF T T + 3
3 273 154 1 1 X 1 1 1

“A path of 154 is

created in DDS, {see Step 4(1)).

€062
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critical
path

_*

Figure 64. Minimum Time Standard Network
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1700
1600 ®
(129,1615)
1500 o
1400 ®
(130,1370)
1300 Wy
1200
@ %
1106 (137,1139) (154,1138)
W e
2
1000 | .
125 130 135 140 145 150 155

Figure 65, Time Cost Trade-Off

TIME
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APPENDIX C

THE CASE OF RISK WITH STOCHASTIC DECISIONS: AN EXAMPLE

General
The example treated in this appendix is the network of Appendix
B, which is treated as a stochastic decisions network by adding the

following probability distribution to each decision vertex.

Decision

_Vertex Probability Distribution
Dl Py; ~ 0.3 pl2 = 0.7
D, Pyy = 0.4 py, = 0.6
D, Py, = 0.2 Pyy = 0.5 Py, = 0.3
DJ+ Py = 0.4 Pyy ~ 0.6
D¢ Pry = ¢.3 Pgy = 0.7
D6 Pgy = 0.2 Pgo = 0.8
D7 Pyy = 0.8 Py, = 0.2
D8 Pg; = 0.3 Pgy = 0.7
D Py = 0.4 gy = 0.6

The solution of this case follows the sequence described in

Chapter V.
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Prociject Time and Cost Extremes

Minimum Time Problem

From the solution of the case of certainty in Appendix B:

o
|

T% = 129

Minimum Cest Problem

From the solution of the case of certainty in Appendix B:

C* = 1138

Maximum Time Problem

This prcblem is solved in a similar manner to the minimum time
problem of the case of certainty, substituting the minimization process

with a maximization one. The result obtained by doing so is:

TMax = 188

Maximum Cost Problem

In this case, a maximizatlion process 1s applied to the cost DP

model of the case of certainty, yielding the following result:

cMax = 1714
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[}
COST
1800

1600 | Max

1400

1200

1006

J T
max N
130 140 150 160 170 180 120 TIME

Figure 66. Region of Possible Outcomes

Expected Project Time

Optimistic Expected Time

Before presenting the solution itself, the method of dealing with
type II divergence is introduced. Consider the schematic representation

of DDSl, shown in Fig. 67. The values shown near each 4, are t

Jk(3) k(3
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The expected time of this DDSl is:

a b c
Va¥

p N ‘,_/\.._.., s “»
0.3{Max {[(0.3x85+0.7x43) + 79],129}} + 0.7(86x0.2+69x0.8) + 61) =

ELT]

Max[(D.3a+0.7c),(0.3b+0.7c)]

1

The right side of the above equality suggests how a type II
divergence can be treated as a Markov process. This is done by con-
sidering two separate Markov processes, one for the states {11,51,52,
12,61,62} and cne for {11,12,61,62}. The maximum of the two results is
the expected time of this DDS.

Similar modifications are required for other types of non-serial
models.

Expected Time of DDSL_. On the basis of the data of the case of

certainty, the following matrices can be constructed. Note that two

Markoev processes are handled, as explained above.

Case 1
s 11 12 Bl 62 T S 11 12 81 62 F
sfo 0.3 0.7 O 0 o sfo 129 61 () )
11lc o o 0.2 0.8 1 11 86 69
12/0 0 0 0 o 0 12
;: L:
61L{0 0 0 0 o 1 61 ()
62/10 0 0 0 0 1 82
Flo © 0 0 0 1 T )




n = 1 2
%r(S)—] 8l.4  132.08
t (11) 0 0
t (12) 72,4 72,4
= n
'E‘ =
n t (81) 0 0
t (62) 0 0
1
t (F) 0 0
—-—r1 —
Case 2
§ 11 12 51 52 61 82 F
s 0.30.7 ()
11 0.30.7
12 0.2 0.8
51 1
P=s, 1
61 () 1
62 1
Fy 1
n = 2 2
- —
tn(S) 66.4 134,
%j(ll) 58.8 58,
En(lz) 72.4 7oL
t (51) 0 0
— _ _]1
Th 7 1T (52) 0 0
t (61) 3 0
t (62) 0 0
t (F) 0 0
l_.I —

[1-3

132.08

72.u4

11
12
51
52
61
62

3

(8) =

t .
n-‘

132.08

S 11 12 51 52 81 82 F

79 61

134,72
58.8
72.4

0

0
0
0
0

=

85 49

#(5)
ne

0

85 69

= 134.72

210
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E[T1] = Max(132.08,134.72) = 134.72

DDS2 does not have any divergence, and therefore the procedure

described ir. Chapter V is applicable. DDS3 has a type 1I divergence and
can be treated as DDSl. DDSu does not have to be considered for the
reasons discussed in the case of certainty. Thus, utilizing the data of

Appendix B, and applying it as described before to DDS, and DDS3 yields

the following results:

DDS, EL1?] = 150.8
DDS, ~ Case I t (S) = 107.67
Case 2 t . (8) = 117.43

E[T3] = Max(107.67,117.43) = 117.43

Recalling that T¢ = 102, the expected project time is:

ELT] = Max(134.72,150.8,117.43,102) = 150.8

Pessimistic Expected Time. For the reasons discussed in Chapter

V, the pessimistic expected time is not evaluated. Instead, a simula-

tion has to be used, as was done for the example of Appendix D.
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Expected Project Cost

Pessimistic Expected Cost

Evaluation of the pessimistic expected cost follows the procedure
described in Chapter V. Since decision vertex 2 is certain to occur, it

should not ke considered for DDS DDS Decision nodes 61 and 62 are

3° W
common to DESl and DDSz.
DDSl_: On the basis of the data of the case of certainty, the
following matrices can be formed.
S 11 12 51 52 Bl B2 F _ § 11 12 51 52 61 62 F
s( 0.30.7 ) s{ 227 us ]
11 0.3 0.7 : 11 92 63
12 0.2 0.8 12 110 111
P - 51 1 c- 51
= 52 il = 82
61 1 61
62 () 1 62 ()
13 1 T
| | ~ J
_ _n = 1 2 3
En(S) 99.6 198.67 188.67
En(ll) 71.7 71.7 71.7
En(lz) 110.8 10.8 10.8
- ¢ (51 0 0 0 -
= n( ) c_,(s8) = 198.67
- c (52) 0 0 0 i
c_(61) 0 0 0
I
c_(62) 0 0 0
c (F) 0 0 0
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E[Cl] = 198.67

Applying the same method to DDS2, DDSS, DDSu, where decision ver-

tex 2 is not considered for DDS3 and DDSL+ yields the following results:

E[C2] = 209.20
3

E[C™] = 293.02

E[c”] = 12.4

Recalling that C N 865, the pessimistic expected cost is:

P

E[c] = 198.67 + 205.20 + 295.02 + 12.4 + 885 = 1580.29

Optimistic Expected Cost

The only common decision vertex that should be considered is

116 11"
.

wl(lQ) = 0.7

wl(21u22) =1
-2 -2 .1 )
C2(21) = C2(22) = c2(l2) = 110.8

Efc.. ] = {0.7)(1)(110.8) = 77.56

CN
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E[C] = 1580.29 - 77.56 = 1502.73

Most Probable Project Network

The most probable project network is shown in Fig. 68. Its time

and cost is:

T = 161

(@]
1]

1437
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critical
path

Figure 68. Most Probable Project Network
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APPENDIX D

THE CASE OF RISK WITH STOCHASTIC OUTCOMES: AN EXAMPLE

GCeneral

This appendix includes a complete solution of the stochastic
outcomes network of Fig. 63. Decomposition of the stochastic ocutcomes
network into DDS was done following the first level labeling algorithm
of Chapter IV. The cost return and time return asscciated with each
stochastic outcome were obtained following the procedure of Chapter VI,
and are shown in the time and cost matrices of the various DDS.

The solution of this case follows the sequence described in

Chapter VI.

Minimum Expected Project Time

Following is an evaluation of the minimum expected project time.
Shown are the return matrices only. Note the addition of the dummy

decision F and the time associated with it, for DDS DDS This was

1’ 2

done for the same reasons discussed in the case of certainty.



217

Figure 63. Stochastic Outcomes Network



DDS

-
{F}
(1227 |
121,22] (212,221,222}

{122} 1 B

{11,12} {41,42,51,52}
— 2 {111,112,121} 1

I | 4

Figure 70.
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Maximum

DDS (Type II Divergence and Type II Feedforward)

In order to achieve a compact presentation of the solution, the

stochastic matrices E} have been imbedded in Qi(Xi,Yi,Al). Thus, P

for example, which is equal to:

fi+d
il

is shown as part of Ql

(x

411
412
421
422
511
512
521
522

Y

1°71°

41
0.4
0.6

42 51 52

aly,

1



i - i L] A
Table 3. Ti(Xi,YiA ) Qi(Xi,Yi,A )s Qi(xi,Yi) for DDS

1
Stage 2 stage 21 Stage 11 Stage 1
11 12 F .21 22 41 L2 51 52
111 112(121 122 211 21241221 222 411 412|421 4221511 512521 522
0.3 0.7[0.2 0.8 1 0.5 0.5|0.6 0.u4 0.4 0,6(0.,5 0.5|0.2 0.8{0.3 0.7
111 51 44| 48 48| x b4 X X
80 54 51 52 16 67|30 7511121 x x X X X b X X
S +u6.8 +58.5 +58* 122| 58 122 +58.5
121) % x X X 49 71|69 54
211 x X b4 X 4g 71|69 54
111 65;9 48.5
112 X X X X
S 109.8 122 122 68.75
121 X b 66.6
211 X X 66.6 @

“Max(58,48).

512



(See Table 4.)

E[TL]* = }2(c)(s) = 75.84
411
" ‘//;11——-41::
0 = q11 412>
~~112
DDSQ_(Type II Divergence)
{F}
{311} 1 |
{31,32} {21,22,61,62} {51,521}
3 (311,312, 2 L
321,322
E[T?]% = 103
611
» ’/,321————61”” )
U, = q32 ~Ne12b
322
DDS
{21,22} {51,52}

220



i i, =
Table 4, Ti(Xi,Yi,A 3 Qi(Xi,Yi,A )3 Qi(xi’Yi) for DDS,

ln.

Stage 3 Stage 2 Stage Stege 11
F
311 312(321 322 211 212(221 222|611 612|621 622 511 512|521 522
0.4 0.6)0.8 0.2 0.5 0.5|0.6 0.4|0.3 0.7(0.9 0.1 0.2 0.8(0.3 0.7 1
14 6730 75] x X X X
311 +58.5
S +69_., 33 +66 103 312 X X X x X X X X 211149 71169 541311 58
58=% 35.5
321 X X X X |32 3736 ul
322 X X X b4 X e e X
311 89,75 X %
312 X X X X
Sy 110.2 2111 66.6 311
321 X X @ 36.5
322 X X X b
“Max(u8,58),

TZe
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i, iy, =
Table 5. Ti(Xi,Yi,ﬂ ) Qi(xi,Yi,A ) Qi(Xi,Yi) for DDS,

Stage 2 Stage 1
21 22 51 52
211 212221 222 511 512|521 522
0.5 0.5/0.6 0.4 0.2 ¢0.810,3 0.7
29 B2 |45 90
s +58.5 21148 71|69 54
S 84,75 211 BG.GJ
E[T3)% = 63
X ( 221]

CDDS TO =73

Minimum Expected Project Time

EL[T]* = Max(75.84,103,63,73) = 103

411]
( 111— 41"
1" ~~u12
N112
221
0% = ﬁzz/ L
~
222
611
32— 61"’
e
a2 612
322
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PRN--Time

Figure 71,
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Expected Cost of the Minimum Expected Time

Using the PRN of Fig. 71 one obtains:

DDS

eatieufincty PR
S 111 112 411 412 F S 111 112 411 412 F
sfo 0.3 0.7 O S 69 38 O 1
111 0.4 0.6 111 60 53
112 b 112
P=un 1 L un 0
412 () 1 412
Pl 1) F )
N _n= 1 2 3
En(s) 47.3 64.04 64.04
En(lll) 55.8 55.8 55.8
. c_(112) Q 0 0 )
C. = | cQ(S) = 64,04
c (411) 0 0 Q
n
Cn(412) 0 0 0
c (F) _J 0 0 0
_1’1
E[Cl] . = B4.0Y4
B[Tl]::

Using the same approach for DDSQ, DDSS, the following values ave ob-

tained:

E[Cz] = 210.72

E[T2]%
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3 _
E[C ]E[T3], 72.4
since:
CPN = 207,
then:
E[C] = B4.0L + 210.72 + 72.4 + 207 = 554,16

E[T)*

Minimum Expected Project Cost

Decision vertex 2 is common to DDSl, DDS23 DDSs. However, since

cost is additive (unlike time)}, and since decision vertex 2 is certain
to be encountered, 1t should be considered for DDS3 only. (See the

"Cost Refinement"™ of the case of certainty.)

DDS

b

{11,212} {41,42,51,52,F}
—_— 2 —r 1 f——r
l ats -
E[C™1% = 54,56 (See Table 6.)
511



i i =
Table 6. Ci(Xi,Yi,A )3 Ri(xi,Yi,A ) Ri(Xi,Yi) for DDS,

Stage 2 Stage 1
31 32 61 62 F
311 312321 322 611 612|621 622
0.4 0.6|0.8 0.2 0.3 0.7]0.9 0.1
311 x X X X 0
35 90
312 x X X X 0
5158 60 +155.5
3211208 205|171 leu
322 % X ® X 0]
311
31z
S GEIE’ 170. 4
321| 205.9
322

Stage 2 Stage 1

11 12 41 42 51 52
111 112121 122 4311 412|421 422|511 512521 522| F
0.3 0.7|0.2 0.8 0.4 0.610.5 0.510.2 0.8|0.3 0.7} 1
111 |60 53|63 62| % X b4 b4 X
) +69 38 +45 40 112 x Xl x X X X X X 0
55.8 67.8 121) x x| x x| 47 73)111 83| x
122 x x| x X ®x X X X 0
111 55.8 72.5 X X X
S 6L .04 @ 112 X X X X 0
i21 X X 91.4 X
122 X X b4 ® 0

DDS, (A Two-Stage Medel)
i i =

Table 7. Ci(Xi,Yi,A )3 Ri(Xi,Yi,A ¥y Ri(Xi,Yi) for DDS2

226



227

DS (A Two-Stage Model)

i i -
Table 8. Ci(Xi,Yi,A ) Ri(Xi,Yi,A ) Ri(Xi,Yi) for DDS,

Stage 2 Stage 1
21 22 51 52
212 212|221 222 511 512|521 522 F
21147 731111 83 x
150 125|772 73212 % X| x x| 0
S1*67.8
: 221| x x| X x| 0
2221 = Xl % x| 0
211 91.4
212| % X 0
sl 171.4 (:::) 01| x <« | o
222 X P 0]
B[csjf = 72.4
" 221
V, = 20" \>
\“\~222J

Minimum Expected Project Cost

Since C = 207, the minimum expected project cost is:

PN

E[C]* = 54,56 + 59.2 + 72,4 + 207 = 383.18
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Expected Time of the Minimum Expected Cost

Using the PRN-Cost of Fig. 72, and following the procedure

described in Chapter V, the following values are obtained:

s,

Case I %2(8) = 103.52

Case & EQ(S) = 111.52
then:

E[Tl]E[Cl]* = Max(103.52,111.52) = 111,52

DBS,,

Case 1 EQ(S) = 106.2

Case 2 Ez(s) = 110.2
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PRN--Cost

rigure 72.
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then:
2 - —_—
E[T ]E[CQJ* = Max(106.2,110.2) = 110.2
DDSE
E[TBJ 3., = 63

E[C Ik
CDhDS

™ = 73

The expected time of the minimum expected cost is:

ELT] = Max(111,53,110.2,63,73) = 111.53

E[C]*

Region of Possible Outcomes

Region of Possible Outccomes for the Whole Project

Following the methed described in Chapter VI and the procedure
for the case of certalinty (Chapter IV), the focllowing results are
obtained.

Time Extremes.

Maximum Time: TMax = Max(137,154,30,73) = 154

and the associated curtailed strategy is:



{31-311,21-211,51-512}

Minimum Time: T, = Max(54,38,45,78) = 98

Min

and the associated curtailed strategy is:

{11-112,22-221,32-321,61-611}

Cost Extremes.

Maximum Cost: CMax = 132 + 243 + 261 + 207 = 843

and the asscciated curtailed strategy is:

{11-111,21-211,32-321,42-421,52-521,61-611}

Minimum Cost: C,.. = 38 + 58 + 72 + 207 = 378§

Min

and the associated curtailed strategy is:

{11-112,22-221,31-311}

The region of possible cutcomes for the whole project is

illustrated in Fig. 73.

231
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Figure 73. Region of Possible Qutcomes

Region of Possible Qutcomes for an Opening Policy

130

140 150

232

Applying the procedure described in Chapter VI to each stochastic

outcomes network resulting from the selection of an opening policy, the

values summarized in Table 9 are cbhtalned.

Table 9. Region of Possible CQutcomes for Hi

Opening Minimum Maximum Minimum Maximum
Policy Time Time Cost Cost
Hl={ll,2l,31} 99 154 408 660
H,={11,22,31}) 99 144 375 472
H3={ll,21,32} 98 131 H60 au3
H,={11,22,32} 98 131 407 655
H5={l2,21,31} 100 154 430 573
H.={12,22,31} 100 1l 377 496
H7={l2,21,32} 100 137 He2 756
137 409 679

H ={12,22,32} 100
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These regions are illustrated in Figs. 74 and 75 along with

the simulation results.

Most Probable Outcome

Minimum Expected Time Strategy

Referring to Fig. 71, the most probable path for each DDS is:

DDs,  (11-112) with T = 5y ¢’ = 38
. 2 2
DDS,  (82-321,61-611) with T" = 104 C” = 240
DDs, (22-221) with T3 = us c® = 72
=3
Recalling that T° = 73 and C = 207, the most probable values

PN

for the minimum expected time strategy are:

=
1

Max(54,104,45,73) = 104

]
1l

38 + 240 + 72 + 207 = 557

Minimum Expected Cost Strategy

Referring to Fig. 72, the following values are obtained.

DDSl__(12—122,22—221) with T = 110 CT = 40
. 2 2 _

DDS2 (31~-312) with TS = 99 ¢ = 60
. 3 3 _

DDS (22-221) with T = 45 c” = 72

3
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The most prebable values for the minimum expected cost strategy

are:

Max(110,99,72,73) = 110

]
n

4o + B0 + 72 + 207 = 379

[
H

Evaluation of Risk in an Optimal Strategy

Tables 10 and 11 show the paths probabilities for the two optimal
strategies. Tor comparison, the simulation results discussed in the
following section are shown here, too.

Evaluating the expected values for the minimum expected time

strategy (Table 10), one gets:

E[T] = 110.14

E[C] = 347.16 + 207 = 554,16 {where CPN = 207)

Note that the expected cost is the same as the one obtained
before, where the value of E[T] is the exact value vs. the lower bound
(103) that was previously obtained.

The expected valuves for the minimum expected cost strategy

{(Table 11) are:

E[T] = 123.7

E[C] = 186.16 + 207 = 393,16 (where CP = 207)

N
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Table 10. Path Enumeration for the Minimum
Expected Time Strategy

111)2112(211|4121221|222|322|322{61l(612

Time| 80| 54| 51| u4| 45| 90| 66|109] 32| 37 Simula-

Cost| 69| 38, 60 53| 72} 73| 35| 90)208{205| Proba- tion
0.30.7/0.4/0.6]0.5[0.u]0.8]0.2/0.3/ 0. 7|PILity |Time|Cost|Results
X b4 X X 0.014y 131| 291 0.017
X X bd X 0.0096 131 292| 0.004
x X X X b 0.01728| 131 444 0,013
pd 4 4 b4 ®x 1 0.04032y 131 udl} 0.029
X X b b4 X 0.01152 131] L4u5 0.008
X X ® X ®x [ 0.02688] 131| 442| 0.044
bid X X X 0.0216 124 284 0.012
X b4 X x 0.0144 124| 285] 0,018
X X X X X 0.02592| 124 437 0.020
pd X X X ¥ | 0.060u48! 124 434| 0.072
X X x| x X 0.01728] 124l u438( 0.028
X X X | X ® (0.04032| 124 L35 0.029
X X X 0.084 109 200| 0.082

X pd X 0.056 1og| 201 0.058

X X X X 0.10408 98| 353 0.085

b X p3 X [0.2352 103| 350| 0.278

X X b4 X 0.0672 98| 354| 0.082

b ® X % [0.1568 103| 351| 0.123
1.0000 1.000




236

Table 11. Path Enumeration for the Minimum
Expected Cost Strategy

121] 122 |5111512| 221| 222311312
(110) (45) [(90)
Time (451} 52 | 49{ 71| 30 75 | 69| 99
Cost | 45| uQ | w7y 73| 72 | 73 58| 60 |Proba- Simulation
Prob. [0.2! 0.8 |0.2[0.8]0.6 Jo.4 |0.ug.p PITITY Time[COSt| Results
X b4 X x 0.0384( 122 251( 0.030
p d X [ X x |0.0576] 122 250 0.067
b d X X pd 0.0256| 1u4| 249 0.011
b4 X | X p 4 0.0384| 127 248 0.044
X X x [0.1920] 127} 173| 0.190
b4 b x |0.2880( 110| 172| 0.296
X X X 0.12801 1y4| 1711 0.135
X X % 0.1920| 127} 170 0,198
X X X x [0.0096( 100{ 225 0.010
X b4 X x [0.0144) 100 2247 0,001
X p 4 X X 0.0064( 144 223! 0.018
X X X X 0.0086| 127| 222| 0.000
1.000 1.000
Simulation

Evaluation of Risk in an Optimal Strategy

Using the PRN-Time and PRN-Cost of Figs. 71 and 72, 2000 simula-
tion runs were performed, as described in Chapter VI, in order to obtain
the probability distribution of time and cost values. The results of

these simulation runs are shown in Tables 10 and 11,
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Probability Associated with an Opening Policy

Following the procedure described in Chapter VI, 1000 simulation
runs were performed for each of the two criteria, namely the minimum
time criterion and the minimum cost critérion. The results are sum-
marized in Tables 12, 13, 14, 15, and Figs. 74, 75.

The curtailed strategies 0% are shown for policies Hl through

H, only, because of the reasons mentioned in Chapter VI.

Table 12. Simulation Results: Minimum Cost Criterion

Ay fy g

Pry 0.705 0.295

T | 9 127 | 1s4 | 100 110 122 127 1uy
P(T)| .so4 | .236 | .17 | .026 . 315 .101 . 396 .162
E[T] 113.25 123.18

c 168| 169| 170| 171|170| 171 172|173|222| 224| 2u8| 2u9| 250|251
P(C)|.235|.172|.327|.266|.15!.135|.315|.20|.02|.023|,033|.027|.0u47|,05
E[C] 169,45 186.07

NOTE: ¢C = 207 should be added to all values of E[C].

PN



Table 13. Simulatien Results: Minimum Time Criterion
H, K, H, H, H, He
Py, 9.15 0.172 0,145 0.239 0.046
T 99 93 | 124 ug 102 103 109 98 | 102 | 103 |109 | 105 115 119 120
-I-’(T) 1 .ggﬂ 006 L1406 42 .151 .023 .39 1 uo | o7 law liiss |Lise |.3u7 .304
E[T]J 99 99.1 100,67 101.47 _‘ 115.7
r 2;:; 2957 331|170 | 171| 255|253|325 351 3597 406 :Hl’ 475|477 |478 5147 zog 316|317 | 350353 zzsﬁ 2—97 313! 333| 338| 3u1
P{C)|0.58{0.167 .2653@0.03 .005(.03].03 .o; 213,234 0135 .0195].193 .0275? 138].37|.045/,067.38|.347|.152|.108].292|.086].025
5[] 262.2 170.04 413,85 o 316,26 288.5
H, He H, | Hg
PH, 0.098 0.067 0.083
T 10| 105| 11o| 120i127 105 109 115 119 120 loo | 102 105 ‘ 109 110 120
P(T){.03l.112{.775|.013].07 .09 .05 .07 .42 .37 .06 .05 012 ‘ 012 L7486 | L1920
BT} 110.35 117.33 ] 110.06
C 172|173 224| 260| 288| 363| a71| 375 | uos| 443 | usl |459|u79|us0 406 (516| 521 |524) 202| 290| als| 352| 355|a7o|u07| wau! 43| w7l
P(C)|.775].071.03|.112|.013|.149].223|.0135|.194].0135|.0135|.06(.10|.06(.03|.06{.0135|.07{.072|.012).313|.072 325J.05 L05).084],011(.011
;c]_ 184,96 426.8 o 343,57
Note: CPN = 207 should be added to all values of E[C].

BEL
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32~-322

Tabie 14, Simulation Results:
T ¢ 5" T | e g
11-112 11-112 1
99 223 21-212 98|51k 21-211-52~522
31-312 32-321-61-611
11-112 11-112 l
99 295 21-231-51~511 gglu7s 21-211-51-511
31-312 32-321-61-611
11-112 11-112 L
g9 331 21-211-52-5223 38|06 21-212
31-312 32-321-61-611
11~112] 11-112
99 270 20-221 102|477 21-211-52-522
31-312 32-321-62-621
11-112 11-112
99 171 22-222 102| 369 21-212
31-312 30-321-62-621
[11-111-41—412 . 11-112
124 255 22-222 102| uu1 21-211-51-511
31-312 32-321-62-621
[11-112 ] 11-112
102 316 20-221 103| 475 21-211-51-511
1§2-321f62-521 32-321-61-612
11-112 11-112
98 353 20-221 10¢| 253 21-212
32-321-61-611 32-322
11-112 11-112
103 350 22-221 109| 325 21-211-51-511
32-321-61-612 30-322
11-112 11-112
109 200 20221 108| 361 21-211-52~522

32-322

239



Table 15.

Simulation

Results: ;

=il

99

99

127

14l

171

170

168

169

1i-112
22-221

31-312

11-11i2
22-222
31-312

11-112
22-221

31-311

11-112
22-222
31-311

100

110

122

122

127

127

127

127

144

144

224

172

250

251

222

170

248

173

249

171

12-121-51-511
22-221
31-312

12-122
22-221
31-312

12-121-51-512
22-221
31-312

12-121-51-512
22-222
31-312

12-121-51-511
22-221
31-311

12-122
22-222
31-311

12—121—51-5121
22-221
31-311 J

12-122
22-222
31-312

12-121-51-512
22-222
31-311

12-122
22-222
31-311
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H, = {11,21,31
COST 1 {11,21,31} COST [ H, = {11,22,31}
660 ke E[T1 =99 E[C] = 469.2 650 | ygp |- ECT] = 99.1 EIC] = 377.04
) o)
|
600 450 //,/
17.2%////
1538
. e
500 P. = 15% 400 ////
" Hy | f—— 377 375

1430 124 }
400 | uo8 |

99 154 350 el lluu

)y ooy
100 110 120 130 1a0 150 TIME 100 110 120 130 140 150 TIME
COST‘ H, = {11,21,32} COST { H, = {11,22,32}
] - £ H q_ - 3 3
E[T] = 100.67 E[C] = B20.85 700 E[T] = 101.47 E[C] = 523.28

i 13 655

800 600
1560
)
600 500 | |.23.9%
460
L 1G7
400 | 400 109
1131 138 | .
120 130 140 150 TIME 100 110 120 130 140 150 TIME
costT 4 Hy = {12,21,31} cosT | Hg = {12,22,31}
E[T] = 115.7 E[C] = 495.5 E[T] = 110.35 E[C] = 2391.95
500
ggg |- 573 e — T e
| ij/// 9,8%

500 400 pa ///// 379

430 N 127 7
165 120 C*30 s | |

u00 ‘100 b 15 Voagy

1 i | L1 —
100 110 120 130 10 150 TIME 100 110 120 130 148 150 TIME
cos | fy = 112,21,32) cost | Hg = 112,22,32)

750 [~ - 756 700 E[(T] = 110.08 E[C] = 550.57
{/ / - 578 679
ey i} ////”

650 ’jj"7”' EIT] = 117.33 | g4 /////
< /::: Efc] = 633.8 e

L A A570
850 - 362 400 = 409
! 137 - 1 157 -
100 120 120 130 180 150 TIME 100 110 120 130 140 TIME
Figure 74. Region of Possible Outcomes and Probability Zones

for Opening Policy Hi:

Minimum Time Critericn
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COST ! H, = {11,22,31}
500 ELT] = 113.25 E[C] = 376.u5
[‘“ u72
450
400 70.5%
4 378
| _ B a75
99 1uy
350 | |
| |
300 . ' + 1_i — s TIME

100 1o 120 130 140 150

cost § Fe = 112,22,31}

E[T] = 123.18 E[(C] = 393.07

500 - —— 4986

450 } . 458

400

377
| 1k

100 110 120 130 140 150 TIME

350

Figure 75. Region of Possible Cutcomes and Prcbability Zones
for Opening Policy Hi: Minimum Cost Criterion
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APPENDIX E
EFFICIENT SET ALGORITHM: AN EXAMPLE

This appendix includes an example of a six-stage DP model of the
type shown in Fig. 31 of Chapter IV. The efficient set algorithm-time
version is used. Table 16 shows the return matrices of this model,

i (X, ,Y.), 00X, Y, e, (. ,Y. LKLY ini-
along with Ql(Xl,Yl), l(Xl,Yl) and A 1(X1’Y1)’ AQl(Xl,Yl) The mini

mum cost solution {(not shown) of this problem yields:

The efficient set tableau is shown in Table 17. Note that all
starred elements are circled. For ease of reading the table, only
elements conforming to condition b(4) of step 7 of the algorithm
are crossed.

Table 18 shows the admissible point test, and Fig. 76 illustrates

the efficient set.



Table 16.

DP Model Matrices

T AX.,Y.)5 Q.(X%,,Y.)
it7i*i ittiTg

| Stage b Stage 5 Stage 4 Stage 3 Stage 2 Stage 1
| 12 3 I 5 8 _9 10 11 12 13 14 15 16 17 18 19 a0 21 22 23 24
| [ G +331+éi s las 18 ] ot A EDs s (D) il O s 7 s
O O DA R Y T S R IR Ry T G KA D IR O I
3 i‘; +9@+2;7+ﬁ %LB‘Qg 11 +1§ +g +1§®15 +E+ +i§ 19 G ¢ 14 10
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Table 18. Admissible Point Test
T C o;.: we
1|30(151((30,151) | {2,5,9,15,18,22} = U*
2131|138|(312,138) | {1,5,9,15,18,22} = W,
3 |32|135((32,135) | {2,5,9,16,17,21} = W
4 | 32 (137
533 |115((38,115) | {2,5,9,16,17,24} = W,
6 | 33|122
7 | 33124
8 | 3u(102|(34,102) [{1,5,9,16,17,2u} = ¥,
9 | 34114
10 | 35(|101((35,101) [ {1,5,11,16,17,24} = w5
11 | 35|124
12 | 36 |104
13 | 33 |101
14 | 39158
15 | 40 (100 [(40,100) | {3,5,11,16,17,24} = W,
16 | 41 142
17 | 41 144
18 | 42 |122
19 | 43109
20 | 44 101
21 | 52 |112
22|56 99((56,99) |{4,8,12,13,19,22} = V&
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APPENDIX F
NOTATIONS AND ABBREVIATIQNS

set of arcs.

the predecessor matrix.

project cost.

minimum project cost.

project ith cost value,

cost of DDSi.

minimum cost of the minimum time sclution.
cost of the permanent ncdes.

mxm ¢ost matrix associated with the Markov Process,
expected total cost return vector - Nx1.
cost matrix for stage i.

cost matrix for stage i for the stochastic outcomes
network.

critical path.
conjunctive decision dependent subnetwork.

cost associated with activity node m, .

- cost assoclated with decision node djk(j)'

Jk(3I1(K) "

the ith decision dependent subnetwork.
the set of decision vertices.

the jth decision vertex {(decision set)}.
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the k(j)th decision node (decision alternative) of
decision vertex Dj'

a two-dimensional space.
expected value.

minimum expected value.

the last node of the network.

the minimum time at stage i as a function of the input
variable.

minimum n stage time return.
minimum n stage time return for DDSi.

the minimum cost at stage i1 as a function of the input
variable.

minimum n stage cost return.

minimum n stage cost return for DDSi.
expected values for all f's above.

a directed network.

state transformaticn at stage 1.

the ith opening policy.

set of nodes of a decision network.
set of nodes of CDDS.

set of nodes of PRN.

- set of nodes of a DDS.

set of nodes of the standard network.
the length of the kth path from S to F.
set of activity ncdes.

set of permanent nodes.

set of all possible outcomes.



P3k(§)1(k)

Qi(Xi,Yi)

i,
Q; (X;,¥;,87)

AQf&P%Q:(Aqij )

k

R, (X,¥;) = (r,.

]k)

i
Ri(Xi,Yi,A )
R, (X.,Y.)

1 1 1

RCN

the efficient set.

precbability of . . .

mxm transition matrix (stochastic matrix) associated

with the Markov process.
nxr stochastic matrix of stage 1.
partially reduced network.

the probability assoclated with decision node
day v

jk(5)

the conditional probability that a system which
now occupies state i will occupy state j after
its next transition.

probability associated with outcome node

S5x()100) "

the i-stage time matrix.

mxr i-stage expected time matrix.

i-stage time matrix for the stochastic outcomes
network.

the time increment matrix for stage i.
the i-stage cost matrix.

the 1-stage cost matrix for the stochastic out-
comes network.,

mxr i-stage expected cost matrix.
reduced cost matrix.

the first node of the network.
project time.

minimum project time.

project ith time wvalue.

time of DDSi.

time of minimum cost solution.
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mxn time matrix associated with the Markov
process.

expected total time return vector - Nx1,
time matrix for stage i.

time matrix for stage i for the stochastic
outcomes network.

time-cost pair of a promising point.
duration associated with activity node m, .
duration associated with decision node djk(j)'

duration associated with outcome node
§., /. .
k(321 (k)

optimal minimum time policy for DDS,.
i

optimal minimum time policy for the whole
preject,

optimal minimum expected time strategy for DDS,.
i

optimal minimum expected time strategy for the
whole project.

curtailed strategy for the minimum time
criterion.

same as above for cost values.

the policy associated with the pair (Ti,ci).
the policy associated with (Te’ce)'

state variable of stage 1.

decision variable of stage i.

the set of random variables of stage 1.

- the random variable associated with decision

node djk(j) at stage 1.

outcome node associated with decision node

D5y
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the i-stage cost matrix of the minimum time
scluticn.

the cost increment matrix of the minimum time
solution.

the time change matrix for stage i when the
procedure starts at stage m.

the cost change matrix for stage i, when the
procedure starts at stage m.
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