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Controllability of the moments for

Khokhlov-Zabolotskaya-Kuznetsov (KZK)

equation

Anna Rozanova-Pierrat ∗

October 15, 2006

Abstract

Recalling the proprieties of the Khokhlov-Zabolotskaya-Kuznetsov
(KZK) equation, we prove the controllability of moments result for the
linear part of KZK equation. Then we prove the local controllability re-
sult for the full KZK equation applying a known method of perturbation
for the nonlinear inverse problem.

1 Introduction

Having a goal to prove a controllability of moments result for the KZK equa-
tion, we firstly say several words about this equation. The full mathematical
results of the analysis of KZK equation can be found in [33]. For explaining our
controllability result, we need to have a well-posed direct linear problem, and
we use the proprieties of the KZK equation, briefly described in the section 2.
To go from the linear inverse problem to the nonlinear one we would like to try
our usual controllability method (see [30, 31, 32]), the main points of which are
explained in the section 3. In the section 6 we imply it.

The KZK equation, named after Khokhlov, Zabolotskaya and Kuznetsov,
was originally derived as a tool for the description of nonlinear acoustic beams
(cf for instance [10, 40]). It is used in acoustical problems as mathematical model
that describes the pulse finite amplitude sound beam nonlinear propagation in
the thermo-viscous medium, see for example [1, 21, 8, 9, 26]. Later it has been
used in several other fields and in particular in the description of long waves in
ferromagnetic media [34].

The KZK equation, as it have been demonstrated in [8], accurately describes
the entire process of self-demodulation throughout the near field and into the
far field, both on and off the axis of the beam (in water and glycerin). The
term “self-demodulation”, which was coined in the 1960s by Berktay, refers to
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the nonlinear generation of a low-frequency signal by a pulsed, high-frequency
sound beam.

As it is known [9], the use of intense ultrasound in medical and industrial
applications has increased considerably in recent years. Both plane and focused
sources are used widely in either continuous wave or pules mode, and at in-
tensities which lead to nonlinear effects such as harmonic generation and shock
formation. Typical ultrasonic sources generate strong diffraction phenomena,
which combine with finite amplitude effects to produce waveforms that vary
from point to point within the sound beam. Nonlinear effects have become es-
pecially important at acoustic intensities employed in many current therapeutic
and surgical procedures. In addition, biological media can introduce significant
absorption of sound, which must also be considered. The KZK equation, as
a nonlinear equation with effects of diffraction and of absorption, which can
provide shock formation, is the mathematical model of these phenomena.

The non-linear phenomena found a recent application in the field of the ultra-
sonic medical imagery known under the name of “harmonic imagery”. In med-
ical imagery where the echographic bars concentrates energy in a very narrow
beam, the approach most commonly employed is the resolution of the equation
KZK which describes focused beams.

The KZK equation is not an integrable equation at variance Kadomtsev-
Petviashvili (KP) equation known to be integrable. Numerically in [10] has
been obtained the existence of a shock wave in the case of propagation of the
beam in nondissipative media and a quasi shock wave for the dissipative media.
The last phenomenon corresponds to the approximation of the beam’s front to
the shock wave but the solution has the tentative to be global. We obtained
the proof of the existence of the shock wave for the problem without viscosity.
We have established the global existence in time of the propagation in viscous
media only for rather small initial data. The announcement of the results can
be found in [11, 12, 13] and all details in [33].

We would like also to add a remark about the derivation of the equation.
In [33] one proves a large time validity of the approximation for two cases:

for non viscous thermoellastic media and viscous thermoellastic media.
More precisely we prove existence and stability of solutions described by the

KZK equation with the following properties

1. they are concentrated near the axis x1;

2. they propagate along the x1 direction;

3. they are generated either by initial condition or by a forcing on the bound-
ary x1 = 0.

This corresponds to the description of the quasi one d propagation of a signal
in an homogenous but nonlinear isentropic media.

Therefore it is assumed that its variation in the direction

x′ = (x2, x3, . . . , xn)
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perpendicular to the x1 axis is much larger that its variation along the axis x1.
The KZK equation contains the linear, diffusive and diffractive terms. It

usually has the following form for some positive constants β and γ:

∂2
τ,zU − 1

2
∂2

τU2 − β∂3
τU − γ∆yU = 0.

The derivation of the KZK equation takes into account the viscosity and the
size of the nonlinear terms. One starts from an isentropic Navier Stokes system:

∂tρ + ∇(ρu) = 0 , ρ[∂tu + (u · ∇)u] = −∇p(ρ) + b∆u , (1)

the pressure is given by a state law p = p(ρ), where ρ is density.
With the hypothesis of potential motion one introduces constant states

ρ = ρ0, u = u0.

Next one assumes that the fluctuation of density (around the constant state
ρ0), of velocity (around u0, which can be taken equal to zero with galilean), are
of the same order ε:

ρε = ρ0 + ερ̃ε , uε = εũε , b = εν,

here ε is a dimensionless parameter which characterizes the smallness of the per-
turbation. For instance in water with a initial power of the order of 0.3Vt/cm2

ε = 10−5.
The approximate state equation is

p = p(ρε) = c2ερ̃ε +
(γ − 1)c2

2ρ0
ε2ρ̃2

ε . (2)

Next one reminds the direction of propagation of the beam say along the
axis x1, and therefore considers the following profiles:

ρε = ρ0 + εI(t − x1

c
, εx1,

√
εx′) , uε = ε(v + εv1,

√
ε~w)(t − x1

c
, εx1,

√
εx′), (3)

In (3) the argument of the functions will be denoted by (τ , z , y) and c is taken
equal to the sound speed c =

√

p′(ρ0) . Inserting the functions ρε = ρ0 + εI, uε

in the Navier-Stokes system (1) one obtains:
1 For the conservation of mass:

∂tρε + ∇(ρεuε) = ε(∂τI − ρ0

c
∂τv) +

+ε2

(

− ρ0

c
∂τv1 + ρ0(∂zv + ∇y · w) − 1

ρ0
∂τI2

)

+ O(ε3) = 0 . (4)

2 For the conservation of momentum in the x1 direction:

ρεε(∂tuε,1 + uε∇uε,1) + ∂x1
p(ρε) − ε2ν∆uε,1 = ε(ρ0∂τv − c∂τI) +

+ε2

(

ρ0∂τv1 + c2∂zI − γ−1
2ρ0

c∂τI2 − ν
cρ0

∂2
τ I

)

+ O(ε3) = 0. (5)
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And finally for the orthogonal (to the axis x1) component of the momentum
one has:

ρεε(∂tu
′
ε + uε∇u′

ε) + ∂x′p(ρε) − ε2ν∆u′
ε = ε

3
2 (ρ0∂τ ~w + c2∇yI) +

+O(ε
5
2 ) = 0. (6)

Or in other words:

v(τ, z, y) =
c

ρ0
I(τ, z, y), (7)

∂τ ~w(τ, z, y) = − c2

ρ0
∇yI(τ, z, y), (8)

∂τv1 =
γ − 1

2ρ2
0

c∂τI2 +
ν

cρ2
0

∂2
τ I − c2

ρ0
∂zI, (9)

c∂2
τzI − (γ + 1)

4ρ0
∂2

τ I2 − ν

2c2ρ0
∂3

τ I − c2

2
∆yI = 0. (10)

The KZK equation (10) is written for the perturbation of density, but the
same equation with only different constants can be also derived for the pressure
and the velocity. The passage between these KZK equations is possible thanks
to (2), (7) and (8). For example the equation for the pressure has the form

∂2
τzp − β

2ρ0c3
∂2

τp2 − δ

2c3
∂3

τp − c

2
△yp = 0.

At this point one can state a theorem with hypothesis specified in [33].

Theorem 1 Let I be a smooth solution of the KZK equation (10), define the
functions v, w and v1 by the known I. Define the function U ε = (ρε, uε) by the
formula:

(ρε, uε)(x1, x
′, t) = (ρ0 + εI, ε(v + εv1,

√
ε~w))(t − x1

c
, εx1,

√
εx′).

Then there exist constants C ≥ 0 and T0 = O(1), such that for any finite time
0 < t < T0

1
ε
ln 1

ε
and ε > 0, there exists a smooth solution Uε = (Rε, Uε)(x, t) of

the isentropic Navier-Stokes equation such that one has for some s ≥ 0:

‖U ε − Uε‖Hs ≤ ε
5
2 eεCt.

It is interesting to notice that for the non viscous case, i.e., for the isentropic
compressible Euler system, the KZK like equation with β = 0 have been ob-
tained using the scaling of nonlinear diffractive geometric optic theory in [15,
p. 1233] (in 2d) in the framework of nonlinear diffractive geometric optic with
rectification. The analyse of this work, also as [39] where one studies the short
wave approximation for general symmetric hyperbolic systems can be found
in [33].

The scaling of Sanchez [34] for Landau-Lifshitz-Maxwell equations in R3 is
very different(see [33]) .
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Remark 1 There are mathematical works [23], [24] for KZK type equation

αuzτ = (f(uτ ))τ + βuτττ + γuτ + △xu,

where uτ = uτ (z, x, τ) is the acoustic pressure, (z, x) ∈ Rd × R, d = 1, 2 are
space variables and τ is the retarded time. The equation is studied with the
hypothesis that the nonlinearity f has bounded derivative which allows to proof
the global existence for the case when the coefficients are rapidly oscillating
functions of z. So this problem is not related with our “acoustical” problem for
the KZK equation where as we will see later there is a blow-up result illustrating
the existence of a shock wave.

2 Some basic results on the solutions of KZK

equation

2.1 Existence uniqueness and stability of solutions of the

KZK equation

Following the mathematical tradition in this section and in the next one the
unknown will be denoted by u, and the variables (x, y) ∈ Rx × (Ω ⊆ Rn−1).
When Ω 6= Rn−1 it is assumed that the solution satisfies on its boundary the
Neumann boundary condition. Multiplying u by a positive scalar one reduces
the problem to an equation involving only two constants β and γ

(ut − uux − βuxx)x − γ∆yu = 0 in Rx/(LZ) × Ω. (11)

For sake of simplicity and because this also corresponds to practical sit-
uations [10, 40] we consider solutions which are periodic with respect to the
variable x and which are of mean value zero:

u(x + L, y, t) = u(x, y, t),

∫ L

0

u(x, y, t)dx = 0. (12)

Observe that the conditions (12) are compatible with the flow and that the
second one is “natural” because we consider fluctuations.

For these functions the norm of the space Hs (s ∈ R, s ≥ 0) is denoted by

‖u‖Hs =





∫

Rn−1

+∞
∑

k=−∞

(1 + k2 + η2)s|û(k, η)|2dη





1
2

.

If we introduce the operator Λ = (1 − ∆)
1
2 as (̂Λu)(ζ) = (1 + |ζ|2) 1

2 û(ζ),
then

Λs = (1 − ∆)
s
2 , ‖u‖Hs = ‖Λsu‖L2

. (13)
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We define the inverse of the derivative ∂−1
x as an operator acting in the space

of periodic functions with mean value zero this gives the formula:

∂−1
x f =

∫ x

0

f(s)ds +

∫ L

0

s

L
f(s)ds. (14)

This form of the operator ∂−1
x preserves the both qualities: the periodicity and

having the mean value zero.
In this situation equation (11) is equivalent to the equation

ut − uux − βuxx − γ∂−1
x ∆yu = 0 in Rx/(LZ) × Ω. (15)

Finally when γ = 0 equation (11) reduces to the Burgers-Hopf equation for
which existence smoothness and uniqueness of solution are well known. For
γ = β = 0 it reduces to the Burgers equation

∂tu − ∂x

u2

2
= 0,

which after a finite time exhibits singularities. After this “blow-up” time the
solution can be uniquely continued into a weak solution satisfying an elementary
entropy condition (in the present case with γ 6= 0 it seems that this construction
cannot be adapted to equation (11) with β = 0 and γ 6= 0).

We would like also to notice that the J. Bourgain-type method and introduc-
tion the Bourgain spaces as in [36, 27, 28] and others are not useful for the KZK
problem because of absence of the terms with an odd derivative as for example
uxxx in (15). The presence only of the second derivative make impossible the
main estimations and equalities of this method.

2.1.1 A priori estimates for smooth solutions

According to the standard approach we first establish a priori estimates for
smooth solutions which are in particular a consequence of the relation:

∫ L

0

∫

Rn−1
y

∂−1
x (∆yu)udxdy = −

∫ L

0

∫

Rn−1
y

∂−1
x (∇yu)∇yudxdy

=

∫ L

0

∫

Rn−1
y

∂−1
x (∇yu)∂x(∂−1

x (∇yu))dxdy = 0. (16)

The L2 norm and the Hs in (R+
x /(LZ))×Rn−1

y ) are denoted by |u| and by
‖u‖s.

Proposition 1 The following estimates are valid for solutions of the integrated
KZK equation (15):

1

2

d

dt
|u(·, ·, t)|2 + β|∂xu(·, ·, t)|2 = 0 , (17)

For s > [
n

2
] + 1

1

2

d

dt
‖u‖2

s + β‖∂xu‖2
s ≤ C(s)‖u‖3

s (18)

and
1

2

d

dt
‖u‖2

s + βC(L)‖u‖2
s ≤ C(s)‖u‖3

s. (19)
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The estimates (18), (19) are valid for s > [n
2 ]+1 which is the necessary condition

because of application of the Sobolev theorem.

Proof. To obtain the relation (17) multiply (15) by u, and integrate by part.
It shows that for β = 0 we have the conservation law for the norm of u in
L2(R+

x /(LZ)) × Rn−1
y ). If β > 0 we also have according to the physical phe-

nomena [10] the dissipation of energy.
For the clarity the proof of (18) is done firstly in 3 space variables, with

Ω = R2 and s an integer (i.e. in the present case s = 3) and after we give the
proof in general case. In 2d in particular when Ω = S1 the proof is even simpler.
The proof in the whole is similar except for the relation (19) which holds only
in the periodic case and not on the whole line. (In this later case the Hs norm
of ∂xu does not control the Hs norm of u).

For the proof of general case s ∈ R one has used the representation of
the norm in Hs with the help of the operator Λ by (13) and the technique
demonstrated in [20] and [35] for periodic and nonperiodic cases, which allows
to deduce

1

2

d

dt
‖u‖2

s + β‖∂xu‖2
s ≤ C‖∇x,yu‖L∞

‖u‖2
s,

and this implies the necessity of our restriction for s:

if s > [
n

2
] + 1 then Hs−1 ⊂ L∞.

For more details see [33].
Finally to prove (19) one uses the fact that u is of x mean value 0 and

therefore it is (cf: (14)) related to ∂xu by the formula

u = ∂−1
x ∂xu =

∫ x

0

∂xu(s, y)ds +

∫ L

0

s

L
∂xu(s, y)ds, (20)

which implies the relation

‖u‖Hs ≤ C‖∂u

∂x
‖Hs . ¤

2.1.2 Existence and uniqueness for smooth solutions

The following theorem is an easy consequence of the a priori estimates.

Theorem 2 For the following Cauchy problem

ut − uux − βuxx − γ∂−1
x (∆yu) = 0 , u(x, y, 0) = u0 (21)

considered in (Rx/(LZ)) ×Rn−1
y , i.e. in the class of x periodic functions with

mean value 0 with the operator ∂−1
x defined by the formula (14) and finally with

β ≥ 0 one has the following results.
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1 For s > [n
2 ]+1 (s = 3 for instance in dimension 3) there exists a constant

C(s, L) such that for any initial data u0 ∈ Hs the problem (21) has on an
interval [0, T [ with

T ≥ 1

C(s, L)‖u0‖Hs

(22)

a solution in C([0, T [,Hs) ∩ C1([0, T [,Hs−2).
2 Let T ∗ be the biggest time on which such solution is defined then one has

∫ T∗

0

sup
x,y

(|∂xu(x, y, t)| + |∇yu(x, y, t)|)dt = ∞. (23)

3 If β > 0 there exists a constant C1 such that

‖u0‖s ≤ C1 ⇒ T ∗ = ∞. (24)

4 For two solutions u and v of KZK equation, assume that u ∈
L∞([0, T [;Hs), v ∈ L2([0, T [; L2). Then one has the following stability unique-
ness result:

|u(, t) − v(., t)|L2 ≤ e
R

t

0
supx,y|∂xu(x,y,s)|ds|u(., 0) − v(., 0)|L2 . (25)

Remark 2 The estimate (25) is of strong-weak form, as in [14] only the L∞

norm of ux is needed.

Remark 3 When there is no viscosity all the corresponding statements of the
theorem 2 remain valid for 0 > t > −C with a convenient C .

Remark 4 As (11) is envisaged for u(t, x, y) with x ∈ R/(LZ), the KZK equa-
tion can be also written for u(t, x, y) = v(t,−x, y) in the equivalent form

(vt + vvx − βvxx)x + γ△yv = 0.

So it is important to keep invariant the sign −βvxxx, β ≥ 0, but all other signs
can be changed.

Proof. To construct a solution one can proceed by regularization, by a
fractional step method, or by any other type of approximation. In particular
it was done for the general case with the help of Kato theory from [16, 17, 18,
19]. Since we intend to analyze the numerical methods, the fractional step is
favored and once again the only case n = 3 and s = 3 with periodic solutions
is analyzed. The idea of this kind of proof can be found in [38] and firstly
have been introduced by Marchuk and Yanenko. Furthermore as for a priori
estimates result we cite in [33] two proofs: one with the analysis of the fractional
step method for the case n = 3 and s = 3 and an other proof for general case.

8



2.2 Blow-up and singularities

The first remark is that for ν = 0 (or β = 0) and for function independent of y
the KZK equation

(ut − uux − βuxx)x − γ∆yu = 0 in Rt+ ×Rx × Ω (26)

becomes Burgers equation which is known to exhibit singularities. On the other
hand the derivation and the approximation results of the following section show
that any solution of the KZK equation has in its neighborhood a solution of
the isentropic Euler equation [33]. Once again it is known that such solution
even with smooth initial data may exhibit singularities (cf. [14] or [37]). These
observations are reflected by the fact that for β = 0 and γ > 0 the equation (26)
may generate singularities.

We prove the geometric blow-up result using the method of S. Alinhac,
which is based on the fact that the studied equation degenerates to the Burgers
equation. In fact Alinhac’s method is the generalized method of characteristics
for the Burgers equation adapted to the multidimensional case. As we can see
the equation (26) possess all this main properties, and gives us the reason to
apply it.

For instance one has the theorem:

Theorem 3 The equation

(ut − uux)x − γ∆yu = 0 in Rt+ ×Rx × Ω (27)

with Neumann boundary condition on ∂Ω has no global in time smooth solution
if

sup
x,y

∂xu(x, y, 0)

is large enough with respect to γ.

Remark 5 As we can see from [10] the result of the theorem perfectly confirms
the numerical results. In practically from numerical results one observes that
for β → 0 the KZK equation has a quasi shock approaching to the shock wave,
into which it degenerates for β = 0.

Proof. The proof follows the ideas of S. Alinhac ([2], [3] and [4]). First the
blow-up is observed for γ = 0 and related to a singularity in the projection of
an unfolded “blow-up system”. Second the properties of this unfolded blow-up
system are shown to be stable under small perturbations. One uses a Nash-
Moser theorem with tamed estimates and this is the reason why will exists a T ∗

such that:
lim

t→T∗

(T ∗ − t) sup
x,y

∂xu(x, y, t) > 0.

Remark 6 The Nash-Moser theory and the definition of the tamed estimates
can be found in [7].
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Remark 7 An equation of the type (27) is introduced by Alinhac to analyze the
blow-up of multidimensional (in R2+1) nonlinear wave equation by following the
wave cone

∂2
t u −△xu +

∑

0≤i,j,k≤2

gk
ij∂ku∂2

iju = 0,

where
x0 = t, x = (x1, x2), gk

ij = gk
ji,

with small smooth initial data (see [5]). In fact this corresponds to the same
scaling as the KZK equation because from this wave equation with some changes
of variable and approximate manipulations Alinhac obtains (see [3, 5, 6])

∂2
xtu + (∂xu)(∂2

xu) + ε∂2
yu = 0.

Moreover, the Euler system, with ρ = ρ0 + ρ̃ and ∇q(ρ) = 1
ρ
∇p(ρ), can be

written as

∂tρ̃ + ∇.u + u∇ρ̃ + ρ̃∇.u = 0,

∂tu + q′(ρ0)∇ρ̃ + (u,∇)u + q′(ρ̃)ρ̃∇ρ̃ = 0,

or

∂tρ̃ + ∇.u = F (u,∇.u, ρ̃,∇ρ̃),

∂tu + q′(ρ0)∇ρ̃ = G(u,∇.u, ρ̃,∇ρ̃).

If we now derive the first equation on t and take ∇ of the last, then we take
their difference, we obtain the wave equation of Alinhac’s form :

∂2
t ρ̃ − q′(ρ0)△ρ̃ + (∇G − ∂tF )(u,∇.u, ρ̃,∇ρ̃) = 0.

The similar wave equation can be also obtained for u.
This is the reason for the analogy.

The details of the proof can be found in [33].

3 Controllability method

We describe now the controllability method of resolving the nonlinear inverse
problems using the well posedness of the linear one. All details on applications
and developments of this method can be find in [30, 31, 32].

We suppose that we have some linear problem of the following type:

ut − (Au)(t) = h(x, t)f(t), (28)

u|t=0 = 0, u|∂Ω = 0 (if ∂Ω 6= ∅) (29)
∫

Ωx

u(x, t)ω(x)dx = χ(t). (30)

10



Here A is some linear operator. The functions h(x, t), ω(x) and χ(t) (also the
operator A) are given in the such way that the direct problem (28), (29) is
well-posed for all control functions f from some space denoted Z ⊆ L2[0, T ].

More precisely, we suppose that

F (x, t) = h(x, t)f(t) ∈ Y, (31)

and Y is at least a Banach space, as well as X and under the “well-posedness”
we understand that

for all F ∈ Y there exists a unique solution u ∈ X such that

‖u‖X ≤ C‖F‖Y (C > 0 is a constant independent of F ). (32)

Using the fact (32), if we introduce the solution space of the direct prob-
lem (28), (29)

H = {v ∈ X|∃F ∈ Y : v is the solution of the direct problem (28), (29)} ,

we obtain that the operator
L = d/dt − A (33)

induces an isometric isomorphism of H on LH = Y with norm ‖u‖H = ‖Lu‖Y

and, therefore, the space (H, ‖ · ‖H) is Banach. Moreover, by the a priori
estimate (32) H is continuously embedded in X.

We remark now that the condition (30) can be rewritten as the inner product
in L2(Ωx):

(u(·, t), ω(·))L2(Ωx) = χ(t).

We introduce the linear operator l of overdetermination:

l(u) = (u(·, t), ω(·))L2(Ωx), l : Y 7→ Z ⊆ L2(0, T )

which we apply to the equation (28), supposing the fact that the both parts of
the equation belong to Y :

ϕ(t) = l(h(·, t))f(t) ∈ Z,

l(u′
t) =

d

dt
l(u) = χ′(t) ∈ Z,

−l(Au) = −(u,A∗ω)L2(Ωx) ∈ Z.

Using the linear operator

Â : Z → Z, Âϕ = −(u, A∗ω)L2(Ωx), (34)

where u(t) is the solution of the linear problem (28)-(30), which can be obtained
for f = ϕ

l(h) (we always assume that |l(h)| ≥ δ > 0). So we obtain roughly the

same constrains for the functions h, χ and ω as in the theorem 5:

11



• ω ∈
◦

H1 (Ωx),

• χ ∈ H1(0, T ), χ(0) = 0,

• h(x, t) be a function such that h ∈ L2(Ω), ‖h(·, ·, t)‖L2(Ωx) is bounded on

[0, T ],

•
∣

∣

∣

∣

∣

∫

Ωx

h(x, t)ω(x)dx

∣

∣

∣

∣

∣

≥ δ > 0 for almost all t ∈ [0, T ].

Finally we have the operator equation

χ′(t) = ϕ(t) − Âϕ(t) = (I − Â)ϕ(t), (35)

which is equivalent to the inverse problem (28)-(30). Indeed, we must show that
if ϕ is a solution of equation (35) with some χ, then the solution of the direct
problem (28)-(30) u obtained from the given f(t) = ϕ

l(h) , satisfies condition (30)

with the same function χ(t).
Assume the converse:

∫

Ωx

u(x, t)ω(x)dx = χ1(t) ∈ H1(0, T ).

Since u|t=0 = 0, then χ1(0) = 0. Deriving the operator equation for these ϕ
and χ1, we find that ϕ also satisfies the equation

ϕ − Aϕ = χ′
1. (36)

We subtract (35) from (36), and we obtain

χ′(t) = χ′
1(t), χ1(0) = χ(0) = 0.

Then χ(t) = χ1(t), t ∈ [0, T ], which contradicts the original assumption and
it proves the equivalence.

We suppose now that the inverse linear problem is also well-posed (there
exits a unique solution f ∈ Z) and

‖Â‖L(Z,Z) < 1. (37)

Under the inverse problem (28)-(30) here we understand that our goal is to
choose, by varying the element f , the function u(t) = u(t; f) satisfying condi-
tion (30), among all the solutions of the direct problem (28), (29).

Theorem 4 Suppose that the linear problems (28)-(30) and (28), (29) are
well posed, and (37) holds. Let G : X → Y be a nonlinear, strictly Fréchet-
differentiable operator satisfying the conditions G′(0) = 0, G(0) = 0.

12



Then the nonlinear inverse problem

u′
t = [Au] + Gu + F (x, t), (38)

u|t=0 = 0, u|∂Ω = 0 (if ∂Ω 6= ∅)
∫

Ωx

u(x, t)ω(x)dx = χ(t)

where F (x, t) is the same as in (31), has a unique solution f in a neighborhood
of zero in Z for sufficiently small (in norm) χ.

Remark 8 In the theorem the nonlinearity G(u) can be rather general. Pre-
cisely, if (Ω, Σ, µ) is a space with measure with t, s ∈ Ω then the following types
of operators satisfies the conditions of theorem on the operator G:

1. Nemytski’s operator: u(t) 7→ g(t, u(t)),

2. Urysohn’s operator: u(t) 7→
∫

Ω

K(t, s, u(s))dµ(s),

3. Hammerstein’s operator: u(t) 7→
∫

Ω

K(t, s)g(s, u(s))dµ(s) .

Proof.

Since H is subset of X, it follows that the mapping G : H → Y is also
strictly differentiable in the sense of Fréchet. Taking also into account the
equality G′(0) = 0, the fact that L : H → Y is an isomorphism (see (33)), and
using the inverse function theorem, we see that the mapping ξ : u 7→ Lu − Gu
is a local diffeomorphism of class C1 in a neighborhood of zero of U ′ in H onto
a neighborhood of zero of V ′ in Y .

Suppose that η = ξ−1 : V ′ → U ′ is the mapping inverse to this local dif-
feomorphism, i.e., η : F 7−→ u, where u is a solution of equation (38) and η is
strictly differentiable on V ′.

We have F (x, t) = h(x, t) ϕ
l(h(·,t)) (see (31)).

Consider

P (ϕ) = η

[

h(x, t)
ϕ

l(h(·, t))

]

, P : Z → H. (39)

Since the mapping

Λ : ϕ 7−→ h(x, t)
ϕ

l(h(·, t)) , Λ : Z → Y (40)

is linear and continuous, it follows that P is strictly differentiable in the sense
of Fréchet in a neighborhood of zero in the space Z as a mapping into H.

Further, we look for a solution of the nonlinear problem (38), (29), (30) as

u = P (ϕ),

where u is a solution of (38), (29), (30) with F (x, t) = h(x, t) ϕ
l(h(·,t)) on the

right-hand side of (38).

13



Both sides of equations (38) belong to Y ; therefore to these equations we
can apply the linear overdetermination operator l ∈ L(Y, Z):

∫

Ωx

u′
tω(x)dx =

∫

Ωx

u(x, t)A∗ω(x)dx+

∫

Ωx

Gu(x, t)ω(x)dx+

∫

Ωx

h(x, t)f(t)ω(x)dx,

Let us introduce the mapping

M : Z → Z, M : ϕ 7−→
{

ϕ +

∫

Ωx

[P (ϕ)]A∗ω(x)dx +

∫

Ωx

G[P (ϕ)]dω(x)x

}

.

(41)
Then the system (38), (29), (30) can be written as

Mϕ(t) = χ′(t). (42)

The proof that the nonlinear inverse system (38), (29), (30) is equivalent to
the operator equation (42), is analogous to the the proof of the linear one. For
this it is sufficient to show that if ϕ is a solution of equation (42) with some χ,
then u = P (ϕ) (obtained from ϕ), where u is a solution of the direct nonlinear
problem (38), (29) with given F (t) = h(x, t) ϕ

l(h(·,t)) , satisfies condition (30)

with the same function χ(t).
Let us show that M is strictly differentiable in the sense of Fréchet in a

neighborhood of zero in Z and M ′(0) = I − Â (see (34)).
Note that the mapping ϕ 7−→

∫

Ωx
G[P (ϕ)]ω(x)dx is strictly differentiable in

the sense of Fréchet in a neighborhood of zero by the theorem on the differentia-
bility of a composite function and its derivative at zero is zero, since G′(0) = 0.
Further, the mapping ϕ 7−→

∫

Ωx
P (ϕ)A∗ω(x)dx strictly differentiable in a neigh-

borhood of zero, since v(·) 7−→
∫

Ωx
v(x, t)A∗ωdx is a linear continuous operator

from X to Z and, especially, from H to Z.
Moreover,

∫

Ωx

P ′(0)ϕA∗ωdx = −Âϕ. (43)

Therefore, M is strictly differentiable in a neighborhood of zero in E and
M ′(0) = I − Â is the operator of the linear problem (28)- (30)
(see (35)). Since the linear problem is well defined, there exist (M ′(0))−1 and
∥

∥(M ′(0))−1
∥

∥ ≤ 1/(1−
∥

∥

∥
Â

∥

∥

∥
). By the inverse function theorem, there exist open

neighborhoods of zero of U and V in Z such that M induces a diffeomorphism
of class C1 of U onto V .

Let Ṽ =
{

χ ∈ H1(0, T ), χ(0) = 0|χ′(t) ∈ V
}

. Then Ṽ is an open neighbor-

hood of zero in H1(0, T ) ⊂ Z and for all χ ∈ Ṽ there exists a unique ϕ ∈ U
such that Mϕ = χ′.

Thus, we have proved the local unique solvability of the operator equation
equivalent to problem (38), (29), (30) which concludes the proof of theorem 4.
¤
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4 The direct problem for linearized KZK equa-

tion

As it can be easily seen, thanks to proved estimates for full KZK equation and
to the proof of the theorem 2 of existence and uniqueness of the solution, the
problem

ut − βuxx − γ∂−1
x △yu = F (x, y, t), (44)

u|t=0 = u0, u(x + L, y, t) = u(x, y, t),

∫ L

0

udx = 0 (45)

has a unique global solution in Hs for all s ≥ 0. In particular for the homoge-
neous equation it follows from the estimate

d

dt
‖u‖2

Hs ≤ βC(L)‖u‖2
Hs ,

which takes place for all s ≥ 0, and it follows also from the fact that the operator
∂−1

x △y is generator of a unitary C0-group in L2 with mean value zero [29, p.41]

and this unitary group e−t∂−1
x △y preserves the Hs norm. For nonhomogeneous

problem we can use the theorem from [29, p.107], supposing F ∈ C1([0, T ],Hs)
(T ≤ ∞). Then for the solution u ∈ C([0, T ],Hs)∩C1([0, T ],Hs−2) (s− 2 ≥ 0)
of the problem (44) the Cauchy formula holds

u = S(t)u0 +

∫ t

0

S(t − s)Fds,

which gives the estimate

‖u‖C1([0,T ],Hs−2) ≤ C(‖u0‖Hs + ‖F‖C1([0,T ],Hs)) (46)

for some s ≥ 0.
On the other hand it can be easily shown with the estimate

d

dt
‖u‖L2(Ω) +

β

C2(Ω)
‖u‖L2(Ω) ≤ ‖F (·, ·, t)‖L2(Ω)

(see (60)) and the Galerkin method as in [25] that for all F (x, y, t) ∈
L2((0, T ),H2(Ω)) and u0 ∈ H2(Ω) there exists a unique solution of (44)
u ∈ W 0,1

2,0 (QT ) such that (see [25, pp.167,189])

‖u‖H0,1(QT ) ≤ C(‖u0‖H2(Ω) + ‖F‖L2((0,T ),H2(Ω))). (47)

To obtain the result of nonlinear controllability for the KZK equation it is
natural to use the fact that for all F (x, y, t) ∈ L2((0, T );Hs(Ω)) and u0 ∈ Hs(Ω)
there exists unique solution of (44) u ∈ W s−2,1

2,0 (QT ) such that

‖u‖Hs−2,1(QT ) ≤ C(‖u0‖Hs(Ω) + ‖F‖L2((0,T );Hs(Ω))). (48)
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5 The inverse problem for linearized KZK equa-

tion

We consider the controllability problem for the equation (44) in a domain QT =
[0, T ]×Ωx,y, where Ωx,y can be bounded domain: Ωx,y = [0, L]×Ωy with some
Ωy ⊂ Rn−1; or can be unbounded domain Ω = Ωx,y = R/(LZ) × Ωy with
Ωy ⊆ Rn−1. The boundary of Ω is denoted ∂Ω. If Ω = Ωx,y is not bounded,
than the constant of Poincaré-Friedrichs in the proof of the theorem 5 must
be replaced by a constant of the periodicity on x C(L). So we envisage the
controllability problem (44) in a domain QT = [0, T ] × Ωx,y with an additional
condition, called the condition of overdetermination,

∫ L

0

∫

Ω

u(x, y, t)ω(x, y)dxdy = χ(t), (49)

with homogeneous boundary conditions and mean value zero on x in the case
of bounded domain

u|t=0 = 0, u|∂Ω = 0,

∫ L

0

udx = 0, (50)

and with

u|t=0 = 0, u(x + L, y, t) = u(x, y, t),

∫ L

0

udx = 0, (51)

for unbounded domain (if it is bounded on y we always suppose that u|∂Ωy
= 0).

We suppose in what follows

F (x, y, t) = h(x, y, t)f(t). (52)

Here the functions h, ω, χ are imposed, and f - is an unknown function,
which we call the control.

Remark 9 The problem (44), (50), (49) can be easily, thanks to its linearity,
generalized on nonhomogeneous case of following form

ut − βuxx − γ∂−1
x △yu = h(x, y, t)f(t) + g(x, y, t)

u|t=0 = u0(x, y), u|∂Ω = u1(x, y, t),

∫ L

0

udx = 0,

∫ L

0

∫

Ω

u(x, y, t)ω(x, y)dxdy = χ(t)

if the known functions g, u0, u1 are sufficiently smooth and the matching con-
dition

∫ L

0

∫

Ω

u0(x, y)ω(x, y)dxdy = χ(0)

is satisfied.
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Definition 1 The function f ∈ L2(0, T ) is called by the solution of the inverse
problem (44), (50) (or (51)), (49) if the solution u of the problem (44), (50)
(or (51)) with this f satisfies the condition of overdetermination (49) almost
everywhere on [0, T ].

We define in L2(0, T ) an equivalent norm by the expression

‖f‖2
L2(0,T ) =

∫ T

0

e−αt|f(t)|2dt, (53)

where α > 0 is some number the choice of which will be done later.

Theorem 5 Suppose that ω ∈ H2(Ωxy)∩
◦

H1 (Ωxy), χ ∈ H1(0, T ), χ(0) = 0.
Further, let h(x, t) be a function such that h ∈ L2(QT ), ‖h(·, ·, t)‖L2(Ωxy) is

bounded on [0, T ] and

∣

∣

∣

∣

∣

∫

Ωxy

h(x, y, t)ω(x, y)dxdy

∣

∣

∣

∣

∣

≥ δ > 0 for almost all t ∈ [0, T ].

Then there exists a unique solution of the problem (44), (50) (or (51)), (49) and
the stability estimate holds:

δ ‖f‖L2(0,T ) ≤ ‖χ′‖L2(0,T ) /(1 − m), (54)

where

m = C1

(

β‖ωxx‖L2(Ωxy) + γ‖∂−1
x ∆yω‖L2(Ωxy)

) e
T
2

(α + 2/C2(Ω))
1
2

,

C1 > 0 such that
‖h(·, ·, t)‖L2(Ωxy)

(h, ω)L2(Ωxy)
≤ C1,

C(Ω) is a constant of Poincaré-Friedrichs (in the case of unbounded domain
C(Ω) is replaced by C(L)) , α > 0 is chosen from the condition m < 1.

Proof. It follows from equation (44) that
(

ut − βuxx − γ∂−1
x ∆yu, ω

)

L2(Ωxy)
= (h, ω)L2(Ωxy) f (55)

for almost all t ∈ [0, T ].
We set

ϕ(t) = (h, ω)L2(Ωxy) f.

By virtue of the assumptions of theorem 5, f can be uniquely determined on
the basis of ϕ. Let us assume that the solution of the problem exists and derive
an operator equation. As (u, ω)L2(Ωxy) ∈ H1(0, T ), then

(ut, ω)L2(Ωxy) = d/dt(u, ω)L2(Ωxy) = χ′(t).

Since u ∈ W 2,1
2,0 (QT ), ω ∈ H2(Ω)∩

◦

H1 (Ω), it follows that

(

−γ∂−1
x ∆yu, ω

)

L2(Ωxy)
=

(

u, γ∂−1
x ∆yω

)

L2(Ωxy)
,
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(−βuxx, ω)L2(Ωxy) = − (u, βωxx)L2(Ωxy)

for t ∈ [0, T ].
Then relation (55) implies that

χ′(t) +

L
∫

0

∫

Ωy

u(x, y, t)(−βωxx + γ∂−1
x ∆yω)(x, y)dxdy = ϕ(t).

We denote Ψ(t) = χ′(t), Ψ ∈ L2(0, T ).
We introduce a linear operator

A : L2(0, T ) → L2(0, T ),

(Aϕ)(t) =

∫ L

0

∫

Ωy

u(x, y, t)(−βωxx + γ∂−1
x ∆yω)(x, y)dxdy, (56)

which map ϕ according to the following way : ϕ → f → u → Aϕ, where the
solution of inverse problem (44), (50), (49) is found by the given f , and f is
found by the formula

f(t) =
ϕ(t)

(h, ω)L2(Ωxy)
.

Consequently, we obtain the operator equation

ϕ − Aϕ = Ψ. (57)

Let us prove that A ∈ L(L2(0, T )) and ‖A‖ < 1.
We estimate ‖A‖ for all ϕ ∈ L2(0, T )

‖Aϕ‖2
L2(0,T ) =

∫ T

0

e−αt

(

∫ L

0

∫

Ωy

u(x, y, t)(−βωxx + γ∂−1
x ∆yω)(x, y)dxdy

)2

dt.

(58)
By Cauchy-Schwarz-Bunyakovkii inequality we have for t ∈ [0, T ]

(

∫ L

0

∫

Ωy

u(x, y, t)(−βωxx + γ∂−1
x ∆yω)(x, y)dxdy

)2

≤

≤
(

β‖ωxx‖L2(Ωxy) + γ‖∂−1
x ∆yω‖L2(Ωxy)

)2 ‖u(·, ·, t)‖2
L2(Ωxy).

We substitute it into (58), and obtain:

‖Aϕ‖2
L2(0,T ) ≤

(

β‖ωxx‖L2(Ωxy) + γ‖∂−1
x ∆yω‖L2(Ωxy)

)2
∫ T

0

e−αt‖u(·, ·, t)‖2
L2(Ωxy)dt.

(59)
We find the estimate for ‖u(·, ·, t)‖L2(Ωxy) (see [25, p.167], [22, p.47]). Taking

the inner product in L2(Ωxy) with u the equation (44), we have, noting in what
follows Ω = Ωxy,

1

2

d

dt
‖u‖2

L2(Ω) + β‖ux‖2
L2(Ω) ≤ ‖u‖L2(Ω)‖f(t)h(·, ·, t)‖L2(Ω).
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Since the domain Ω is bounded in Rn+1, we can apply the equality of Poincaré-
Friedrichs, from which it is obviously following that

1

C2(Ω)
‖u‖2

L2(Ω) ≤ ‖ux‖2
L2(Ω)

and

‖u‖L2(Ω)
d

dt
‖u‖L2(Ω) +

β

C2(Ω)
‖u‖2

L2(Ω) ≤ ‖u‖L2(Ω)‖f(t)h(·, ·, t)‖L2(Ω).

And then

d

dt
‖u‖L2(Ω) +

β

C2(Ω)
‖u‖L2(Ω) ≤ ‖f(t)h(·, ·, t)‖L2(Ω). (60)

The last inequality can be rewritten with the help of integrable factor in the
way

d

dt

(

e
β

C2(Ω)
t‖u‖L2(Ω)

)

≤ e
β

C2(Ω)
t|f(t)|‖h(·, ·, t)‖L2(Ω).

Since the initial data has been chosen equivalent to zero, in the end we obtain

‖u‖L2(Ω) ≤ e
− β

C2(Ω)
t
∫ t

0

e
β

C2(Ω)
τ |f(τ)|‖h(·, ·, τ)‖L2(Ω)dτ. (61)

Let us transform the right-hand part of inequality in such way that it depends
on the function ϕ(t). For it we multiply and divide on

∫

Ω
|h(x, y, t)ω(x, y)|dxdy,

using the assumption of the theorem about separability from zero of this in-
tegral, and using the fact of the existence of a positive constant C1 such that
‖h(·, ·, t)‖L2(Ωxy) /(h, ω)L2(Ωxy) ≤ C1:

∫ t

0

e
β

C2(Ω)
τ |f(τ)|‖h(·, ·, τ)‖L2(Ω)dτ =

=

∫ t

0

e
β

C2(Ω)
τ ‖h(·, ·, τ)‖L2(Ω)
∫

Ω
|h(x, y, τ)ω(x, y)|dxdy

(

|f(τ)|
∫

Ω

|h(x, y, τ)ω(x, y)|dxdy

)

dτ

≤ C1

∫ t

0

e
β

C2(Ω)
τ |ϕ(τ)|dτ.

I.e. (61) takes the form

‖u‖L2(Ω) ≤ C1e
− β

C2(Ω)
t
∫ t

0

e
β

C2(Ω)
τ |ϕ(τ)|dτ. (62)

Let us envisage the integral in the right-hand side of the inequality (62)

∫ t

0

e
β

C2(Ω)
τ |ϕ(τ)|dτ ≤

(∫ t

0

e
( 2β

C2(Ω)
+α)τ

dτ

)

1
2

‖ϕ‖L2(0,T ). (63)
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Returning now to (59), with the help of (62), (63), we obtain that

‖Aϕ‖2
L2(0,T ) ≤ N2 C2

1
2β

C2(Ω) + α
‖ϕ‖2

L2(0,T )

∫ T

0

(

e
2β

C2(Ω)
t − e−αt

)

dt ≤

≤ N2C
C2

1
2β

C2(Ω) + α
eT ‖ϕ‖2

L2(0,T ),

where N =
(

β‖ωxx‖L2(Ωxy) + γ‖∂−1
x ∆yω‖L2(Ωxy)

)2
.

From where we conclude that A ∈ L(L2(0, T )) and there exists α > 0 such
that ‖A‖ < 1.

The condition ‖A‖ < 1 guarantees the one-valued solvability in L2(0, T ) of
the operator equation (57).

Let us prove that (57) is equivalent to the inverse problem (44), (50), (49).
Indeed, let ϕ is a solution of the equation (57) with given in condition of the
theorem function χ. We unequivocally define f = ϕ/(h, ω)L2(Ω). By virtue of
the assumptions of theorem 5 f ∈ L2(0, T ). Let us show that the solution u ∈
W 2,1

2,0 (QT ) founded by f of the direct problem (44), (50) satisfies the condition
of overdetermination (49).

Assume the converse:

∫ L

0

∫

Ω

u(x, y, t)ω(x, y)dxdy = χ1(t) ∈ H1(0, T ).

Since u|t=0 = 0, then χ1(0) = 0. Deriving the operator equation for these ϕ
and χ1, we find that ϕ also satisfies the equation

ϕ − Aϕ = χ′
1. (64)

We subtract (57) from (64), and we obtain

χ′(t) = χ′
1(t), χ1(0) = χ(0) = 0.

Then χ(t) = χ1(t), t ∈ [0, T ], which contradicts the original assumption.
Let us prove that the solution of the problem (44), (50), (49) is unique. As-

sume the converse. Then repeating the derivation of the operator equation (57)
for the difference u − u1, we obtain that ϕ satisfies the homogeneous equation.

By virtue of the uniqueness of solution of the operator equation (57) we
obtain f = 0. By virtue of the uniqueness of solution of the direct problem
u − u1 = 0.

Let us show now the stability estimate (54).
Indeed, if we envisage the relation between ϕ and f , then we can notice that

‖ϕ‖2
L2(0,T ) =

∫ T

0

e−αt

∣

∣

∣

∣

∫

Ω

h(x, y, t)ω(x, y)dxdy

∣

∣

∣

∣

2

|f(t)|2dt ≥

≥ δ2‖f‖2
L2(0,T ).
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Since ‖Aϕ‖ ≤ m‖ϕ‖ for all ϕ ∈ L2(0, T ), i.e.,

‖A‖ = m,

and ϕ − Aϕ = χ′, we obtain that

(1 − m)‖ϕ‖L2(0,T ) = ‖χ′‖L2(0,T ),

from where it follows (54). This completes the proof of the theorem 5.¤
We note that if we suppose in assumptions of the theorem 5 the additional

regularity on (x, y) we obtain the following theorem.

Theorem 6 Suppose that for s > [n
2 ] + 1

ω ∈ H2s−2(Ωxy)∩
◦

H
s−1

(Ωxy),

χ ∈ H1(0, T ), χ(0) = 0 and, let h(x, t) be a function such that h ∈
(L2((0, T );Hs−2(Ωxy)), ‖h(·, ·, t)‖Hs−2(Ωxy) is bounded on [0, T ] and

(h(x, y, t), ω(x, y))Hs−2(Ωxy) ≥ δ > 0

for almost all t ∈ [0, T ]. Then there exists a unique solution of the prob-
lem (44), (50), (or (51)) and

(u(x, y, t), ω(x, y))Hs−2(Ωxy) = χ(t), (65)

which is equivalent, thanks to the smoothness of ω, to

∫

Ωx,y

u(x, y, t)Λ2(s−2)ω(x, y)dxdy = χ(t),

and then the stability estimate holds:

δ ‖f‖L2(0,T ) ≤ ‖χ′‖L2(0,T ) /(1 − m),

where

m = C1

(

β‖ωxx‖Hs−2(Ωxy) + γ‖∂−1
x ∆yω‖Hs−2(Ωxy)

) e
T
2

(α + 2/C2(Ω))
1
2

,

C1 > 0 such that
‖h(·, ·, t)‖Hs−2(Ωxy)

(h, ω)Hs−2(Ωxy)
≤ C1,

C(Ω) is a constant of Poincaré-Friedrichs,(or it is the periodicity constant C(L))
α > 0 is chosen from the condition m < 1.

Remark 10 To prove the theorem it is sufficient to replace the norm in L2(Ω)
in theorem 5 by ‖ · ‖Hs−2 = ‖Λs−2 · ‖L2 .
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6 The controllability for nonlinear KZK equa-

tion

We consider now the inverse problem in the domain (0, T ) × Ω with ST =
∂Ω × [0, T ]:

ut − uux − βuxx − γ∂−1
x △yu = F (x, y, t), (66)

u|t=0 = 0, u|ST
= 0,

∫ L

0

udx = 0 (if ST = ∅ then

u(x + L, y, t) = u(x, y, t)), (67)

(u,w(x, y))Hs = χ(t), (68)

with F from (52) and F ∈ L2((0, T ),Hs+3(Ω)).
Having the result of previous section for linear part of KZK in the form of

the theorem 6, we would like to use the method of two times application of
inverse function theorem demonstrated in the section 3.

Remark 11 Unfortunately we cannot use the result of the theorem 5 because
a simple reason: for construction of the space of solutions H for linear direct
problem for (44) we need an isomorphism Lu = F ∈ L2(QT ), but we have it
only for u ∈ W 0,1

2,0 which is insufficient to control the nonlinearity ‖uux‖L2 .
From [7, p. 100] we have the estimate

‖Φ(u)‖L2(Ω) = ‖uux‖L2(Ω) ≤ C‖u‖2
H1(Ω) for u ∈ Hs′

, s′ > [
n

2
] + 1,

which requests to have the solutions more regular on (x, y).
But we cannot neither use the theorem 6 with F (x, y, t) ∈ L2((0, T ),Hs(Ω))

as soon as (by virtue of the a priori estimate (48) we have u ∈
H1((0, T );Hs−2(Ω)))

Φ(u) = uux, Φ : H1((0, T );Hs−2(Ω)) → L2((0, T );Hs(Ω))

should be strictly differentiable, which, it is seems, is impossible to prove.

So the idea is to use the theorem 6 for more smooth right-hand side, F ∈
L2((0, T ),Hs+3(Ω)), and take the condition of overdetermination as the inner
product in Hs. We know from (48) that for all F ∈ L2((0, T ),Hs+3(Ω)) there
exits a unique solution of (44) u ∈ H1((0, T );Hs+1(Ω)).

This allows us to introduce the operator

L = ∂t − β∂2
x − γ∂−1

x △y, (69)

and the space of the solutions of linear direct problem

H = {v ∈ H1((0, T );Hs+1(Ω))|∃F ∈ L2((0, T );Hs+3(Ω)) : v is a solution of problem

(44), (50) with u0 = 0} (70)

22



with the norm ‖v‖H = ‖Lv‖L2((0,T );Hs+3(Ω)). Then

L : H → L2((0, T );Hs+3(Ω)) is an isometric isomorphism. (71)

Note that H = {v ∈ H1((0, T );Hs+1(Ω))|v|t=0 = 0, v|ST
= 0}, and ‖ · ‖H is

equivalent to ‖ · ‖
W

s+1,1
2,0 (QT ).

This implies that (H, ‖·‖H) is complete, the embedding H ⊂ W s+1,1
2,0 (QT )

is continuous.
Now we can easily see that the operator defined as

Φ(u) = uux, Φ : H1((0, T );Hs+1(Ω)) → L2((0, T );Hs(Ω))

is strictly differentiable. Indeed, we have

‖Φ(u)‖L2((0,T );Hs(Ω)) = ‖uux‖L2((0,T );Hs(Ω)) ≤ C‖u‖2
H1((0,T );Hs+1(Ω)). (72)

Besides, ‖u‖2
H1((0,T );Hs+1(Ω)) is bounded in the unit ball of H1((0, T );Hs+1(Ω))

and so the quadratic application uux on the unit ball in H1((0, T );Hs+1(Ω)),
then Φ(u) is infinitely differentiable in the sense of Frécher (even analytic in
all the space). So the nonlinear operator Φ is strictly Frécher- differentiable on
H1((0, T );Hs+1(Ω)).

If we take now a subset of L2((0, T );Hs(Ω)) the propriety doesn’t change,
so we can say that Φ is also strictly differentiable from L2((0, T );Hs+3(Ω)) on
H1((0, T );Hs+1(Ω)) in the sense of (72).

Proposition 2 The operator

G : H1((0, T );Hs+1(Ω)) → L2(0, T ), [G(u)](t) = (Φ(u(x, y, t)), ω(x, y))Hs

is strictly Frécher differentiable on H1((0, T );Hs+1(Ω)) for s > [n
2 ] + 1.

Proof. First we show that G maps H1((0, T );Hs+1(Ω)) into L2(0, T ).

∫ T

0

|G(u)|2dt =

∫ T

0

(uux, ω)2Hsdt ≤
∫ T

0

‖uux‖Hs‖ω‖2
Hsdt ≤

≤ ‖ω‖2
Hs

∫ T

0

‖u‖4
Hs+1dt < ∞.

G is strictly differentiable as the composition of the linear operator and the
strictly differentiable one. ¤

So if we take h ∈ L2((0, T );Hs+3(Ω)), ω ∈ H2s∩
◦

H
2s−1

(Ω) and all other as-
sumptions of the theorem 6 we obtain that the linear direct and inverse problem
associated to (66)-(68) are well posed. It means that we can prove the analog
of the theorem 4.

Theorem 7 Suppose that holds all assumptions of the Theorem 6. Then the
problem (66)-(65) with F from (52) has a unique solution f in a neighborhood
of zero in L2(0, T ) for χ ∈ ◦H

1(0, T ) with sufficiently small norm.

Here we set ◦H
1(0, T ) =

{

χ ∈ H1(0, T )|χ(0) = 0
}

with the norm ‖·‖H1(0,T ).
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