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Recent additions to the helicase family include motor proteins that do not actually 

unwind DNA, but rather translocate it.  By sensing short polar sequences that orient 

the bacterial chromosome, the FtsK helicase translocates DNA so as to align the 

termini of replicated chromosomes with each other, facilitating the late stages of 

chromosome segregation. 

 

Contributions by three biophysics groups on pages 965, 1023 and 1026 of this issue
1-3

  

provide compelling in vivo, in vitro and single-molecule experiments that elucidate the 

mechanism of sequence recognition by FtsK.  The septum-localized FtsK motor protein 

reels in the chromosome terminus dif  by sensing the orientation of short, repeated ‘FtsK- 

orienting polar sequences’ (KOPS), which point from the chromosome origin of 

replication (ori) to the terminus (dif).  The α and β domains of FtsK provide motor 

functionality, and the γ domain recognizes KOPS. From these data, combined with recent 

structural investigations of FtsK
4 

and single-molecule analysis of SF2 helicases
5,6

, a 

fascinating model for the action of this SF3 hexameric helicase is beginning to emerge.   

 

The FtsK protein was first identified in 1995 in a screen for temperature-sensitive 

Escherichia coli mutants having a filamentation phenotype during cell division
7
.  

Bacteria with the mutant phenotype grow without fully dividing, forming a long, 

concatamer-like filament of conjoined bacteria with mislocalized nucleoids.  

Fluorescence microscopy shows DNA bridges between cells unable to separate after 

division
8
.  Bound to the septum

9
, wild-type FtsK activates the emergency resolution of  

chromosome dimers by aligning the two dif  termini of daughter chromosomes at the 

septum.  The XerCD system then recombines the aligned dif termini, resolving the 

chromosome dimer into two separate chromosomes and allowing septation to proceed
10

.  

For this strategy to work, FtsK must translocate DNA from each daughter chromosome in 

the correct direction, bringing dif  sites close to the septum.  How does FtsK know which 

way to translocate DNA?  

 

Genetic experiments and sequence analysis have identified interspersed stretches of 

purine-rich DNA known as KOPS which orient the chromosome from ori to dif 
11,12

.  In 

E. coli, the KOPS consensus 5’ – GGGNAGGG– 3’ is overrepresented on the top strand 

of the chromosome on the 3’ side of ori, and also on the bottom strand of the 



chromosome on the 5’ side to ori.  How FtsK interacts with these oriented sequences is 

becoming clearer, thanks to the structural studies presented in the current issue. 

 

FtsK is a multidomain protein with an N-terminal transmembrane domain responsible for 

directing FtsK to the septum, a praline/glutamine-rich (PQ) domain and a tripartite, C-

terminal helicase domain (FtsKC, comprised of  α, β, and γ domains) responsible for 

DNA translocation
7
.  Most mechanistic studies have focused on this functional FtsKC 

domain and its ATPase activity.  The crystal structure of the FtsK-α and -β domains has 

recently been obtained
4
.  It shows a ring-like assembly reminiscent of that observed in 

replicative SF3 helicases such as the SV40 large T-antigen
13

 and the E1 protein from 

bovine papillomavirus
14

.  In FtsK-αβ the central cavity is just large enough to snugly 

accommodate double-stranded DNA. There are most probably at least two paired rings in 

a functional complex.  Using solution NMR studies, recombination assays, and analysis 

of DNA binding to FtsK-γ, Sivanathan et al.
1
 demonstrate that this domain folds as a 

winged helix and can recognize and bind KOPS.  Bulk biochemistry and single-molecule 

experiments presented page by Bigot et al.
2
 further show that the KOPS recruits FtsK, 

presumably in the so-called ‘permissive’ orientation.  In the so-called ‘non-permissive’ 

orientation, KOPS may transiently retain FtsK. 

 

FtsKC translocation along DNA has been explored using both standard biochemical 

assays
10

 and single-molecule DNA manipulation experiments
15,16

.  The single-molecule 

methodology is particularly well-suited for measuring, in real-time, the chemomechanical 

properties of molecular motors that transiently track along the double helix.  Direct 

visualization of large (micron-scale) aggregates of FtsKC moving along an extended 

DNA molecule, done by Ptacin et al.
3
, shows that FtsK-αβ is a functional motor protein 

capable of translocating along DNA but that it does not interact with the KOPS.  In these 

visualization experiments, the complete FtsKC system will translocate through 

permissively-oriented KOPS but stop and eventually reverse course when it encounters 

KOPS in the nonpermissive orientation.   Single-molecule measurements thus show that 

FtsKC can translocate DNA at a rate of up to ~7 kbp/second, or more than two microns 

per second, making it the fastest molecular motor currently known
15,16

.   

 

Single-molecule assays are also useful for observing the formation by FtsKC of a KOPS-

delimited DNA loop
2
 (Fig. 1).  The results of this experiment can be interpreted by 

consider the following.  The first of two paired FtsK rings binds the DNA, preferentially 

at the KOPS site; upon binding it will rapidly translocate along the double helix until it 

abruptly stops (either by abutting one of the surfaces to which the DNA is anchored, or 

by encountering the KOPS in a nonpermissive orientation).  At this point, the second 

FtsK ring completes assembly on the DNA and begin translocating in the other direction.  

Because it is joined to the first ring which is immobilized, the second ring also remains 

immobile and it is the DNA that is now translocated through the ring, forming a large 

loop between the two rings.  Translocation ends when another nonpermissive KOPS is 

detected or when the motor reaches the surface.  Such a large loop reduces the DNA end-

to-end extension and is easily detected by tracking, in real-time, the position of the 

tethered bead above the surface (Fig. 1c).   

 



In all of the single-molecule experiments presented in this issue
2,3

, the change in DNA 

extension owing to FtsKC-dependent loop extrusion matches the distance engineered 

between two convergent KOPS or between a KOPS and the solid surface it points toward.  

Comparable results were obtained in triplex displacement and XerCD-mediated 

recombination assays under control of permissively or nonpermissively oriented KOPS 

sequences
1,3

.   

 

Single-molecule experiments have also demonstrated that FtsKCtranslocation is 

exquisitely tuned so as to not perturb chromosome topology
17

.  Indeed according to the 

model proposed by Liu and Wang
18

, a protein that tracks the DNA groove is expected to 

generate a negative supercoil in its wake and a positive supercoil ahead of itself for every 

~10 base pairs (bp) translocated.  Instead, FtsK induces positive supercoiling ahead of 

itself at a rate of only one supercoil for every ~150 base-pairs translocated – just enough 

to avoid perturbing the native topology of the bacterial chromosome.  Thus FtsK does not 

simply track along the DNA but also subtly manipulates its topology.  Yet how can this 

protein closely monitor the DNA for any KOPS if it does not track the DNA groove? 

 

The rotary inchworm model of DNA translocation by FtsK
1,17

 provides the basis for a 

mechanistic explanation of this phenomenon (Fig. 2).  Because DNA is a double helix, 

simple translocation along its length results in a ‘pseudo-rotation’, θ, of the double helix 

in a fixed plane perpendicular to the molecule’s axis.  To give an example, translocation 

of FtsK along DNA by a single base-pair will cause a 35
o
 pseudo-rotation in the 

counterclockwise direction, if the observer sees the protein approaching head-on.  The 

discrepancy between this pseudo-rotation and the hexameric ring’s structural periodicity, 

φ = 60
o
,  will cause the DNA to ‘slip’ a small angle (φ−θ) at every translation step, so as 

to maintain register with the ring’s active monomer (see Fig. 2 for a schematic).  If FtsK 

advances along the DNA by 1.6 base-pairs for each catalytic turnover, one can estimate 

that a positive supercoil will be formed ahead of the protein for every ~140 bp 

translocated, in good agreement with the crystal structure and single-molecule 

observations
4,17

.  This rectified rotary inchworm model could also help explain the 

observation of large-scale rotational slippage of DNA during FtsK translocation, in which 

the positive torque built up ahead of the complex is sometimes abruptly released
17

.  Also, 

the small step size is sufficient to allow FtsK-γ to sense the DNA sequence beneath it 

without tight groove tracking. 

 

This loose coupling between DNA translocation and rotation stands in stark contrast to 

the tight coupling observed in the SF2 helicases EcoR124I 
5,19

 and RSC 
6
.  In the case of 

EcoR124I, groove tracking occurs without slipping and one positive supercoil is formed 

ahead of the complex for every ~10 bp translocated.  In the case of RSC the coupling 

constant has not yet been quantified, but it is almost certainly stronger than that observed 

for FtsK.  This may reflect the positive role of torsional DNA deformations in chromatin 

remodelling.   

 

It has been just over ten years since FtsK was identified through genetics.  In that span of 

time, positive feedback between genetics, bioinformatics, biochemistry, structural 

analysis and single-molecule observations has greatly potentiated research on this 



bacterial system and related helicases.  Helicases do not just unwind DNA, and 

understanding the complex topological tricks they can play will be fundamental to 

explaining their role in chromatin and chromosome dynamics.      
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Figure 1. Single-molecule FtsKC assay.   

(a) An individual DNA molecule with two converging KOPS is tethered between a glass 

surface and a small bead. By manipulating the bead using an optical or a magnetic trap, 

the DNA can be quantitatively extended and supercoiled so as to reproduce the 

mechanical constraints experienced by the double helix in vivo.  The readout in such an 

assay is the end-to-end extension of the DNA, determined by measuring, in real-time, the 

position of the tethered bead above the glass surface.   

(b) FtsKC binds to one KOPS and translocates DNA, extruding a loop.  Upon 

encountering the second KOPS in the non-permissive orientation, FtsKC stops before 

eventually reversing direction.  

(c) Real-time measurement of the DNA extension gives the size of the extruded loop, 

which is equal to the distance engineered between the converging KOPS. 

 
 

 

 

 

 



 
 

 

Figure 2. Rectified rotary inchworm model of DNA translocation by FtsKC.  In this 

schematic the catalytic sites of the hexamer are depicted as active (green) or inactive 

(red) and define a ‘catalytic plane’ which intersects (blue) the DNA phosphate backbones. 

Monomers in the ring are sequentially activated and the active catalytic site ‘rotates’ by 

60
o
 for every catalytic turnover.  In side view, we present only the DNA strand tracked by 

FtsKC, and blue line points to the intersection between the catalytic plane and the 

phosphate backbone.(a) At the active monomer, an ATP-dependent conformational 

change causes FtsK to translocate,without rotating, a distance on the order of 5.5 

Angstroms, or about 1.6 bp.  (b) The helical pitch of DNA (~35
o
 per bp) is such that the 

position of the phosphate backbone in the catalytic plane has now rotated only 56
o
 and 

therefore falls short of the neighboring catalytic site. (c) The DNA rotates by +4
o
 to catch 

up with and bind the newly active site of the neighboring monomer. No translocation 

occurs at this step.  Thus over the entire catalytic cycle, translocation and rotation are 

weakly coupled.  If the step size is slightly greater than 1.75 bp, the DNA will have to 

counter-rotate to maintain register with the active site, generating negative supercoils 

ahead of the complex. 
 

 

 


