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ABSTRACT

Adaptive optics (AO) allows one to derive the point spread function (PSF) simultaneously to the science image,
which is a major advantage in post-processing tasks such as astrometry/photometry or deconvolution. Based on
the algorithm of Véran et al. (1997), PSF reconstruction has been developed for four different AO systems so far:
PUEO, ALFA, Lick-AO and Altair. A similar effort is undertaken for NAOS/VLT in a collaboration between
the group PHASE (Onera and Observatoire de Paris/LESIA) and ESO. In this paper, we first introduce two
new algorithms that prevent the use of the so-called ”Uij functions” to: (1) avoid the storage of a large amount
of data (for both new algorithms), (2) shorten the PSF reconstruction computation time (for one of the two)
and (3) provide an estimation of the PSF variability (for the other one). We then identify and explain issues in
the exploitation of real-time Shack-Hartmann (SH) data for PSF reconstruction, emphasising the large impact
of thresholding in the accuracy of the phase residual estimation. Finally, we present the data provided by the
NAOS real-time computer (RTC) to reconstruct PSF ((1) the data presently available, (2) two NAOS software
modifications that would provide new data to increase the accuracy of the PSF reconstruction and (3) the tests
of these modifications) and the PSF reconstruction algorithms we are developing for NAOS on that basis.
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1. INTRODUCTION

The knowledge of the PSF of the instrument is of prime importance to accurately calibrate observations. Nu-
merous image restoration techniques, such as deconvolution algorithms, make use of the PSF, or its Fourier
transform, the optical transfert function (OTF), to fully restore the image quality affected by the atmopheric
turbulence. Astrometric and photometric algorithms, e.g. DAOPHOT (Stetson, 1987) or Starfinder (Diolaiti et
al., 2000), sometimes coupled to deconvolution algorithms, also need an estimation of the PSF.

Véran et al. (1997) have demonstrated that AO allows one to derive the PSF from wavefront-related data
delivered by the AO RTC. They have been the first to develop such a PSF reconstruction algorithm and to
implement it on an AO system: PUEO, the CFHT curvature AO system (Arsenault et al., 1994). Since then,
the algorithm is routinely used to provide astronomers with the (on-axis) PSF associated to their observations.

Based on this algorithm, PSF reconstruction has been developed for three other AO systems, equipped this
time with SH wavefront sensors (WFS): (1) ALFA (Kasper et al., 2000), the SH AO system of the Calar Alto
3.5m telescope, by Weiss (2003); (2) Altair (Herriot et al., 2000), the 4-quadrant SH AO system of the Gemini
North telescope, by Jolissaint et al. (2004); (3) the SH AO system of the UCO/Lick Observatory’s 3 m Shane
Telescope (Bauman et al., 2002), by Fitzgerald (2004). These algorithms have been tested during few runs of
observations and have lead to good results.
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45 07 75 48)



With the goal to reconstruct PSF with NAOS, the SH AO system of NACO (Rousset et al., 2000; Lenzen
et al., 1998) at VLT, a similar effort has been undertaken in a collaboration between the group PHASE (Onera
and Observatoire de Paris/LESIA) and ESO: PSF reconstruction had indeed been considered since the design
phase of NAOS. In a first step, we have contacted MPIA (S. Egner and S. Hippler) since they had been the
first to develop a PSF reconstruction algorithm for a SH AO system. Though, the large differences between
the two systems (modes of the systems, available wavefront-related measurements) have lead us to elaborate a
NAOS-dedicated algorithm, the general architecture being always based on the algorithm of Véran et al. (1997).

In the first section, we introduce new algorithms for PSF reconstruction. In the second section, we identify
and explain issues in the exploitation of real-time SH data for PSF reconstruction. In the third section, we
describe the data provided by the NAOS RTC to reconstruct PSF and the contemplated software modifications
that would provide new data to increase the accuracy of the PSF reconstruction. We also detail the algorithms
associated with these data.

2. NEW ALGORITHMS FOR PSF RECONSTRUCTION

2.1. Reminder on the Véran et al. (1997) algorithm

2.1.1. The long-exposure AO-corrected PSF expression

Following the PSF reconstruction algorithm developed by Véran et al. (1997), assuming that the phase is quasi-
stationary over the pupil, the AO-corrected monochromatic long-exposure OTF is decomposed as follows:
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The phase φǫ can be split into two parts: φǫ‖ , which belongs to the vector space spanned by the mirror modes,
and φǫ⊥ , which is orthogonal to the former space.
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This expression can be written
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where:

•
〈

OTFφǫ

(

~ρ/λ
)

〉

is the mean attenuation of the OTF due to the partial correction of AO,

• OTFtel

(

~ρ/λ
)

is the perfect telescope OTF,

•
〈

OTFφǫ‖

(

~ρ/λ
)

〉

is the mean attenuation of the OTF due the mirror component of the phase, i.e. the

”mean residual phase OTF”,

•
〈

OTFφǫ⊥

(

~ρ/λ
)

〉

is the mean attenuation of the OTF due the component of the phase belonging to the

space perpendicular to the mirror space, i.e. the ”mean perpendicular phase OTF”,

• D̄φǫ‖
(~ρ) is the mean structure function of the residual phase, i.e. the ”mean residual phase structure

function”,

• D̄φǫ⊥
(~ρ) is the mean structure function of the perpendicular phase,

• ~ρ is a pupil plane coordinate vector,

• λ is the wavelength of observation.



The corresponding AO-corrected monochromatic long-exposure PSF is derived as the Fourier transform of the
OTF.

From the expression of the residual phase structure function:

Dφǫ‖
(~x, ~ρ) =

〈

(

φǫ‖(~x) − φǫ‖(~x + ~ρ)
)2

〉

(4)

and the decomposition of the phase on the basis of the mirror modes Mi(~x):

φǫ‖(~x, t) =

N
∑

i=1

ǫ‖i(t)Mi(~x) (5)

one obtains:

Dφǫ‖
(~x, ~ρ) =

N
∑

i=1

N
∑

j=1

〈ǫ‖iǫ‖j〉
(

Mi(~x) − Mi(~x + ~ρ)
)(

Mj(~x) − Mj(~x + ~ρ)
)

(6)

where ~x a coordinate vector in the pupil plane.

The mean residual phase structure function D̄φǫ‖
(~ρ) is the mean of Dφǫ‖

(~x, ~ρ) over ~x:

D̄φǫ‖
(~ρ) =

∫

Dφǫ‖
(~x, ~ρ)P (~x)P (~x + ~ρ)d~x

∫

P (~x)P (~x + ~ρ)d~x

(7)

where P (~x) is the pupil function.

2.1.2. The Uij(~ρ) functions

Defining the function Uij(~ρ) as:

∫

(

Mi(~x) − Mi(~x + ~ρ)
)(

Mj(~x) − Mj(~x + ~ρ)
)

P (~x)P (~x + ~ρ)d~x
∫

P (~x)P (~x + ~ρ)d~x

(8)

Eq. 7, can be rewritten:

D̄φǫ‖
(~ρ) =

N
∑

i=1

N
∑

j=1

〈ǫ‖iǫ‖j〉Uij(~ρ) (9)

This is a key equation for the experimental PSF reconstruction. The covariance matrix 〈ǫ‖ǫ‖
t〉 has to be measured

experimentally on the AO system itself, by averaging the cross-products of wavefront measurements obtained
during the time of the image exposure.

In the current PSF reconstruction algorithms, derived from Véran et al. (1997), the matrix 〈ǫ‖ǫ‖
t〉 is the

basic entry point from which one can deduce successively the phase structure function, the OTF, and then the
PSF. Additionally, one has to compute, store once for all, and also read during the reconstruction process the
Uij(~ρ) functions.

In Eqs. 9, the i and j indices play a symmetric role, so that there are actually N × (N + 1)/2 ”useful”
Uij(~ρ) functions. As an example, in the case of NAOS, the 159 compensated modes lead to 12720 ”useful” Uij(~ρ)
functions. Today, the large number of Uij(~ρ) hence represents, depending on the array size and data type, several
gigabytes of data to compute, store and read. This leads to a heavy PSF reconstruction process, which will turn
out to be impossible to handle in the future since next AO systems are expected to have a largely increased
number of modes: about 1370 actuators for the VLT-Planet Finder AO system (Fusco et al., 2005), several tens
of thousands for extremely large telescopes. We propose in the following a way to achieve this computation,
starting from the same covariance matrix 〈ǫ‖ǫ‖

t〉, without using the Uij(~ρ).



2.2. Theory of the proposed algorithms

2.2.1. The Vii algorithm

Let’s consider the vector ǫ‖
∗ made of the {ǫ‖i}i=1...N coefficients, i.e. the vector representing φǫ‖(~x, t) in the

basis of the mirror modes Mi(~x). The eigen decomposition of the residual phase covariance matrix is:

Λ = Bt〈ǫ‖ǫ‖
t〉B (10)

where Λ is a diagonal matrix that contains the {λi}i=1...N eigenvalues and B is the matrix of eigenvectors:
BtB = BBt = Id. Equation 10 can be written:

Λ =
〈

(Btǫ‖)(B
tǫ‖)

t
〉

(11)

The vector η equal to Btǫ‖ represents φǫ‖(~x, t) in the basis that diagonalizes the residual phase covariance matrix.

Its coefficients are noted {ηi}i=1...N . From Eq. 11, the covariance matrix 〈ηηt〉 is diagonal, i.e. in this new basis,
the residual phase covariance matrix is diagonal and the mean residual phase structure function reduces to:

D̄φǫ‖
(~ρ) =

N
∑

i=1

〈ηiηi〉Vii(~ρ) =

N
∑

i=1

λi Vii(~ρ) (12)

where the Vij(~ρ) functions are equivalent in the new basis to the Uij(~ρ) functions (Eq. 8).

After this change of basis, the computation of the residual phase OTF only requires the computation of a
number N of functions Vii(~ρ). Though, these Vii(~ρ) functions have to be computed on the fly for each estimation
of the mean residual phase structure function.

2.2.2. The ”instantaneous PSF” algorithm

The solution we propose here is similar to the algorithm presented by Roddier (1990) to simulate atmospherically
distorted wavefronts, from the covariance matrix of the coefficients of their expansion in Zernike modes. We
extend this algorithm to any modal basis and covariance matrix, and use it to reconstruct AO-corrected PSFs.

Let’s consider again the eigen decomposition of the residual phase covariance matrix:

〈ǫ‖ǫ‖
t〉 = BΛBt (13)

If one generates a vector η whose coefficients are independent Gaussian random variables with zero mean and
variance equal to the eigenvalue λi, i.e. 〈ηηt〉 = Λ, then the vector β = Bη is a set of correlated random variables
whose covariance matrix is 〈ǫ‖ǫ‖

t〉:

〈ββt〉 = 〈BηηtBt〉 = BΛBt = 〈ǫ‖ǫ‖
t〉 (14)

The phase represented by the vector β is:

φ(~x, t) =

N
∑

i=1

βi(t)Mi(~x) (15)

and the ”instantaneous” PSF corresponding to that phase is:

PSF‖(~x, t) =
∥

∥

∥FFT
(

exp(iφ(~x, t)
)

∥

∥

∥

2

(16)

Then, by generating random η vectors such that 〈ηηt〉 = Λ, we build instantaneous PSFs that, in average,
converge to the long-exposure PSF of the mirror space. Note that the latter is not the ”full PSF” as would be
observed at the telescope since it does not include the uncorrected part of the phase (cf. Eq. 2).

∗to lighten the expressions, ǫ‖(t) will be abbreviated into ǫ‖



2.3. Choice between the different algorithms

The Uij and Vii algorithms mathematically produce exactly the same OTFs. Though, the Vii algorithm requires
the computation of N functions (where N is the number of modes) whereas the Uij algorithm requires the
computation of N × (N + 1)/2 functions. Even if these N Vii functions have to be computed on the fly, this
computation is faster than reading N × (N +1)/2 stored Uij functions and it prevents from the storage of a large
amount of data, so that the Vii algorithm is always to be preferred to the Uij one.

As noticed by Conan (1994), averaging short-exposure OTFs, as we do in the ”instantaneous PSF” algorithm,
is a process that converges very slowly, especially at large D/r0 or low correction level. In addition, it does not
lead to the infinitely long exposure OTF since a given number of short exposures are averaged. Besides, Conan
(1994) has shown that in the poor correction case, the error in computing the long-exposure OTF of such an
algorithm is larger than for the Uij algorithm, and consequently the Vii algorithm as well.

Though, we emphasize that, in addition to the OTF computation itself, the ”instantaneous PSF” algorithm
can provide an estimation about the variability of the OTF, that can help a lot in some deconvolution algorithms.
The estimation of the infinitely long exposure OTF that results from the convergence of our ”instantaneous PSF”
algorithm and that corresponds to a given covariance matrix 〈ǫ‖ǫ‖

t〉 is unique: let us call it OTF∞(~ρ/λ). The
dispersion in the random generation of OTFs can be computed as

σ2(~ρ/λ) =
〈

∥

∥OTF∞(~ρ/λ) − OTFi(~ρ/λ)
∥

∥

2
〉

i
(17)

where OTFi is the ith draw of a randomly-generated OTF. If we call OTFobs(~ρ/λ) the OTF actually observed
on the instrument during the given, non infinite, observing time Tint, when the given covariance matrix 〈ǫ‖ǫ‖

t〉
was measured, we can evaluate how far our estimation OTF∞ is from OTFobs by writing:

〈

∥

∥OTF∞(~ρ/λ) − OTFobs(~ρ/λ)
∥

∥

2
〉

=
σ2(~ρ/λ)

n
(18)

where n is the equivalent number of independent realisations of PSFs, whose sum has resulted in the final PSF
observed by the instrument during the given, non infinite, integration time Tint. An estimation of n could be
obtained for example from a full simulation of the AO system under the same atmospheric conditions as during
the observation. It can also be reasonnable to consider that the impact of the correction by the AO system is
to shorten the image correlation time compared to the image correlation time τ0(λ) of the atmospheric seeing
(Rigaut et al., 1991). We can then find a lower bound given by n > Tint/τ0(λ).

3. ISSUES IN THE EXPLOITATION OF REAL-TIME SHACK-HARTMANN DATA
FOR PSF RECONSTRUCTION

3.1. Description of the problem

3.1.1. Using the Yao simulation software

In order to test the algorithms introduced in Sect. 2.2, we have used the end-to-end AO simulation software Yao
(version 3.6), written by Rigaut (2005). We have tested our algorithms in the simple case of a 6×6 subpupil
SH by using the default configuration file ”sh6m2-bench.par” delivered in the Yao installation package. The
correction was performed with a 45 actuator piezostack deformable mirror (DM) plus a tip-tilt mirror. The
correction and observation wavelengths of the simulation were 0.65 and 1.65 µm respectively. D/r0 was equal to
42.44 at 0.5 µm.

Since we aimed at testing our algorithms with different conditions of correction, we have run the simulation
with a guide star magnitude ranging from 5 to 14 so that the resulting Strehl ratio was ranging from 0.54
down to 0.01 (Fig. 1 left). We have stored all the values ǫ‖(t) obtained from the simulation, computed the
covariance matrix 〈ǫ‖ǫ‖

t〉 and ran the Uij , Vii and ”instantaneous PSF” algorithms to derive the corresponding
”atmospheric” OTFs (i.e. not multiplied by the telescope OTF; Fig. 1 right).

The Strehl ratios that one would expect from the OTF profiles (Fig. 1 right), i.e. computed from the WFS
data, do not correspond to the Strehl ratios computed from the PSFs resulting from the simulation (Fig. 1 left),



Figure 1. Left: Strehl ratio at 1.65 µm vs. guide star V magnitude, from Yao. Yao computes the Strehl ratios from
the PSFs resulting from the simulation (as would be observed on a camera). Right: Circular mean of the ”atmospheric”
OTFs for guide star magnitudes of 5, 12 and 14 (from top to bottom), computed from the WFS data. At this scale, the
profiles obtained with the different algorithms (Uij , Vii and ”instantaneous PSF”) are almost superimposed.

even if one takes into account that these OTFs only correspond to the residual phase, without correction for the
noise, the aliasing and the perpendicular parts of the phase. This is particularly evident for the 14th guide star
magnitude case, for which one would expect much smaller OTF values for a large range of normalized frequencies.
In order to understand this discrepancy, we have reproduced the test with another AO simulation software.

3.1.2. Using the ONERA AO simulation software

To trace the origin of the problem, we have tested the algorithm with an end-to-end Monte Carlo-based AO
simulation software developed at ONERA (Conan et al., 2004). We have tested our algorithms in the simple
case of a NAOS-like AO system (Rousset et al., 2000): a 14×14 subpupil SH with 8×8 pixels per sub-aperture,
a read-out noise of 3 e− per pixel and a sampling frequency of 500 Hz. The correction was performed with a
185 actuator piezostack DM plus a tip-tilt mirror. The correction and observation wavelengths of the simulation
were 0.65 and 2.2 µm respectively. The seeing was 0.85” at 0.5 µm.

Similarly to what we have done with Yao, we have run the simulation with a guide star magnitude ranging
from 7 to 15, leading to a resulting Strehl ratio from ∼70% down to ∼0.2% (Fig. 2 left), and for a given guide
star magnitude, we have stored the values ǫ‖(t) obtained from the simulation, computed the covariance matrix
〈ǫ‖ǫ‖

t〉 and run the Uij , Vii and ”instantaneous PSF” algorithms to derive the corresponding ”atmospheric”
OTFs (Fig. 2 right).

The behaviour we had encountered with Yao has still been observed in this other simulation: there exists a
discrepancy between the Strehl ratios computed from the ”imaging path”-related data (the PSFs, left graph of
Fig. 2) and the Strehl ratios expected from the WFS data (the OTFs, right graph of Fig. 2).

3.2. Origin of the problem

We have identified unambiguously that the unexpected high OTF values are related to the correlation between
the error and the turbulence signal.

In order to analyse the effect in more detail, we have simulated the behaviour of the SH measurement in
one subaperture in particular. We simulate the incoming wavefront, compute the associated image with a high
resolution and derive the position of its centre of gravity (hereafter the ”true centroid position”). Then, we
simulate the technical characteristics of the sensor, namely: the averaging of the image over the pixel area, the
limited number of pixels and field of view, the detector noise, the signal photon noise. We apply a threshold on
the image and compute the centre of gravity (hereafter the ”measured centroid position”). After comparing the
measured centroid position (sm, for measured slope) with the true one (s0), it appears clearly that:

• the error sm − s0 is highly correlated to the signal value (i.e. to the true centroid position), which is
contradictory with the assumptions usually made in the literature;

• the correlation is, among others, a function of the threshold level.



Figure 2. Left: Strehl ratio at 2.2 µm vs. guide star visual magnitude for a NAOS-like AO system. As for Yao,
the Strehl ratios are computed from the PSFs obtained from the simulation (as would be seen in the ”imaging path”).
Right: Circular mean of the ”atmospheric” residual OTFs for guide star magnitudes of 7.3, 12.3 and 13.6 (from top to
bottom), computed from the WFS data. At this scale, the profiles obtained with the different algorithms (Uij , Vii and
”instantaneous PSF”) are almost superimposed.

Therefore, instead of the usual equation sm = s0 + n, the measured signal in a subaperture should rather be
written under the form:

sm = G.s0 + n (19)

where G is a coefficient and n an additive noise, uncorrelated with the signal s0. The value of G can be found
with a linear regression (least-squares fit by a function ax + b) of the measured data sm with respect to s0.
The fit residuals (i.e. n) are, de facto, uncorrelated with s0, as a consequence of the least-squares approach. In
addition, it should be noticed that n may not have a zero mean, depending on the location of the reference slope
in the subaperture. The value of G is related to the noisy pixel values that peak above the threshold and bias
the estimation of the centroid location, because they weight in the denominator of the expression of the centre
of gravity, given by (in the x-measurement case):

sm =

∑

i

xi.(Si + Ni)

∑

i

Si + Ni

=









∑

i

Si

∑

i
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






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




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xi.Si

∑

i

Si









+

∑

i

xi.Ni

∑

i

Si + Ni

(20)

where Si, Ni and xi are the flux signal, the flux noise and the position of the pixel i in the given supaperture.
Equation 20 is comparable to Eq. 19, where the mean value of G can be expressed in terms of the total flux
Nphot detected above the threshold, and in terms of the sum of the noise Nnoise above the threshold level

G ≈
Nphot

Nphot + Nnoise
(21)

We have plotted in Fig. 3 the value of G versus the threshold level. While Eq. 21 can closely predict the
value of G for the low threshold values, it cannot predict the behavior for higher threshold levels, where the
simulations show that, in some cases, we may even have G > 1. The interesting point is that the error reaches
a minimum when the correlation is zero, which coincides with a regression coefficient of G = 1.

We have reproduced this particular ”gain effect”, encountered in our end-to-end simulations described in
Sect. 3.1, using the ONERA AO simulation software, not in its end-to-end configuration but:

• the slope is computed as a simple phase difference at the edge of the corresponding subpupil,

• we then multiply by a gain factor G = Nphot/ (Nphot + Nnoise), where Nnoise follows a truncated Gaussian
statistics in order to reproduce the threshold effect.

• the noise is then added to the slope measurement.
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Figure 3. Left : Coefficient G vs. threshold from the linear regression of the measured data sm through G.s0 + constant.
Middle : Correlation coefficient between the signal s0 and the error sm − s0 vs. threshold. Right : Variance of the error
〈(sm − s0)

2〉 vs. threshold. Conditions for the 3 figures: 7 × 7 subapertures, 8-m telescope, r0 = 13 cm at 0.6 microns,
detector read-out noise: 3 e−, pixel scale: 0.4”/pixel, centroid computed on 6 × 6 pixels, sampling frequency: 50 Hz, star
magnitude: R=15, ∆λ = 300 nm, global throughput: 0.25.

Indeed, the resulting upper dashed curve on the left graph of Fig. 4 reproduces the behaviour of our two end-
to-end full-propagation simulations: the Strehl ratio reaches a lower limit at low flux instead of getting down
to zero as observed from the ”imaging path”-related data (lower continuous curve on the left graph of Fig. 4).
However, if we correct the slope measurements from the gain of the centroid measurement, we find the expected
behaviour (central dotted curve on the left graph of Fig. 4, which is not superimposed on the lower continuous
curve because the slope measurements have not been corrected for the noise).

As a conclusion, the threshold level is a key issue when reconstructing PSFs from real SH data. An improper
threshold level may bias the data, leading to a wrong estimation of the noise and of the phase residuals. This issue
may also impact on all the tasks that make use of the slope measurements, such as performance estimations (as
done for NAOS), modal optimisation, etc. Surprisingly, its impact on the performance of the AO compensation
itself is maybe less sensitive, since the gain G acts exactly as the close-loop gain would do: it directly controls
the system bandwidth, and only makes the system ”slower” when G < 1.

4. NAOS DATA FOR PSF RECONSTRUCTION AND ASSOCIATED ALGORITHMS

4.1. Data presently available

The delivery of wavefront-related data to estimate the PSF has been among the NAOS main specifications to
maximise the scientific returns of the instrument. In that purpose, the NAOS RTC computes over the image
integration time the mean of the following data (Rabaud et al., 2000):

• at WFS frequency: Zernike Mode Mean, Zernike Mode Autocorrelation (128 first points, mean value not
subtracted), Intensity Mean, Intensity Variance, Image Mean, Image Variance, Image pixel null/no-null
count;

• at 50 Hz: mean of the modal coefficients deduced from the residual slopes (ǭ, hereafter residual modal
mean), covariance of the modal coefficients deduced from the residual slopes (Cǫǫ, hereafter residual modal
covariance matrix), mean of the modal coefficients deduced from the voltages and covariance of the modal
coefficients deduced from the voltages (hereafter mirror modal mean and covariance matrix resp.).

In practice, together with the CONICA FITS images, the observer gets:

• attached to the images: the two residual modal covariance and mirror modal covariance matrices and the
corresponding two means;

• written in the FITS header images: turbulence parameters, such as r0, L0 (cf. Fusco et al. 2004 for details
on their estimation), and AO loop parameters such as the Zernike mean noise n2

z.



Figure 4. Left: Strehl ratio vs. guide star flux (in number of photons). The slope is here computed as a simple phase
difference at the subpupil edges and (1) we reproduce the threshold effect (upper dashed curve) and (2) we correct the
slope measurements from the gain of the centroid measurement, but not from the noise (central dotted curve). These
Strehl ratios are computed from WFS data for these curves and from ”imaging path”-related data for the lower continuous
one. Right: Same as Fig. 2 right, after correcting the slope measurements from the gain of the centroid measurement.

4.2. From the available data to the PSF

4.2.1. Computation of the mean residual phase OTF

The WFS measurement, ǫ̂‖ can be decomposed into:

ǫ̂‖ = ǫ‖ + n + r (22)

where ǫ‖, n and r are the vectors representing the residual phase, the noise and the aliasing in the basis of the
miror modes. Following Véran et al. (1997), under the assumption of high temporal bandwidth, Eq. 22 leads to:

〈ǫ‖ǫ‖
t〉 = 〈ǫ̂‖ǫ̂

t
‖〉 − 〈nnt〉 + 〈rrt〉 (23)

– 〈ǫ̂‖ǫ̂
t
‖〉 is directly obtained from the NAOS data: 〈ǫ̂‖ǫ̂

t
‖〉 = Cǫǫ − 〈ǭǭt〉

– 〈rrt〉 is in a first step neglected. In the future, it will be computed by using a SH simulation of NAOS

– 〈nnt〉 was contemplated to be computed from the Zernike mean noise value n2
z given in the CONICA image

FITS header. To obtain this value, the vector of the residual phase is expressed in the Zernike mode basis,
the open-loop measurement vector is reconstructed, the noise variances for each Zernike are calculated with the
auto-correlation method (Gendron & Léna, 1995) and then summed and square-rooted. To take advantage of
this Zernike mean noise value, one has to assume that the noise is not correlated from a subpupil to another and
that the Zernike mean noise is equally distributed over all the considered Zernike modes (!). In that case, 〈nnt〉
is given by (hereafter ”n2

z algorithm”):

〈nnt〉 =
n2

z
∑

i,j

M2

SZi,j

MSMM t
SM (24)

where MSM is the ”slope to mirror mode” transformation matrix, MSZ the ”slope to Zernike mode” transfor-
mation matrix and MSZ i,j its element along line i and column j.

4.2.2. Computation of the mean perpendicular phase OTF

As proposed by Véran et al. (1997), the mean perpendicular phase OTF can be computed from simulated phases
screens, computed at D/r0 = 1, of which one has subtracted their mirror components to obtain φǫ⊥(~x, t). These
”perpendicular phase screens” have then to be scaled at the proper D/r0 value by multiplying them by (D/r0)

5/6.
The r0 value of the observations can be directly read in the CONICA image FITS header. Alternatively, it could
be derived from the mirror modal mean and covariance matrix attached to the CONICA image FITS file. The
former solution is presently adopted.

From these scaled perpendicular phase screens, one can derive the mean perpendicular phase OTF with two
different algorithms:



• a ”PSF-like” algorithm: one computes for each perpendicular phase screen the corresponding ”instan-

taneous perpendicular PSF” by
∥

∥

∥FFT
(

exp(iφǫ⊥(~x, t)
)

∥

∥

∥

2

, averages them to get PSF⊥(~x, t) and, after a

Fourier transform, the perpendicular OTF multiplied by the telescope OTF;

• an ”Uij-like” algorithm: similarly to the commonly used computation of the Uij functions,

D̄φǫ⊥
(~x, ~ρ) =

∫

P (~x)P (~x + ~ρ)Dφǫ⊥
(~x, ~ρ)d~x

∫

P (~x)P (~x + ~ρ)d~x

(25)

=

〈∫

P (~x)P (~x + ~ρ)
(

φ2

ǫ⊥(~x, t) + φ2

ǫ⊥(~x + ~ρ, t) − 2φǫ⊥(~x, t)φǫ⊥(~x + ~ρ, t)
)

d~x

〉

∫

P (~x)P (~x + ~ρ)d~x

(26)

=

〈

Cor(φ2

ǫ⊥
P, P ) + Cor(P, φ2

ǫ⊥
P ) − 2Cor(φǫ⊥P, φǫ⊥P )

〉

Cor(P, P )
(27)

=
F−1

(

〈

F(φ2

ǫ⊥
P )F∗(P ) + F(P )F∗(φ2

ǫ⊥
P ) − 2F(φǫ⊥P )F∗(φǫ⊥P )

〉

)

F−1
(

| F(P ) |2
) (28)

=

F−1

(

2
〈

ℜ
(

F(φ2

ǫ⊥
P )F∗(P )

)

− | F(φǫ⊥P ) |2
〉

)

F−1
(

| F(P ) |2
) (29)

where Cor(f, g) =

∫

f(x).g(x + ρ)dx, F is the Fourier transform, F−1 the inverse Fourier transform, ℜ

the real part of a complex value and ∗ its conjugate.

4.3. Contemplated NAOS software modifications

4.3.1. Description

The Zernike mean noise value n2
z is the only NAOS data available to compute the noise part of the OTF

(Sect. 4.1). Though, as explained in Sect. 4.2.1, the assumptions made in this computation are fairly important
and might lead to large uncertainties in the PSF estimation. It has lead us to propose to ESO two different RTC
software modifications with different levels of impact on the software:

1. providing the vector of variance noises n2
zi

for all considered Zernikes, instead of their ”mean” value n2
z

(hereafter ”n2
zi

algorithm”). This is the modification that has the slightest impact on the software: since

the vector of variance noise for all considered Zernikes is already computed in the software to derive n2
z,

this software modification would only require to output the considered vector, in the CONICA image FITS
header for example, instead of outputting n2

z. Always assuming that the noise is not correlated from a

subpupil to another, we would first solve the equations n2

si
=

∑

j

M2

SZi,j
n2

zj
where n2

si
is the ith-element of

the vector of variance noises for each slope mesurements. This can be done with a dedicated procedure, e.g.
the IDL ”constrained min.pro” procedure. 〈nnt〉 is then derived using the MSM ”slope to mirror mode”
transformation matrix,

2. providing the vector of variance noises n2

i for all considered mirror modes, i.e. the diagonal of 〈nnt〉
(hereafter ”n2

i algorithm”). In this larger software modification scheme, always assuming no correlation

between the subpupils, we would first solve the equations n2

si
=

∑

j

M2

SMi,j
n2

j , similarly to what is proposed

for the first software modification, and derive the entire 〈nnt〉 covariance matrix with MSM .



Figure 5. Drawn (black) and estimated (red) n2

si
slope variance noises with the n2

z (left), n2

zi
(middle) and n2

i (right)
algorithms, for a given statistics distribution.

4.3.2. Test of the modifications

To test the contemplated modifications, we have drawn vectors of 144 n2
si

slope variance noises with several
statistics distribution, taking into account that the edge subpupils are more noisy than the central ones. Assuming
no correlation between subpupils, i.e. 〈nsn

t
s〉 is diagonal and made of the n2

si
elements, we have then:

• computed 〈nnt〉 with the ”slope to mode” transformation matrix, and then derived with the Vii algorithm
the corresponding OTF (hereafter ”reference OTF”), that we estimate with the n2

z, n2
zi

and n2

i algorithms;

• computed n2
z with the ”slope to Zernike” transformation matrix, used the ”n2

z algorithm” to get the
estimated n2

si
slope variance noises (Fig. 5 left), estimated 〈nnt〉 with the ”slope to mode” transformation

matrix, and then derived with the Vii algorithm the corresponding estimated OTF;

• computed n2
zi

with the ”slope to Zernike” transformation matrix, used the ”n2
zi

algorithm” to get the esti-
mated n2

si
slope variance noises (Fig. 5 middle), estimated 〈nnt〉 with the ”slope to mode” transformation

matrix, and then derived with the Vii algorithm the corresponding estimated OTF;

• computed n2
i with the ”slope to mode” transformation matrix, used the ”n2

i algorithm” to get the estimated
n2

si
slope variance noises (Fig. 5 right), estimated 〈nnt〉 with the ”slope to mode” transformation matrix,

and then derived with the Vii algorithm the corresponding estimated OTF;

To measure the potential gain of the contemplated modifications, we have represented in Fig. 6 the histogram,
in number of pixels in the OTF, of the relative error between the ”reference OTF” and the ”estimated OTFs”,
for the statistics distribution of the slope variance noises shown in Fig. 5. We thus show the substantial gain of
the simplest software modification (providing the vector of variance noises n2

zi
) compared to what is presently

delivered by the NAOS RTC (n2
z). The gain of the second contemplated modification (providing the vector of

variance noises n2

i ) seems to be poor with respect to the first one.

Figure 6. Histogram of the relative error between the ”reference OTF” and the estimated OTF estimated with the n2
z

(upper red curve), n2

zi
(middle black curve) and n2

i (lower blue curve) algorithms, for the statistics distribution of the
slope variance noises given in Fig. 5.



5. FUTURE WORK

Regarding the new introduced algorithms, accurate AO simulations are needed to provide an estimation of n, the
equivalent number of independent realisations of PSFs whose sum has resulted in the observed PSF. The derived
OTF variability would then be used in deconvolution algorithm, similarly to what has been done with PUEO
and MISTRAL (Fusco et al., 1999). Concerning the NAOS PSF reconstruction software itself, the decision to
proceed with the slightest software modification is still in discussion with ESO. Though, tests of the software with
the present NAOS RTC data have just begun and more will be accumulated before a release to the community.
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