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RATE OF CONVERGENCE OF IMPLICIT APPROXIMATIONS
FOR STOCHASTIC EVOLUTION EQUATIONS

ISTVÁN GYÖNGY AND ANNIE MILLET

Abstract. Stochastic evolution equations in Banach spaces with unbounded
nonlinear drift and diffusion operators are considered. Under some regularity
condition assumed for the solution, the rate of convergence of implicit Euler ap-
proximations is estimated under strong monotonicity and Lipschitz conditions.
The results are applied to a class of quasilinear stochastic PDEs of parabolic type.

1. Introduction

Let V →֒ H →֒ V ∗ be a normal triple of spaces with dense and continuous
embeddings, where V is a separable and reflexive Banach space, H is a Hilbert space,
identified with its dual by means of the inner product in H , and V ∗ is the dual of V .
Thus 〈v, h〉 = (v, h) for all v ∈ V and h ∈ H∗ = H , where 〈v, v∗〉 = 〈v∗, v〉 denotes
the duality product of v ∈ V , v∗ ∈ V ∗, and (h1, h2) denotes the inner product of
h1, h2 ∈ H . Let W = {W (t) : t ≥ 0} be a d1-dimensional Brownian motion carried
by a stochastic basis (Ω,F , (Ft)t≥0, P ). Consider the stochastic evolution equation

u(t) = u0 +

∫ t

0

A(s, u(s)) ds+

d1
∑

k=1

∫ t

0

Bk(s, u(s)) dW
k(s) , (1.1)

where u0 is a V -valued F0-measurable random variable, A and B are (non-linear)
adapted operators defined on [0,∞[×V ×Ω with values in V ∗ andHd1 := H×...×H ,
respectively.

It is well-known, see [7], [10] and [13], that this equation admits a unique solution
if the following conditions are met: There exist constants λ > 0, K ≥ 0 and an
Ft-adapted non-negative locally integrable stochastic process f = {ft : t ≥ 0} such
that

(i) (Monotonicity) There exists a constant K such that

2〈u− v, A(t, u) − A(t, v)〉 +

d1
∑

k=1

|Bk(t, u) −Bk(t, v)|2H ≤ K|u− v|2H, (1.2)
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(ii) (Coercivity)

2〈v, A(t, v)〉 +
d1
∑

k=1

|Bk(t, v)|2H ≤ −λ|v|2V +K|v|2H + f(t),

(iii) (Linear growth)

|A(t, v)|2V ∗ ≤ K|v|2V ∗ + f(t),

(iv) (Hemicontinuity)

lim
λ→0

〈w,A(t, v + λu)〉 = 〈w,A(t, v)〉

hold for all for u, v, w ∈ V , t ∈ [0, T ] and ω ∈ Ω.
Under these conditions equation (1.1) has a unique solution u on [0, T ]. (See

Definition 2.3 below for the definition of the solution.) Moreover, if E|u0|2H < ∞
and E

∫ T

0
f(t) dt <∞, then

E sup
t≤T

|u(t)|2H + E

∫ T

0

|u(t)|2V dt <∞.

In [5] it is shown that under these conditions, approximations defined by various
implicit and explicit schemes converge to u.

Our aim is to prove rate of convergence estimates for these approximations. To
achieve this aim we require stronger assumptions: a strong monotonicity condition
on A,B and a Lipschitz condition on B in v ∈ V . In the present paper we consider
implicit time discretizations. Note that without space discretizations, in general, ex-
plicit time discretizations do not converge. Consider, for example, the heat equation
du(t) = ∆u(t), with initial condition u(0) = u0 ∈ L2(R

d). Then the explicit time
discretization on the grid {k/n}n

k=0 gives the approximation un(k/n) := (I+∆/n)ku0

at time t = k/n. Hence clearly, if u0 /∈ ∩∞
i=1W

i
2(R

d), then u(k/n) does not belong
to the Sobolev space W l

2(R
d), with any fixed negative index l, when k is sufficiently

large.
The study of various space-time discretization schemes will be done in the con-

tinuation of the present paper.
We require also the following time regularity from the solution u (see condition

(T2)): E|u0|2V < ∞, almost surely ut ∈ V for every t ∈ T , and there exist some
constants C and ν > 0 such that

E|u(t) − u(s)|2V ≤ C |t− s|2ν ,

for all s, t ∈ [0, T ]. Note that unlike the solutions to stochastic differential equations,
the solutions to stochastic PDEs can satisfy this condition with a variety of expo-
nents ν, different from 1/2, due to the interplay between space and time regularities
of the solutions. (See [9] for space and time regularity of the solutions to stochastic
parabolic PDEs of second order.) Note also that our general setting allows us to
cover a large class of stochastic parabolic PDEs of order 2m for any m ≥ 1 (see [7]
for the class of stochastic parabolic SPDEs of order 2m and see [1] for the stochastic
Cahn-Hilliard equation).

In the case of time independent operators A and B we obtain the rate of conver-
gence for the implicit approximation uτ corresponding to the mesh size τ = T/m of
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the partition of [0, T ]

Emax
i≤m

|u(iτ) − uτ (iτ)|2H + E
∑

i≤m

|u(iτ) − uτ (iτ)|2V τ ≤ Cτ ν ,

where C is a constant independent of τ . If in addition to the above assumptions A
is also Lipschitz continuous in v ∈ V then the order of convergence is doubled,

Emax
i≤m

|u(iτ) − uτ(iτ)|2H + E
∑

i≤m

|u(iτ) − uτ(iτ)|2V τ ≤ Cτ 2ν .

In the case of time dependent A and B it is natural to assume that they are Hölder
continuous in t in order to control the error due to their discretization in time.
However, it is possible to control this discretization error when the operator A is
not even continuous in t, if we discretize it by taking the average of A(s) over the
intervals [ti, ti+1]. This explains the discretization of A(t) and condition (T1) below.
If both operators A and B are Hölder continuous in time then we use also the obvious
discretization: Aτ

ti
= A(ti+1, .) and Bτ

k,ti
= B(ti, .).

As examples we present a class of quasi-linear stochastic partial differential equa-
tions (SPDEs) of parabolic type, and show that it satisfies our assumptions. Thus
we obtain rate of convergence results also for implicit approximations of linear para-
bolic SPDEs, in particular, for the Zakai equation of nonlinear filtering. We refer to
[8], [12], [11] and [13] for basic results for the stochastic PDEs of nonlinear filtering.

We will extend these results to degenerate parabolic SPDEs, and to space-time
explicit and implicit schemes for stochastic evolution equations in the continuation
of this paper.

In Section 2 we give a precise description of the schemes and state the assumptions
on the coefficients which ensure the convergence of these schemes to the solution u
of (1.1). In Section 3 estimates for the speed of convergence of time implicit schemes
are stated and proved. Finally, in the last section, we give a class of examples of
quasi-linear stochastic PDEs for which all the assumptions of the main theorem,
Theorem 3.4, are fulfilled.

As usual, we denote by C a constant which can change from line to line.

2. Preliminaries and the approximation scheme

Let (Ω,F , (Ft)t≥0, P ) be a stochastic basis, satisfying the usual conditions, i.e.,
(Ft)t≥0 is an increasing right-continuous family of sub-σ-algebras of F such that F0

contains every P -null set. Let W = {W (t) : t ≥ 0} be a d1-dimensional Wiener
martingale with respect to (Ft)t≥0, i.e., W is an Ft-adapted Wiener process with
values in R

d1 such that W (t) −W (s) is independent of Fs for all 0 ≤ s ≤ t.
Let T be a given positive number. Consider the stochastic evolution equation

(1.1) for t ∈ [0, T ] in a triplet of spaces

V →֒ H ≡ H∗ →֒ V ∗,

satisfying the following conditions: V is a separable and reflexive Banach space over
the real numbers, embedded continuously and densely into a Hilbert space H , which
is identified with its dual H∗ by means of the inner product (·, ·) in H , such that
(v, h) = 〈v, h〉 for all v ∈ V and h ∈ H , where 〈·, ·〉 denotes the duality product
between V and V ∗, the dual of V . Such triplet of spaces is called a normal triplet.
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Let us state now our assumptions on the initial value u0 and the operators A, B
in the equation. Let

A : [0, T ] × V × Ω → V ∗ , B : [0, T ] × V × Ω → Hd1

be such that for every v, w ∈ V and 1 ≤ k ≤ d1, 〈A(s, v), w〉 and (Bk(s, v), w) are
adapted processes and the following conditions hold:

(C1) The pair (A,B) satisfies the strong monotonicity condition, i.e., there exist
constants λ > 0 and L > 0 such almost surely

2 〈u− v, A(t, u) − A(t, v)〉 +

d1
∑

k=1

|Bk(t, u) −Bk(t, v)|2H

+λ |u− v|2V ≤ L |u− v|2H (2.1)

for all t ∈]0, T ], u and v in V .
(C2) (Lipschitz condition on B) There exists a constant L1 such that almost

surely
d1
∑

k=1

|Bk(t, u) − Bk(t, v)|2H ≤ L1 |u− v|2V (2.2)

for all t ∈ [0, T ], u and v in V .
(C3) (Lipschitz condition on A) There exists a constant L2 such that almost

surely
|A(t, u) − A(t, v)|2V ∗ ≤ L2 |u− v|2V (2.3)

for all t ∈ [0, T ], u and v in V .
(C4) u0 : Ω → V is F0-measurable and E|u0|2V < ∞. There exist non-negative

random variables K1 and K2 such that EKi <∞, and
d1
∑

k=1

|Bk(t, 0)|2H ≤ K1 (2.4)

|A(t, 0)|2V ∗ ≤ K2 (2.5)

for all t ∈ [0, T ] and ω ∈ Ω.

Remark 2.1. If λ = 0 in (2.1) then one says that (A,B) satisfies the monotonicity
condition. Notice that this condition together with the Lipschitz condition (2.3) on
A implies the Lipschitz condition (2.2) on B.

Remark 2.2. (1) Clearly, (2.3)–(2.5) and (2.2)–(2.4) imply that A and B satisfy
the growth condition

d1
∑

j=1

|Bk(t, v)|2H ≤ 2L1|v|2V + 2K1, (2.6)

and
|A(t, v)|2V ∗ ≤ 2L2 |v|2V + 2K2 (2.7)

respectively, for all t ∈ [0, T ], ω ∈ Ω and v ∈ V .
(2) Condition (2.3) obviously implies that the operator A is hemicontinuous:

lim
ε→0

〈A(t, u+ εv), w〉 = 〈A(t, u), w〉 (2.8)
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for all t ∈ [0, T ] and u, v, w ∈ V .
(3) The strong monotonicity condition (C1), (C2) and (2.4), (2.5) yield that the

pair (A,B) satisfies the following coercivity condition: there exists a non-negative
random variable K3 such EK3 <∞ and almost surely

2 〈v, A(t, v)〉+

d1
∑

k=1

|Bk(t, v)|2H + λ
2
|v|2V ≤ L|v|2H +K3 (2.9)

for all t ∈]0, T ], ω ∈ Ω and v ∈ V .

Proof. We show only (3). By the strong monotonicity condition

2 〈v, A(t, v)〉+

d1
∑

k=1

|Bk(t, v)|2H + λ
2
|v|2V ≤ L|v|2H +R1(t) +R2(t) (2.10)

with

R1(t) = 2 〈v, A(t, 0)〉,

R2(t) =

d1
∑

k=1

|Bk(t, 0)|2H + 2

d1
∑

k=1

(

Bk(t, v) − Bk(t, 0) , Bk(t, 0)
)

.

Using (C2) and (2.5), we have

|R1| ≤ λ
4
|v|2V + 4K2

λ
,

|R2| ≤ 2

(

d1
∑

j=1

|Bk(t, v) − Bk(t, 0)|2H

)

1

2
(

d1
∑

k=1

|Bk(t, 0)|2H

)

1

2

+K1

≤ λ
4
|v|2V + CK1.

Thus, (C1) concludes the proof of (2.9).
�

Definition 2.3. An H-valued adapted continuous process u = {u(t) : t ∈ [0, T ]}
is a solution to equation (1.1) on [0, T ] if almost surely u(t) ∈ V for almost every
t ∈ [0, T ],

∫ T

0

|u(t)|2V dt <∞ , (2.11)

and

(u(t), v) = (u0, v) +

∫ t

0

〈A(s, u(s)), v〉 ds+

d1
∑

k=1

∫ t

0

(Bk(s, u(s)), v) dW
k(s) (2.12)

holds for all t ∈ [0, T ] and v ∈ V . We say that the solution to (1.1) on [0, T ] is
unique if for any solutions u and v to (1.1) on [0, T ] we have

P ( sup
t∈[0,T ]

|u(t) − v(t)|H > 0) = 0.

The following theorem is well-known (see [7], [10] and [13]).



6 I. GYÖNGY AND A. MILLET

Theorem 2.4. Let A and B satisfy the monotonicity, coercivity, linear growth and
hemicontinuity conditions (i)-(iv) formulated in the Introduction. Then for every
H-valued F0-measurable random variable u0, equation (1.1) has a unique solution u

on [0, T ]. Moreover, if E|u0|2H <∞ and E
∫ T

0
f(t) dt <∞, then

E
(

sup
t∈[0,T ]

|u(t)|2H
)

+ E

∫ T

0

|u(t)|2V dt <∞ (2.13)

holds.

Hence by the previous remarks we have the following corollary.

Corollary 2.5. Assume that conditions (C1), (C2) hold. Then for every H-valued
random variable u0 equation (1.1) has a unique solution u, and if E|u0|2H <∞, then
(2.13) holds.

Approximation scheme. For a fixed integer m ≥ 1 and τ := T/m we define the
approximation uτ for the solution u by an implicit time discretization of equation
(1.1) as follows:

uτ (t0) = u0 ,

uτ (ti+1) = uτ (ti) + τ Aτ
ti

(

uτ (ti+1)
)

+

d1
∑

k=1

Bτ
k,ti

(

uτ (ti)
) (

W k(ti+1) −W k(ti)
)

for 0 ≤ i < m, (2.14)

where ti := iτ and

Aτ
ti
(v) =

1

τ

∫ ti+1

ti

A(s, v) ds , (2.15)

Bτ
k,0(v) = 0, Bτ

k,ti+1
(v) =

1

τ

∫ ti+1

ti

Bk(s, v) ds (2.16)

for i = 0, 1, 2, ..., m.

A random vector uτ := {uτ(ti) : i = 0, 1, 2, ..., m} is called a solution to scheme
(2.14) if uτ (ti) is a V -valued Fti-measurable random variable such that E|uτ(ti)|2V <
∞ and (2.14) hold for every i = 0, · · · , m− 1.

We use the notation

κ1(t) := iτ for t ∈ [iτ, (i+ 1)τ [, and κ2(t) := (i+ 1)τ for t ∈]iτ, (i+ 1)τ ] (2.17)

for integers i ≥ 0, and set

At(v) = Ati(v), Bk,t(v) = Bti(v)

for t ∈ [ti, ti+1[, i = 0, 1, 2, ...m− 1 and v ∈ V .
Another possible choice is

Aτ
ti
(u) = A(ti+1, u) and Bτ

k,ti
(u) = Bk(ti, u) for i = 0, 1, · · · , m− 1. (2.18)

The following theorem establishes the existence and uniqueness of uτ for large
enough m, and provides estimates in V and in H . We remark that in practice (2.14)
should also be solved numerically. This is possible for example by Galerkin’s ap-
proximations and by finite elements methods. In the continuation of this paper we
consider explicit and implicit time discretization schemes together with simultaneous
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‘space discretizations’, and we estimate the error of the corresponding approxima-
tions for (1.1).

Theorem 2.6. Assume that A and B satisfy the monotonicity, coercivity, linear
growth and hemicontinuity conditions (i)–(iv). Assume also that (C4) holds. Let
Aτ and Bτ be defined either by (2.15) and (2.16), or by (2.18). Then there exist an
integer m0 and a constant C, such that for m ≥ m0 equation (2.14) has a unique
solution {uτ(ti) : i = 0, 1, ..., m}, and

E max
0≤i≤m

∣

∣uτ (iτ)
∣

∣

2

H
+ E

m
∑

i=1

∣

∣uτ(iτ)
∣

∣

2

V
τ ≤ C . (2.19)

Proof. For the sake of simplicity, we only give the proof in the case Aτ and Bτ are
defined by (2.15) and (2.16). This theorem with estimate

max
0≤i≤m

E
∣

∣uτ (iτ)
∣

∣

2

H
+ E

m
∑

i=1

∣

∣uτ (iτ)
∣

∣

2

V
τ ≤ C (2.20)

in place of (2.19) is proved in [5] for a slightly different implicit scheme. For the
above implicit scheme the same proof can be repeated without essential changes. For
the convenience of the reader we recall from [5] that the existence and uniqueness
of the solution {uτ (ti) : i = 0, 1, 2, ..., m} to (2.14)–(2.16) is based on the following
proposition (Proposition 3.4 from [5]): Let D : V → V ∗ be a mapping such that

(a) D is monotone, i.e., for every x, y ∈ V , 〈D(x) −D(y), x− y〉 ≥ 0;
(b) D is hemicontinuous, i.e., lim

ε→0
〈D(x+ εy), z〉 = 〈D(x), z〉 for every x, y, z ∈ V ;

(c) there exist positive constants K, C1 and C2, such that

|D(x)|V ∗ ≤ K (1 + |x|V ), 〈D(x), x〉 ≥ C1 |x|2V − C2 , ∀x ∈ V.

Then for every y ∈ V ∗, there exists x ∈ V such that D(x) = y and

|x|2V ≤ C1 + 2C2

C1
+

1

C2
1

|y|2V ∗ .

If there exists a positive constant C3 such that

〈D(x1) −D(x2), x1 − x2〉 ≥ C3 |x1 − x2|2V ∗ , ∀x1, x2 ∈ V , (2.21)

then for any y ∈ V ∗, the equation D(x) = y has a unique solution x ∈ V .
Note that for each i = 1, 2, ...m−1 equation (2.14) for x := uτ (ti+1) can be rewritten
as Dx = y with

D := I − τAτ
ti
, y := uτ (ti) +

d1
∑

k=1

Bτ
k,ti

(

uτ (ti)
) (

W k(ti+1) −W k(ti)
)

where I denotes the identity on V . It is easy to verify that due to conditions (i)–(iv)
and (C4) the operator D satisfies the conditions (a), (b) and (c) for sufficiently large
m. Thus a solution {uτ (ti) : i = 0, 1, ..., m} can be obtained by recursion on i for all
m greater than some m0. To show the uniqueness we need only verify (2.21). By
(2.15) and by the monotonicity condition (i) we have

〈D(x1) −D(x2), x1 − x2〉 = |x1 − x2|2H −
∫ ti+1

ti

〈A(s, x1) −A(s, x2), x1 − x2〉 ds
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≥ |x1 − x2|2H −Kτ |x1 − x2|2H = (1 −Kτ)|x1 − x2|2H ,
where the constant K is from (1.2). Hence it is clear that (2.21) holds if m is
sufficiently large.

Now we show (2.20). From the definition of uτ (ti+1) we have

|uτ (tj)|2H = |u0|2H + I(tj) + J (tj) + K(tj) −
j
∑

i=1

|Aτ
ti
(uτ (iτ))|2Hτ (2.22)

for tj = jτ , j = 0, 1, 2, ...m, where

I(tj) := 2

∫ tj

0

〈uτ (κ2(s)), A(s, uτ(κ2(s)))〉 ds,

J (tj) :=
∑

1≤i<j

|
∑

k

Bτ
k,ti

(uτ(iτ))(W k(ti+1) −W k(ti))|2H ,

K(tj) := 2
∑

k

∫ tj

0

(

uτ (κ1(s)), B
τ
k,s(u

τ(κ1(s)))
)

dW k(s),

and κ1, κ2 are piece-wise constant functions defined by (2.17). By Itô’s formula for
every k, l = 1, 2, ..., d1

(W k(ti+1) −W k(ti))(W
l(ti+1) −W l(ti))

= δkl(ti+1 − ti) +Mkl(ti+1) −Mkl(ti),

where δkl = 1 for k = l and 0 otherwise, and

Mkl(t) :=

∫ t

0

(

W k(s) −W k(κ1(s)
)

) dW l(s) +

∫ t

0

(

W l(s) −W l(κ1(s))
)

dW k(s).

Thus we get
J (tj) = J1(tj) + J2(tj),

with
J1(tj) :=

∑

1≤i<j

∑

k

|Bτ
k,ti

(uτ(ti))|2Hτ

J2(tj) :=

∫ tj

0

∑

k,l

(Bτ
k,s(u

τ(κ1(s))), B
τ
l,s(u

τ (κ1(s)))) dM
kl(s).

By the Davis inequality we have

Emax
j≤m

|J2(tj)| =

≤ 3
∑

k,l

E

{
∫ T

0

|Bτ
k,s(u

τ (κ1(s)))|2H |Bτ
l,s(u

τ(κ1(s)))|2H d〈Mkl〉(s)
}1/2

≤ C1

∑

k,l

E

{
∫ T

0

|Bτ
k,s(u

τ(κ1(s)))|4H|W l(s) −W l(κ1(s))
∣

∣

2
ds

}1/2

≤ C1

∑

k,l

E
[

max
j

∣

∣Bτ
k,tj

(uτ (tj))
∣

∣

H

√
τ

×
{1

τ

∫ T

0

|Bτ
k,s(u

τ(κ1(s)))|2H
∣

∣W l(s) −W l(κ1(s))
∣

∣

2
ds
}1/2]
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≤ d1C1

∑

k

τEmax
j

∣

∣Bτ
k,tj

(uτ(tj))
∣

∣

2

H

+ C1τ
−1
∑

k,l

E

∫ T

0

|Bτ
k,s(u

τ (κ1(s)))|2H
∣

∣W l(s) −W l(κ1(s))
∣

∣

2
ds

≤ C2

(

1 + E
∑

j≤1

|uτ (jτ)|2V τ
)

,

where C1 and C2 are constants, independent of τ . Here we use that by Jensen’s
inequality for every k

∑

1≤i<j

|Bτ
k,ti

(uτ (iτ))|2Hτ ≤
∫ tj

0

|Bk(s, u
τ(κ2(s))|2H ds,

and that the coercivity condition (ii) and the growth condition on (iii) imply the
growth condition (2.6) on B with some constant L1 and random variable K1 satis-
fying EK1 <∞. Hence by taking into account the coercivity condition we obtain

E max
j≤m

[

I(tj) + J (tj)
]

≤ Emax
j≤m

∫ tj

0

[

2
〈

uτ (κ2(s)) , A(s, uτ(κ2(s)))
〉

+
∑

k

|Bk(s, u
τ(κ2(s))|2H

]

ds

+ E max
j≤m

|J2(tj)|

≤ C
(

1 + max
j≤m

E|uτ (jτ)|2H + E

m
∑

j=1

|uτ (jτ)|2V τ
)

(2.23)

with a constant C independent of τ . By using the Davis inequality again we obtain

E max
j≤m

∣

∣K(tj)
∣

∣ ≤ 6 E

{

∫ T

0

∑

k

∣

∣

(

uτ (κ1(s)), B
τ
k,s

(

uτ (κ1(s))
)
∣

∣

2
ds

}1/2

≤ 6 E



max
j≤m

∣

∣uτ(jτ)
∣

∣

H

{

∫ T

0

∑

k

|Bτ
k,s(u

τ (κ1(s)))|2H ds
}1/2





≤ 1
2
Emax

j≤m
|uτ (jτ)|2H + 18 E

∫ T

0

∑

k

∣

∣Bτ
k,s(u

τ (κ1(s)))
∣

∣

2

H
ds

≤ 1
2
E max

j≤m
|uτ(jτ)|2H + C

(

1 + E
∑

j≤m

|uτ(jτ)|2V τ
)

(2.24)

with a constant C independent of τ . From (2.20)–(2.24) we get

E max
j≤m

|uτ(jτ)|2H ≤ E|u0|2 + E max
j≤m

(

I(tj) + J (tj)
)

+ E max
j≤m

|K(tj)|

≤ 1
2
E max

j≤m
|uτ(jτ)|2H + C (1 + max

j≤m
E|uτ(jτ)|2H + E

∑

j≤m

|uτ(jτ)|2V τ)

≤ 1
2
E max

j≤m
|uτ (jτ)|2H + C (1 + L) <∞
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by virtue of (2.20), which proves the estimate (2.19). �

3. Convergence results

In order to obtain a speed of convergence, we require further properties from
B(t, v) and from the solution u of (1.1).

We assume that there exists a constant ν ∈]0, 1/2] such that:
(T1) The coefficient B satisfies the following time-regularity: There exists a con-

stant C and a random variable η ≥ 0 with finite first moment, such that almost
surely

d1
∑

k=1

|Bk(t, v) − Bk(s, v)|2H ≤ |t− s|2ν(η + C|v|2V ) (3.1)

for all s ∈ [0, T ] and v ∈ V .

(T2) The solution u to equation (1.1) satisfies the following regularity property:
almost surely u(t) ∈ V for all t ∈ [0, T ], and there exists a constant C > 0 such that

E|u(t) − u(s)|2V ≤ C |t− s|2ν (3.2)

for all s, t ∈ [0, T ].

Remark 3.1. Clearly, (3.2) implies

sup
t∈[0,T ]

E|u(t)|2V <∞. (3.3)

Finally, in order to prove a convergence result in the H norm uniformly in time,
we also have to require the following uniform estimate on the V -norm of u:

(T3) There exists a random variable ξ such that Eξ2 <∞ and

sup
t≤T

|u(t)|V ≤ ξ (a.s.).

In order to establish the rate of convergence of the approximations we first suppose
that the coefficients A and B satisfy the Lipschitz property.

Theorem 3.2. Suppose that the conditions (C1)-(C4), (T1) and (T2) hold. Let
Aτ and Bτ be defined by (2.15) and (2.16). Then there exist a constant C and an
integer m0 ≥ 1 such that

sup
0≤l≤m

E|u(lτ) − uτ (lτ)|2H + E

m
∑

j=0

|u(jτ) − uτ (jτ)|2V τ ≤ C τ 2ν (3.4)

for all integers m ≥ m0.

The following proposition plays a key role in the proof.

Proposition 3.3. Assume assumptions (i) through (iv) from the Introduction and
let Aτ and Bτ be defined by (2.15) and (2.16). Suppose, moreover condition (C4).
Then

|u(tl) − uτ (tl)|2H = 2

∫ tl

0

〈

u(κ2(s)) − uτ(κ2(s)), A(s, u(s))− A(s, uτ(κ2(s)))
〉

ds
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+
l−1
∑

i=0

∣

∣

∣

∣

∣

∫ ti+1

ti

d1
∑

k=1

[

Bk(s, u(s)) − Bτ
k,s(u

τ (ti))
]

dW k(s)

∣

∣

∣

∣

∣

2

H

+ 2

d1
∑

k=1

∫ tl

0

(

Bk(s, u(s)) − Bτ
k,s(u

τ(ti)) , u(κ1(s)) − uτ(κ1(s))
)

dW k(s)

−
l−1
∑

i=0

∣

∣

∣

∣

∫ ti+1

ti

[

A(s, u(s)) −A(s, uτ (ti+1))
]

ds

∣

∣

∣

∣

2

H

(3.5)

holds for every l = 1, 2, ..., m.

Proof. Using (2.14) we have for any i = 0, · · · , m− 1

|u(ti+1) − uτ (ti+1)|2H − |u(ti) − uτ (ti)|2H =

2

∫ ti+1

ti

〈

u(ti+1) − uτ(ti+1), A(s, u(s)) −A(s, uτ (ti+1))
〉

ds

+ 2

d1
∑

k=1

(
∫ ti+1

ti

[

Bk(s, u(s)) − Bτ
k,s(u

τ(ti))
]

dW k(s) , u(ti+1) − uτ (ti+1)

)

−
∣

∣

∣

∫ ti+1

ti

[

A(s, u(s)) − A(s, uτ(ti+1))
]

ds

+

d1
∑

k=1

∫ ti+1

ti

[

Bk(s, u(s)) − Bτ
k,s(u

τ (ti))
]

dW k(s)
∣

∣

∣

2

H

=2

∫ ti+1

ti

〈

u(ti+1) − uτ (ti+1), A(s, u(s)) − A(s, uτ(ti+1))
〉

ds

+

∣

∣

∣

∣

∣

d1
∑

k=1

∫ ti+1

ti

[

Bk(s, u(s)) − Bτ
k,s(u

τ(ti))
]

dW k(s)

∣

∣

∣

∣

∣

2

H

+ 2

d1
∑

k=1

(
∫ ti+1

ti

[

Bk(s, u(s)) − Bτ
k,s(u

τ(ti))
]

dW k(s) , u(ti) − uτ (ti)

)

−
∣

∣

∣

∣

∫ ti+1

ti

[

A(s, u(s)) −A(s, uτ (ti+1))
]

ds

∣

∣

∣

∣

2

H

Summing up for i = 1, · · · , l − 1, we obtain (3.5). �

Proof of Theorem 3.2.
Taking expectations in both sided of (3.5) and using the strong monotonicity con-
dition (C1), we deduce that for l = 1, · · · , m,

E|u(tl) − uτ(tl)|2H

≤ E

∫ tl

0

2
〈

u(κ2(s)) − uτ (κ2(s)), A(s, u(κ2(s))) −A(s, uτ (κ2(s)))
〉

ds
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+

d1
∑

k=1

E

∫ tl−1

0

|Bk(s, u(κ2(s))) − Bk(s, u
τ(κ2(s)))|2H ds+

3
∑

k=1

Rk

≤ −λE
∫ tl

0

|u(κ2(s)) − uτ (κ2(s))|2V ds+ LτE|u(tl) − uτ (tl)|2H

+ Lτ

l−1
∑

i=1

E|u(ti) − uτ(ti)|2H ds+

3
∑

k=1

Rk , (3.6)

where

R1 =E

∫ tl

0

2
〈

u(κ2(s)) − uτ (κ2(s)), A(s, u(s)) −A(s, u(κ2(s)))
〉

ds ,

R2 =

d1
∑

k=1

E

∫ τ

0

|Bk(s, u(s))|2H ds ,

R3 =

d1
∑

k=1

l−1
∑

i=1

E
[

∫ ti+1

ti

ds
∣

∣

∣
Bk(s, u(s)) −

1

τ

∫ ti

ti−1

Bk(t, u
τ(ti)) dt

∣

∣

∣

2

H

−
∫ ti

ti−1

|Bk(t, u(ti)) − Bk(t, u
τ (ti))|2H dt

]

.

The Lipschitz property of A imposed in (2.3), (3.2) and Schwarz’s inequality imply

|R1| ≤ L2 E

∫ tl

0

|u(κ2(s)) − uτ(κ2(s))|V |u(s) − u(κ2(s))|V ds ,

≤ L2

(

E

∫ tl

0

|u(κ2(s)) − uτ (κ2(s))|2V ds
)

1

2
(

E

∫ tl

0

|u(s) − u(κ2(s))|2V ds
)

1

2

≤ λ

3
E

∫ tl

0

|u(κ2(s)) − uτ (κ2(s))|2V ds+ Cτ 2ν . (3.7)

A similar computation based on (2.2) yields

|R3| ≤
d1
∑

k=1

l−1
∑

i=1

E

∫ ti

ti−1

dt
1

τ

∫ ti+1

ti

ds
(

|Bk(s, u(s)) − Bk(t, u
τ(ti))|2H

− |Bk(t, u(ti))) −Bk(t, u
τ (ti)))|2H

)

≤ λ

3
E

∫ tl−1

0

|u(κ2(t)) − uτ (κ2(t))|2V dt+ C R′
3

where

R′
3 =

d1
∑

k=1

E
1

τ

∫ tl

t1

ds

∫ κ1(s)

κ1(s)−τ

dt |Bk(s, u(s)) − Bk(t, u(κ2(t)))|2H .

Hence, using (2.2), (3.1) and (3.2) we have

R′
3 ≤

d1
∑

k=1

E
1

τ

∫ tl

t1

ds

∫ κ1(s)

κ1(s)−τ

dt
[

|Bk(s, u(s)) − Bk(t, u(s))|2H
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+ |Bk(t, u(s)) − Bk(t, u(t))|2H + |Bk(t, u(t)) − Bk(t, u(κ2(t)))|2H
]

≤ E

∫ tl

t1

τ 2ν |u(s)|2V ds+ CE
1

τ

∫ tl−1

0

dt

∫ κ2(t)+τ

κ2(t)

ds
[

|u(s) − u(t)|2V

+ |u(t) − u(κ2(t)|2V
]

≤ C τ 2ν .

Hence

|R3| ≤ C τ 2ν +
λ

3
E

∫ tl

0

|u(κ2(s)) − uτ (κ2(s))|2V ds . (3.8)

Furthermore (2.6) and (3.3) imply

|R2| ≤ Cτ (3.9)

with a constant C independent of τ . By inequalities (3.6)–(3.9), for sufficiently large
m,

E|u(tl) − uτ (tl)|2H +
λ

3
E

∫ tl

0

|u(κ2(s)) − uτ (κ2(s))|2V ds

≤
l−1
∑

i=1

L τ E|u(ti) − uτ (ti)|2H + Cτ 2ν . (3.10)

Since supm

∑m
i=1L τ < +∞, a discrete version of Gronwall’s lemma yields that there

exists C > 0 such that for m large enough

sup
0≤l≤m

E|u(tl) − uτ (tl)|2H ≤ Cτ 2ν .

This in turn with (3.2) implies

E

∫ T

0

|u(s) − uτ (κ2(s))|2V ds ≤ Cτ 2ν ,

which completes the proof of the theorem. 2

Assume now that the solution u of equation (1.1) satisfies also the condition (T3)
Then we can improve the estimate (3.4) in the previous theorem.

Theorem 3.4. Let (C1)-(C4) and (T1)–(T3) hold, and let Aτ and Bτ be defined
by (2.15) and (2.16). Then for all sufficiently large m

E max
0≤j≤m

|u(jτ) − uτ(jτ)|2H + E
m
∑

j=0

|u(jτ) − uτ (jτ)|2V τ ≤ C τ 2ν (3.11)

holds, where C is a constant independent of τ .

Proof. For k = 1, · · · , d1, set

Fk(t) = Bk(t, u(t)) − Bτ
k,t(u

τ (κ1(t)))

m(t) =

d1
∑

k=1

∫ t

0

Fk(s) dW
k(s) and G(s) = m(s) −m(κ1(s))
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Then by Itô’s formula

|m(ti+1) −m(ti)|2H = 2

∫ ti+1

ti

∑

k

(G(s) , Fk(s)) dW
k(s)

+

d1
∑

k=1

∫ ti+1

ti

|Fk(s)|2H ds

for i = 0, ..., m− 1. Hence by using (3.5) we deduce that for l = 1, · · · , m
|u(tl) − uτ (tl)|2H ≤ I1(tl) + I2(tl) + 2M1(tl) + 2M2(tl) (3.12)

with

I1(t) := 2

∫ t

0

〈u(κ2(s)) − uτ(κ2(s)) , A(s, u(s)) −A(s, uτ (κ2(s)))〉 ds,

I2(t) :=

d1
∑

k=1

∫ t

0

|Bk(s, u(s)) − Bτ
k,s(u

τ(κ1(s)))|2H ds,

M1(t) :=

d1
∑

k=1

∫ t

0

(

G(s) , Fk(s)
)

dW k(s),

M2(t) :=

d1
∑

k=1

∫ t

0

(

Fk(s) , u(κ1(s)) − uτ (κ1(s))
)

dW k(s).

By (C3)

sup
0≤l≤m

|I1(tl)| ≤
∫ T

0

|u(κ2(s)) − uτ(κ2(s))|2V ds+ L2

∫ T

0

|u(s) − uτ (κ2(s))|2V ds

≤ (1 + 2L2)
m
∑

i=1

|u(ti) − uτ (ti)|2V τ + 2L2

∫ T

0

|u(s) − u(κ2(s))|2V ds.

Hence by Theorem 3.2 and by condition (T2)

E sup
0≤l≤m

|I1(tl)| ≤ Cτ 2ν , (3.13)

where C is a constant independent of τ .
Using Jensen’s inequality, (2.6) and condition (T1) we have for s ≤ τ

∑

k

|Fk(s)|2H =
∑

k

|Bk(s, u(s))|2H ≤ 2L1 |u(s)|2H + 2K1, (3.14)

while for s ∈ [ti, ti+1], 1 ≤ i ≤ m, one has for some constant C independent of τ

∑

k

|Fk(s)|2H ≤ 1

τ

∑

k

∫ ti

ti−1

|Bk(s, u(s)) −Bk(r, u
τ (ti))|2H dr

≤ 3
1

τ

∑

k

∫ ti

ti−1

[

|Bk(s, u(s)) −Bk(r, u(s))|2H

+ |Bk(r, u(s)) −Bk(r, u(ti))|2H + |Bk(r, u(ti)) − Bk(u
τ (ti))|2H

]

dr

≤ C
[

τ 2ν
(

η + |u(s)|2V
)

+ |u(s) − u(ti)|2V + |u(ti) − uτ (ti)|2V
]

. (3.15)
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Thus, (3.14) and (3.15) yield

sup
0≤l≤m

|I2(tl)| ≤ C

∫ τ

0

|u(s)|2V ds+ Cτ + C τ 2ν

∫ T

0

(

η + C |u(s)|2V
)

ds

+ C

∫ T

0

|u(s) − u(κ2(s))|2V ds+ C
m
∑

i=1

|u(ti) − uτ (ti)|2V τ.

Hence by Theorem 3.2 and by condition (T2)

E sup
0≤l≤m

|I2(tl)| ≤ Cτ 2ν , (3.16)

where C is a constant independent of τ . Since sup0≤s≤T

∑

k |Fk(s)|2H need not be
measurable, we denote by Γ the set of random variables ζ satisfying

sup
0≤s≤T

∑

k

|Fk(s)|2H ≤ ζ (a.s.).

For ζ ∈ Γ, the Davis inequality, and the simple inequality ab ≤ τ
2
a2 + 1

2τ
b2 yield

E sup
1≤l≤m

|M1(tl)| ≤ 3E

(

∫ T

0

d1
∑

k=1

|
(

Fk(s) , G(s)
)

|2 ds
)

1

2

≤ 3E

(

ζ1/2

[
∫ T

0

|G(s)|2H ds
]

1

2

)

≤ 3

2
τ inf

ζ∈Γ
Eζ +

3

2τ
E

∫ T

0

|G(s)|2H ds. (3.17)

By (2.6) and (3.15) we deduce

sup
0≤s≤T

∑

k

|Fk(s)|2H ≤ C τ 2ν
(

sup
0≤s≤T

|u(s)|2V + η + 1
)

+ C max
1≤i≤m

|u(ti) − uτ (ti)|2V

≤ C
(

1 + ξ + max
1≤i≤m

|u(ti) − uτ (ti)|2V
)

,

where ξ is the random variable from condition (T3) and C is a constant, independent
of τ . Hence Theorem 3.2 yield

τ inf
ζ∈Γ

Eζ ≤ τ C (Eη + Eξ) + C τ
m
∑

i=1

E|u(ti) − uτ(ti)|2V ≤ C1 τ
2ν , (3.18)

where C1 is a constant, independent of τ . Similarly, due to conditions (T1)-(T2)
and Theorem 3.2

E
∑

k

∫ T

0

|Fk(s)|2H ds ≤ C τ 2ν
(

1 + E

∫ T

0

|u(s)|2V ds
)

+ C τ 2ν + C τ E

m
∑

i=1

|u(ti) − uτ (ti)|2V ≤ C τ 2ν (3.19)



16 I. GYÖNGY AND A. MILLET

with a constant C, independent of τ . Furthermore, the isometry of stochastic inte-
grals and (3.22) yield

1

τ
E

∫ T

0

|G(t)|2H dt ≤
1

τ
E

∫ T

0

∣

∣

∣

∣

∣

∫ t

κ1(t)

∑

k

Fk(s) dW
k(s)

∣

∣

∣

∣

∣

2

H

dt

≤ 1

τ
E

∫ T

0

dt

∫ t

κ1(t)

∑

k

|Fk(s)|2H ds ≤ C τ 2ν . (3.20)

Thus from (3.17) by (3.18) and (3.20) we have

E sup
1≤l≤m

|M1(tl)| ≤ Cτ 2ν (3.21)

Finally, the Davis inequality implies

E sup
1≤l≤m

|M2(tl)|H ≤ 3E

(

∫ T

0

∑

k

|
(

Fk(s) , u(κ1(s)) − uτ (κ1(s))
)

|2 ds
)

1

2

≤ 1

4
E sup

1≤l≤m
|u(κ1(s)) − uτ(κ1(s))

)

|2H + 18E

∫ tj

0

|Fk(s)|2H ds. (3.22)

Thus, from (3.12) by inequalities (3.13), (3.16), (3.21) and (3.22) we obtain

1

2
E sup

1≤l≤m
|u(tl) − uτ (tl)|2H ≤ C τ 2ν ,

with a constant C, independent of τ , which with (3.4) completes the proof of the
theorem. �

We now prove that if the coefficient A does not satisfy the Lipschitz property
(C3) but only the coercivity and growth conditions (2.7)-(2.9), then the order of
convergence is divided by two.

Theorem 3.5. Let A and B satisfy the conditions (C1), (C2) and (C4). Suppose
that conditions (T1) and (T2) hold, and let Aτ and Bτ be defined by (2.15) and
(2.16). Then there exists a constant C, independent of τ , such that for all sufficiently
large m

sup
0≤j≤m

E|u(jτ) − uτ(jτ)|2H + E

m
∑

j=1

|u(jτ) − uτ (jτ)|2V τ ≤ C τ ν . (3.23)

Proof. Using (3.5), taking expectations and using (C1) with u(s) and uτ (κ2(s)), we
obtain for every l = 1 · · · , m

E|u(tl) − uτ(tl)|2H ≤ −λE
∫ tl

0

|u(s) − uτ (κ2(s)|2V ds

+ E

∫ tl

0

K1 |u(s) − uτ (κ2(s)|2H ds+
3
∑

k=1

R̄i , (3.24)

where

R̄1 =

r
∑

j=1

2E

∫ tl

0

〈

u(κ2(s)) − u(s) , A(s, u(s)) −A(s, uτ (κ2(s)))
〉

ds ,
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R̄2 =

d1
∑

k=1

E

∫ τ

0

|Bk(s, u(s))|2H ds ,

R̄3 =

d1
∑

k=1

l−1
∑

i=1

E
1

τ

∫ ti+1

ti

ds

∫ ti

ti−1

dt
[

|Bk(s, u(s)) −Bk(t, u
τ (ti)))|2H

− |Bk(t, u(t)) − Bk(t, u
τ(ti))|2H

]

.

Using (2.7), (3.2), (3.3) and Schwarz’s inequality, we deduce

|R̄1| ≤ C E

∫ tl

0

|u(κ2(s)) − u(s)|V
[

|u(s)|V + |uτ(κ2(s))|V +K2

]

ds

≤ C

(

E

∫ tl

0

|u(s) − u(κ2(s))|2V ds
)

1

2
(

E

∫ tl

0

(

|u(s)|2V + |u(κ2(s))|2V
)

ds

)

1

2

+ C

(

E

∫ tl

0

|u(s) − u(κ2(s))|2V ds
)

1

2

≤ Cτ ν . (3.25)

Furthermore, Schwarz’s inequality, (C2) and computations similar to that proving
(3.8) yield for any δ > 0 small enough

|R̄3| ≤ δ

d1
∑

k=1

E

∫ tl−1

0

|Bk(t, u(t)) − Bk(t, u
τ (κ2(t)))|2H dt

+ C

d1
∑

k=1

l−1
∑

i=1

1

τ
E

∫ ti+1

ti

ds

∫ ti

ti−1

dt |Bk(s, u(s))) −Bk(t, u(t))|2H

≤ λ

2
E

∫ tl−1

0

|u(s) − uτ(κ2(s))|2V ds+ Cτ 2ν .

This inequality and (3.25) imply that

E|u(tl) − uτ(tl)|2H +
λ

2
E

∫ tl

0

|u(s) − uτ (κ2(s))|2V ds

≤ K1

∫ tl

0

E|u(s) − uτ (κ2(s))|2H ds+ C τ ν .

Hence for any t ∈ [0, T ],

E|u(t) − uτ(κ2(t)|2H ≤ 2E|u(κ2(t)) − uτ(κ2(t))|2H + 2E|u(t) − u(κ2(t))|2H

≤ 2K1

∫ κ2(t)

0

E|u(s) − uτ (κ2(s))|2Hds+ C τ ν + 2E|u(t) − u(κ2(t))|2H

≤ 2K1

∫ t

0

E|u(s) − uτ (κ2(s))|2H ds+ C τ ν + 2E|u(t) − u(κ2(t))|2H

+ C τ
[

sup
s
E
(

|u(s)|2H + uτ(κ2(s))|2H
)

]

.
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Itô’s formula and (2.9) imply that for any t ∈ [0, T ],

E|u(t) − u(κ2(t))|2H = E

∫ κ2(t)

t

[

2〈A(s, u(s)) , u(s)〉 +

d1
∑

k=1

|Bk(s, u(s))|2H
]

ds

≤ K1E

∫ κ2(t)

t

|u(s)|2H ds ≤ K1 τ sup
0≤s≤T

E|u(s)|2H.

Hence (2.13) and (2.19) imply that

E|u(t) − uτ(κ2(t))|2H ≤ 2K1

∫ t

0

E|u(s) − uτ (κ2(s))|2H ds+ C τ ν

and Gronwall’s lemma yields

sup
0≤t≤T

E|u(t) − uτ (κ2(t))|2H ≤ Cτ ν . (3.26)

Therefore,

E

∫ T

0

|u(t) − uτ (κ2(t)|2V dt < Cτ ν (3.27)

follows by (3.24). Finally taking into account that by (T2) there exists a constant
C such that

E|u(t) − u(κ2(t)|2V ≤ Cτ 2ν for all t ∈ [0, T ],

from (3.26) and (3.27) we obtain (3.23). �

Using the above result one can easily obtain the following theorem in the same
way as Theorem 3.2 is obtained from Theorem 3.4.

Theorem 3.6. Let A and B satisfy the conditions (C1), (C2) and (C4). Suppose
that conditions (T1)–(T3) hold and let Aτ and Bτ be defined by (2.15) and (2.16).
Then there exists a constant C such that for m large enough,

E max
0≤j≤m

|u(jτ) − uτ (jτ)|2H + E

m
∑

j=0

|u(jτ) − uτ (jτ)|2V τ ≤ C τ ν . (3.28)

Remark 3.7. By analyzing their proof, it is not difficult to see that Theorems 3.2,
3.4, 3.5 and 3.6 remain true, if instead of (2.15) and (2.16), one uses (2.18) in
the definition of the implicit scheme, and requires furthermore that A satisfies the
following time-regularity similar to (T1): there exist a constant C ≥ 0 and a random
variable η ≥ 0 with finite expectation, such that almost surely

|A(t, u) −A(s, u)|2V ∗ ≤ |t− s|2ν
(

η + C‖u‖2
V

)

for 0 ≤ s ≤ t ≤ T and u ∈ V .

4. Examples

4.1. Quasilinear stochastic PDEs. Let us consider the stochastic partial differ-
ential equation

du(t, x) =
(

Lu(t) + F (t, x,∇u(t, x), u(t, x)
)

dt

+

d1
∑

k=1

(

Mku(t, x) +Gk(t, x, u(t, x))
)

dW k(t), (4.1)
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for t ∈ (0, T ], x ∈ R
d with initial condition

u(0, x) = u0(x), x ∈ R
d, (4.2)

where W is a d1-dimensional Wiener martingale with respect to the filtration (Ft)t≥0,
F and Gk are Borel functions of (ω, t, x, p, r) ∈ Ω × [0,∞) × R

d × R
d × R and of

(ω, t, x, r) ∈ Ω× [0,∞)× R
d × R, respectively, and L, Mk are differential operators

of the form

L(t)v(x) =
∑

|α|≤1,|β|≤1

Dα(aαβ(t, x)Dβv(x)), Mk(t)v(x) =
∑

|α|≤1

bαk (t, x)Dαv(x),

(4.3)
with functions aαβ and bαk of (ω, t, x) ∈ Ω × [0,∞) × R

d, for all multi-indices α =
(α1, ..., αd), β = (β1, ..., βd) of length |α| =

∑

i αi ≤ 1, |β| ≤ 1.
Here, and later on Dα denotes Dα1

1 ...Dαd

d for any multi-indices α = (α1, ..., αd) ∈
{0, 1, 2, ...}d, where Di = ∂

∂xi
and D0

i is the identity operator.

We use the notation ∇p := (∂/∂p1, ..., ∂/∂pd). For r ≥ 0 let W r
2 (Rd) denote the

space of Borel functions ϕ : R
d → R whose derivatives up to order r are square

integrable functions. The norm |ϕ|r of ϕ in W r
2 is defined by

|ϕ|2r =
∑

|γ|≤r

∫

Rd

|Dγϕ(x)|2 dx.

In particular, W 2
0 (Rd) = L2(R

d) and |ϕ|0 := |ϕ|L2(Rd). Let us use the notation P for

the σ-algebra of predictable subsets of Ω× [0,∞), and B(Rd) for the Borel σ-algebra
on R

d.
We fix an integer l ≥ 0 and assume that the following conditions hold.

Assumption (A1) (Stochastic parabolicity). There exists a constant λ > 0 such
that

∑

|α|=1,|β|=1

(

aαβ(t, x) − 1
2

d1
∑

k=1

bαk b
β
k(t, x)

)

zα zβ ≥ λ
∑

|α|=1

|zα|2 (4.4)

for all ω ∈ Ω, t ∈ [0, T ], x ∈ R
d and z = (z1, ..., zd) ∈ R

d, where zα := zα1

1 zα2

2 ...zαd

d

for z ∈ R
d and multi-indices α = (α1, α2, ..., αd).

Assumption (A2) (Smoothness of the linear term). The derivatives of aαβ and bαk
up to order l are P ⊗ B(Rd) -measurable real functions such that for a constant K

|Dγaαβ(t, x)| ≤ K, |Dγbαk (t, x)| ≤ K, for all |α| ≤ 1, |β| ≤ 1, k = 1, · · · , d1,
(4.5)

for all ω ∈ Ω, t ∈ [0, T ], x ∈ R
d and multi-indices γ with |γ| ≤ l.

Assumption (A3) (Smoothness of the initial condition). Let u0 be a W l
2-valued

F0-measurable random variable such that

E|u0|2l <∞. (4.6)

Assumption (A4) (Smoothness of the nonlinear term). The function F and their
first order partial derivatives in p and r are P ⊗B(Rd)⊗B(Rd)⊗B(R)-measurable
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functions, and gk and its first order derivatives in r are P⊗B(Rd)⊗B(R) -measurable
functions for every k = 1, .., d1. There exists a constant K such that

|∇pF (t, x, p, r)| + | ∂
∂r
F (t, x, p, r)|+

d1
∑

k=1

| ∂
∂r
Gk(r, x)| ≤ K (4.7)

for all ω ∈ Ω, t ∈ [0, T ], x ∈ R
d, p ∈ R

d and r ∈ R. There exists a random variable
ξ with finite first moment, such that

|F (t, ·, 0, 0)|20 +

d1
∑

k=1

|Gk(t, ·, 0)|20 ≤ ξ (4.8)

for all ω ∈ Ω and t ∈ [0, T ].

Definition 4.1. An L2(R
d)-valued continuous Ft-adapted process u = {u(t) : t ∈

[0, T ]} is called a generalized solution to the Cauchy problem (4.1)-(4.2) on [0, T ] if
almost surely u(t) ∈W 1

2 (Rd) for almost every t,
∫ T

0

|u(t)|21 dt <∞,

and

d(u(t), ϕ) =
{

∑

|α|≤1,|β|≤1

(−1)|α|
(

aαβ Dβu(t) , Dαϕ
)

+
(

F (t,∇u(t), u(t)) , ϕ
)

}

dt

+

d1
∑

k=1

{

∑

|α|≤1

(

bαkD
αu(t) , ϕ

)

+
(

Gk(t, u(t)) , ϕ
)

}

dW k(t)

holds on [0, T ] for every ϕ ∈ C∞
0 (Rd), where (v, ϕ) denotes the inner product of v

and ϕ in L2(R
d).

Set H = L2(R
d), V = W 1

2 (Rd) and consider the normal triplet V →֒ H →֒ V ∗

based on the inner product in L2(R
d), which determines the duality 〈 , 〉 between

V and V ∗ = W−1
2 (Rd). By (4.5), (4.7) and (4.8) there exist a constant C and a

random variable ξ with finite first moment, such that

∣

∣

∣

∑

|α|≤1,|β|≤1

(−1)|α|
(

aαβ(t)Dβv , Dαϕ
)

∣

∣

∣
≤ C|v|1|ϕ|1,

d1
∑

k=1

|(bαk (t)Dαv , ϕ
)

|2 ≤ C|v|20|ϕ|20,

|
(

F (t,∇v, v) , ϕ
)

|2 ≤ C|v|21|ϕ|21 + ξ,

d1
∑

k=1

|(Gk(t, u(t)) , ϕ
)

|2 ≤ C|v|21|ϕ|20 + ξ

for all ω, t ∈ [0, T ] and v, ϕ ∈ V . Therefore the operators A(t), Bk(t) defined by

〈A(t, v), ϕ〉 =
∑

|α|≤1,|β|≤1

(−1)|α|
(

aαβ(t)Dβv , Dαϕ
)

+
(

F (t,∇v, v) , ϕ
)

,

(Bk(t, v) , ϕ) =
(

bαk (t)Dαv , ϕ
)

+
(

Gk(t, v) , ϕ
)

, v, ϕ ∈ V (4.9)

are mappings from V into V ∗ and H , respectively, for each k and ω, t, such that
the growth conditions (2.6) and (2.7) hold. Thus we can cast the Cauchy problem
(4.1)– (4.2) into the evolution equation (1.1), and it is an easy exercise to show that
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Assumptions (A1), (A2) with l = 0 and Assumption (A4) ensure that conditions
(C1) and (C2) hold. Hence Corollary 2.5 gives the following result.

Theorem 4.2. Let Assumptions (A1)-(A4) hold with l = 0. Then problem (4.1)-
(4.2) admits a unique generalized solution u on [0, T ]. Moreover,

E
(

sup
t∈[0,T ]

|u(t)|20
)

+ E

∫ T

0

|u(t)|21 dt <∞. (4.10)

Next we formulate a result on the regularity of the generalized solution. We need
the following assumptions.

Assumption (A5) The first order derivatives of Gk in x are P ⊗ B(Rd) ⊗ B(R) -
measurable functions, and there exist a constant L, a P⊗B(R) -measurable function
K of (ω, t, x) and a random variable ξ with finite first moment, such that

d1
∑

k=1

|DαGk(t, x, r)| ≤ L|r| +K(t, x), |K(t)|20 ≤ ξ

for all multi-indices α with |α| = 1, for all ω ∈ Ω, t ∈ [0, T ], x ∈ R
d and r ∈ R.

Assumption (A6) The first order derivatives of F in x are P ⊗B(Rd)⊗B(Rd)⊗
B(R)-measurable functions, and there exist a constant L, a P ⊗ B(R) -measurable
function K of (ω, t, x) and a random variable ξ with finite first moment, such that

|∇xF (t, x, p, r)| ≤ L(|p| + |r|) +K(t, x), |K(t)|20 ≤ ξ

for all ω, t, x, p, r.

Assumption (A7) There exist P ⊗ B(R) -measurable functions gk such that

Gk(t, x, r) = gk(t, x) for all k = 1, 2, ..., d1, t, x, r,

and the derivatives in x of gk up to order l are P⊗B(R) -measurable functions such
that

d1
∑

k=1

|gk(t)|2l ≤ ξ,

for all (ω, t), where ξ is a random variable with finite first moment.

Theorem 4.3. Let Assume (A1)-(A4) with l = 1. Then for the generalized solution
u of (4.1)-(4.2) the following statements hold:

(i) Suppose (A5). Then u is a W 1
2 (Rd)-valued continuous process and

E
(

sup
t≤T

|u(t)|21
)

+ E

∫ T

0

|u(t)|22 dt <∞ ; (4.11)

(ii) Suppose (A6) and (A7) with l = 2. Then u is a W 2
2 (Rd)-valued continuous

process and

E
(

sup
t≤T

|u(t)|22
)

+ E

∫ T

0

|u(t)|23 dt <∞ . (4.12)

Proof. Define

ψ(t, x) = F (t, x,∇u(t, x), u(t, x)), φk(t, x) = Gk(t, x, u(t, x))
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for t ∈ [0, T ], ω ∈ Ω and x ∈ R
d, where u is the generalized solution of (4.1)-(4.2).

Then due to (4.10)

E

∫ T

0

|ψ(t)|20 dt <∞, E
∑

k

∫ T

0

|φk(t)|21 dt <∞.

Therefore, the Cauchy problem

dv(t, x) = (Lv(t, x) + ψ(t, x)) dt

+

d1
∑

k=1

(Mkv(t, x) + φk(t, x)) dW
k(t), t ∈ (0, T ], x ∈ R

d , (4.13)

v(0, x) = u0(x), x ∈ R
d (4.14)

has a unique generalized solution v on [0, T ]. Moreover, by Theorem 1.1 from [6], v
is a W 1

2 -valued continuous Ft-adapted process and

E
(

sup
t≤T

|v(t)|21
)

+ E

∫ T

0

|v(t)|22 dt <∞.

Since u is a generalized solution to (4.13)–(4.14), by virtue of the uniqueness of the
generalized solution we have u = v, which proves (i). Assume now (A6) and (A7).
Then obviously (A5) holds, and therefore due to (4.11)

E

∫ T

0

|ψ(t)|21 dt <∞, E
∑

k

∫ T

0

|φk(t)|22 dt <∞.

Thus by Theorem 1.1 of [6] the generalized solution v = u of (4.13)–(4.14) is a
W 2

2 (Rd)-valued continuous process such that (4.12) holds. The proof of the theorem
is complete. �

Corollary 4.4. Let (A1)-(A4) hold with l = 2. Assume also (A6) and (A7). Then
there exists a constant C such that for the generalized solution u of (4.1)–(4.2) we
have

E|u(t) − u(s)|21 ≤ C|t− s| for all s, t ∈ [0, T ].

Proof. By the theorem on Itô’s formula from [7] (or see [2]) from almost surely

u(t) = u0 +

∫ t

0

(Lu(s) + ψ(s)) ds+

d1
∑

k=1

∫ t

0

(Mku(s) + gk(s) dW
k(s)

holds, as an equality in L2(R
d), for all t ∈ [0, T ], where

ψ(s, ·) := F (s, ·∇u(s, ·), u(s, ·)).
Due to (ii) from Theorem 4.3

E
∣

∣

∣

∫ t

s

(

Lu(r) + ψ(r)
)

dr
∣

∣

∣

2

1
≤ E

(

∫ t

s

|Lu(r) + ψ(r)|1 dr
)2

≤ |t− s|E
∫ t

s

|Lu(r) + ψ(r)|21 dr

≤ C |t− s|
(

E

∫ T

0

|u(t)|23 dt+ E

∫ T

0

|ψ(t)|21 dt
)

≤ C|t− s|
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for all s, t ∈ [0, T ], where C is a constant. Furthermore, by Doob’s inequality

E

∣

∣

∣

∣

∫ t

s

Mku(r) + gk(r) dW
k(r)

∣

∣

∣

∣

2

1

≤ 4

∫ t

s

E|Mku(r) + gk(r)|21 dr

≤ C1|t− s|
[

1 + E
(

sup
t≤T

|u(t)|22
)]

≤ C2|t− s|

for all s, t ∈ [0, T ], where C1 and C2 are constants. Hence

E|u(t) − u(s)|21 ≤2E
∣

∣

∣

∫ t

s

(

Lu(r) + ψ(r)
)

dr
∣

∣

∣

2

1

+ 2E
∣

∣

∣

d1
∑

k=1

∫ t

s

(Mku(r) + gk(r))dW
k(r)

∣

∣

∣

2

1
≤ C|t− s|,

and the proof of the corollary is complete. �

The implicit scheme (2.14) applied to problem (4.1)-(4.2) reads as follows.

uτ (t0) = u0 ,

uτ (ti+1) = uτ (ti) +
(

Lτ
ti
uτ (ti+1) + F τ

ti
(uτ (ti+1)

)

τ

+

d1
∑

k=1

(

M τ
k,ti
uτ (ti) +Gτ

k,ti
(uτ (ti))

)

(W k(ti+1) −W k(ti)) , (4.15)

for 0 ≤ i < m , where

Lτ
ti
v : =

∑

|α|≤1,|β|≤1

Dα(aαβ
ti (x)Dβv), M τ

k,ti
:=
∑

|α|≤1

bαk,ti
Dαv,

aαβ
ti (x) : =

1

τ

∫ ti+1

ti

aαβ(s, x) ds, (4.16)

bαk,0(x) = 0, bαk,ti+1
(x) =

1

τ

∫ ti+1

ti

bk(s, x) ds, (4.17)

F τ
ti
(x, p, r) : =

1

τ

∫ ti+1

ti

F (s, x, p, r) ds,

Gτ
k,0(x, r) : = 0, Gτ

k,ti+1
(x, r) :=

∫ ti+1

ti

Gk(s, x, r) ds.

Definition 4.5. A random vector {uτ (ti) : i = 0, 1, 2, ..., m} is a called a gen-
eralized solution of the scheme (4.15) if uτ (t0) = u0, u

τ (ti) is a W 1
2 (Rd)-valued

Fti-measurable random variable such that

E|uτ (ti)|21 <∞
and almost surely

(uτ(ti), ϕ) =
∑

|α|≤1,|β|≤1

(−1)|α|(aαβ
ti D

βuτ (ti), D
αϕ)τ + (F τ

ti−1
(∇uτ

ti−1
, uτ

ti−1
), ϕ)τ
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+
∑

k

(
∑

|α|≤1

bαti−1
Dαuτ

ti−1
+Gk,ti−1

(uτ
ti−1

), ϕ)(W k(ti) −W k(ti−1))

for i = 1, 2, ..., m and all ϕ ∈ C∞
0 (Rd), where (·, ·) is the inner product in L2(R

d).

From this definition it is clear that, using the operators A, Bk defined by (4.9),
we can cast the scheme (4.15) into the abstract scheme (2.14). Thus by applying
Theorem 2.6 we get the following theorem.

Theorem 4.6. Let (A1)-(A4) hold with l = 0. Then there exists an integer m0

such that (4.15) has a unique generalized solution {uτ(ti) : i = 0, 1, ..., m} for every
m ≥ m0. Moreover, there exists a constant C such that

E max
0≤i≤m

|uτ(ti)|20 + E

m
∑

i=1

|uτ (ti)|21 ≤ C

for all integers m ≥ m0.

To ensure condition (T1) to hold we impose the following assumption.

Assumption (H) There exists a constant C and a random variable ξ with finite
first moment such that for k = 1, 2, ..., d1

|Dγ(bαk (t, x) − bαk (s, x))| ≤ C|t− s|1/2 for all ω ∈ Ω, x ∈ R
d and |γ| ≤ l,

|gk(s) − gk(s)|2l ≤ ξ|t− s|
for all s, t ∈ [0, T ].

Now applying Theorem 3.4 we obtain the following result.

Theorem 4.7. Let (A1)-A(4) and (A6)-(A7) hold with l = 2. Assume (H) with
l = 0. Then (4.1)–(4.2) and (4.15) have a unique generalized solution u and uτ =
{uτ (ti) : i = 0, 1, 2, ..., m}, respectively, for all integers m larger than some integer
m0. Moreover, for all integers m > m0

E max
0≤i≤m

|u(iτ) − uτ (iτ)|20 + E

m
∑

i=1

|u(iτ) − uτ (iτ)|21τ ≤ Cτ, (4.18)

where C is a constant, independent of τ .

Proof. By Theorems 4.2 and 4.6 the problems (4.1)–(4.2) and (4.15) have a unique
solution u and uτ , respectively. It is an easy exercise to verify that Assumption (H)
ensures that condition (T1) holds. By virtue of Corollary 4.4 condition (T2) is valid
with ν = 1/2. Condition (T3) clearly holds by statement (i) of Theorem 4.3. Now
we can apply Theorem 3.4 , which gives (4.18).

�

4.2. Linear stochastic PDEs. Let Assumptions (A1)-(A3) and (A7) hold and
impose also the following condition on F .

Assumption (A8) There exist a P ⊗ B(R) -measurable function f such that

F (t, x, p, r) = f(t, x), for all t, x, p, r,

and the derivatives in x of f up to order l are P ⊗B(R) -measurable functions such
that

|f(t)|2l ≤ ξ,
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for all (ω, t), where ξ is a random variable with finite first moment.
Now equation (4.13) has become the linear stochastic PDE

du(t, x) = (Lu(t, x) + f(t, x)) dt+

d1
∑

k=1

(Mku(t, x) + gk(t, x)) dW
k(t), (4.19)

and by Theorem 3.4 we have the following result.

Theorem 4.8. Let r ≥ 0 be an integer. Let Assumptions (A1)–(A3) and (A7)–
(A8) hold with l := r+ 2, and let Assumption (H) hold with l = r. Then there is an
integer m0 such that (4.19)–(4.2) and (4.15) have a unique generalized solution u
and uτ = {uτ (ti) : i = 0, 1, 2, ..., m}, respectively, for all integers m > m0. Moreover,

E max
0≤i≤m

|u(iτ) − uτ(iτ)|2r + E
m
∑

i=1

|u(iτ) − uτ (iτ)|2r+1τ ≤ Cτ (4.20)

holds for all m > m0, where C is a constant independent of τ .

Proof. For r = 0 the statement of this theorem follows immediately from Theorem
4.7. For r > 0 set H = W r

2 (Rd) and V = W r+1
2 (Rd) and consider the normal triplet

V →֒ H ≡ H∗ →֒ V ∗ based on the inner product (· , ·) := (· , ·)r in W r
2 (Rd), which

determines the duality 〈· , ·〉 between V and V ∗. Using Assumptions (A3), (A7) and
(A8) with l = r, one can easily show that there exist a constant C and a random
variable ξ such that Eξ2 <∞ and

∣

∣

∣

∑

|α|≤1,|β|≤1

(−1)|α|
(

aαβ Dβv , Dαϕ
)

r

∣

∣

∣
≤ C|v|r+1|ϕ|r+1,

d1
∑

k=1

|(bαkDαv , ϕ
)

r
|2 ≤ C|v|2r+1|ϕ|2r,

|
(

f(t) , ϕ
)

r
|2 ≤ ξ|ϕ|2r,

d1
∑

k=1

|(gk(t) , ϕ
)

r
|2 ≤ ξ|ϕ|2r

for all ω, t ∈ [0, T ] and v, ϕ ∈ W r
2 (Rd). Therefore the operators A(t, ·), Bk(t, ·)

defined by

〈A(t, v), ϕ〉 =
∑

|α|≤1,|β|≤1

(−1)|α|
(

aαβ Dβv , Dαϕ
)

r
+
(

f(t) , ϕ
)

r
,

(Bk(t, v) , ϕ) =
(

bαkD
αv , ϕ

)

r
+
(

gk(t) , ϕ
)

r
, v, ϕ ∈ V (4.21)

are mappings from V into V ∗ and H , respectively, for each k and ω, t, such that the
growth conditions (2.6) and (2.7) hold. Thus we can cast the Cauchy problem (4.19)–
(4.2) into the evolution equation (1.1), and it is an easy to verify that conditions
(C1)–(C4) hold. Thus this evolution equation admits a unique solution u, which
clearly a generalized solution to (4.19)– (4.2). Due to assumptions (A1)–(A3) and
(A7)–(A8) by Theorem 1.1 of [6] u is a W r+2(Rd)-valued stochastic process such
that

E sup
t≤T

|u(t)|2r+2 + E

∫ T

0

|u(t)|2r+3 dt <∞.
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Hence it is obvious that (T3) holds, and it is easy to verify (T2) with ν = 1
2

like it is
done in the proof of Corollary 4.4. Finally, it is an easy exercise to show that (T1)
holds. Now we can finish the proof of the theorem by applying Theorem 3.4. �

From the previous theorem we obtain the following corollary by Sobolev’s embed-
ding from W r

2 to Cq.

Corollary 4.9. Let q be any non-negative number and assume that the assumptions
of Theorem 4.8 hold with r > q + d

2
. Then there exist modifications ū and ūτ of

u and uτ , respectively, such that the derivatives Dγū and Dγūτ in x up to order q
are functions continuous in x. Moreover, there exists a constant C independent of
τ such that

E max
0≤i≤m

sup
x∈Rd

∑

|γ|≤q

|Dγ
(

ū(iτ, x) − ūτ (iτ, x)
)

|2

+ E

m
∑

i=1

sup
x∈Rd

∑

|γ|≤q+1

|Dγ
(

ū(iτ, x) − ūτ (iτ, x)
∣

∣

2
τ ≤ Cτ. (4.22)
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