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The expressive power of existential first-order

sentences of Büchi’s sequential calculus

Abstract

The aim of this paper is to study the first-order theory of the successor, interpreted
on finite words. More specifically, we are interested in the hierarchy based on quanti-
fier alternations (or Σn-hierarchy). It was known (Thomas, 1982) that this hierarchy
collapses at level 2, but the expressive power of the lower levels was not character-
ized effectively. We give a semigroup theoretic description of the expressive power
of BΣ1, the boolean combinations of existential formulas. We also give an O(n7)-
time algorithm to decide whether the language accepted by a deterministic n-state
automaton is expressible by a first order sentence (respectively a BΣ1-sentence).
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1 Introduction

A short version of this paper (without detailed proofs) was presented in [18].

The connections between formal languages and mathematical logic were first
studied by Büchi [5]. But although Büchi was primarily interested in infinite
words, only finite words will be considered in this paper.

Büchi’s sequential calculus is a logical formalism to specify some combinatorial
properties of a finite word, for instance “the factor bba occurs three times in
the word, but the factor bbb does not occur”. Thus, each logical sentence of
this calculus defines a language, namely the set of all words that satisfy the
property expressed by the formula. More precisely, to each word u ∈ A+ is
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associated a structure

Mu = ({1, 2, . . . , |u|},S, (a)a∈A)

where S denotes the successor relation on {1, 2, . . . , |u|} and a is the set of
all i such that the i-th letter of u is an a. For instance, if A = {a, b} and
u = abaab, then a = {1, 3, 4} and b = {2, 5}. The logical language appropriate
to such models has S and the a’s as non logical symbols, and formulas are built
in the standard way by using these non-logical symbols, variables, boolean
connectives, equality between elements (positions) and quantifiers. Note that
the symbol < is not used in this logic.

Given a sentence ϕ, we denote by L(ϕ) the set of all words which satisfy ϕ,
when words are considered as models. Two formulas are said to be (elemen-
tary) equivalent if they define the same languages.

It is a well-known result of Büchi that monadic second order sentences ex-
actly define the recognizable (or regular) languages. That is, for each monadic
second order sentence ϕ, L(ϕ) is a recognizable language and, for every recog-
nizable language L, there exists a monadic second order sentence ϕ such that
L(ϕ) = L. Actually, monadic second order logic constitutes a border line in
the study of the sequential calculus. Beyond that border, one enters the hard
world of complexity classes [8].

The effective characterization of the languages defined by first-order formulas
follows from two results by Thomas [27] and Thérien and Weiss [26] recalled
below. The details of the landscape can be refined by considering the Σn-
hierarchy of first order logic. In fact, it was already shown in [27] that every
first-order formula is equivalent to a Σ2-formula, that is, a formula of the form

∃x1 · · · ∃xn ∀y1 · · · ∀ym ψ(x1, · · · , xn, y1, · · · , ym)

where ψ is quantifier-free.

The aim of this paper is to give an effective characterization of the languages
recognized by boolean combinations of Σ1-formulas, that is, boolean combi-
nations of formulas of the form

∃x1 · · · ∃xn ψ(x1, · · · , xn)

where ψ is quantifier-free. This result leads to an algorithm to decide whether
a given first-order formula (or even a monadic second order formula) is equiv-
alent with a BΣ1-formula.

It is fair to say that the BΣ1-problem for formulas interpreted on infinite words
has been solved by Wilke [30], but the given characterization makes use of the
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usual topology on infinite words and therefore could not be directly adapted
to finite words.

Our characterization is expressed by an algebraic condition on the syntac-
tic semigroup of the language, which can also be interpreted directly on its
minimal deterministic automaton. This leads to an O(n7)-time algorithm to
decide whether the language accepted by a deterministic n-state automaton
is expressible by a first-order sentence (respectively a BΣ1-sentence).

Originally, we also intended to give an effective characterization of the Σ1-
expressible languages. However this result requires auxiliary techniques that
could not fit into this paper. Therefore, the proof is delayed to a future paper.

2 A combinatorial description

The expressive power of first-order formulas was first studied by Thomas [27].
Before stating this result, let us introduce some convenient definitions.

Recall that boolean operations on languages comprise finite union, finite in-
tersection and complement. Given a word x and a positive integer k, it is not
very difficult to express in first-order logic a property like “a factor x occurs at
least k times”. Let us denote by F (x, k) the language defined by this property.

A language L of A+ is strongly threshold locally testable (STLT for short) if it
is a boolean combination of sets of the form F (x, k) where x ∈ A+ and k > 0.
It is threshold locally testable (TLT) if it is a boolean combination of sets of the
form uA∗, A∗v or F (x, k) where u, v, x ∈ A+ and k > 0. Note that uA∗ (resp.
A∗v) is the set of words having u as a prefix (resp. v as a suffix), a property
that can also be expressed in Σ2. Thomas proved the following theorem.

Theorem 2.1 A language is first-order definable if and only if it is TLT.

In fact, this result is a particular instance of the general fact that first-order
formulas can express only local properties [10,28,29] and the main argument of
the proof is to find a winning strategy for an appropriate Fräıssé-Ehrenfeucht
game (see also [24]). A similar result was proved in [2,3] for BΣ1-formulas.

Theorem 2.2 A language is BΣ1-definable if and only if it is STLT.
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3 Another combinatorial description

In this section, we give an alternative combinatorial description of the TLT
and STLT languages.

Let A be a finite alphabet. If u is a word of length ≥ k, we denote by pk(u)
and sk(u), respectively, the prefix and suffix of length k of u. If u and x are

two words, we denote by
[

u

x

]

the number of occurrences of the factor x in u.

For instance
[

abababa

aba

]

= 3, since aba occurs in three different places in abababa :
abababa, abababa, abababa.

Let t be a positive integer, called the threshold. In the threshold t counting,
all numbers ≥ t are identified. Thus threshold t counting can be viewed as a
formalisation of children counting: zero, one, two, three, . . . , many. This gives
rise to a preorder on N defined formally as follows:

x ≤t y if and only if either x ≤ y or (x ≥ t and y ≥ t)

The associated equivalence relation is defined by

x ≡t y if and only if either (x < t and x = y) or (x ≥ t and y ≥ t)

For instance the equivalence classes of ≡4 are {0}, {1}, {2}, {3}, {4, 5, 6, 7, . . .}.
For each positive integer k, we define an equivalence relation ≡k,t by setting

u ≡k,t v if and only if, for every word x of length ≤ k,

[

u

x

]

≡t

[

v

x

]

For instance, abababab ≡2,3 abababa since abababab contains 4 (≡ 3 thresh-
old 3) occurrences of ab and 3 (≡ 3 threshold 3) occurrences of ba, and no
occurrences of aa (respectively bb).

We also define an equivalence relation ∼k,t on A+ by setting u ∼k,t v if and
only if u = v or |u|, |v| ≥ k and

(1) u and v have the same prefixes (resp. suffixes) of length < k,

(2) u ≡k,t v.

The following result was proved in [3].

Proposition 3.1

(1) A subset of A+ is TLT if and only if it is union of ∼k,t-classes for some
k and t.

(2) A subset of A+ is STLT if and only if it is union of ≡k,t-classes for some
k and t.
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These results complete the combinatorial description of the Σn-hierarchy, but
do not solve the decidability questions: given a finite deterministic automaton
A, is it decidable whether the language accepted by A is first-order definable,
BΣ1-definable?

4 The semigroup approach

This problem can be solved positively by semigroup-theoretic methods. If S is
a semigroup, we denote by S1 the monoid equal to S if S has an identity, and
to S ∪ {1}, where 1 is a new identity, otherwise. Recall that an element e of
S is idempotent if e2 = e. The set of idempotents of a semigroup S is denoted
by E(S). It is a well-known fact that in a finite semigroup, the subsemigroup
generated by an element x contains a unique idempotent, denoted by xω.

Let L be a language of A+. The syntactic congruence of L is the congruence
∼L on A+ defined by u ∼L v if and only if, for every x, y ∈ A∗,

xuy ∈ L⇐⇒ xvy ∈ L

The quotient semigroup S(L) = A+/∼L is called the syntactic semigroup of L.
It is also equal to the transition semigroup of the minimal automaton of A. It
follows that a language is recognizable if and only if its syntactic semigroup is
finite. The quotient morphism η : A+ → S(L) is called the syntactic morphism
and the subset P = η(L) of S(L) is the syntactic image of L.

Recall that a finite semigroup S is aperiodic if there exists an integer n ≥ 0
such that, for each s ∈ S, sn = sn+1. It is equivalent to require, that for each
s ∈ S, sωs = sω.

Another important property, introduced by Thérien and Weiss [26], is easier
to state in terms of categories (there are also good mathematical reasons to
do so). The Cauchy category of a finite semigroup S is defined as follows:
the objects are the idempotents of S and, if e, f ∈ E(S), the arrows from e
to f are the triples (e, s, f), such that s = es = sf . Composition of arrows
is defined by (e, s, f)(f, t, g) = (e, st, g). The property of Thérien and Weiss
states that for each e, f ∈ E(S), and each r, s, t ∈ S, erfsetf = etfserf . It
can be simply written

pqr = rqp (C)

where p and r are coterminal arrows, say, from e to f , and q is an arrow from
f to e (see Figure 4.1). Thérien and Weiss did not explicitely mention the
TLT languages in their paper but nevertheless gave the main argument of the
proof of the following theorem.
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e f

p, r

q

Figure 4.1. The condition pqr = rqp.

Theorem 4.1 A language is TLT if and only if its syntactic semigroup S is
aperiodic and satisfies (C).

The link between the papers [27] and [26] was first observed in [2]. A complete
proof of both results can also be found in the elegant book of Straubing on
circuit complexity [24].

The problem of finding an algebraic description for the classes of STLT lan-
guages was left open in [2]. The solution to this problem is the main result
of this paper and requires a few auxiliary definitions. Let S be a finite semi-
group. The relations R, L and J are defined as follows. Two elements r and
s of S are J -equivalent if they generate the same ideal, that is, if there exist
x, y, u, v ∈ S1 such that ysv = r and xru = s. They are R-equivalent (resp.
L-equivalent) if they generate the same right (resp. left) ideal, that is, if there
exist u, v ∈ S1 such that sv = r and ru = s (resp. vs = r and ur = s).
Let ≡ be the coarsest equivalence relation on S satisfying the two following
conditions

(1) for all r, s ∈ S, rJ s implies r ≡ s,

(2) for all e, f ∈ E(S) and r, s ∈ S, erfse ≡ fserf .

We say that a subset P of S saturates a relation ∼ if, for all s, r ∈ S, s ∈ P
and s ∼ r imply r ∈ P .

We are now ready to state our main result.

Theorem 4.2 Let L be a recognizable language, S its syntactic semigroup and
P its syntactic image. The following conditions are equivalent:

(1) L is BΣ1-definable,

(2) L is STLT,

(3) S is aperiodic and satisfies (C), and P saturates the relation ≡.

The proof of this result is given in the next section.
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5 Proof of the main theorem

Our proof is inspired in part by the proof of Wilke [30], who gave a char-
acterization of the TLT languages of infinite words. We first introduce some
combinatorial definitions.

5.1 Graphs and Networks

Let G = (V,E) be a graph. If p is a path, v a vertex and e an edge, |p|v (resp.
|p|e) denotes the number of occurrences of v (resp. e) in p. More generally, if
V ′ (resp. E ′) is a set of vertices (resp. edges), we set

|p|V ′ =
∑

v∈V ′

|p|v |p|E′ =
∑

e∈E′

|p|e

In particular, |p|V = |p|E +1. A simple path is a path p that goes at most once
through each edge, that is, such that |p|e ≤ 1 for every e ∈ E.

If U is a subset of V , we set

In(U) = {e ∈ E | e = (v, w) for some v /∈ U and w ∈ U}

Out(U) = {e ∈ E | e = (v, w) for some v ∈ U and w /∈ U}

Let us remind an elementary result due to Euler, in which 1P denotes the
characteristic function of a property P:

1P =







1 if P is true

0 otherwise

Proposition 5.1 Let G = (V,E) be a graph and let p be a path from a vertex
v to a vertex w. Then for every subset U of V , |p|In(U)−|p|Out(U) = 1v∈U−1w∈U .

A network N = (V,E, c) is given by

(1) a graph (V,E),

(2) an initial vertex and a final vertex,

(3) a map c : E → N, called the capacity map.

A path in the network N is a path p of the underlying graph such that, for
every edge e ∈ E, |p|e ≤ c(e). The capacity of a path p is the integer

c(p) = min {|p|e | e ∈ E, |p|e > 0}
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In particular, a path has a capacity ≥ c if it goes at least c times through each
of its edges. A path is called Eulerian if it exhausts its capacity, that is, for
each edge e, |p|e = c(e). A network is called Eulerian if it contains an Eulerian
path visiting all edges.

Let t be a non negative integer. Consider the graph Gt = (V,Et) where

Et = {e ∈ E | c(e) ≥ t}

The strongly connected components of the graphGt are called the t-components
of the network.

Proposition 5.2 Let (V,E, c) be an Eulerian network and let e = (v, w) be
an edge of E. If c(e) ≥ 2+ t(|E|!), then v and w are in the same t-component.

Proof. Let k = c(e). Since the network is Eulerian, there exists a path p that
goes k times through e. Therefore, there exists a factorization

p = p0ep1 · · ·pk−1epk

where, for 1 ≤ i ≤ k − 1, pi is a path from w to v.

•
v w

•e

p0 pk

p1

p2
...

pk−1

Figure 5.1. The path p.

By removing the loops from the p′is, we may assume that the p′is are simple
paths from w to v. Now, since a simple path never goes twice through the
same edge, there are at most |E|(|E| − 1) · · · (|E| − n + 1) simple paths of
length n, and therefore, the number of simple paths from w to v is bounded
by |E|!. Since k − 1 ≥ 1 + t(|E|!), one of the simple paths pi, say q, is used
at least t + 1 times. Now, the path (qe)tq (resp. (eq)te) is a path “extracted”
from p. Therefore, for each edge a occurring in qe,

t ≤ |(qe)tq|a ≤ |p|a ≤ c(a)

t ≤ |(eq)te|a ≤ |p|a ≤ c(a)

and thus (qe)tq (resp. (eq)te) is a path in the graph Gt. It follows that v and
w are in the same t-component.
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5.2 Proof of Theorem 4.2

The equivalence of (1) and (2) follows from Theorem 2.2. We now prove that
(2) implies (3). Let L be a STLT language. By Proposition 3.1, L is union
of ≡k,t-classes for some k and t. Let η : A+ → S be the syntactic morphism
of L and let P be the syntactic image of L. Since L is STLT, it is also TLT
and thus, by Theorem 4.1, S is aperiodic and satisfies (C). It remains to see
that P saturates the equivalence relation ≡. Let s and r be two J -equivalent
elements of S and suppose that s ∈ P . Then there exist x, y, u, v ∈ S1 such
that usx = r and vry = s. Since η is onto, each element s ∈ S1 is the image
under η of a word of A∗. We keep the same notation s for this word, so that
η(s) = s. The context will make it clear whether we are in working in S1 or
in A∗.

Since S is finite, there is an integer n such that, for any s ∈ S, sn is idempotent.
We may assume that n ≥ kt. Then

(vu)ns(xy)n ≡k,t u(vu)
ns(xy)nx

But η((vu)ns(xy)n) = s ∈ P and thus (vu)ns(xy)n ∈ L. It follows that
u(vu)ns(xy)nx ∈ L and thus η(u(vu)ns(xy)nx) = r ∈ P .

Let now e, f ∈ E(S) and suppose that esfre ∈ P . Let, as before, e and f be
words such that η(e) = e and η(f) = f . Then, for n ≥ kt,

ensfnren ≡k,t f
nrensfn

But η(ensfnren) = esfre ∈ P and thus ensfnren ∈ L. Therefore fnrensfn ∈
P and thus η(fnrensfn) = fresf ∈ P . Thus P saturates ≡.

(3) implies (2). Suppose that S is aperiodic and satisfies (C), and that P
saturates ≡. By Theorem 4.1, L is TLT, and thus is union of ∼k,t-classes for
some k, t > 0. Let

T = 2 + t(|A|k)! and T ′ = (1 + |A|)T

We claim that L saturates ≡k,T ′. The claim will show, by Proposition 3.1, that
L is STLT. Let us associate to each word u ∈ A+ of length ≥ k the network
N(u) defined as follows:

(1) the vertices are the factors of length k − 1 of u,

(2) the edges are the pairs (pk−1(x), sk−1(x)), where x is a factor of length
k of u,

(3) the initial vertex is pk−1(x) and the final vertex is sk−1(x),

(4) the capacity of the edge (pk−1(x), sk−1(x)) is
[

u

x

]
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Note that the number of edges of this network is bounded by |A|k, the number
of words of length k. This network is Eulerian since, if u = a1a2 · · ·an, the
path

p(u) = (a1 · · ·ak−1, a2 · · ·ak) · · · (an−k+1 · · ·an−1, an−k+2 · · ·an)

exhausts its capacity. Four such networks are represented in Figure 5.2 at the
end of this section.

Let u and u′ be two words such that u ≡k,T ′ u′ and u ∈ L. Our aim is to
show that u′ ∈ L. The result is clear if |u| < T ′ or |u′| < T ′, since the relation
u ≡k,T ′ u′ implies u = u′ in this case. Thus we may assume |u| ≥ T ′ and
|u′| ≥ T ′. We claim that η(u) ≡ η(u′). Since L saturates ≡, this will ensure
that u′ ∈ L.

The proof of the claim requires several steps. The reader is encouraged to
follow the main arguments on Example 5.1 given below. We first establish
some properties of the networks N(u) and N(u′). First, they have the same
underlying graph G. For each edge e of G, denote by c(e) (resp. c′(e)) the
capacity of e in N(u) (resp. N(u′)). Then, by hypothesis,

c(e) ≡T ′ c′(e)

In particular, since T ′ ≥ t, N(u) and N(u′) have the same t-components.

Lemma 5.3 Let C be a t-component of N(u). Then, for every edge e ∈
In(C) ∪ Out(C), |p(u)|e = |p(u′)|e < T .

Proof. Since p(u) is an Eulerian path, |p(u)|e = c(e).

If |p(u)|e ≥ T , then c(e) ≥ 2+ t(Ak)!, and by Proposition 5.2, the two extrem-
ities of e are in the same t-component, a contradiction. Therefore |p(u)|e < T
and since |p(u)|e ≡T ′ |p(u′)|e, |p(u)|e = |p(u′)|e.

Let p and s (resp. p′ and s′) be the initial and final vertices of N(u) (resp.
N(u′)). Let C(p), C(p′), C(s) and C(s′) be the t-components of p, p′, s and
s′, respectively.

Lemma 5.4 Either C(p) = C(p′) and C(s) = C(s′), or C(p) = C(s) and
C(p′) = C(s′).

Proof. Let C be a t-component of N(u). By Proposition 5.1,

|p(u)|In(C) − |p(u)|Out(C) = 1p∈C − 1s∈C

|p(u′)|In(C) − |p(u′)|Out(C) = 1p′∈C − 1s′∈C
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and by Lemma 5.3,

|p(u)|In(C) − |p(u)|Out(C) = |p(u′)|In(C) − |p(u′)|Out(C)

Therefore

1p∈C − 1s∈C = 1p′∈C − 1s′∈C

If s ∈ C(p), then p and s are in the same t-component. In particular C(p) =
C(s) and 1p∈C(p′) = 1s∈C(p′). Since 1p∈C(p′) − 1s∈C(p′) = 1p′∈C(p′) − 1s′∈C(p′), it
follows 1p′∈C(p′) = 1s′∈C(p′) and thus s′ ∈ C(p′) and C(p′) = C(s′).

If s /∈ C(p), then 1 = 1p∈C(p) − 1s∈C(p) = 1p′∈C(p) − 1s′∈C(p) and −1 = 1p∈C(s) −
1s∈C(s) = 1p′∈C(s) − 1s′∈C(s). It follows p′ ∈ C(p) and s′ ∈ C(s), whence C(p) =
C(p′) and C(s) = C(s′).

We now consider the two cases separately.

Lemma 5.5 If C(p) = C(p′) and C(s) = C(s′), then η(u) J η(u′).

Proof. Since p and p′ are in the same t-component of N(u), there exist two
words v and v′ such that pk−1(v) = p, pk−1(v

′) = p′ and, for each factor x

(resp. y) of length k of vp′ (resp. v′p),
[

u

x

]

≥ t (resp.
[

u

y

]

≥ t). Similarly, since

s and s′ are in the same t-component of N(u), there exist two words w and
w′ such that sk−1(w) = s, sk−1(w

′) = s′ and, for each factor x (resp. y) of

length k of s′w (resp. sw′),
[

u

x

]

≥ t (resp.
[

u

y

]

≥ t). It follows that vu′w ∼k,t u

and v′uw′ ∼k,t u
′ and thus η(vu′w) = η(u′) and η(v′uw′) = η(u′). Therefore

η(u) J η(u′).

We are left with the case C(p) = C(s) and C(p′) = C(s′). We first reduce
this case to the case p = s and p′ = s′. Since p and s are in the same t-
component of N(u), either p = s or there exist two paths of capacity ≥ t
from p to s and from s to p. In the latter case, there exist two words v and w
such that pk−1(v) = s, pk−1(w) = p and, for each factor x (resp. y) of length

k of vp (resp. ws),
[

u

x

]

≥ t (resp.
[

u

y

]

≥ t). It follows that uvw ∼k,t u and

thus η(uvw) = η(u) and η(u) J η(uvp). Since u ∈ L, η(u) ∈ P and thus
η(uvp) ∈ P and uvp ∈ L. Therefore, we may now substitute uvp for u, that
is, we may assume that p = s. Similarly, we may suppose that p′ = s′. We
may also assume that p 6= p′, for otherwise, Lemma 5.5 can be applied. We
now produce a loop of capacity t around p.

Lemma 5.6 There exists a non-trivial loop of capacity ≥ t around p.

Proof. If C(p) is not reduced to {p}, there exists another vertex q in the
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same t-component as p and thus there exist two paths of capacity ≥ t from p
to q and from q to p. Concatenating these two paths gives the desired loop.

Suppose now that C(p) = {p}. The path p(u) goes from p to p and p(u′) from
p′ to p′. We now count the number of occurrences of p in both p(u) and p(u′).
Each occurrence of p, except for the last occurrence of p in p(u), is the origin
of an edge of the given path of the form e = (p, q). Actually e is either the
edge (p, p) or an edge of Out(C(p)). Therefore

|p(u)|p = |p(u)|Out(C(p)) + |p(u)|(p,p) + 1

|p(u′)|p = |p(u′)|Out(C(p)) + |p(u′)|(p,p)

But since u ≡k,T ′ u′, u and u′ have the same factors of length k − 1, counted
threshold T ′. Thus

|p(u)|p ≡T ′ |p(u′)|p

Now, by Lemma 5.3, for every edge e ∈ In(C(p)) ∪ Out(C(p)), |p(u)|e =
|p(u′)|e < T . Therefore, since |Out(C(p))| ≤ |A|,

|p(u)|Out(C(p)) = |p(u′)|Out(C(p)) < |A|T

Now, combining the previous relations and in view of the choice of T ′, we get

|p(u)|(p,p) + 1 ≡T |p(u′)|(p,p)

whence |p(u)|(p,p) ≥ T . Therefore, the edge (p, p) is a loop 2 of capacity at
least equal to t.

Since p(u) is a path from p to p that goes through p′, there exists a factorization
u = u1p

′u2 such that pk−1(u1p
′) = p and sk−1(u2) = p. Furthermore, by Lemma

5.6, there exists a word v such that sk−1(v) = p and, for each factor x of length

k of pv,
[

u

x

]

≥ t. Similarly, there exists a word w such that sk−1(w) = p′ and,

for each factor x of length k of p′w,
[

u

x

]

≥ t. Since S is finite, there exists an
integer π such that all elements of the form sπ, where s ∈ S, are idempotent.

Now (pv)πu1(p
′w)πu2(pv)

π ∼k,t u and (p′w)πu2(pv)
πu1(p

′w)π ∼k,t u
′. Setting

e = η(pv)π, f = η(p′w)π, s = η(u1) and t = η(u2), one gets η(u) = esfte and
η(u′) = ftesf and thus η(u) ≡ η(u′), proving the claim and the theorem.

Example 5.1 In Figure 5.2 below, four networks are represented. The pa-
rameters are k = 3 and t = 3. The graph on the left hand side corresponds to

2 Actually, this case can only occur if p = ak−1 for some letter a such that
[

u
ak

]

≥ T .
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the words u = (ab)4(cb)4abcb and u′ = b(ab)4(cb)4abc. The graph on the right
hand side corresponds to the words u = (ab)4(cb)4a and u′ = b(cb)4(ab)4cb. The
initial and final vertices of u (resp. u′) are represented by full (resp. dotted)
unlabelled arrows.

ba cbba cb

ab bcab bc

11

21

3 3 3 33 3 3 3

Figure 5.2. Four networks.

In these two diagrams, the t-components are {ab, ba} and {bc, cb}. In the
diagram on the left, C(p) = C(p′) and C(s) = C(s′). According to Lemma
5.5, the elements η(u) and η(u′) are J -equivalent. Indeed b(ab)4(cb)4abc ≡k,t

b[(ab)4(cb)4abcb]c and (ab)4(cb)4abcb ≡k,t a[b(ab)
4(cb)4abc]b.

In the diagram on the right, C(p) = C(s) and C(p′) = C(s′). One can verify
that η((ab)4(cb)4a) ≡ η(b(cb)4(ab)4cb).

6 Complexity issues

In this section, we give polynomial time algorithms to decide whether the
language accepted by a deterministic n-state automaton is expressible by a
first-order sentence (respectively a BΣ1-sentence). The idea of the algorithm
is of course to use Theorem 4.1, but a direct translation fails, since testing
for aperiodicity is PSPACE-complete [6]. The trick is that, for semigroups
satisfying (C), aperiodicity is equivalent to much more constraint conditions.
There is actually some freedom in the selection of a new constraint, and our
choice was motivated by algorithmic concerns.

Recall that a semigroup S is R-trivial if, for every x, y ∈ S, x R y implies
x = y and locally R-trivial if each of its local semigroup is R-trivial. It is
equivalent to state (see [15] for more details) that, for each e ∈ E(S), and
every x, y ∈ S,

(exeye)ω = (exeye)ωexe (1)

We can now modify Theorem 4.1 as follows.

Theorem 6.1 A semigroup satisfying (C) is aperiodic if and only if it is
locally R-trivial.

13



Proof. Let S be a semigroup. If S is locally R-trivial, then it satisfies (1). In
particular, for e = y = xω, one gets xω = xωx and thus S is aperiodic.

We claim that if S satisfies (C), then it satisfies the identity

exeye = eyexe (2)

for each e ∈ E(S) and x, y ∈ S. Indeed, it suffices to substitute in (C) e for f
and q, exe for p and eye for r.

Suppose now that S is aperiodic and satisfies (C). Then it satisfies (2) and
thus

(exeye)ωexe = (exe)ωexe(eye)ω = (exe)ω(eye)ω = (exeye)ω

Thus S satisfies (1) and is locally R-trivial.

Corollary 6.2 A language is TLT if and only if its syntactic semigroup is
locally R-trivial and satisfies (C).

We now study these two conditions separately. We first introduce a convenient
definition, already used in [23,7], but we adopt the formulation proposed by
Wilke. A pattern is a graph whose vertices are state variables and whose edges
are labeled by word variables. In addition, a pattern comes with side conditions
stating which state variables are to be interpreted as distinct states, as the
initial state or as final states. An A+-labeled graph matches a pattern if there
is an assignment to the variables obeying the type constraints and the side
conditions such that the graph obtained be replacing each variable by the
value assigned to it is a subgraph of the given graph. To apply this definition
to automata, we consider an automaton A with alphabet A as an A+-labeled
graph, for which there is an edge from state q to state q ′ labeled by the word
u if and only if there is a path labeled by u from q to q′ in A. The following
result is proved in [7].

Proposition 6.3 The syntactic semigroup of a language is locally R-trivial if
and only if its minimal automaton does not match the following pattern, with
q1 6= q2.

q1 q2

u u

x

y

Figure 6.1. The forbidden pattern for locally R-trivial semigroups.

A similar result holds for (C). In the sequel, we adopt the following nota-
tion: L is a language over A, η : A+ → S its syntactic semigroup and
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A = (Q,A, ·, q0, F ) its minimal automaton. There is a natural action from
S on Q, defined by q ·s = q ·u, where u is any word such that η(u) = s (this
clearly does not depend on the choice of u).

Proposition 6.4 The syntactic semigroup of a language satisfies (C) if and
only if its minimal automaton does not match the following pattern, with q4 6=
q7.

q1

q2 q3 q4

q5 q6 q7

u

v u v

v u v

p

q r

r

q p

Figure 6.2. The forbidden pattern for (C).

Proof. If A matches the pattern, Condition (C) cannot be satisfied, since the
words uωpvωquωrvω and uωrvωquωpvω are not ∼L-equivalent.

Conversely, if (C) is not satisfied, there exist words x, y, f , g and h of A+

such that
η(xωfyωgxωhyω) 6= η(xωhyωgxωfyω)

Therefore, there exist words s and t in A∗ such that q0 ·sx
ωfyωgxωhyωt ∈ F

and q0 ·sx
ωhyωgxωfyωt /∈ F . To recover the pattern given in Figure 6.2, it

suffices to set u = xω, v = yω, p = xωfyω, q = yωgxω, r = xωhyω, q1 = q0 ·sx
ω,

q2 = q1 ·p, q3 = q2 ·q, q4 = q3 ·r, q5 = q1 ·r, q6 = q5 ·q, q7 = q6 ·p. Furthermore,
q4 6= q7, since q4 ·t ∈ F and q7 ·t /∈ F .

Corollary 6.5 A language is TLT if and only if its minimal automaton does
not match the patterns represented in Figure 6.1 and 6.2.

The condition “P saturates ≡” can be decomposed into three subconditions

(1) P saturates the relation R,

(2) P saturates the relation L,

(3) for each s, t ∈ S and e, f ∈ E(S), esfte ∈ p if and only if ftesf ∈ P .

Indeed, in a finite semigroup, the relation J is the join of R and L. Therefore,
if a relation saturates R and L, it saturates J . We now treat these conditions
separately in the next propositions.
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Proposition 6.6 The image of a language in its syntactic semigroup satu-
rates R if and only if its minimal automaton does not match the following
pattern, with p0 ∈ F and p1 /∈ F .

p0 p1

x

y

Figure 6.3. The forbidden pattern for saturating the R-classes.

Proof. Let u and v be two R-equivalent elements with u ∈ P and v /∈ P .
Then there exist elements x, y ∈ S1 such that ux = v and vy = u. Now, setting
p0 = q0 ·u and p1 = p0 ·x, we have p1 ·y = p0. Furthermore, since u ∈ P and
v /∈ P , p0 ∈ F and p1 /∈ F . Thus the automaton matches the given pattern.

Conversely, if the pattern occurs, let s be a word such that p0 = q0 ·s. Consider
now the elements u = η(s(xy)ω) and v = η(s(xy)ωx). They are R-equivalent
since v = uη(x) and u = vη(y(xy)ω−1). Furthermore, q0 ·u = p0 ∈ F and
q0 ·v = p1 /∈ F . Thus u ∈ P , v /∈ P and P does not saturate R.

Proposition 6.7 The image of a language in its syntactic semigroup satu-
rates L if and only if its minimal automaton does not match the following
pattern, where q0 is the initial state, and q2 6= q3.

q0 q1 q2q3q4

y

xx

y
xy

Figure 6.4. Forbidden pattern for saturating the L-classes.

Proof. Let v and w be two L-equivalent elements with u ∈ P and v /∈ P .
Then there exist elements s, t ∈ S1 such that sv = u and tu = v. Setting
x = s(ts)ω, y = t(st)2ω−1, we obtain xy = (st)ω and yx = (ts)ω. Now, setting
q1 = q0 ·x, q2 = q1 ·y, q3 = q0 ·y and q4 = q3 ·x, we have q2 ·x = q1 and q4 ·y = q3.
Furthermore, since v ∈ P and u /∈ P , the states q0 ·u and q0 ·v are necessarily
distinct. But as u = xyu and v = yu, q0 ·u = q0 ·xyu = q2 ·u and q0 ·v = q0 ·yu =
q3 ·u and hence q2 and q3 are distinct. Thus the minimal automaton matches
the given pattern.

Conversely, suppose that the minimal automaton matches this pattern. Since
q2 6= q3, there exists a word u such that q2 ·u ∈ F and q3 ·u /∈ F (or,
dually, q2 ·u /∈ F and q3 ·u ∈ F ). Now, the elements u′ = η((xy)ωu) and
v′ = η(y(xy)ωu) are L-equivalent, q0 ·(xy)

ωu ∈ F and q0 ·y(xy)
ωu /∈ F . Thus

u′ ∈ P , v′ /∈ P and P does not saturate L.

Using similar arguments, it is not difficult to prove the following result.
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Proposition 6.8 The image P of a language in its syntactic semigroup S
satisfies the condition

esfte ∈ P ⇔ ftese ∈ P for each s, t ∈ S and e, f ∈ E(S).

if and only if its minimal automaton does not match the pattern below, where
q0 is the initial state, p0 ∈ F and p1 /∈ F .

q0

q1 q2 p0

q3 q4 p1

u v u

v u v

u

p q

v

q p

Figure 6.5. The third forbidden pattern for saturating the ≡-classes.

Corollary 6.9 A language is STLT if and only if its minimal automaton does
not match any of the patterns represented in Figures 6.1 to 6.5.

We now analyse the complexity of our algorithms. In general, checking whether
an automaton matches a given pattern can be done in polynomial time. We
give a precise algorithm for the pattern represented in Figure 6.2. The other
cases are similar and simpler.

Proposition 6.10 There is an O(n7) algorithm to test whether a given n-
state minimal automaton matches the pattern given in Figure 6.2.

Proof. For each m > 0, consider the graph Gm with Qm as set of vertices and
with edges of the form

(

(q1, . . . , qm), (q1 ·a, . . . , qm ·a)
)

, for each letter a ∈ A.

By construction Gm has nm vertices and |A|nm edges. Thus the total size
of Gm is in O(nm). It is well known that computing the strongly connected
components of a graph can be achieved in time linear in the size of the graph.
Similarly, one can compute in linear time the vertices which are the origin of
a non-trivial loop.

The search for the pattern is done by marking the elements of Q7 in different
fashions. We first compute in O(n4) the set Sv of non-trivial loops of G4. Then
we set a red flag on the 7-tuples (q1, . . . , q7) such that (q2, q4, q5, q7) belongs to
Sv. This step is done in O(n7) time. Intuitively, this red flag indicates whether
it is possible to have a loop labeled by the same word v around the states
q2, q4, q5 and q7. We proceed in the same way to compute in O(n3) the set
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Su of non-trivial loops of G3. Next, we set a blue flag on the 7-tuples such
that (q1, q3, q6) belongs to Su. This takes care of the loops labeled by u in the
pattern.

Now, we work in G2 to compute in O(n4) the set S of pairs ((p, q), (p′, q′)) for
which there is a path in G2 from (p, q) to (p′, q′). Then we set a green (re-
spectively yellow and magenta) flag on the 7-tuples such that ((q1, q6), (q2, q7))
(resp. ((q2, q3), (q5, q6)), ((q3, q4), (q1, q5))) belongs to S.

Now the automaton matches the pattern if and only if there exists a 7-tuple
having all possible flags.

Theorem 6.11 There is an O(n7)-time algorithm to decide whether the lan-
guage recognized by a minimal n-state automaton is first-order definable (resp.
BΣ1-definable).

Proof. The proof of Proposition 6.10 can be readily adapted to check whether
a minimal automaton matches a given pattern. Since the patterns involved in
the characterizations of TLT and STLT languages have at most 7 vertices, the
complexity is in O(n7).

Theorem 6.11 is in contrast with the corresponding result for the first-order
logic of the binary relation <, interpreted as the natural order on the integers.
For this logic, McNaughton and Papert [12] gave a combinatorial description
(the star-free languages) and Schützenberger [21] gave an algebraic character-
ization (the syntactic semigroup is aperiodic), but it was shown in [6] that the
corresponding algorithm is PSPACE-complete.

7 Two examples

We conclude this paper by giving two examples illustrating our main results.

Example 7.1 Let A = {a, b, c}, and let L = c(ab)∗ ∪ c(ab)∗a. Then L is
recognized by the following automaton.

1 2 3
c

a

b

Figure 7.1. The minimal automaton of L (sink state omitted).
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The transitions and the relations defining the syntactic semigroup S of L are
given in the following tables

a b c aa ab ba ca

1 − − 2 − − − 3

2 3 − − − 2 − −

3 − 2 − − − 3 −

a2 = b2 = c2 = ac = bc = cb = 0

aba = a

bab = b

cab = c

The J -class structure is represented in the following diagram, where the grey
box is the image of L.

∗ab a

b ∗ba

c ca

∗0

Figure 7.2. The J -class structure.

Thus P saturates J , and L is SLT. In fact, L = A∗cA∗ \ (A∗aaA∗ ∪A∗acA∗ ∪
A∗bbA∗ ∪ A∗bcA∗ ∪ A∗cbA∗ ∪ A∗ccA∗).

Example 7.2 Let A = {a, b}, and let L = (1 + b)a(ba)∗b2b∗a(ba)∗(1 + b) ∪
b2b∗a(ba)∗b2b∗. The transitions and the relations defining the syntactic semi-
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group of L are given in the following tables

Elements 1 2 3 4 5 6 7 8 9 10 11

a 6 10 0 7 10 0 0 6 7 0 6

b 11 2 3 3 0 8 4 2 9 5 9

aa 0 0 0 0 0 0 0 0 0 0 0

ab 8 5 0 4 5 0 0 8 4 0 8

ba 6 10 0 0 0 6 7 10 7 10 7

bb 9 2 3 3 0 2 3 2 9 0 9

abb 2 0 0 3 0 0 0 2 3 0 2

bab 8 5 0 0 0 8 4 5 4 5 4

bba 7 10 0 0 0 10 0 10 7 0 7

abba 10 0 0 0 0 0 0 10 0 0 10

babb 2 0 0 0 0 2 3 0 3 0 3

bbab 4 5 0 0 0 5 0 5 4 0 4

abbab 5 0 0 0 0 0 0 5 0 0 5

babba 10 0 0 0 0 10 0 0 0 0 0

bbabb 3 0 0 0 0 0 0 0 3 0 3

babbab 5 0 0 0 0 5 0 0 0 0 0

Relations :

aa = 0 aba = a b3 = b2 abbabb = 0 bbabba = 0

The idempotents are ab, ba, bb and 0. The J -class structure is represented in
the following diagram:
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b

∗ab a

bab ∗ba

∗b2

abb

babb
bba bbab

abba abbab

babba babbab
bbabb

∗0

The image of the language is P = {bbabb, abba, abbab, babba, babbab}. It ap-
pears in grey in the diagram. One can verify that P saturates ≡. Notice in
particular that babbab = (ba)(bb)(ba). Since the elements e = ba and f = bb
are idempotent, efe ∈ P should imply fef ∈ P , since P saturates ≡. Indeed,
fef = babba ∈ P . In fact,

L = (F (ab2, 1) ∩ F (b2a, 1)) \ (F (aa, 1) ∪ F (ab2, 2) ∪ F (b2a, 2))

and thus L is STLT.
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