
Controller synthesis & Ordinal Automata

Thierry Cachat

To cite this version:

Thierry Cachat. Controller synthesis & Ordinal Automata. Susanne Graf and Wenhui Zhang.
2006, Springer, pp.215-228, 2006, LNCS 4218. <hal-00019897v3>

HAL Id: hal-00019897

https://hal.archives-ouvertes.fr/hal-00019897v3

Submitted on 30 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47123433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00019897v3

ha
l-

00
01

98
97

, v
er

si
on

 3
 -

 3
0

O
ct

 2
00

6

Controller synthesis & Ordinal Automata⋆

Thierry Cachat

LIAFA/CNRS UMR 7089 & Université Paris 7, France

Abstract. Ordinal automata are used to model physical systems with
Zeno behavior. Using automata and games techniques we solve a con-
trol problem formulated and left open by Demri and Nowak in 2005.
It involves partial observability and a new synchronization between the
controller and the environment.

1 Introduction

Controller synthesis. The synthesis of controller is today one of the most impor-
tant challenges in computer science. Since [RW89] different formalisms have been
considered to model (un)controllable and (un)observable actions. The problem
is well understood for finite systems admitting infinite behavior (indexed by ω)
[PR89]. Recent developments concern extensions to e.g. infinite state systems or
timed systems [BDMP03].

Transforming control problems into two-player games have provided efficient
solutions [Tho95]. In this setting the controller is modeled by a player and the
environment by her opponent. Determining whether a controller exists falls down
to determine the winner and computing a winning strategy is equivalent to
synthesizing a controller.

Ordinal automata. A Büchi or Muller automaton, after reading an ω-sequence,
simply accepts or rejects, depending on the states visited infinitely often. In an
ordinal automaton there is a limit transition to a new state, also depending
on the states visited infinitely often and the run goes on from this state. This
allows to model a system preforming ω actions in a finite time and reaching a
limit state.

Systems with Zeno behaviors. When modeling physical systems we face the prob-
lem that different components can have different time scales. For example the
controller of an anti-lock braking system (ABS) is supposed to react much quicker
than the physical environment. In the opposite one can consider physical sys-
tems admitting Zeno behavior —infinitely many actions in a finite amount of
time— whereas the controller is a computer with constant clock frequency. A
simple example is a bouncing ball. Another one is the physical description of
an electronic circuit which evolves much quicker than its logical description in

⋆ The author acknowledges partial support by the ACI “Sécurité et Informatique”
CORTOS. http://www.lsv.ens-cachan.fr/aci-cortos/

http://www.lsv.ens-cachan.fr/aci-cortos/

VHDL. The speeds are so different that one can consider that the former one
evolves infinitely quicker than the latter one.

Following this idea Demri and Nowak [DN05] have proposed to model phys-
ical systems by ordinal automata, thus admitting ordinal sequences as behavior
(typically of length ωk). They define a logic LTL(ωk) as an extension of LTL
to express properties of such systems. The controller should be a usual automa-
ton whose execution is an ω-sequence. The synchronization between controller
and environment is the following: environment makes ωk−1 steps “alone”, then
controller and environment makes one step together, and so on.

Particularly in the context of timed systems, different techniques have been
proposed to forbid or restrict Zeno behaviors, see introduction of [AFH+03] for
an overview. Our claim is that we want to allow Zeno behavior, to model them
and express properties about them, and finally to control such systems.

Our contribution. The main contribution of our article is a solution to the control
problem stated and left open in [DN05]. Given a physical system modeled by an
ordinal automaton and a formula ψ of LTL(ωk) we want to determine whether
a controller exists and synthesize one. The technique used is to transform the
control problem into a game problem. Because of the unobservable actions and
also because of the different time scales, the controller can not fully observe the
current state of the system. For that reason we construct a game of imperfect
information. Another difficulty is that the length of the interaction is greater
than ω, but fortunately one can summarize ωk−1 steps done by the environment
“alone”. Several games and automata techniques are used.

Related work. It is known that games of imperfect information have higher com-
putational complexity [Rei84]. Zeno behavior have already been considered in the
literature. In [BP00] languages of ordinal words accepted by timed automata are
studied. In the framework of hybrid systems [AM98,Bou99] or cellular automata
on continuous time and space [DL05] it is known that allowing Zeno behaviors
gives rise to highly undecidable problems. In [DN05] Demri and Nowak solve
the satisfiability and the model-checking problem for LTL(ωk): given an ordi-
nal automaton reading ωk-sequences and a formula ψ, determine whether every
run of the automaton satisfies ψ. For this they use a “succinct” form of ordinal
automata to have better complexity bounds.

Plan of the paper In the next section we present the temporal logic LTL(ωk),
ordinal automata and the control problem. We show a translation to first order
logic. In Section 3 we solve our main problem. We first explain how to translate
it to a game and why the controller has imperfect information about the system.
An example is provided in Section 4.

2 Reasoning about transfinite sequences

We assume basic knowledge about ordinals less than ωω, see e.g. [Ros82]. An
ordinal is a well and totally ordered set. It is either 0 or a successor ordinal of the

form β+1 or a limit ordinal. The first limit ordinal is denoted ω. For all ordinal
α, β < α ⇔ β ∈ α and α = {β : β < a}. In this article we restrict ourselves
to ordinals less or equal than ωω. By the Cantor Normal Form theorem, for
all α < ωω there exists unique integers p, n1, . . . , np and k1, . . . , kp such that
k1 > k2 > · · · > kp and α = ωk1n1 +ωk2n2 + · · ·+ωkpnp. Recall e.g. that 2ω = ω

and ω + ω2 = ω2. An ordinal α is said to be closed under addition whenever
β, β′ < α implies β + β′ < α. In particular for every α ≤ ωω, α is closed under
addition iff α is equal to ωβ for some β ≤ ω or α = 0. In the following we will
consider a logic whose models are ωk sequences for some k < ω.

2.1 Temporal Logic

We recall the definition of the logic LTL(α) introduced in [DN05]. For every
ordinal α closed under addition, the models of LTL(α) are precisely sequences of
the form σ : α→ 2AP for some countably infinite set AP of atomic propositions.
The formulas of LTL(α) are defined as follows: φ ::= p | ¬φ | φ1 ∧ φ2 |
X
βφ | φ1U

β′

φ2, where p ∈ AP, β < α and β′ ≤ α. The satisfaction relation is
inductively defined below where σ is a model for LTL(α) and β < α:

– σ, β |= p iff p ∈ σ(β),
– σ, β |= φ1 ∧ φ2 iff σ, β |= φ1 and σ, β |= φ2, σ, β |= ¬φ iff not σ, β |= φ,
– σ, β |= X

β′

φ iff σ, β + β′ |= φ,
– σ, β |= φ1U

β′

φ2 iff there is γ < β′ such that σ, β + γ |= φ2 and for every
γ′ < γ, σ, β + γ′ |= φ1.

Closure under addition of α guarantees that β + β′ and β + γ above are strictly
smaller than α. Usual LTL is expressively equivalent to LTL(ω): X is equivalent
to X

1 and U is equivalent to U
ω, conversely X

n and U
n can be expressed in LTL.

Standard abbreviations are also extended: Fβφ
def

= ⊤U
βφ and G

βφ
def

= ¬Fβ¬φ.
Using Cantor Normal Form it is easy to effectively encode an LTL(ωk) formula
for k < ω. We provide below properties dealing with limit states that can be
easily expressed in LTL(ωk) (k ≥ 2).
“p holds in the states indexed by limit ordinals strictly less than ωk”:

G
ωk

(Xωp ∧ · · · ∧ X
ωk−1

p).

For 1 ≤ k′ ≤ k − 2, “if p holds infinitely often in states indexed by ordinals of
the form ωk

′

× n, n ≥ 1, then q holds in the state indexed by ωk
′+1”:

(Gω
k′+1

F
ωk′+1

X
ωk′

p) ⇒ (Xω
k′+1

q).

2.2 Translation to First Order Logic

In [DN05] it is proved that LTL(ωω) (hence also LTL(ωk)) can be translated
to the monadic second order theory of 〈ωω, <〉, which gives a non-elementary
decision procedure for satisfiability [BS73]. We improve this result by showing
that LTL(ωω) can be translated even to the first order theory (FO) of 〈ωω, <〉.

Proposition 1. For every LTL(ωω) formula there exists an equivalent first or-
der formula over 〈ωω, <〉.

It is open whether the converse also holds, extending Kamp’s theorem [Kam68].

Proof (sketch). The main point is the definition of a formula +β(x, y) for some
β < ωω such that 〈ωω, <〉 |=v +β(x, y) with v : {x, y} → ωω iff v(y) = v(x) + β.
The relation |=v is the standard satisfaction relation under the valuation v. The
formulas of the form +β(x, y) with β < ωω are inductively defined as:

1. +0(x, y)
def

= (x = y) ,

2. +1(x, y)
def

= (x < y) ∧ ∀ z (z > x⇒ y ≤ z) ,

3. +ωkn+β(x, y)
def

= ∃ z +ωk (x, z) ∧ +ωk(n−1)+β(z, y) (n ≥ 1, k ≥ 0) ,

4. +ωk(x, y)
def

= (x < y) ∧ ∀z(x ≤ z < y ⇒ ∃z′(+ωk−1(z, z′) ∧ z′ < y)) ∧
∀y′[((x < y′) ∧ ∀z(x ≤ z < y′ ⇒ ∃z′(+ωk−1(z, z′) ∧ z′ < y′))) ⇒ y ≤ y′]
(k ≥ 1) .

For k = 1, the latter formula is written in the following way. The ordinal y such
that +ω(x, y) holds is greater than x, greater than every finite step successors
of x, and y is the least ordinal satisfying this two conditions. By induction one
can show that y > x + n for every n < ω. Analogously for k > 1, the formula
implies that y > x+ ωk−1n for every n < ω. ⊓⊔

The first order theory of 〈ωω,+〉 has a non-elementary decision procedure
[Mau96]. We are not aware of the exact complexity of the more restricted first
order theory of 〈ωω, <〉. We use ordinal automata, both to model physical sys-
tems and to represent specifications.

2.3 Ordinal Automata

Since Büchi in the 1960s and Choueka in the 1970s, different forms of ordinal
automata have been proposed. A particular class of ordinal automata is well
suited to solve our problem. See [Bed98] for the equivalence between different
definitions. Ordinal automata has two kinds of transitions: usual one-step tran-
sition for successor ordinals and limit transitions for limit ordinals where the
state reached is determined by the set of states visited again and again “before”
that ordinal. An ordinal automaton is a tuple (Q,Σ, δ, E, I, F) where:

– Q is a finite set of states,
– Σ is a finite alphabet,
– δ ⊆ Q×Σ ×Q is a one-step transition relation,
– E ⊆ 2Q ×Q is a limit transition relation,
– I ⊆ Q is a finite set of initial states,
– F ⊆ Q is a finite set of final states.

We write q
a
−→ q′ whenever 〈q, a, q′〉 ∈ δ and P −→ q whenever 〈P, q〉 ∈ E.

A path of length α + 1 is an (α + 1)-sequence r : α + 1 → Q labeled by an

α-sequence σ : α → Σ such that for every β ∈ α, r(β)
σ(β)
−−→ r(β + 1) and for

every limit ordinal β ∈ α + 1, there is P −→ r(β) ∈ E s.t. P = cofinal(β, r)

with cofinal(β, r)
def

= {q ∈ Q : for every γ ∈ β, there is γ′ such that γ < γ′ <

β and r(γ′) = q}. The set cofinal(β, r) is the set of states visited again and again
arbitrary close to β (hence infinitely often).
If moreover r(0) ∈ I, it is a run. If moreover r(α) ∈ F , it is accepting.

Example 1. We present here an example of ordinal automa-
ton A with limit transitions {0} −→ 1 and {0, 1} −→ 2.
One can show that L(A) contains only ω2-sequences and
L(A) = (aω · b)ω.

0 1

2

b

a

For all k < ω there exists an ordinal automaton accepting exactly the sequences
of length ωk, using k+ 1 states. But if an ordinal automaton accepts a sequence
of length ωω, then it must also accept longer sequences. That is a second reason,
beside closure under addition, why we restrict ourselves to ordinals less than ωω.

Level An ordinal automaton A = 〈Q,Σ, δ, E, I, F 〉 is of level k ≥ 1 iff there is a
map l : Q→ {0, . . . , k} such that:

– for every q ∈ F , l(q) = k;

– q
a
−→ q′ ∈ δ implies l(q′) = 0 and l(q) < k;

– P −→ q ∈ E implies l(q) ≥ 1, for every q′ ∈ P , l(q′) < l(q), and there is
q′ ∈ P such that l(q′) = l(q) − 1.

The idea is that a state of level i is reached at positions β + ωi.j, j < ω.
Since [VW86], different techniques for translating logic formulas to automata
are widely used.

Proposition 2 ([DN05]). For all LTL(ωk) formula, there exists an equivalent
ordinal automaton.

This result can be obtain by translating an LTL(ωk) formula into an equiva-
lent first order formula (or even monadic second order) and applying results
from [BS73]. In [DN05] a succinct version of ordinal automata is defined to
improve the complexity of the translation from non-elementary to polynomial
(resp. exponential) space when integers in the formulas are encoded in unary
(resp. binary).

2.4 Control Problem

Before we recall the control problem from [DN05] we need some preliminary
definitions. In order for the physical system to evolve much faster than the
controller we need a particular synchronization between them.

Synchronous product. We define below the synchronous product of two ordinal
automata having possibly different alphabets. They synchronize only on the
common actions. This is used later to model unobservable actions. LetΣi = 2Acti

for i = 1, 2, a letter from Σi is a set of actions. Given two ordinal automata
Ai = 〈Qi, Σi, δi, Ei, Ii, Fi〉, for i = 1, 2, their synchronous product is defined as
A1 ×A2 = 〈Q,Σ, δ, E, I, F 〉 where:

– Q = Q1 ×Q2, Σ = 2Act1∪Act2 .

– 〈q1, q2〉
a

−→ 〈q′1, q
′
2〉 ∈ δ iff q1

a∩Act1−−−−→ q′1 and q2
a∩Act2−−−−→ q′2.

– P −→ 〈q1, q2〉 ∈ E iff there exists P1 −→ q1 ∈ E1 and P2 −→ q2 ∈ E2 such that
{q : 〈q, q′〉 ∈ P} = P1 and {q′ : 〈q, q′〉 ∈ P} = P2.

– I = I1 × I2, F = F1 × F2.

Lifting. In order to synchronize the system with a controller working on ω-
sequences, we need to transform the controller so that its product with S only
constraints states on positions ωk−1 × n, n < ω. The other positions are not
constrained.

Let A = 〈Q,Σ, δ, E, I, F, l〉 be an automaton of level 1. We define its lifting
liftk(A) at level k ≥ 2 to be the automaton 〈Q′, Σ, δ′, E′, I ′, F ′, l′〉 by:

– Q′ = {0, . . . , k} ×Q, I ′ = {k − 1} × I, F ′ = {k} × F

– l′(〈i, q′〉) = i,

– δ′ = {〈k − 1, q〉
a
−→ 〈0, q′〉 : q

a
−→ q′ ∈ δ}∪

{〈i, q〉
a
−→ 〈0, q〉 : 0 ≤ i ≤ k − 2, a ∈ Σ, q 6∈ F},

– E′ = {{〈0, q〉, . . . , 〈i−1, q〉} −→ 〈i, q〉 : 1 ≤ i < k, q ∈ Q}∪{{〈0, q1〉, . . . , 〈k−
1, q1〉, . . . , 〈0, qn〉, . . . , 〈k − 1, qn〉} −→ 〈k, q〉 | {q1, . . . qn} −→ q ∈ E}.

Example 2. We present below an example of ordinal automaton A with limit
transition {q0, q1} −→ q2 and the corresponding automaton lift2(A) with limit
transitions {〈0, q0〉} −→ 〈1, q0〉, {〈0, q1〉} −→ 〈1, q1〉, and
{〈0, q0〉, 〈1, q0〉, 〈0, q1〉, 〈1, q1〉, } −→ 〈2, q2〉. We omit useless transitions.

A lift2(A)

q0 q1

q2

a

b
〈1, q0〉 〈0, q1〉

〈1, q1〉 〈0, q0〉

a

b

Σ

Σ

〈2, q2〉

Proposition 3 ([DN05]). For all w ∈ Σωk

, w ∈ L(liftk(A)) iff the word w′ ∈
Σω, defined by w′(i) = w(ωk−1 × i), is in L(A).

A physical system S is modeled as a structure

〈AS ,Actc,Acto,Act〉

where AS is an ordinal automaton of level k with alphabet 2Act where Act is
a finite set of actions, Acto ⊆ Act is the set of observable actions, Actc ⊆ Acto
is the set of controllable actions. The set Act\Actc of uncontrollable actions is
denoted by Actnc. A specification of the system S is naturally an LTL(ωk) for-
mula ψ. A controller C for the pair 〈S, ψ〉 is a system whose complete executions
are ω-sequences (typically ordinal automata of level 1) verifying the properties
below.

(obs) Only observable actions are present in the controller. Hence, thanks to the
synchronization mode, in the product system between S and C, unobservable
actions do not change the C-component of the current state. So the alphabet

of C is 2Acto . Moreover for every state q of C there is a transition q
∅
−→ q.

(unc) From any state of C, uncontrollable actions can always be executed: ∀q ·

∀a ⊆ Acto \ Actc, there is a transition q
b
−→ q′ in C such that b ∩ Actnc = a.

(prod) Finally, the system S controlled by C satisfies ψ. Because S and C work
on sequences of different length, the controlled system is in fact equal to
liftk(C) × S. So liftk(C) × S |= ψ should hold. This is equivalent to the
emptiness of the language of the product automaton liftk(C) × S × A¬ψ.

We say that C is a controller for S (without mentioning ψ) if C fulfills the first
two conditions. The notion of final state is not relevant for the controller or
the physical system. To conform with previous definitions we require that every
(ω + 1)-run of the controller and (ωk + 1)-run of S end in a final state.

The control problem for LTL(ωk) is defined as follows:
input: a system S = 〈AS ,Actc,Acto,Act〉 with ordinal automaton AS of level
k and an LTL(ωk) formula ψ over atomic formulas in Act.
output: an ordinal automaton C of level 1 satisfying the conditions (obs), (unc)
and (prod) above if there exists one. Otherwise the answer “no controller exists”.

3 Solving the Control Problem

Given a physical system S modeled by an ordinal automaton AS of level k and an
LTL(ωk)-formula ψ, we are looking for a controller C such that liftk(C) ×AS |=
ψ and C has the expected properties about uncontrollable and unobservable
actions.

From Control Problem to Game. Let B = liftk(C)×AS ×A¬ψ . At a given point
in a run of B the controller is in a state q. From q and for all o ⊆ Acto ∩ Actnc
it must have at least one transition labeled by o ∪ c for some c ⊆ Actc. The
most general form of a controller (possibly with infinite memory) is a function
f : (2Acto)∗ × (2Acto∩Actnc) −→ 2Actc , because the current state of the controller
shall only depend on the past observable actions. This function is exactly a
strategy in a game that we will define. A controller for 〈S, ψ〉 is such that every
run according to f is winning.

Let A = AS × A¬ψ. It is also an ordinal automaton of level k : A =
〈Q,Σ, δ, E, I, F, l〉. We are looking for a controller C such that the language

of liftk(C) × A is empty. We will consider a game where the environment tries
to build an accepting run of A, whereas the controller tries to avoid that, using
the controlled actions. In fact the environment plays both for the system S and
for the automaton of ¬ψ, as we will see later.

3.1 Some Definitions from Game Theory

We recall some definitions about games. See for example [Tho95,GTW02] for an
introduction. An arena, or game graph, is a triple (V0, V1, G), where V = V0∪V1

is the set of vertices and G ⊆ V ×V is the set of edges. The vertices of V0 belongs
to Player 0, those of V1 to Player 1 (V0 ∩ V1 = ∅). A play from v0 ∈ V proceeds
as follows: if v ∈ V0, Player 0 chooses a successor v1 of v0, else Player 1 does.
Again from v1 ∈ Vi, Player i chooses a successor v2 of v1, and so on.

A play π = v0, v1, v2, . . . is a finite or infinite sequence of vertices such that
∀i, (vi, vi+1) ∈ G. If the play is finite, the convention is that the player who
belongs the last vertex loses (he is stuck). If the play is infinite, the winner is
determined by a winning set, Win ⊆ V ω : Player 0 wins an infinite play π if
and only if π ∈ Win. Usually Win is an ω-regular set, defined by a Büchi,
Rabin, parity or Muller automaton. One speaks also of winning condition. A
game (V0, V1, G,Win) is an arena together with a winning condition and possibly
an initial vertex v0 ∈ V .

For a game or an automaton, a Büchi condition is given by a set F ⊆ V of
“final” vertices and π ∈ Win if and only if ∀i > 0, ∃j > i, πi ∈ F . A Muller
condition is given by F ⊆ 2V , F = {F1, · · · , Fn}, and π ∈ Win if and only if
the set of states visited infinitely often along π is equal to one of the Fi’s.

A strategy for Player 0 is a (partial) function f0 : V ∗V0 7→ V such that
for every prefix v0, v1, v2, · · · vi of a play, where vi ∈ V0, f(v0v1v2 · · · vi) is a
vertex vi+1 such that (vi, vi+1) ∈ G. A play π is played according to a strategy
f0 if ∀i, vi ∈ V0 ⇒ vi+1 = f(v0v1v2 · · · vi). A strategy for Player 1 is defined
analogously. A strategy of Player 0 is winning if every play according to it is
winning for Player 0. An important case in practice is when the strategy is
positional: it depends only on the current vertex, not on the past of the play,
i.e., for all v0, v1, v2, · · · vi, f(v0v1v2 · · · vi) = f(vi).

From [Mar75] we know that every zero-sum two-player turn based game of
complete information with Borel winning condition (including ω-regular and
many more) is determined: from a given initial configuration, one of the players
has a winning strategy.

In the case of incomplete information, the players do not in general know
exactly the current position of the game. They only know that the position
belongs to a certain set of uncertainty. The move chosen by a player (by his
strategy) shall depend on this set, but not on the precise position of the play. As
we will see in some cases one can transform such a game into a game of complete
information, where a vertex represents a set of positions of the original game.

3.2 A Solution With Incomplete Information

Summarizing ωk−1 steps. From the definition of liftk we see that the controller
can act only every ωk−1 steps of the environment. Our aim is to summarize
ωk−1 steps of the environment in a single step. One can compute a relation
R ⊆ Q× 2Q × Q such that (q, P, q′) ∈ R iff there exists in A a path from q to
q′ of length ωk−1 + 1 where the set of states seen along this path is exactly P .
Note that to determine R, one has to look for cycles in A and states that are
seen infinitely often, but in R itself we only need to know states that are ever
visited. The reason is that (considering cofinal(ωk, r)) it is not relevant to know
that some state is visited infinitely often between e.g. ωk−13 and ωk−14 and no
more visited after ωk−14. Relation R can be computed in time 2O(|Q|) [Car02].

Game. We introduce a game (G) modeling the interaction between the controller
(Cont) and the environment (Env). It is not possible in general for Cont to know
exactly the current state of the system for several reasons.

– Cont cannot know the ωk−1 steps done by the environment without control.
– As Env act, by choosing v ⊆ Actnc, Cont can only observe the actions that

are in Acto.
– Moreover A is not necessarily deterministic. In particular it is possible that

A¬ψ is not deterministic and Env has to “choose” which subformulas of ¬ψ
he wants to make true.

– Also Cont cannot know exactly the initial state chosen by Env.

In the game G Cont has partial information: a position of the game is a subset
Qi of Q, such that Cont knows that the current state of the system is in Qi, but
does not know which state exactly. The game is defined by the following steps:

1. i = 0 and the initial position is Q0 = I, the set of initial states of A
2. Env chooses oi ⊆ Acto ∩Actnc,
3. Cont chooses ci ⊆ Actc,
4. there is a one step transition to

Q′
i = {q′ ∈ Q : ∃u ⊆ Act\Acto, ∃q ∈ Qi, q

ci∪oi∪u−−−−→ q′},

5. there is a jump to Qi+1, summarizing ωk−1 steps

Qi+1 = {q ∈ Q : ∃q′ ∈ Q′
i, ∃(q′, P, q) ∈ R},

6. i = i+ 1, continue at point 2.

In this game the knowledge of Cont about the current state is exactly what a
controller can compute in the original problem, based on the observable actions.
A play is essentially a sequence Q0, Q

′
0, Q1, Q

′
1, . . . (a more precise definition

of the game graph is given below) and now it is more intricate to determine
the winner. The sequence Q0, Q

′
0, Q1, Q

′
1, . . . represents the point of view of the

controller, and we call it an abstract play. After the game is played a referee has to

choose inside this abstract play a concrete path (if it exists one) q0, q
′
0, q1, q

′
1, . . .

such that qi ∈ Qi, q
′
i ∈ Q′

i and compatible to the sequence of ci’s and oi’s. That is
to say one has to choose q0 ∈ Q0, a sequence of elements ui ∈ Act\Acto such that

qi
ci∪oi∪ui−−−−−→ q′i and elements (q′i, Pi, qi) ∈ R. The sequence q0, q

′
0, P0, q1, q

′
1, P1, . . .

summarizes a run in A and we can determine if it is accepting, in which case
Env wins the play. Note that for the acceptance condition of A it is relevant to
know whether some q ∈ Q appears in infinitely many Pi’s. Therefore the set of
winning plays of Env can be defined by a non deterministic Muller automaton
searching a concrete path, as we will see below, after we make some comments.

The advantage that Env plays “abstractly” the game, and one selects a con-
crete path only afterward is not unfair. Again we want a controller that is secure,
and we worry if the environment could have won. And in the case that the con-
troller does not have a winning strategy, it does not necessarily mean that the
environment has one, but it means that there is a risk that the environment
wins. This is related to the fact that games of incomplete information are not
determined in general: it is possible that no player has a winning strategy.

We now describe the automaton defining the set of winning plays and then
the arena in more details. Note that the sequence Q0, Q

′
0, Q1, Q

′
1, . . . above is

uniquely determined by the sequence o0, c0, o1, c1, . . . of actions chosen by Cont
and Env. The state space of the automaton AWin recognizing the winning plays

for Env is Q×2Q. For all P 6= ∅ there is a transition (q, P)
c∪o
−→ (q′, ∅) if and only

if ∃u ⊆ Act\Acto, ∃ q
c∪o∪u
−−−→ q′ in A and there is a transition (q′, ∅)

ǫ
−→ (q, P) if

and only if ∃ (q′, P, q) ∈ R.
The automaton AWin non-deterministically guesses a run in A conforming

to the sequence o0, c0, o1, c1, . . . The acceptance condition of AWin is the same
as those of A: it can be seen as a Muller condition depending on the states
appearing infinitely often in a run. It is given by a set of sets F ⊆ 2Q. The usual
way to handle such a non-deterministic Muller automaton is to transform it into
a non-deterministic Büchi automaton [GTW02, Ch. 1]. The Büchi automaton
BWin simulates AWin and guesses at some point which subset of states are
going to be visited infinitely often and that other states are no longer visited.
The state space of BWin is Q ∪Q×F × (Q ∪ {qf}). It checks in turn that each
state of the chosen acceptance component F ∈ F is visited infinitely often and
it is not necessary to remember the whole (q, P) ∈ Q× 2Q of AWin. Using e.g.
Safra’s construction [GTW02, Ch. 3] one can transform the Büchi automaton
BWin into a deterministic Rabin automaton CWin. Then the Index Appearance
Record allows to have a deterministic parity automaton DWin [GTW02, p.86]
[Löd98].

For defining the arena, we see that Cont and Env essentially choose the
actions ci and oi:

VEnv = 2Actc , VCont = 2Acto∩Actnc , G = (VEnv × VCont) ∪ (VCont × VEnv)

Now the product of the arena (VEnv, VCont, G) by the parity automaton DWin

gives rise to a parity game on a finite graph. One can determine the winner and
compute a positional winning strategy [GTW02, Ch.6,7] [JPZ06]. Due to the

synchronization between the arena and DWin, the set VEnv can be merged to a
single vertex: it is not needed to remember the move of Cont because its effect
on DWin is sufficient. In fact the successive sets Q0, Q

′
0, Q1, Q

′
1, . . . of the above

description are computed by DWin (thanks to Safra’s construction already in
CWin).

Theorem 1. The control problem defined in Section 2.4 can be solved in 2ex-

ptime. Moreover if a controller exists, then there is one with finite memory of
double exponential size.

The complexity is measured in the number |Q| of states of A = AS×A¬ψ. Recall
that the usual control problem is 2exptime-complete [PR89] in the size of the
system and the length of the formula.

See Appendix for the proof. The idea is to prove the following facts. If the
game G is won by Cont then a controller for 〈S, ψ〉 exists, and it can be con-
structed. Conversely if a controller for 〈S, ψ〉 exists then G is won by Cont. By
construction a strategy for Cont in G is a finite state automaton with expected
properties about (un)observable and (un)controllable actions. Moreover if that
strategy is winning, it defines a controller for 〈S, ψ〉: every run of liftk(C) × S
fulfills ψ. Conversely, if a controller for 〈S, ψ〉 exists, possibly with infinite mem-
ory, then this controller provides a winning strategy for Cont in G. From the
analysis above we know that if there is a controller for 〈S, ψ〉, then there is one
with finite memory, and one can compute it.

4 Example

We illustrate our construction by a (slightly modified) example from [DN05].
The system is a bouncing ball with three actions lift-up, bounce and stop, where
only lift-up is controllable, and only stop and lift-up are observable. The law of
the ball is described by the following LTL(ω2) formula:

φ = G
ω2

(lift-up ⇒ X
1(Gωbounce ∧ X

ωstop)) .

Informally, φ states that when the ball is lifted-up, it bounces an infinite number
of times in a finite time and then stops. Equivalently the behavior of the system
is modeled by the following ordinal automaton of level 2.

AS
{b} −→ s

{0} −→ s

{s, b} −→ f

{s, 0, b} −→ f

{s, 0} −→ f
s

0 b

f

lift-up

stop
{stop, lift-up}

stop

bounce

{bounce, lift-up}

The specification is given by the LTL(ω2) formula:

ψ = G
ω2

X
1bounce

Informally, ψ states that the ball should almost always be bouncing. In the
following picture of the automaton A¬ψ , the star (∗) stands for any subset of
actions of Act.

A¬ψ
{y1} −→ yω

{n1} −→ nω

{y1, yω} −→ yω2

{n1, nω} −→ nω2

yω y1 n1

nωyω2 nω2

∗ {¬bounce, ∗}

∗

{bounce, ∗} ∗

The automaton A = AS ×A¬ψ is then

A

s, yω 0, y1 0, n1 s, nω

b, y1 b, n1

f, yω2 f, nω2

stop

{stop, lift-up}

stop

lift-up

stop

{stop, lift-up}
lift-up

stop

{bounce (lift-up)} {bounce (lift-up)}

We omit here the limit transitions. In the relation R ⊆ Q× 2Q×Q the relevant
elements are

(〈b, y1〉 , {〈b, y1〉}, 〈s, yω〉) (〈0, y1〉 , {〈0, n1〉}, 〈s, nω〉)

(〈b, n1〉 , {〈b, n1〉}, 〈s, nω〉) (〈0, n1〉 , {〈0, n1〉}, 〈s, nω〉)

(〈0, n1〉 , {〈0, n1〉 , 〈b, n1〉}, 〈s, nω〉)

If we construct the automaton AWin, we see that its (Muller) acceptance con-
dition can be reduced to a Büchi condition. In the next figure the automaton
DWin is simplified, and some unnecessary transitions are omitted.

DWin Game graph

stop

{stop, lift-up} ∗

e1 c1 e2 c2

stop

lift-up ∅

stop

∗

The winning strategy for Cont is: from c1 always go to e1. The corresponding
controller for 〈S, ψ〉 has essentially two loops on its initial state: one labeled
{stop, lift-up} and one labeled {lift-up}.

5 Perspectives

It is open whether the upper bounds of Theorem 1 are tight, and whether one
can find LTL-fragments or restrictions on the physical system such that the
complexity of the control problem is lower.

We would like to extend the previous results in two directions: to timed
systems and to other linear orderings. Given a timed automaton, it is possible
to determine whether it has Zeno behaviors. Our motivation is to extend the
semantics such that after ω transitions there is a limit transition to a new control
state and the new clock values are the limit of the former ones (see [BP00]).

A Zeno behavior is not necessarily an ordinal sequence, it can be a more
general linear ordering (see [BC05]). One should extend the results to this more
general class of automata.

Acknowledgments. Great thanks to Stéphane Demri and David Nowak for many
interesting discussions, helpful comments on previous versions and for their help.

References

AFH+03. L. de Alfaro, M. Faëlla, T. A. Henzinger, R. Majumdar, and M. Stoelinga.
The element of surprise in timed games. CONCUR’03, LNCS 2761, pp.
142–156. 2003.

AM98. E. Asarin and O. Maler. Achilles and the tortoise climbing up the arith-
metical hierarchy. JCSS 57(3), pp. 389–398. 1998.

BC05. A. Bès and O. Carton. A Kleene theorem for languages of words indexed
by linear orderings. DLT’05, LNCS 3572, pp. 158–167. 2005.

BDMP03. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with
partial observability. CAV’03, LNCS 2725, pp. 180–192. 2003.

Bed98. N. Bedon. Langages reconnaissables de mots indexés par des ordinaux. PhD
thesis, Université de Marne-la-Vallée. 1998.

Bou99. O. Bournez. Achilles and the tortoise climbing up the hyper-arithmetical
hierarchy. TCS, 210(1):21–71. 1999.

BP00. B. Bérard and C. Picaronny. Accepting Zeno words: A way toward timed
refinements. Acta Informatica, 37(1):45–81. 2000.

BS73. J. R. Buchi and D. Siefkes. The monadic second order theory of all countable
ordinals, Lect. Notes in Math. 328 Springer. 1973.

Car02. O. Carton. Accessibility in automata on scattered linear orderings.
MFCS’02, LNCS 2420, pp. 155–164. 2002.

DL05. J. Durand-Lose. Abstract geometrical computation for black hole compu-
tation (extended abstract). In Machines, computations, and universality,
LNCS 3354, pp. 176–187. 2005.

DN05. S. Demri and D. Nowak. Reasoning about transfinite sequences (extended
abstract). ATVA’05, LNCS 3707, pp. 248–262. 2005.

GTW02. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infi-
nite Games: A Guide to Current Research, LNCS 2500. 2002.

GW94. P. Godefroid and P. Wolper. A partial approach to model checking. Inform.
and Comput., 110(2):305–326. 1994.

JPZ06. M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential
algorithm for solving parity games. SODA, pp. 117–123, 2006.

Kam68. H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California at Los Angeles, 1968.

Löd98. C. Löding. Methods for the transformation of omega-automata: Complexity
and connection to second order logic. Master’s thesis, Christian-Albrechts-
University of Kiel, 1998.

Mar75. D. A. Martin. Borel Determinacy. Annals of Math., 102:363–371, 1975.
Mau96. Françoise Maurin. Exact complexity bounds for ordinal addition. Theor.

Comput. Sci., 165(2):247–273, 1996.
PR89. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In

POPL’89, pp. 179–190. ACM, 1989.
Rei84. J. H. Reif. The complexity of two-player games of incomplete information.

J. Comput. System Sci., 29(2):274–301. 1984.
Ros82. J. G. Rosenstein. Linear orderings. Academic Press Inc. 1982.
RW89. P. J. Ramadge and W. M. Wonham. The control of discrete event systems.

Proceedings of IEEE 77(1), pp. 81–98. 1989.
Tho95. W. Thomas. On the synthesis of strategies in infinite games. STACS’95,

LNCS 900, pp. 1–13. 1995.
VW86. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program verification. LICS’86, pp. 332–344. 1986.

Appendix

Correctness. We claim that the game G is won by Cont iff a controller for 〈S, ψ〉
exists.

If G is won by Cont, we can compute a positional winning strategy for Cont.
It consists for each position of Cont to have exactly one outgoing edge. Now one
can remove these intermediate states and get a finite automaton (of size |DWin|)
where the transitions are labeled by letter in 2Acto. This automaton is a controller
C for 〈S, ψ〉. It fulfills condition (obs) of Section 2.4 clearly by construction, and
condition (unc) because Cont chooses only controllable actions. Moreover the
language accepted by C is disjoint from those of DWin and thus from those of
CWin, BWin and AWin. Finally the language of liftk(C) × S × A¬ψ is empty.

Conversely suppose that there exists a controller C for 〈S, ψ〉, possibly with
infinite memory. The emptiness of liftk(C) × A is equivalent to The emptiness
of C ×AWin and of C ×DWin. It follows that C defines a winning strategy in the
game G.

Complexity. The sizes, in number of states, are as follows:

|AWin| = |Q|

|BWin| = O
(

|Q|2.|F|
)

= O
(

|Q|2.2|Q|
)

|CWin| = 2O(|BWin|. log(|BWin|)) = 2O(|Q|3.2|Q|)

But the number of Rabin pairs of the acceptance condition of CWin is in O (|BWin|).

|DWin| = |CWin|.2
O(|BWin|. log(|BWin|)) hence |DWin| = 2O(|Q|6.4|Q|)

The size of DWin is exponential only in the number of Rabin pairs of the ac-
ceptance condition of CWin. The number of priorities of the parity automaton
DWin is in O(|BWin|). Now the number of vertices of the game graph is

n = |DWin|.(|VCont| + 1) = 2O(|Q|3.2|Q|).2Acto∩Actnc

the number of edges is

m = |DWin|.|VCont|.(|VEnv| + 1)

and the number of priorities

d = O(|BWin|) .

The number of priorities of the parity game is very low compared to the number
of states. In such a case the best known deterministic algorithm for solving parity
games is polynomial in the size of the graph, and exponential in the number of
priorities, see [JPZ06] and references therein. The time complexity is in:

O

(

d.m.

(

2n

d

)d/2
)

which is here in

|VEnv|
(

2O(|Q|6.4|Q|)|VCont|
)O(|Q|2.2|Q|)

=

|VEnv|2
O(|Q|8.8|Q|)|VCont|

O(|Q|2.2|Q|) =

2|Actc|2O(|Q|8.8|Q|)2O(|Acto∩Actnc|.|Q|2.2|Q|)

The result of the algorithm is a positional winning strategy for the winner. In
other words it is a finite graph also with n vertices. In the case that Cont wins
the game, it defines directly a controller for 〈S, ψ〉 with at most n states. More
precisely the transitions of the controller are labeled by letters from 2Acto and
we do not need the intermediate states representing the moves of Env, so the
controller has at most |DWin| states and |DWin|.2|Acto∩Actnc| transitions.

