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Algebraic entropy for lattice equations

C.-M. Viallet

Laboratoire de Physique Théorique et des Hautes Energies
UMR 7589 Centre National de la Recherche Scientifique
Boite 126, 4 Place Jussieu, 75252 Paris Cedex 05, France

E-mail: viallet@lpthe. jussieu.fr

Abstract. We give the basic definition of algebraic entropy for lattice equations.
The entropy is a canonical measure of the complexity of the dynamics they define.
Its vanishing is a signal of integrability, and can be used as a powerful integrability
detector. It is also conjectured to take remarkable values (algebraic integers).

The analysis of discrete dynamical systems, in particular the measure of their
complexity, and possibly the detection of their integrability is a huge subjectf,
originating in the work of Poincaré. It contains the study of the dynamics of rational
maps, already a vast topic of research. It also contains the study of lattice equations,
which are to maps what partial differential equations are to ordinary differential
equations. Our purpose here is to extend the notion of algebraic entropy, already
widely used for maps [El, E] [E, ], and recognized as an unmatched integrability
detector [ﬂ], to lattice equations as in [ﬁ], thus introducing a measure of complexity
for higher dimensional discrete dynamics.

We briefly describe the setting, the space of initial data, the evolutions, and
define the related entropies. We give examples, some integrable, some not integrable,
showing how to extract information about the global (and asymptotic) behaviour of
the system from a few iterates. We formalize and confirm the results of [E] We also
present some conjectures and perspectives.

1. The setting

Consider a cubic lattice of dimension D. The vertices of the lattice are labeled by D
relative integers [n1,na, ..., npl. Toeach vertex is associated the variable Yini,nas...nn]-
We are given a defining relation, which links the values of y at each corner of the
elementary cells (square for D = 2, cube for D = 3 and so on).

We will suppose that the defining relations allow to calculate any corner values
on a cell from the 2P — 1 remaining ones, and that the value is given by a rational
expression. This implies that our defining relations are multilinear, which covers a
large number of interesting cases (see for example [ﬂ, E] and more in the last sections).
This restriction may be partially lifted.

As an illustration, consider the two-dimensional case of the square plane lattice.
The elementary cell is a plaquette shown in Figure (1).

1t We will not dwell here upon the definition of integrability
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Figure 1: elementary cell in two dimensions
The defining relation is a constraint of the form

f(y[nl,ng] ) y[n1+1,7l2] ’ y[”h,ﬂz-‘rl] ’ y[n1+1,7l2+1]) =0. (1)

We will use some specific examples later.

2. Initial conditions

For the sake of clarity, we will concentrate on the D = 2 case, but everything we will
say generalizes straightforwardly to higher dimensions.

In order to define an evolution we have to specify initial conditions. From the
form of the defining relation, it appears that the values of y have to be given on some
“diagonal” of the lattice.

The space of initial conditions is infinite dimensional.

When D = 2, the diagonals need to go from [n; = —oo,ng = —o0] to
[n1 = oo,ng = o0, or from [ng = —oo,ng = +00] to [n1 = oo,ng = —oo0]. We
will restrict ourselves to regular diagonals which are staircases with steps of constant
horizontal length, and constant height. Figure (2) shows four diagonals. The ones
labeled (1) and (2) are regular. The one labeled (3) would be acceptable, but we will
not consider such diagonals. Line (4) is excluded since it may lead to incompatibilities.

Figure 2: diagonals

3. Restricted initial conditions

Here again we use the D = 2 example, to make things simple. Given a line of initial
conditions, it is possible to calculate the values y all over the D-dimensional space.
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We have a well defined evolution, since we restrict ourselves to regular diagonals.
Moreover, and this is a crucial point, if we want to evaluate the transformation formula
for a finite number of iterations, we only need a diagonal of initial conditions with finite
extent.

For any positive integer N, and each pair of relative integers [A1, A2], we denote by

(N
A Al A ]7
he1ght la = |A\2], and going in the direction of positive (resp. negative) ny, if Ay > 0
(resp. Ay < 0), for k =1..D = 2. See Figure (3).
(3)

(-1 |

a regular diagonal consisting of N steps, each having horizontal size l; = |\1],

OJI>
=

|

L. o
(3) . |
ATyl I A

Figure 3: various choices of restricted initial conditions

Suppose we fix the initial conditions on AEM) WL We may calculate y over a
rectangle of size (Nl +1) X (Nlg + 1). The diagonal cuts the rectangle in two halves.
One of them uses all initial values, and we will calculate the evolution only on that

part. See Figure(4).
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Figure 4: range of initial conditions Afi)l.Q]

4. Fundamental entropies

We are now in position to calculate “iterates” of the evolution. Choose some restricted

diagonal A(/\ )A |- The total number of initial points is ¢ = Nl +1)+ 1.
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For such restricted initial data, the natural space where the evolution acts is the
projective space P, of dimension ¢. We may calculate the iterates and fill Figure (4),
considering the ¢ initial values as inhomogeneous coordinates of F,.

Evaluating the degrees of the successive iterates, we will produce double sequences

of degrees.
The simplest possible choice is to apply this construction to the restricted
diagonals Afivl) L) which we will denote AS\Q, AS:\Q, ..., and call them fundamental

diagonals (the upper index (V) is omitted for infinite lines).
The pattern of degrees is then of the form

1 40 g . qWv-1 d)
1 1 dB 4@ .. dW-D
1 1 d®»  q4®
1 1 o) pe) (2)
1 1 a®
1 1

To each choice of indices [£1, £1] we associate a sequence of degrees dg?j)[

Definition: The fundamental entropies of the lattice equation are given by
1
exse = lim — log(d?)). (3)
n—oo N,
Claim: These entropies always exist [ﬂ]7 because of the subadditivity property
of the logarithm of the degree of composed maps.
The fundamental entropies correspond to initial data given on diagonals with

slope +1 or —1, and evolutions towards the four corners of the lattice, as shown in
Figure (5).

Figure 5: fundamental evolutions on a square lattice

These four entropies do not have to be identical (see section ([I])).
When the entropy vanishes, the growth of the degree is polynomial, and the degree
of that polynomial is a secondary characterization of the complexity.
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5. Subsidiary entropies

We may also define entropies for the other regular diagonals. They correspond to
initial data given on a line with a slope different from £1. They are useful in view of
the various finite dimensional reductions presented for example in [f].

As an example, the pattern of degrees for A@M] looks like

(1 dV[1] dP[] d®[1] =dO2] ]
... d®)[2]
11 d® (2]
1 d®[2] (4)
1 1 d®[2]
1 dM 2]
L 1 1 |

The sequences of degrees we will retain are the border sequences {d™[v]},
v = 1,2, seen on the edges of the domain. There are as many such border sequences
as there are dimensions in the lattice (here D=2). The index in bracket refers to
the direction of the edge considered. This leads to subsidiary entropies €[y, ][],
v=1...D:

. 1
€lar,ap] V] = lim — log( D

o) PD)- (5)

.....

6. Explicit calculation

A full calculation of iterates is usually beyond reach. We can however get explicit
sequences of degrees by considering the images of a generic projective line in Py, as
was introduced in [f]], making a link with the geometrical picture of [{:

Suppose we start from a restricted diagonal Afi\?)\2]. It contains ¢ = N(l1+12)+1

vertices Vi,...,V,. For each of these ¢ vertices, we assign to y an initial value of the
form:
ag + Bk x
=— k=1... 6
YV = o B x q (6)

where g, By and «ag, Ok, (k = 1..q) are arbitrary constants, and z is some unknown.

We then calculate the values of y at the vertices which are within the range of AE)]\\? WL

These values are rational fractions of z, whose numerator and denominator are of the
same degree, and that is the degree we are looking for.

The next step is then to evaluate the growth of degrees. One very fruitful method
is to introduce the generating function of the sequence of degrees

o) =3 s M
k=0

and try to fit it with a rational fraction.

The remarkable fact is that it again works surprisingly well, as it did for maps,
although we know that it may not always be the case . This means that we can
often extract the asymptotic behaviour measured by (E) and (E) just by looking at a
finite part of the sequence of degrees.
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The existence of a rational generating function with integer coefficients for the
sequence of degrees implies that it verifies a finite recurrence relation. For maps this
can sometimes be proved through a singularity analysis. A similar singularity analysis
should be done here, but it is beyond the scope of this letter.

We have explored a number of examples. We found examples with non zero
entropy, and examples with vanishing entropy either with linear growth either with
quadratic growth, up to now.

7. Example 1: the deformed cross-ratio relation

Take as a defining relation:

(y["h"z] — ay["1+17"2]) (y[nl,n2+1] — by[n1+1an2+1])
(y[nl,nQ] - C?J[nl,nzﬂ]) (y[n1+1,n2] - dy[n1+1,nz+1])
This relation is based on a deformed version of the cross ratio of the four corner values.
It is known to define an integrable lattice equation fora =b=c=4d [@]

fdc’r‘ =

—s=0 (8)

At generic values of the parameters we get the following explicit values for dg?j)[

(the defining relation being very symmetric, the four sequences are the identical):

{d")} = {1,2,4,9,21,50,120,289, .. .}. (9)

This sequence is fitted by the generating function

1—s—s°

(1-98)(1—-25s—s2%)
The entropy is the logarithm of the inverse of the modulus of the smallest pole of g(s)
el = log(1+V2). (11)

We have calculated a number of subsidiary entropies for various values of [A1, Aa].
They all give sequences which can be fitted with rational generating functions. The
entropies depend on the “slope” o = A\z/A;: large o give larger €[y, x,][1] and smaller
€[a1,00][2], and conversely. As an example, we see that e[, 1j[1] is the inverse of the
logarithm of the smallest modulus of the roots of 1 — s — s? — sP*!. There is an
interesting interplay between the various fundamental and subsidiary entropies.

g% (s) = (10)

For the known integrable case (parameters a = b = ¢ = d) [@], we find the same
sequence for all four Ay, :

{d"y = {1,2,4,7,11,16,22,29,37,46,56, .. .}, (12)
fitted by
, 1—s5+s2
int s) = 13
g (s) 7(1—5)3 (13)
The growth of the degree is quadratic
A =1+ n(n+1)/2 (14)

and the entropy vanishes.
The few subsidiary entropies we have calculated when a = b = ¢ = d also vanish,
and the degree growth is quadratic.
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8. Example 2: Q4

We have analysed the so-called Q4 lattice equation , , . The defining relation
is given by:

A ((y[nh"Z] - b) (y[nh"?""l] - b) - d) ((y[n1+11n2] - b) (y["1+1an2+1] - b) - d) (15)
+B ((y[nlﬂw] - a) (y[n1+17"2] - a) - e) ((y["hanrl] - a) (y["1+11n2+1] - a) - e) =f
with

gy
f=ABC(a—b) (16)

A(c=b)+B(c—a)=C(a—0)

We have used our approach for generic values of the parameters, that is to say
without ([Ld). We find for the fundamental evolutions:

{dii ={1,3,7,13,21,31,43,57,73,91, 111, .. .} (17)
fitted with the generating function
1452
++ P 18
pa1(6) = o (18)
The growth of the degree is quadratic,
d" =1+n(n—1) (19)

This indicates integrability of the form ([Lf) !
It is interesting to calculate more of the entropies, related to initial conditions
with a different slope, still for unconstrained parameters. For example

{d{}"[1]} = {1,5,13,25,41,61,85,113,.. } (20)
{d{}",[2]} = {1,3,5,9,13,19,25,33,41,51,61,73,85,99, 113, .. } (21)

Both give zero entropy and quadratic growth, as for the fundamental values.

9. Example 3: Discrete Sine-Gordon

A multilinear defining relation for the discrete Sine-Gordon equation can be found
in [@, E]

y[nl,ng] y[nl—i-l,ng] y[nl,ng-i-l] y[n1+1,n2+1]

—a (y[nl,nQ] Yni+1,m24+1] = Yni+1,n2] y[nhanrl]) —1=0 (22)
For this lattice equation, we find
{(ay = {1,3,7,13,21,31,43,57,73,91, 111,.. .} (23)

as in the previous case (the same quadratic growth, vanishing €44 ).
The subsequent calculation of ey o)[1] and €1 9[2] yields

{d}", (1]} = {1,4,11,21,34,51,71,94,121,151 .. } (24)
{d(f)Q][ I} ={1,3,4,8,11,16,21,28,34,43,51,61,71.. } (25)
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fitted respectively by
142 4524253+ st
Wl =~ )
’ (s2+s+1)(1—y¢)
14+2s+53+8°
(s+1)(s2+s5+1)(1—s)°

Which mean vanishing entropies and quadratic growth.

9[519,2] 2] =

10. Example 4: Non-isotropic model

There are cases where the various directions of evolution are not equivalent. The
entropies e4 1 are not all equal. Take the simple defining relation (see also [E, @])

y[nl,n2+1]y[n1,n2]y[n1+1,n2] + y["17"2+1]y[n1+17n2+1] =+ y[n1+17n2] =0 (28>

The sequences of degrees for the fundamental evolutions differ:

{dfﬁ)ﬂ} ={1,3,7,17,41,99,239,.. } 29
{dfj:)ﬂ} ={1,2,4,7,14,28,56,...} 30

{d |} = {1,2,5,10,20,40,80, ...} 31

(
(
(
(32

)

)

)
{dfﬁ[]} ={1,2,4,8,16,32,64,.. .} )
They fit with the generating functions

2
9-+1 77 _17;; S_ 52’ I+ = $ 8)1(1_4;; - )’ (33)
2

94— = fj—;S, e _12 o (34)
so that

€44 = €4 =€ =log(2) (35)
but

e_y = log(2.414...) (36)

It does not seem excluded a priori to have vanishing entropy in some direction and
non-vanishing entropy in some other direction, but we have not exhibited any explicit
example of that yet.

11. Conclusion and perspectives

The definitions presented here extend to all dimensions (D > 2), and apply to non-
autonomous equations, as well as multicomponent systems, provided the evolutions
are rational.

We may use a defining relation which is not multilinear if we do not insist on
having all of the 27 evolutions described in section (5). For D = 2 we may for example
accept a defining relation which is of higher degree in yj,, 41,0, and Y, no41]- The
price to pay is to consider only initial conditions with A; Ay < 0.

We may also consider defining relations extending over more than one elementary
cell: this means considering equations of higher order [@
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We have done a number of explicit calculations of the fundamental (and
subsidiary) entropies, beyond the ones presented here. All the lattice equations which
are known to be integrable have vanishing entropies. These results, and what is already
known for maps, suggest that the vanishing of entropy, that is to say the drastic drop
of the complexity of the evolution, is indeed always a sign of integrability.

Of course the drop of the degree is related to the singularity content of the
evolution, as it was for maps. A systematic singularity/factorization analysis is one
of the tracks to follow. In this spirit, one can undertake a description of all lattice
equations of a given degree, and for a given dimension. This is the purpose of , E]

One should also determine which of the properties are canonical, that is to say
independent of any change of coordinates one may perform on the variables. For maps
this was just invariance by birational changes of coordinates on a finite dimensional
projective space. Here the situation is made much more intricate by the infinite
number of dimensions of the space of initial conditions.

All the entropies we have calculated explicitly are the logarithm of an algebraic
integer. There is a conjecture that this is always the case for maps @, E], and we are
lead to the same conjecture here.

Another line of research touches upon arithmetic: a link has been established
between the algebraic entropy and the growth of the height of iterates, when the
parameters and the values of y,, . ,,) are rational numbers [@, @, . This applies
here as well, and will be the subject of further analysis.

Acknowledgment: I would like to thank M. Talon for constructive discussions.
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