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Abstract

From a normal form analysis near the Lagrange equilateral relative
equilibrium, we deduce that, up to the action of similarities and time
shifts, the only relative periodic solutions which bifurcate from this so-
lution are the (planar) homographic family and the (spatial) P12 family
with its twelfth-order symmetry (see [Ma2, CFM]). After reduction by
the rotation symmetry of the Lagrange solution and restriction to a cen-
ter manifold, our proof of the local existence and uniqueness of P12 follows
that of Hill’s orbits in the planar circular restricted three-body problem in
[Co, Ch]. Indeed, near the Lagrange solution, the restrictions of constant
energy levels of the reduced flow to a center manifold (actually unique)
turn out to be three-spheres. In an annulus of section bounded by rel-
ative periodic solutions of each family, the normal resonance along the
homographic family entails that the Poincaré return map is the identity
on the corresponding connected component of the boundary. Using the
reflexion symmetry with respect to the plane of the relative equilibrium,
we prove that, close enough to the Lagrange solution, the return map is
a monotone twist map.
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Consider three point bodies in R3, with the same mass 1
3 undergoing Newtonian

attraction (it is only in the Appendix that we take general masses).

If q = (q0, q1, q2) ∈ (R3)3 and p = (p0, p1, p2) ∈ (R3)3 respectively denote the
configuration, that is the positions of the 3 bodies, and the configuration of the
impulsions, that is pj = 1

3 q̇j , j = 0, 1, 2, the equations of the problem are

q̈j =
∑

k 6=j

1

3

qk − qj
||qk − qj ||3

, j = 0, 1, 2,

or equivalently Hamilton’s equations

ṗj = −∂H0

∂qj
, q̇j =

∂H0

∂pj

, j = 0, 1, 2,

where the Hamiltonian H0 is defined by

H0(p, q) =
3

2

∑

0≤j≤2

||pj ||2 −
1

9

∑

0≤j<k≤2

1

||qj − qk||
.

We are interested in the so-called Lagrange relative equilibrium solution which,
after identification of R3 with C×R, is defined by qL(t) =

(

qL
0 (t), qL

1 (t), qL
2 (t)

)

,
with

qL
j (t) =

(

1√
3

exp

[

i

(

t− 5π

6
+ j

2π

3

)]

, 0

)

(L)

(this choice of the origin of time is meant to simplify formulae from Jacobi
coordinates to polar coordinates below). In this solution, the three bodies rotate
uniformly with period 2π in the horizontal plane as a rigid equilateral triangle
whose edges have length 1.

1 Reduction by translations and rotations

Define the Jacobi coordinates (Q,P ) =
(

(Q0, Q1, Q2), (P0, P1, P2)
)

by

Q0 = q0, Q1 = q1 − q0, Q2 = q2 −
q0 + q1

2

P0 = p0 + p1 + p2, P1 = p1 +
p2

2
, P2 = p2.

The transformation from (q, p) to (Q,P ) is symplectic. The total linear momen-
tum P0 remains constant. We fix it to be 0 and we shall think of (Q1, Q2, P1, P2)
as coordinates in the subspace

∑

qj = 0,
∑

pj = 0
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of the phase space where the center of mass is fixed at the origin. The Hamilto-
nian of the (full, as opposed to the reduced one, defined below) 3-body problem
becomes

H(P1, P2, Q1, Q2) = 3||P1||2+
9

4
||P2||2−

1

9||Q1||
− 1

9||Q2 + 1
2Q1||

− 1

9||Q2 − 1
2Q1||

,

and the Lagrange solution becomes

QL
1 (t) =

(

eit, 0
)

PL
1 (t) =

(

i

6
eit, 0

)

QL
2 (t) =

(√
3

2
ieit, 0

)

PL
2 (t) =

(

− 1

3
√

3
eit, 0

)

.

(L)

Notations

qj = (xj , yj , zj), pj = (x′j , y
′
j , z

′
j), j = 0, 1, 2

Q1 = (X1, Y1, Z1) =
(

(1 +R1)e
iΘ1 , Z1

)

Q2 = (X2, Y2, Z2) =
((√

3/2 +R2

)

ei(Θ2+
π
2
), Z2

)

P1 = (X ′
1, Y

′
1 , Z

′
1) =

((

R′
1 + i

1/6 + Θ′
1

1 +R1

)

eiΘ1 , Z ′
1

)

P2 = (X ′
2, Y

′
2 , Z

′
2) =

((

R′
2 + i

1/6 + Θ′
2√

3/2 +R2

)

ei(Θ2+
π
2
), Z ′

2

)

.

Note that the origin of the polar coordinates is chosen at the positions and
momenta of the Lagrange solution at time 0.

Consider the symplectic invariant submanifold of vertical angular momentum
(there are singularities at the colinear configurations with colinear velocities but
we stay far from them)

~C = (Cx, Cy, Cz) = Q1 ∧ P1 +Q2 ∧ P2 = (C(1)
x , C(1)

y , C(1)
z ) + (C(2)

x , C(2)
y , C(2)

z ),

that is of equations Cx = Cy = 0. Provided that C
(2)
z does not vanish (and it

certainly does not in the neighborhood of the Lagrange relative equilibrium),
the latter equations can be solved for (Z2, Z

′
2):

Z2 = −X2C
(2)
x + Y2C

(2)
y

C
(2)
z

=
X2C

(1)
x + Y2C

(1)
y

C
(2)
z

,

Z ′
2 = −X

′
2C

(2)
x + Y ′

2C
(2)
y

C
(2)
z

=
X ′

2C
(1)
x + Y ′

2C
(1)
y

C
(2)
z

.

Hence we can express the restriction of the Hamiltonian vector field in the (non
symplectic) variables

R1,Θ1, Z1, R2,Θ2, R
′
1,Θ

′
1, Z

′
1, R

′
2,Θ

′
2.
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From now on, we focus on the vector field rather than on the Hamiltonian;
the symplectic form, which is not standard any longer, does not need to be
computed. Invariance under horizontal rotations implies that the vector field
depends on Θ1 and Θ2 only through Θ1 − Θ2. Up to a change of notations,
taking Θ1 − Θ2 as a coordinates amounts to setting Θ2 = 0. Additionally fix
the angular momentum at the value 1

3 it has for Lagrange, i.e. fix Θ′
1 + Θ′

2 = 0.
Hence the restriction of the induced vector field can be expressed in the variables
Θ1,Θ

′
1, R1, R

′
1, R2, R

′
2, Z1, Z

′
1. It will be referred to as the reduced vector field,

in which the Lagrange solution corresponds to a singularity at the origin.

2 Linear analysis

We review some known facts about the linearized equations along a relative
equilibrium solution (see [MS] in the planar case and [Mo], unfortunately un-
published, in the spatial case, as well as [Ma1]). They hold for any number of
bodies and any masses but we consider only the equilateral relative equilibrium
of three equal masses.

2.1 The splitting of the variational equation

It follows from the Pythagoras theorem that, when perturbed in an orthogonal
direction, the length of a straightline segment stays constant at the first order of
approximation. It follows that the variational equation of the n-body problem
along any planar solution splits into two parts which correspond respectively to
variations in, or orthogonal to, the plane of motion. Starting with a solution in
the horizontal plane, we shall speak of the horizontal variational equation (HVE)
and the vertical variational equation (VVE). In our case, since the triangle
edges have length 1, if the variation of qi(t) is δqi(t) = δqH

i (t) + δqV
i (t), with

∑2
i=1 δqi ≡ 0, (HVE) and (VVE) read respectively

¨δqH
i =

1

3

∑

j 6=i

(δqH
j − δqH

i ) −
∑

j 6=i

〈

qj − qi, δq
H
j − δqH

i

〉

(qj − qi)

= −δqH
i −

∑

j 6=i

〈

qj − qi, δq
H
j − δqH

i

〉

(qj − qi), i = 0, 1, 2, (HVE)

¨δqV
i =

1

3

∑

j 6=i

(δqV
j − δqV

i ) = −δqV
i , i = 0, 1, 2. (VVE)
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2.2 Vertical variations and the Γ1-symmetry

(VVE) is a triple of resonant harmonic oscillators whose solutions have the same
period as the relative equilibrium. After fixing the center of mass and switching
to the Jacobi coordinates, it becomes δ̈QV

i = −δQV
i , i = 1, 2. Finally, after

reducing by the rotations, setting QV
i = (0, 0, Zi) and switching to the variables

(Θ1,Θ
′
1, R1, R

′
1, R2, R

′
2, Z1, Z

′
1), it becomes

Z̈1 = −Z1,

or,

Ż1 = 6Z ′
1, Ż ′

1 = −1

6
Z1.

We will now describe the solutions of (VVE), but before the reduction of rota-
tions and in the initial coordinates. Recall that a vertical variation does not
change the shape of a configuration at first order. Hence, the space

{
(

(δqV
1 , δq

V
2 , δq

V
3 ), (δq̇0

V , δq̇1
V , δq̇2

V )
)

∈ R
3 × R

3,

2
∑

i=0

δqV
i = 0,

2
∑

i=0

δq̇i
V = 0}

of vertical variations at any point (qo, po) = (qL(t0), p
L(t0)) of the Lagrange

relative equilibrium is the space tangent at (qo, po) to the submanifold

V = {(q, p), q = ρRqo, p = σSpo} ,

where ρ, σ ∈ R are arbitrary and R,S ∈ SO(3) are rotations whose axes are
horizontal.

If we set

eR(t) =





Re ζei(t+ π
2
)

Re ζ2ei(t+ π
2
)

Re ei(t+ π
2
)



 , eP (t) =





Re ζ2ei(t+ π
2
)

Re ζei(t+ π
2
)

Re ei(t+ π
2
)



 , ζ = e
2πi
3 ,

the solutions of (VVE) are of the form νeR(t+ψ)+µeP (t+ϕ), with ν, µ, ψ, ϕ ∈ R.
This weird choice of basis is due to the former choice of a Lagrange solution
(equation (L) in the introduction).

The solutions of the form νeR(t + ψ) of the (VVE) correspond to solutions
obtained from the Lagrange solution by a rotation around the y-axis. The
solutions of the form µeP (t+ ϕ) are described in the Appendix. We shall now
mention the important symmetry properties of the first order solutions of the
equations of motion defined by

qP
µ (t) = qL(t) + µeP (t),

where each element of eP (t) is identified with a triple of vertical vectors in R3

(the choice of the phase ϕ = 0 is the unique one for which, at time t = 0, body
2 lies on the positive y-semi-axis).
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Figure 1: From left to right, qR(t) and qP (t) in the fixed frame, and qP (t) in
the rotating frame. The positions of the bodies are indicated at time t = 0.

Observed in a frame which rotates uniformly at the same angular speed as the
Lagrange solution but in the opposite direction, qP

µ (t) defines a loop

qO
µ (t) =

(

qO
0 (t), qO

1 (t), qO
2 (t)

)

= eit · qP
µ (t) = eit · qL(t) + µeP (t)

in the configuration space of the 3-body problem (eit acts only on the horizontal
component; O is an allusion to oyster, see the third part of Figure 1; the notation
qO should not be confused with qo, which stands for the configuration qL(t0)).
This loop is invariant under the action of the twelfth-order group

Γ1 = {s, σ | s6 = 1, σ2 = 1, sσ = σs−1}

with generators acting in the following way (cf. [Ma1, Ma2], and [CFM] where
the choice of the axes and hence of the action is different: the emphasis there is
laid on the Eight which hence lies in the horizontal plane, whereas the Lagrange
solution accordingly stands vertically):

(s · q)(t) = (Σq1(t− 2π/6),Σq2(t− 2π/6),Σq0(t− 2π/6))

(σ · q)(t) = (∆q1(−t),∆q0(−t),∆q2(−t)) , (A)

where Σ denotes the symmetry with respect to the xy-plane, and ∆ denotes the
symmetry with respect to the y-axis.

We postpone until section 5 a more detailed description of the Γ1-invariance of
qP and of its projection on the space reduced by rotations.

2.3 The splitting of (HVE)

Any relative equilibrium solution of the n-body problem in R2 lies in a four-
dimensional symplectic subspace H of the phase space, invariant under the
Newton flow, which is the collection of all homographic solutions with the same

6



configuration up to similarity. If qo = qL(t0) ∈ (R2)3 is the configuration of a
relative equilibrium solution at some instant t0, H is the set

H = {(q, p), q = ρRqo, p = σSpo} ,

where ρ, σ ∈ R, R,S ∈ SO(2). Note that, as po is the image of qo under the
π
2 -rotation around the vertical, po could be replaced by qo in the above formula.

After the reduction of the rotational symmetry, it becomes the set of homo-
graphic (i.e. Keplerian) motions with a given angular momentum, up to rota-
tions. The spectral analysis below entails that, with its symplectic orthogonal,
it splits the space of horizontal variations into two invariant subspaces.

2.4 The spectrum

The spectrum of the linearization at the Lagrange relative equilibrium of the
reduced Newton flow splits into three parts, corresponding to three invariant
subspaces, the vertical subspace, the homographic subspace and the symplectic
orthogonal of these two, respectively of dimension 2, 2 and 4. Together, the last
two subspaces generate the horizontal variations:
– to each of the first two subspaces corresponds a pair of eigenvalues ±i;
– to the last one corresponds a quadruplet of eigenvalues λ,−λ, λ̄,−λ̄ with
λ = 1√

2
+ i and with horizontal eigenvectors.

The first (inocuous) surprise (which, in fact, can be immediately deduced from
the formulas in [Mo], valid for any set of three masses) is that there are more
resonance relations than we expected, since λ = λ̄+ 2i.

We shall identify the three invariant subspaces respectively with C,C and C2,
and call ũ, ṽ, h̃, k̃ complex coordinates:
— ũ in the invariant subspace of the (horizontal) homographic family.

— ṽ = m(Z1− iŻ1) = m(Z1−6iZ ′
1) in the vertical subspace, where m ∈ C\0.

The coefficient m can be chosen as desired so as to simplify the normal form in
the next section. (In our case, m ≈ −0.008 + i 0.022.)

— h̃ and k̃ in the hyperbolic part.
The linearized vector field becomes

˙̃u = iũ, ˙̃v = iṽ, ˙̃h = λh̃, ˙̃k = −λk̃.

In the coordinates (Θ1,Θ
′
1, R1, R

′
1, R2, R

′
2, Z1, Z

′
1) of the reduced vector field,

the orthogonal symmetry with respect to the horizontal plane (which preserves
angular momentum when it is vertical) corresponds to changing Z1, Z

′
1 into

−Z1,−Z ′
1. Hence, in the complex coordinates (ũ, ṽ, h̃, k̃), the invariance un-

der this symmetry translates into the invariance of the vector field under the
transformation

T (ũ, ṽ, h̃, k̃) = (ũ,−ṽ, h̃, k̃),

7



the invariant horizontal subspace being defined by the equation ṽ = 0. This
remark will play an important role in the sequel.

2.5 The energy on a center manifold

In the sequel, we will need to consider a local center manifold of the relative equi-
librium (see section 4.1). From our previous description of H and V , it follows
that, at the non reduced level, a center manifold lifts to a submanifold tangent
to the submanifold of the phase space generated by rotations and homotheties
acting independently on the configuration qo = qL(t0) and on the configuration
of the impulsions po = pL(t0). Hence, when pulled back to the non reduced
phase space, such a lifted center manifold is tangent to the submanifold

C =
{

(q, p) ∈ (R3)3 × (R3)3, q = ρRqo, p = σSpo
}

.

where ρ, σ ∈ R+ and R,S ∈ SO(3). As in the definition of H in section 2.3, po

could be replaced by qo in this formula (compare to [Mo]).

The following lemma will be crucial in the last part of the paper:

Lemma 2.1 As an equilibrium of the restriction of the reduced Hamiltonian
to a center manifold, the relative equilibrium solution is a non degenerate min-
imum. In particular, the restriction to a local center manifold of a constant
energy hypersurface close enough to the relative equilibrium is diffeomorphic to
the three-sphere.

Proof. It is enough to show the positivity of the Hessian of the restriction of
the energy function H0 to the submanifold C.

Before reduction, (ρ, σ,R, S) ∈ (R+)2 × SO(3) × SO(3) are (generalized) coor-
dinates on C and the restriction of H0 is

HC
0 (ρ, σ,R, S) =

3σ2

2

∑

0≤j≤2

||po
j ||2 −

1

9ρ

∑

0≤j<k≤2

1

||qo
j − qo

k||
=
σ2

6
− 1

3ρ
.

We compute the reduced system by first quotienting by the full group SO(3)
and then fixing the length of the angular momentum. This amounts to replacing
(ρ, σ,R, S) by (ρ, σ,R−1S) and imposing the relation

ρσ||
2
∑

i=0

qo
i ∧ R−1Spo

i || = ||
2
∑

i=0

qo
i ∧ po

i || := ||~CL||.

Any element of a neighborhood of the Identity in SO(3) can be uniquely written
as expA, where A is an antisymmetric 3 × 3 matrix. In particular,

R−1S = exp





0 −c b
c 0 −a
−b a 0
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= Id+





0 −c a
c 0 −a
−b a 0



+
1

2





−(b2 + c2) ab ac
ab −(c2 + a2) bc
ac bc −(a2 + b2)



+ · · · ,

where the dots represent terms of order higher than or equal to 3 in a, b, c.
Plugging this into the above relation linking ρ, σ and R−1S and choosing t0 = 0
in the definition of qo and po, by a direct computation we get that

2
∑

i=0

qo
i ∧R−1Spo

i = ~CL +





gb
fa
0



+
1

2





−gac
−fbc

−f(c2 + a2) − g(b2 + c2)



+ · · ·

where

f =

2
∑

i=0

xiηi =
1

6
, g = −

2
∑

i=0

yiξi =
1

6
, qo

i = (xi, yi, 0), po
i = (ξi, ηi, 0).

(this very simple formula comes from the fact that
∑2

i=0 xiξi =
∑2

i=0 yiηi = 0;

notice also that || ~CL|| = f + g = 1
3 ). Hence

1

ρ
=

[

1 − 1

2(f + g)2
(

fga2 + fgb2 + (f + g)2c2 + · · ·
)

]

σ.

Finally, we can take (a, b, c, d = σ−1) as local coordinates in C in the neighbor-
hood of the Lagrange equilibrium. In these coordinates, we get

HC
0 = −1

6
+

1

24
(a2 + b2) +

1

6
(c2 + d2) + · · ·

As all the coefficients are positive, this proves the lemma.

The following consequence was pointed out to us by Rick Moeckel.

Corollary 2.2 The local center manifold is unique (and hence T -symmetric).

Proof. As it stays close to the Lagrange solution, the intersection of any local
center manifold with an energy level is a normally hyperbolic compact invariant
submanifold of the restriction of the reduced flow to this level. Hence, in a
neighborhood, the points whose forward and backward orbits stay close to it
belong to the intersection of its stable and unstable manifold, which proves the
uniqueness.

3 A third order normal form

Using Trip [GL] or Maple, we compute a normal form at order 3 of the (re-
duced) vector field, keeping only the resonant terms. This leads to new complex

9



variables u, v, h, k which are tangent at the first order to ũ, ṽ, h̃, k̃. The normal
form is not unique at a general order, but the successive changes of variables
which eliminate the non resonant terms can be chosen so that, in the result-
ing (complex) coordinates (u, v, h, k), the vector field is still invariant under
T (u, v, h, k) = (u,−v, h, k), the invariant horizontal subspace still being defined
by the equation v = 0.

The result is of the following form:

u̇ = iu[1 + α|u|2 + β|v|2 + γhk + γ̄h̄k̄] +O5

v̇ = iv[1 + a|u|2 + b|v|2 + chk + c̄h̄k̄] +Av̄hk̄ +O5

ḣ = λh[1 + r|u|2 + s|v|2 + thk + t′h̄k̄] +Rv2h̄+O5

k̇ = −λk[1 + r|u|2 + s|v|2 + thk + t′h̄k̄] −Rv̄2k̄ +O5,

where the coefficients have the following non-zero values:

α = −1, β = −1, γ = 9
2 + 6i

√
2,

a = −1, b = − 21
19 , c = 186

19 + 126
√

2
19 i, A = − 120

19 ,

r = − 11
12 −

√
2

12 i, s = − 73
57 + 10

√
2

57 i, t = 275
57 + 334

√
2

57 i,

t′ = 105
19 (1 − i

√
2), R = 5

√
2

19 i,

and where O5 stands for real analytic functions of order 5 in u, ū, v, v̄, h, h̄, k, k̄.

It calls for a few comments:

— For instance the terms Av̄hk̄, Rv2h̄ and −Rv̄2k̄ correspond respectively to
the resonances i = −i+ λ− λ̄, λ = 2i+ λ̄ and −λ = −2i− λ̄.

— The symmetry under T accounts for the absence of some resonant mono-
mials, e.g. |u|2v in u̇, or u|v|2 and ūv2 in v̇.

— It remains unclear to us why the normal form is also invariant with respect
to u 7→ −u (for instance u̇ has no term in u2v̄ or ūhk̄); this symmetry holds at
order five.

— At this order, Re (hk) is an approximate first integral.

— Each coefficient is homogeneous for some degree, with respect to the scaling
of the eigenvectors of the linearized vector field. For instance, the equality α = β
is meaningless and disappears if one choses different scalings. On the contrary,
the equality a = α has an intrinsic meaning and it will follow from the Appendix
that this resonance actually persists in normal forms of every order.

4 Local existence and uniqueness of a vertical

Lyapunov family

We are going to prove that, in spite of the (1-1)-resonance with the homo-
graphic family, a unique (mod similarities) family of relative periodic solutions
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bifurcates in the vertical direction (see the more precise statement below) from
the equilateral Lagrange solution of the equal mass spatial three-body problem.
A local expansion of this family is described in Marchal’s book [Ma1] under the
hypothesis that it possesses the 12th order symmetry of the shape sphere; also,
a global continuation is described under the name of P12, in [Ma2], where it
is shown how it connects the Lagrange solution to the Eight through periodic
solutions which minimize the action in the rotating frame under the constraint
of the 12th order symmetry (see also [C2]). What is lacking to make the proof
rigorous is the uniqueness of such action minimizers. The rigorous proof of the
existence of this family near the Eight is given in [CFM] where it is named the
Γ1-family. This section and the following are devoted to proving the existence
and uniqueness of the P12 family near the Lagrange relative equilibrium.

We will call a Lyapunov surface or family any invariant surface containing the
Lagrange equilibrium and foliated by periodic orbits of the reduced three-body
problem. We will call it spatial if is contained in some conical region |u| ≤ ε|v|,
ε > 0, and vertical if it is tangent to the vertical subspace u = h = k = 0.

Proposition 1 In the neighborhood of the Lagrange equilibrium, the reduced
vector field possesses a unique spatial Lyapunov surface P. This surface is
vertical and locally of class Cn for any n ≥ 0.

This is certainly not an optimal result with respect to regularity: at the expense
of heavy computations, following [Co] one should be able to prove analyticity
of P by a direct inspection of the series; the only difference with [Co] is that
due to the four extra hyperbolic directions, which moreover are resonant with
the central part, one must carry out the computations in the full 8-dimensional
space. Rather, we shall work in the 4-dimensional center manifold.

Instead of fixing the period as in [Ma2] or [CFM], in section 1 we have fixed the
angular momentum; due to the homogeneity of the Newtonian potential, it is
easy to switch from one constraint to the other as long as the angular momentum
does not vanish. In our case, the P12 family will appear as a Lyapunov family
associated to the vertical eigenspace, of equation u = h = k = 0.

4.1 Restriction to the center manifold

Insofar as we look for the existence and uniqueness of an invariant C2-surface
foliated by periodic solutions, we can restrict our attention to the (T -symmetric
because unique) local 4-dimensional center manifold of class C2, tangent to
the subspace of coordinates ũ, ṽ. This center manifold contains all the local
recurrence and in particular all the local Lyapunov families.

In the coordinates u, v of such a center manifold, the restriction of the vector
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field is still invariant under the mapping τ : (u, v) 7→ (u,−v) and of the form

u̇ = iu[1 + α|u|2 + β|v|2] +O5

v̇ = iv[1 + a|u|2 + b|v|2] +O5,

with v = 0 defining the Lyapunov family of equilateral homographic motions.
Moreover, one checks with Maple that the energy becomes (compare to 2.5)

H = −1

6
+

|u|2
9

+
|v|2
9

+O4.

The problem is now similar to the planar circular restricted problem in the
Lunar case (see [Co], [Ch], [Ku] or [Du] in a more general situation), where the
Lyapunov orbits are Hill’s direct and retrograde orbits. The proof of existence,
local uniqueness and analyticity of the P12 family would have gone along the
same lines as in [Co], had we known that the center manifold were analytic.
Instead, we reproduce here the simple proof of [Ch] which gives the existence
and uniqueness but not the analyticity (to get the analyticity we must avoid to
restrict to the center manifold, consider formal normal forms at infinite order
and use majorant series as in [Co]).

4.2 Blow up

We take up the above equations which describe the restriction of the vector field
to the center manifold. By direct identification one checks that the solutions at
time T with initial conditions u(0) = u, v(0) = v are of the form

u(T ) = uei[1+α|u|2+β|v|2]T + Ũ(u, v, T )

= ueiT
(

1 + i
[

α|u|2 + β|v|2
]

T
)

+ U(u, v, T )

v(T ) = vei[1+a|u|2+b|v|2]T + Ṽ (u, v, T )

= veiT
(

1 + i
[

a|u|2 + b|v|2
]

T
)

+ V (u, v, T ),

where Ũ(u, v, T ), U(u, v, T ), Ṽ (u, v, T ), V (u, v, T ) are of order 5 in |u|, |v| uni-
formly on a compact interval of time (for what follows, T can be supposed to be
close to 2π). Because of the existence of the energy first integral, the equations
u(T ) = u, v(T ) = v are a consequence of the two equations

Arg v(T ) − Arg v = 2π, u(T ) = u.

The first equation reads

T + Arg

[

1 + i(a|u|2 + b|v|2)T +
V (u, v, T )

v

]

= 2π,

12



that is
T = 2π(1 − a|u|2 − b|v|2) +O3.

It follows that the second equation becomes

2πiu
[

(α− a)|u|2 + (β − b)|v|2
]

= O4.

In order to recover uniqueness of the local solution, localize in a conical region
containing the vertical plane u = 0, of the form |u| ≤ ε|v| (some ε > 0 being
fixed). Such a localization is naturally obtained by means of a complex blow up

u = w1w2, v = w2, |w1| ≤ ε.

The two equations

Arg v(T ) − Arg v = 2π, u(T ) = u

become

−2π + T + Arg

[

1 + i|w2|2(a|w1|2 + b)T +
V (u, v, T )

w2

]

= 0

[

eiT
(

1 + i|w2|2(α|1|2 + β)T
)

− 1
]

w1 +
U(u, v, T )

w2
= 0.

The functions U and V are C∞ complex functions which are of order 5 in |u|
and |v|. It follows that their real and imaginary parts are functions of class
C3 whose three first derivatives vanish along (w2 = 0). We shall denote such
functions by o3. It follows that the first equation determines T as a C3-function
of w1, w̄1, w2, w̄2 of the form

T = 2π − 2π(b+ a|w1|2)|w2|2 + o3.

The second equation now takes the form

[

2πi
(

(β − b) + (α− a)|w1|2
)

|w2|2 + o3
]

w1 + o3 = 0.

Dividing by |w2|2 a function o3, one gets a C1-function whose first derivative
vanishes along (w2 = 0). As b 6= β, it follows from the implicit function theorem
that this equation is equivalent to

w1 = o1(w2, w̄2),

which defines a C1-submanifold of dimension 2 in the neighborhood of the origin,
which is tangent to the w2-plane. After blowing down, it uniquely defines a
surface P tangent at order 2 to the v-plane and foliated by orbits of period close
to 2π.

13



Cn-regularity Using normal forms at order three, we have only been able to
prove that the surface which supports the family of periodic orbits is of class
C2. But, by considering normal forms at higher orders, the same method allows
to prove that, for any integer n, it is of class Cn in some neighborhood of the
singularity. Indeed, it is enough to note that the resonant monomials in u̇ or v̇
are of the form uiūjvkv̄l, with i− j + k− l = 1. After the blow up, such a term

becomes w
(i)
1 w̄

(j)
1 w

(i+k)
2 w̄

(j+l)
2 . Since i+ k = j + l + 1 ≥ 1, any such term stays

regular after being divided by w2. As mentionned, the family is analytic but we
will not prove it here.

5 The Γ1-symmetric P12 family

In section 2.2 an action of the group Γ1 was defined on 2π-periodic loops of the
configuration space. Yet the invariant surface P is foliated by periodic orbits
whose period varies. So, we will consider the natural extension of the action
of Γ1 to the space of periodic loops of any period T > 0, obtained by merely
replacing every occurence of 2π by T in the formulae (A). (As already men-
tionned, the scaling symmetry of the n-body problem allows to canonically put
in correspondance solutions with a fixed norm of the angular momentum, and
solutions with a fixed period; but the reduction by rotations is more tractable
by fixing the norm of the angular momentum than the period of periodic orbits.)

Now, a periodic solution of the reduced 3-body problem can be lifted, in the
manifold of fixed angular momentum, to a solution of the full 3-body problem
which is periodic in a rotating frame. Provided that the rotation is uniform, the
angular speed of the frame is unique up to a multiple of 2π per period. If one
choses that, for the Lagrange solution, the frame rotates exactly by one turn
per period in the direction opposite to the motion, by continuity the rotation
of the frame of each orbit of the invariant surface P becomes well defined. In
this section we address the question of existence and uniqueness of the lift of
solutions lying in P , to Γ1-symmetric loops.

Theorem 1 Each leaf of P is the underlying (non parametrized) orbit of the
projection (mod SO(2)) of exactly two solutions of the full three-body problem
which are Γ1-symmetric in the rotating frame. These two solutions differ only
by a phase shift of half their period.

The so defined lift of P corresponds, after normalization of the period, to the
P12 family described by Marchal in [Ma1] in the fixed frame and [Ma2] in the
rotating frame. Marchal found the first terms of the Fourier expansion of the
family, which was a strong hint about its existence; but, as mentioned above,
he had to a priori assume the 12th order symmetry as an ansatz.
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Theorem 1 can be proved with an argument involving the action integral, as
described in section 7. However, for the sake of simplicity, this section is devoted
to proving theorem 1 using mainly the description of solutions of (VVE) given
in section 2.2.

Proof. Define a curve C2 on P through the Lagrange equilibrium by the equation
z2 = 0. That this curve is regular comes from the following observation. Since
P is tangent to the space ũ = h̃ = k̃ = 0, one can choose ṽ = m(Z1 − iŻ1)
as a coordinate on P . Because a permutation of the bodies sends the vertical
Lyapunov family to another one, hence to itself by uniqueness, we can as well
choose Z2 − iŻ2. But Z2 = z2 − (z0 + z1)/2 = 3z2/2 and Z ′

2 = z′2. Hence
(z2, ż2) = (z2, 3z

′
2) are coordinates also, with opposite orientation. (We could of

course have directly chosen (Z2, Z
′
2) instead of (Z1, Z

′
1) in section 1, but nobody

is perfect [W].)

Being regular at the origin, the curve C2 is transverse to the leaves of P \ 0 and
meets each of them at two points. Let C−

2 be the component of C2 \ 0 along
which ż2 < 0. (Focusing on C2 comes from the choice of eP in section 2.2.)
Taking µ ∈ C−

2 as initial condition defines a unique time parametrization q̂µ of
each leaf of P . Moreover, let qµ be the unique lift of q̂µ to the solution —in the
rotating frame which makes it 2π-periodic— of the 3-body problem, satisfying
the property that, at time 0, body 2 lies on the positive y-semi-axis. According
to section 2.2 we have

qµ(t) = qO
µ (t) +O(µ2) = eit · qL(t) + µeP (t) +O(µ2).

Since the action integral of the 3-body problem is invariant under the action
of Γ1, the image by an element γ ∈ Γ1 of the periodic solution qµ is itself a
periodic solution satisfying

γ · qµ = qµ +O(µ2),

because γ · qO
µ = qO

µ and the action of γ is differentiable. In particular the set of
γ ·qµ’s projects mod SO(2) on a vertical Lyapunov family which, by uniqueness,
lies in P . But the conservation of the energy (or of the period) shows that the
projections of qµ and γ · qµ have the same underlying (non parametrized) orbit.
Hence qµ and γ · qµ differ at most by a rotation R and a time shift τ :

γ · qµ(t) = R · qµ(t− τ) = qµ(t) +O(µ2).

Order zero in µ shows that the angle of the rotation R is 2τ . That R acts
trivially on eP and that eP has a trivial isotropy among phase shifts show, at
the order one in µ, that τ = 0 and hence R = 1. Hence γ · qµ = qµ.

Taking the origin of time rather on C+
2 = C2 ∩ {ż2 > 0} would have led to

another solution of the three-body problem, obtained from qµ by a phase shift
of half a period. This completes the proof.
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Figure 2: The hexagonal structure of the vertical Lyapunov surface P

The remainder of the section is devoted to a few comments. The Γ1-action
defined above is the restriction to the subgroup Γ1 of the natural action of the
group G = O(3) × O(2) × S3 3 (ρ, τ, σ) on the space of periodic loops in the
configuration space of the 3-body problem (cf. [CFM]):

(ρ, τ, σ) · (q0, q1, q2)(t) =
(

ρqσ−1(0)(τ
−1t), ρqσ−1(1)(τ

−1t), ρqσ−1(2)(τ
−1t)

)

.

Think of SO(2) ⊂ O(3) as the group of rotations in R3 around the z-axis. That
Γ1 is contained in the normalizer NG(SO(2)) of SO(2) in G and that the action
of Γ1 on a loop whose angular momentum is vertical preserves this property,
show that Γ1 acts on the space of reduced loops.

On the other hand, the action integral of the 3-body problem is invariant under
the action of Γ1. Hence Γ1 acts on the set of periodic solutions of the three-body
problem. The proof of the theorem above shows that this action is trivial on
the set of solutions lying on the vertical Lyapunov surface P and starting from
C−
2 .

One can define C0 and C1 as we did for C2, by exchanging the roles of the
bodies. The tangents at the origin to the curves Ci can be read from the explicit
description of qP (t) in section 2.2. In the coordinates (z2, ż2) in P , they are
defined by the following equations:

T0C0 : z2 = −
√

3ż2, T0C1 : z2 = +
√

3ż2, T0C2 : z2 = 0.

Similarly, one can introduce the curves C ′
i defined by the equations żi = 0.

Altogether these six curves constitute a realization on P of the Γ1-action on the
time circle. The intersections of a periodic solution γ in P with the three lines
Ci are the vertices of a hexagonal structure on γ such that Γ1 becomes the group
of isometries of the hexagon, the intersections with the C ′

i defining the axes of
symmetry orthogonal to the sides of the hexagon (see figure 2, where one shows
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also a fundamental domain corresponding to the part of the trajectory between
an isosceles configuration and a collinear one).

6 The annulus map and its torsion

Theorem 2 Up to the action of similarities and time shifts, exactly two families
of relative periodic solutions bifurcate from the equilateral relative equilibrium
solution of the equal-mass three-body problem: the periodic homographic family
and the quasi-periodic P12 family.

Due to a resonance, the method used to prove the existence and the local unique-
ness of P12 breaks down for the homographic family; more precisely, the equality
a = α prevents from proving as above the existence and uniqueness using the
implicit function theorem after an adapted blow-up u = w1, v = w1w2. Com-
puting the normal form to a higher order will not help: it follows from lemma 8.1
that for all integers n the coefficients of respectively u|u|2n in u̇ and v|u|2n in v̇
in higher order normal forms agree.

Of course the homographic family is known to exist (and to be defined by v = 0).
But the proof of its uniqueness is somewhat more subtle: the same lemma 8.1
is used with the symmetry of the equations under the map τ to prove that the
Poincaré return map in an annulus of section has no fixed point in the open
annulus. In turn, this implies the absence of any other Lyapunov family.

Proof. First, let u = ψ(v) = O3 be the equation of the Cj-submanifold P .
Replacing u by u−ψ(v) and keeping the old name v, we may assume that u = 0
and v = 0 are invariant submanifolds of the flow, corresponding respectively to
the P12 family and the homographic family. The equations then take the form:

u̇ = iu[1 + α|u|2 + β|v|2 +O4] + iūO4,

v̇ = iv[1 + a|u|2 + b|v|2 +O4] + iv̄O4,

where the coefficients α, β, a, b have not changed. Moreover, the equations are
invariant under τ(u, v) = (u,−v) and they preserve the restriction to the center
manifold of the energy function

H = −1

6
+

|u|2
9

+
|v|2
9

+O4.

Let us take polar coordinates

u = r1e
iθ1 , v = r2e

iθ2
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(not to be mixed up with those of section 1). The equations become

ṙ1 = r1O4,

ṙ2 = r2O4,

θ̇1 = 1 + αr21 + βr22 +O4,

θ̇2 = 1 + ar21 + br22 +O4,

where the notation O4 stands for functions of r1, r2, θ1, θ2 which are of order 4
in r1, r2.

In each energy surface H = − 1
6 + ε2 close enough to the origin (i.e. to the

Lagrange solution), we define an annulus of section Aε by the equations

H = −1

6
+
r21
9

+
r22
9

+O4 = −1

6
+ ε2, θ1 + θ2 = 0 mod (2π). (Aε)

Starting from initial conditions r1, r2, θ1, θ2, the solution after a (bounded) time
t is of the form

r1(t) = r1(1 +O4),

r2(t) = r2(1 +O4),

θ1(t) = θ1 + (1 + αr21 + βr22)t+O4,

θ2(t) = θ2 + (1 + ar21 + br22)t+O4.

We are interested in solutions of the equation of period close to 2π. As (θ̇1, θ̇2) is
close to (1, 1), such a solution will transversally intersect the annulus of section
at exactly two points i.e., it corresponds to a fixed point of the second-return
time Tε in the annulus Aε, defined by

4π = (θ1 + θ2)(Tε) =
[

2 + (a+ α)r21 + (b+ β)r22
]

Tε +O4,

hence

Tε = 2π

[

1 − a+ α

2
r21 − b+ β

2
r22

]

+O4.

Finally, the Poincaré second-return map in Aε is of the form

r1(Tε) = r1(1 +O4),

r2(Tε) = r2(1 +O4),

θ1(Tε) = θ1 + 2π

(

1 +
α− a

2
r21 +

β − b

2
r22

)

+O4,

θ2(Tε) = θ2 + 2π

(

1 − α− a

2
r21 − β − b

2
r22

)

+O4.

Lemma 6.1 If ε is small enough, the equation θ1(Tε) = θ1 + 2π defines the
homographic boundary of the annulus Aε.
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Proof. Since a = α and b 6= β, the θ1-component of the map above boils down
to

θ1(Tε) = θ2 + 2π

(

1 +
β − b

2
r22

)

+O4.

But we have additional information on the structure of the remainder in this
formula:

(1) It follows from lemma 8.1 that the structure of the vertical variational
equation does not depend on the excentricity of the homographic solution along
which it is computed, which implies that the restriction of the Poincaré map to
the homographic boundary of Aε, defined by r2 = 0, is the identity, hence the
O4 is a r2O3.

(2) The flow of the differential equation, hence also the Poincaré map, is
equivariant under the tranformation (r1, r2, θ1, θ2) 7→ ((r1,−r2, θ1, θ2)). Hence
the O4 actually is a r22O2.

(3) Finally, since the energy level H = − 1
6 + ε2 is compact, both r1 and r2

are bounded by cε, where c is a constant:

θ1(Tε) = θ1 + 2π

(

1 + r22

[

β − b

2
+O(ε2)

])

. (*)

It follows that the equation of the statement is of the form

r22
(

β − b+O(ε2)
)

= 0.

For ε small enough, it admits only the solution r2 = 0. This completes the proof
of the lemma and hence of theorem 2.

Theorem 3 If ε is small enough, there exist coordinates on the annulus Aε for
which the Poincaré return map is a monotone twist map.

Proof. Since θ1 + θ2 = 0 mod 2π in Aε we may choose ψ = θ1 as an angular
coordinate. A regular radial coordinate would be r1 − r2 but choosing ρ = r22
is more convenient, albeit singular at r1 = 0. Using (*), we see that the second
return map is of the form

(ρ, ψ) 7→
(

ρ
(

1 +O(ε4)
)

+O(ρ2), ψ + 2πρ

[

β − b

2
+O(ε2)

]

+O(ρ2)

)

,

where the O(ρ2) are functions of ρ and ψ and the O(εn) depend only on ε and
ψ. As ρ varies from 0 to ρ0 = O(ε2), this is indeed a monotone twist map if ε
is small enough.
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7 Additional comments

(1) Using the proof of the existence of the P12 family as a family of action
minimizers among Γ1-invariants loops (which, as we recalled, leaves open the
problem of uniqueness and hence of continuity of the family), one can replace
section 5 by the following observation. As the homographic family is not Γ1-
invariant in any rotating frame, it follows from theorem 3 that, in the neighbor-
hood of the Lagrange solution, the minimum of the action among Γ1-symmetric
loops of configurations in a rotating frame is unique up to a shift of time by
half the period; this defines the two solutions whose existence is asserted by
theorem 1.

(2) Many of the results of this paper hold for an open set of masses in the
neighborhood of the diagonal m0 = m1 = m2; in general the symmetry group
Γ1 needs to be replaced by the subgroup generated by s3. However, when
two masses are small compared to the third one, it is well known that the
Lagrange relative equilibrium becomes linearly stable and additional resonances
may appear.

8 Appendix: The vertical variational equation

along the equilateral homographic family

This section is devoted to solving the vertical variational equation of homo-
graphic motions in the three-body problem. It is used in the proof of theorem 2.
For the sake of generality, we assume that the masses mi are arbitrary. Also,
we give more details than is necessary. Here we do not seek originality, but only
a geometric description of the solutions.

A homographic solution of the three-body problem is a solution of the form

q(t) = (q0(t), q1(t), q2(t)) = ρ(t)q̂ = ρ(t) (q̂0, q̂1, q̂2) ,

where ρ(t) ∈ C satisfies the Kepler equation ρ̈ = − cρ

|ρ|3 and q̂ is a plane central

configuration.

More precisely we are interested in the case where the configuration is equi-
lateral. If r(t) is the length of the sides of the triangle at time t, for such an
equilateral homographic solution q(t) ∈ (R2)3, we have for i = 0, 1, 2,

q̈i =
∑

j 6=i

mj

qj − qi
r(t)3

= − M

r(t)3
qi , where M =

2
∑

i=0

mi
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because
∑2

i=0 miqi(t) = 0. The vertical variational equation is

z̈ = − M

r(t)3
z (VVE)

and we want to solve it in the subspace

D =

{

z = (z0, z1, z2) ∈ R
3,

2
∑

i=0

mizi = 0

}

.

Let 〈, 〉 denote the standard Euclidean product in R2.

Lemma 8.1 ([Da]) The solutions of (VVE) are paths of the form

zi(t) = 〈qi(t), di〉 , i = 0, 1, 2, (S)

where the triple (d0, d1, d2) ∈ (R2)3 is such that

2
∑

i=0

mi 〈qi(t0), di〉 = 0 and
2
∑

i=0

mi 〈q̇i(t0), di〉 = 0 (C)

for some time t0 (and hence for all).

Proof. For any choice of triple (d0, d1, d2) ∈ (R2)3, formula (S) gives a solution
of (VVE) in the space of unrestricted triples (z0, z1, z2) ∈ R3. Now, the 4-
dimensional subspace of the space {(zi, żi), i = 0, 1, 2} = R6 defined by the
equations

2
∑

i=0

mizi = 0,

2
∑

i=0

miżi = 0

is left invariant by such solutions of (VVE). Hence, if one chooses the di such
that condition (C) be satisfied at some instant t0, we get a solution z(t) of
(VVE) in D. Moreover the set of so-obtained solutions is 4-dimensional hence
we have got all of them.

In this 4-dimensional space of solutions, one can distinguish four 2-dimensional
vector subspaces, which generally are pairwise transverse (not when the masses
are all equal to each other, though; see below):

(1) solutions corresponding to d0 = d1 = d2 = d ∈ R2;

(2) solutions which preserve the verticality of the angular momentum C, that
is

2
∑

i=0

mi (〈di, q̇i〉 qi − 〈di, qi〉 q̇i) = 0;
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(3) solutions such that the di are aligned with the major axis of the ellipse
described by the corresponding body, that is, if t0 denotes the time at which
the bodies are at the perihelia of their respective ellipses,

di = δiqi(t0) with

2
∑

i=0

miδi||qi(t0)||2 = 0;

(4) solutions corresponding to the di orthogonal to the major axis of the
corresponding ellipse, that is

di = δiq̇i(t0) with

2
∑

i=0

miδi||q̇i(t0)||2 = 0.

To get a feeling of these solutions, notice that defining zi(t) by projecting the
elliptic motion of body i on some axis in the plane (this is essentially what
amounts to the scalar product with di) amounts to infinitesimally rotating the
plane of the corresponding ellipse around an axis through the origin, orthogonal
to di. Hence, the first 2-dimensional space of solutions of (VVE) corresponds
to infinitesimal rotations of the plane of the whole homographic solution while
the last two correspond to different infinitesimal rotations of the plane for each
body, around axes of rotation othogonal or parallel to the major axes of the
ellipses. Finally, all the solutions are obtained by inclining the plane in an
appropriate way for each body. They are all periodic with the same period as the
homographic solution (1:1 resonance). This explains the equality a = α and its
higher order analogues.

When the eccentricity is zero i.e. for the relative equilibrium solutions, the
equilateral solution is of the form (after identification of the horizontal plane
with C:

qj(t) = ρje
i(ωt+ϕj), j = 0, 1, 2,

2
∑

j=0

mjρje
iϕj = 0.

The two equations which express that the center of mass of the zj is at the
origin are equivalent to

2
∑

j=0

mjρjdje
−iϕj = 0.

Apart from the trivial case of a global rotation (all dj equal), it is obviously
satisfied by dj = e2iϕj which, in the case of equal masses gives d0, d1, d2 re-
spectively aligned with the principal axis of the ellipse described by body 0, 2, 1
(note the permutation of 1 and 2).

In case the eccentricity is arbitrary but the masses are all equal, one checks
immediately that choosing as above d0, d1, d2 respectively aligned with the prin-
cipal axis of the ellipse described by bodies 0, 2, 1 gives a solution for which the
angular momentum stays vertical.
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Thanks to Mickaël Gastineau for so kindly adapting Trip to our needs.

References

[Ch] Chenciner A. Le problème de la lune et la théorie des systèmes dy-
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