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Operations on regular languages have been studied for fifty years, but sev-

eral major problems remain wide open. This paper surveys the semigroup ap-

proach to these problems. We consider successively the star-height problem,

the Straubing-Thérien’s concatenation hierarchy and the shuffle operation. On

the algebraic side, we present Eilenberg’s variety theory and its successive im-

provements, including the recent notion of C-variety.

Recall that a language is a subset of a finitely generated free monoid. The

aim of this paper is to discuss various instances of the following general

problem.

Problem. Given a “basis” of languages, a set of operations and some rules

to use them, describe the languages expressible from the basis by using the

operations according to the rules.

In practice, a basis of languages will consist of a set of very simple

languages, such as the languages of the form {a}, where a is a letter of the

alphabet. There are many possible choices for the operations, but we shall

restrict ourselves to nine of them, that we now introduce.

1. Operations on languages

Let A be a finite alphabet and let A∗ be the free monoid on A. Let us

describe the operations we have in mind.

(1) Boolean operations, which comprise

(a) finite union and finite intersection (these operations are also

called the positive Boolean operations),
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(b) complement (denoted by L→ Lc).

(2) Residual : given a language L and a word u ofA∗, u−1L = {v | uv ∈ L}

and Lu−1 = {v | vu ∈ L}.

(3) Star : L∗ is the submonoid of A∗ generated by L. Thus L∗ =

{u1u2 · · ·un | n > 0, u1, . . . , un ∈ L}.

(4) Product : the product of two languages L1 and L2 is the languages

L1L2 = {u1u2 | u1 ∈ L1, u2 ∈ L2}.

(5) Marked product : given letters a1, . . . , ak of A and languages

L0, L1, . . . , Lk of A∗, the marked product L0a1L1 · · ·akLk is the lan-

guage {u0a1u1 · · · akuk | u0 ∈ L0, . . . , uk ∈ Lk}.

(6) Shuffle product. The shuffle of two words u and v of A∗ is the set

u X v of words of A∗ of the form u1v1 · · ·unvn, with n > 0,

u1, . . . , un, v1, . . . , vn ∈ A∗, u1 · · ·un = u, v1 · · · vn = v. For instance,

ab X ba = {abba, baab, abab, baba}

The shuffle of two languages L1 and L2 of A∗ is the set

L1 X L2 =
⋃

u1∈L1, u2∈L2

u1 X u2

(7) Morphisms. Let A and B be two alphabets, and let ϕ be a function

from A into B∗. Then ϕ extends in a unique way into a morphism

from A∗ into B∗. If L is a language of A∗, ϕ(L) = {ϕ(u) | u ∈ L} is

a language of B∗.

(8) Inverse morphisms. If ϕ : A∗ → B∗ is a morphism and L is a language

of B∗, then ϕ−1(L) = {u ∈ A∗ | ϕ(u) ∈ L} is a language of A∗.

In our context, a positive Boolean algebra will be a class of languages closed

under finite union and finite intersection. Since the empty language ∅ (resp.

the full language A∗) can be considered as the union (resp. intersection) of

an empty family of languages, they belong to all positive Boolean algebras.

A Boolean algebra is a positive Boolean algebra closed under complement.

2. Rational and recognisable languages

Our first example is the class of rational languages. It is obtained by taking

the languages {a}, for each letter a, as the basis and by allowing the use of

only three operations, union, product and star, with no particular rules. If

A = {a, b}, languages like A∗abaA∗ or (aba)∗ba∪ (bb(aa)∗ba)∗ are rational.

Rational languages were characterised by Kleene in a seminal paper

published in 1956 13. Kleene’s theorem states that the rational languages
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are exactly the recognisable languages, that can be defined in (at least)

three equivalent ways. We recall here two of these definitions, one relying

on deterministic automata and one using finite monoids. A third possibil-

ity would be to make use of nondeterministic automata, but we shall not

consider this approach in this paper.

A finite automaton is a quintuple A = (Q,A,E, q0, F ) where Q is a

finite set (the set of states), A is an alphabet, E is a subset of Q× A×Q

(the set of transitions), q0 is an element of Q (the initial state) and F is a

subset of Q (the set of final states). Two transitions (p, a, q) and (p′, a′, q′)

are consecutive if q = p′. A successful path in A is a finite sequence of

consecutive transitions starting in the initial state and ending in some final

state

q0
a1−→ q1

a2−→ q2 · · · qn−1
an−→ qn ∈ F

The word a1a2 · · · an is its label. The language recognised by A is the set

of labels of all the successful paths in A. A language is recognisable if it is

recognised by some finite automaton.

A finite automaton is deterministic if for each state p ∈ Q and each letter

a ∈ A, there is at most one state q such that (p, a, q) ∈ E. This unique state

q is denoted by p· a. Thus each letter a induces a partial function p→ p· a

from Q into itself. One can show that every recognisable language can be

recognised by a deterministic automaton.

The definition involving monoids is more abstract. A monoid morphism

ϕ : A∗ →M recognises a language L of A∗ if there is a subset P of M such

that L = ϕ−1(P ). By a slight abuse of language, we also say in this case

that M recognises L.

It is not too difficult to show that the two definitions, by automata and

by monoids, are equivalent. We can now reformulate Kleene’s theorem as

follows.

Theorem 2.1 (Kleene 1956). For a language L, the following conditions

are equivalent:

(1) L is rational,

(2) L is recognised by a finite monoid,

(3) L is recognised by a finite automaton.

The term regular is also frequently usually used in the literature as an

equivalent to recognisable or rational. It is important, however, to distin-

guish the latter two notions. First, both of them can be extended to ar-

bitrary monoids, but they do not coincide in general. Secondly, depending
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on the problem, it might be more appropriate to take one definition or the

other. Precise examples are given in the next paragraph.

A consequence of Kleene’s theorem is that the class of recognisable

languages is closed under the nine operations considered in Section 1. The

importance of Kleene’s theorem stems from the fact that some closure prop-

erties are transparent for rational expressions while others are much easier

to prove using automata or monoids. For instance, it is straighforward to

see that the class of rational languages is closed under union, (marked)

product, star and morphisms. On the other hand, it is easy to see that

recognisable languages are closed under complement, residuals, shuffle and

inverse morphims. It is also possible, although slightly more difficult, to

prove directly that recognisable languages are closed under (marked) prod-

uct and star, but proving that rational languages are closed under comple-

ment without invoking Kleene’s theorem is a real challenge. The skeptical

reader may try to find a rational expression for the complement of the

language (((ab)∗aba)∗ba)∗ to apprehend the difficulty of the problem.

The proof of Kleene’s theorem is interesting for itself, since it provides

an algorithm to convert a rational expression into a finite automaton and

back. In the sequel, we shall meet several decidability problems of the form

decide whether a given regular language satisfies a certain property. By

Kleene’s theorem, the solution of such a decision problem is independent of

the representation chosen for the regular language, since descriptions by a

rational expression, a finite automaton or a finite monoid can be translated

one into another. However, the chosen representation has a strong influence

on the complexity of the decision algorithms, a problem that we shall not

address in this paper.

3. Star-height

In this section, we focus our attention on the star operation.

3.1. Star-free languages

The class of star-free languages is obtained by taking the languages {1}

and {a}, for each letter a, as the basic class B and by allowing Boolean

operations and product. According to our general definition of a Boolean

algebra, the languages ∅ and A∗ are star-free. If A = {a, b}, the following

languages are also star-free:

a∗ = (A∗bA∗)c

(ab)∗ = (bA∗ ∪A∗aaA∗ ∪A∗bbA∗ ∪A∗a)c
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One can also show that the languages {ab, ba}∗ and (a(ab)∗b)∗ are star-free

but that the languages (aa)∗ and {aba, b}∗ are not. Deciding whether a

given rational language is star-free is a difficult problem, which was solved

by Schützenberger in 1965.

Before stating this result, we need to introduce a few definitions. Let

A be a finite deterministic automaton recognising a language L of A∗. A

state q is called accessible if there exists a path from the initial state to q,

and coaccessible if there is a path from q to some final state. By removing

the states of A which are not simultaneously accessible and coaccessible,

one obtains a trim automaton B that also recognises L. A further reduction

consists in identifying two states p and q whenever, for every u ∈ A∗, p·u

is final if and only if q ·u is final. Performing this equivalence on the set of

states of B, one obtains a new automaton, called the minimal automaton

of L, which also recognises L. For instance, the minimal automaton of the

language {a, b}∗aA∗b{b, c}∗ is pictured in Figure 3.1.

1 2 3

b a, c b, c

a

b

a

Figure 3.1. The minimal automaton of {a, b}∗aA∗b{b, c}∗.

The syntactic monoid of a language L can be defined in two equivalent

ways. First, it is the transition monoid of the minimal automaton of L.

Secondly, it is the quotient of A∗ by the syntactic congruence of L, defined

on A∗ as follows: u ∼L v if and only if, for every x, y ∈ A∗,

xvy ∈ L⇔ xuy ∈ L.

The syntactic monoid of the language L = {a, b}∗aA∗b{b, c}∗ and its J -
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class structure are given below

1 1 2 3

a 2 2 2

b 1 3 3

c − 2 3

ab 3 3 3

bc − 3 2

ca − 2 2

∗1

∗b ∗c

∗a ∗ab

∗ca ∗bc

Schützenberger 29 used the syntactic monoid to characterise the star-free

languages. Recall that a finite monoid M is aperiodic if for each x ∈ M ,

there exists n > 0 such that xn+1 = xn. Equivalently, a monoid is aperiodic

if all the groups it contains are trivial, or if the Green’s relation H is the

equality.

Theorem 3.1 (Schützenberger 1965). A language is star-free if and

only if its syntactic monoid is finite and aperiodic.

A consequence of Schützenberger’s theorem is that one can effectively

decide whether a given regular language is star-free. For instance,

{a, b}∗aA∗b{b, c}∗ is star-free, since its syntactic monoid is aperiodic, but

(A2)∗ is not, since its syntactic monoid is the cyclic group of order 2.

3.2. The star-height problem

By Kleene’s theorem, expressions built from letters by using Boolean oper-

ation, product and star represent regular languages. Such expressions are

called extended rational expressions. The star-height of such an expression

is the maximum number of nested stars occurring in the expression. For

instance, the expression

({a, ba, abb}∗bba ∩ (aa{a, ab}∗))cbbA∗

is of star-height one, while the expression
(

a(ba)∗abb
)∗

bba ∩ (aa{a, ab}∗))cbbA∗

is of star-height two. The star-height of a language is the minimal star-

height of an expression representing the language. In particular a language

of star-height 0 is a star-free language.
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We have seen that the language (A2)∗ is not star-free. Since (A2)∗ is

an expression of star-height 1, this language has star-height exactly one.

However, it is an open problem to know whether there are languages of

star-height 2. We shall come back on this problem in Section 5.

4. Concatenation hierarchies

In this section, we introduce a hierarchy among star-free languages of A∗,

known as the Straubing-Thérien’s hierarchy, or concatenation hierarchy.a

For historical reasons, this hierarchy is indexed by half-integers. The level 0

consists of the languages ∅ and A∗. The other levels are defined inductively

as follows:

(1) the level n+1/2 is the class of union of marked products of languages

of level n;

(2) the level n + 1 is the class of Boolean combination of languages of

marked products of level n.

We call the levels n (for some nonegative integer n) the full levels and the

levels n+ 1/2 the half levels.

It is not clear at first sight whether the Straubing-Thérien’s hierarchy

does not collapse, but this question was solved in 1978 by Brzozowski and

Knast 6.

Theorem 4.1 (Brzozowski and Knast 1978). The

Straubing-Thérien’s hierarchy is infinite.

It is a major open problem on regular languages to know whether one

can decide whether a given star-free language belongs to a given level.

Problem 2. Given a half integer n and a star-free language L, decide

whether L belongs to level n.

One of the reasons why this problem is particularly appealing is its close

connection with finite model theory, first explored by Büchi in the early

sixties. Büchi’s logic comprises a relation symbol < and, for each letter

a ∈ A a predicate symbol a. First order formulas are built in the usual

way by using these symbols, the equality symbol, (first order) variables,

Boolean connectives and quantifiers. Formal definitions can be found for

aA similar hierarchy, called the dot-depth hierarchy was previously introduced by Brzo-

zowski, but the Straubing-Thérien’s hierarchy is easier to define.
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instance in 32, but here we shall just present on an example how sentences

are interpreted on finite words. The sentence

ϕ1 = ∃x ∃y
(

(x < y) ∧ (ax) ∧ (by)
)

,

can intuitively be interpreted on a word u by the English sentence “there

exist two integers x < y such that, in u, the letter in position x is an a

and the letter in position y is a b”. Therefore, the set of words satisfying

ϕ1 is A∗aA∗bA∗. McNaughton and Papert 15 showed that a language is

first-order definable if and only if it is star-free. Thomas 32 (see also 16)

refined this result by showing that the concatenation hierarchy of star-free

languages corresponds, level by level, to a hierarchy of first order formulas,

the Σn-hierarchy. This hierarchy can be defined inductively as follows:

(1) Σ0 consists of the quantifier-free formulas

(2) Σn+1 consist of the formulas of the form ∃x1 . . . ∃xp∀y1 . . .∀yq ϕ,

where p, q > 0 and ϕ is a Σn-formula.

(3) BΣn denotes the class of formulas that are Boolean combinations

(that is, conjunctions of disjunctions) of Σn-formulas.

For instance, ∃x1∃x2∀x3∀x4∀x5∃x6 ϕ, where ϕ is quantifier free, is in Σ3.

The next theorem summarizes the results of 15,32,16.

Theorem 4.2.

(1) A language is first-order definable if and only if it is star-free.

(2) A language is Σn-definable if and only if it is of level n− 1/2.

(3) A language is BΣn-definable if and only if it is of level n.

Thus deciding whether a language has level n is equivalent to a very natural

problem in finite model theory. The first decidabilty result was obtained by

I. Simon 30.

Theorem 4.3 (Simon 1972). A language has level 1 if and only if its

syntactic monoid is finite and J -trivial.

As in the case of star-free languages, the characterisation is given by a

property of the syntactic monoid. This raises the question whether other

families of regular languages can be described by an algebraic property of

their syntactic monoid. The solution to this question was given by Eilen-

berg 10 in his variety theorem. We shall see in particular that the full levels

of the concatenation hierarchy are varieties in Eilenberg’s sense and thus

can be described by some properties of their syntactic monoid. However,

Eilenberg’s theory does not apply to half levels, because they are not closed
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under complement. The solution, proposed in 20, consists of using the syn-

tactic ordered monoid in place of the syntactic monoid. We briefly describe

this extension before stating the variety theorem and its extended version.

First recall that an ordered monoid is a monoid equipped with an order

6 compatible with the multiplication: x 6 y implies zx 6 zy and xz 6 yz.

We now give two equivalent definitions of the syntactic ordered monoid.

We start with the algorithmic definition, which is probably easier to un-

derstand. Consider a minimal deterministic automaton A = (Q,A, · , i, F ).

One defines a partial order 6 on Q by p 6 q if and only if, for each u ∈ A∗,

q ·u ∈ F ⇒ p·u ∈ F . For instance, for the automaton pictured in Figure

4.2, the partial order is 2 6 4 and 1, 2, 3, 4 6 0.

1 2 3 4

0

a b a

a, b

b a
b a, b

Figure 4.2. Minimal automaton of {a, aba}.

The syntactic ordered monoid of a language is the transition monoid of

its minimal ordered automaton, ordered by u 6 v if and only if for each

q ∈ Q, q ·u 6 q · v.

The second definition is more abstract. The syntactic preorder 6L of a

language L is defined as follows: u 6L v iff, for every x, y ∈ A∗,

xvy ∈ L⇒ xuy ∈ L

This preorder induces a partial order on the syntactic monoid of L, called

the syntactic order of L. Thus the syntactic ordered monoid of L is equal

to (A∗/∼L,6L/∼L).

Example 4.1. The syntactic monoid and the syntactic order of the lan-

guage {a, b}∗aA∗b{b, c}∗ are pictured below:
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ab

b

1 bc a

c

ca

∗
1

∗
b

∗
c

∗
a

∗
ab

∗
ca

∗
bc

Thus ab is the smallest element in the syntactic order of L, and ca is the

greatest.

A variety of finite monoids is a class of finite monoids closed under tak-

ing submonoids, quotients and finite products. Similarly, a variety of finite

ordered monoids is a class of finite ordered monoids closed under taking

ordered submonoids, quotients and finite products. Varieties of finite (or-

dered) semigroups are defined analogously. There is an abundant literature

on varieties and we refer the reader to the books 1,10,19 for more details.

A convenient way to define varieties of finite monoids is to use identities.

Let u, v be words of the free monoid A∗. A monoid M satisfies the identity

u = v if, for each morphism ϕ : A∗ → M , ϕ(u) = ϕ(v). Similarly, an

ordered monoid (M,6) satisfies the identity u 6 v if, for each morphism

ϕ : A∗ → M , ϕ(u) 6 ϕ(v). A variety of (ordered) monoids satisfies an

identity if each of its monoids satisfies it.

The definition of an identity can be extended to profinite identities,

which are formal equalities of the form u = v (or u 6 v) where u and v

are profinite words. We shall not attempt to define here profinite words nor

profinite topology and the reader is referred to 2,3,33 for more details. We

shall however define ω-terms, a special case of profinite words. An ω-term

on an alphabet A is built from the letters of A using the usual concatenation

product and the unary operator x→ xω. Thus, if A = {a, b, c}, abc, aω and

((abωc)ωab)ω are examples of ω-terms.
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Let ϕ : A∗ → M be a morphism from A∗ into a finite monoid. The

image ϕ(t) of an ω-term t is defined recursively as follows. If t is a letter,

then ϕ(t) is already defined. If t and t′ are ω-terms, then ϕ(tt′) = ϕ(t)ϕ(t′).

If t = uω, then ϕ(t) is the unique idempotent power of ϕ(u).

Reiterman’s theorem 28 ensures that a class of finite monoids is a variety

if and only if it can be defined by a set of profinite identities. A similar result

holds for varieties of ordered monoids. We refer to 3 for a detailed survey

of this theory.

It is easy to prove directly that the class of finite (ordered) monoids

(semigroups) satisfying a given set E of profinite identities is a variety of

finite (ordered) monoids (semigroups), denoted by [[E]]. Usually the context

suffices to decide whether we are dealing with varieties of monoids or vari-

eties of semigroups. For instance [[x2 = x, xy = yx]] is the variety of finite

idempotent and commutative monoids and [[xωyxω 6 xω ]] is the variety

of all finite ordered semigroups S such that, for all s ∈ S and e ∈ E(S),

ese 6 e.

A positive variety of languages is a class of recognisable languages V

such that for any alphabets A and B,

(1) V(A∗) is a positive Boolean algebra,

(2) if L ∈ V(A∗) and a ∈ A then a−1L,La−1 ∈ V(A∗),

(3) if ϕ : A∗ → B∗ is a morphism, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

A variety of languages is a positive variety V such that, for each alphabet

A, V(A∗) is closed under complement. We can now state the two variety

theorems.

Theorem 4.4 (Eilenberg 1976). Let V be a variety of finite monoids.

For each alphabet A, let V(A∗) be the set of all languages of A∗ whose

syntactic monoid is in V. Then V is a variety of languages. Further, the

correspondence V → V is a bijection between varieties of finite monoids

and varieties of languages.

Theorem 4.5 (Pin 1995). Let V be a variety of finite ordered monoids.

For each alphabet A, let V(A∗) be the set of all languages of A∗ whose

syntactic ordered monoid is in V. Then V is a positive variety of languages.

Further, the correspondence V → V is a bijection between varieties of finite

ordered monoids and positive varieties of languages.

The next proposition shows that the variety approach is relevant for

studying the concatenation hierarchy.
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Proposition 4.1.

(1) The star-free languages form a variety of languages.

(2) Each full level of the concatenation hierarchy is a variety of languages.

(3) Each half level of the concatenation hierarchy is a positive variety of

languages.

We shall denote by Vn the variety of finite monoids corresponding to the

languages of level n and by Vn+1/2 the variety of ordered monoids corre-

sponding to the languages of level n+ 1/2.

Unfortunately, very few decidability results are known. It is obvious that

a language has level 0 if and only if its syntactic monoid is trivial. The level

1/2 is also easy to study.

Theorem 4.6 (Pin-Weil 1995). A language has level 1/2 if and only if

its ordered syntactic monoid M satisfies the identity x 6 1.

We already mentioned Simon’s characterisation of languages of level

1. The decidability of level 3/2 was first proved by Arfi 4,5 and the alge-

braic characterisation was found by Pin-Weil 24. We need to introduce the

Mal’cev product to state this result precisely.

Let V be variety of finite ordered semigroups and let M and N be two

ordered monoids. A relational morphism τ : M → N is a V-relational

morphism if, for every ordered subsemigroup T of N in V, the ordered

semigroup τ−1(T ) belongs to V. Given a variety of finite monoids W,

the class of all ordered monoids M such that there exists a V-relational

morphism from M into an ordered monoid of W is a variety of ordered

monoids, denoted by V M©W and called the Mal’cev product of V and W.

Theorem 4.7 (Pin-Weil 2001). A language is of level 3/2 if and only

if its ordered syntactic monoid belongs to the Mal’cev product [[xωyxω 6

xω ]] M©[[x2 = x, xy = yx]]. This condition is decidable.

The decidability of level 2 is a major open problem in automata theory.

An algebraic characterisation of V2 was given in 21, but it is not effec-

tive. Recall that a monoid M divides a monoid N if M is a quotient of a

submonoid of N .

Theorem 4.8 (Pin-Straubing 1981). A monoid belongs to V2 if and

only if it divides a monoid of upper triangular Boolean matrices.

Several partial results are known and a conjecture was proposed for the

identities of V2, but its decidability is still open. See 27 for recent progress
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on this problem.

For the other levels, the decidability problem is also wide open. Pin and

Weil 24,26 established an algebraic connection between the varieties Vn and

Vn+1/2.

Theorem 4.9 (Pin-Weil 1995). The variety Vn+1/2 is equal to the

Mal’cev product [[xωyxω 6 xω]] M©Vn.

Another result 25 describes, given the identities of a variety of finite

monoids V, a set of identities defining the variety [[xωyxω 6 xω]] M©V.

Theorem 4.10 (Pin-Weil 1996). The variety [[xωyxω 6 xω ]] M©V is de-

fined by the profinite identities uωvuω 6 uω, where u and v are profinite

words such that u = u2 and u = v are profinite identities of V.

These results illustrate the power of the algebraic approach, but do not

suffice yet to show that if Vn is decidable, then Vn+1/2 is decidable, except

for n = 1.

5. Back to the star-height problem

Schützenberger’s theorem gives a characterisation of the languages of star-

height 0 and shows that they form a variety of languages. One may wonder

whether this latter result also holds for the languages of star-height 6 1.

The answer to this question reduces to the existence of a language of star-

height 2, as shown in 18. Unfortunately, this problem is still open.

Theorem 5.1 (Pin 1978). If the languages of star-height 6 1 form a va-

riety of languages, then there is no language of star-height 2.

The closure properties of the languages of star-height 6 n were analysed in
23. Recall that a morphism between two free monoids is length-preserving

if it maps each letter to a letter.

Theorem 5.2 (Pin, Straubing, Thérien 1989). For each nonnegative

integer n, the class of all languages of star-height 6 n is closed under

Boolean operations, residuals and inverse of length-preserving morphisms.

Thus the languages of star-height 6 n “almost” form a variety of lan-

guages. In fact, many other interesting classes of languages satisfy the two

first conditions defining a variety of languages, but only a weak form of the

third condition. Such examples include languages defined by fragments of

first order logic or by temporal logic. Straubing 31 recently proposed a new
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extension of the notion of variety which covers these examples. A similar

notion was introduced independently by Ésik and Ito 11.

Let C be a class of morphisms between free monoids, closed under com-

position and containing all length-preserving morphisms. Examples include

the classes of all length-preserving morphisms, of all length-multiplying mor-

phisms (morphisms such that, for some integer k, the image of any letter is

a word of length k), all non-erasing morphisms (morphisms for which the

image of each letter is a nonempty word), all length-decreasing morphisms

(morphisms for which the image of each letter is either a letter or the empty

word) and all morphisms.

A positive C-variety of languages is a class V of recognisable languages

satisfying the two first conditions defining a positive variety of languages

and a third condition

(3′) if ϕ : A∗ → B∗ is a morphism in C, L ∈ V(B∗) implies ϕ−1(L) ∈

V(A∗).

A C-variety of languages is a positive C-variety of languages closed under

complement. When C is the class of all (resp. length-preserving, length-

multiplying, non-erasing, length-decreasing) morphisms, we use the term

all-variety (resp. lp-variety, lm-variety, ne-variety, de-variety).

Theorem 5.2 gives an interesting example of lp-variety of languages.

Corollary 5.1. For each n > 0, the languages of star-height 6 n form an

lp-variety of languages.

The algebraic counterpart relies on a new syntactic invariant, the syntac-

tic stamp. A stamp is a surjective morphism from A∗ onto a finite monoid.

The syntactic stamp of a regular language of A∗ is the canonical morphism

from A∗ onto its syntactic monoid.

A stamp ϕ : A∗ →M C-divides a stamp ψ : B∗ → N if there is a pair

A∗ B∗

M NIm(ψ ◦ f) ⊆

f

ϕ ψ

η

Figure 5.3. A division diagram.
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(f, η) (called a C-division), where f : A∗ → B∗ is in C, η : N → M is a

partial surjective monoid morphism, and ϕ = η ◦ ψ ◦ f . If f is the identity

on A∗, the pair (f, η) is simply called a division.

The product of two stamps ϕ1 and ϕ2 is the stamp ϕ defined by ϕ(a) =

(ϕ1(a), ϕ2(a)). A C-variety of stamps is a class of stamps closed under C-

division and finite products.

Straubing’s C-variety theorem 31 can now be stated as follows.

Theorem 5.3. Let V be a C-variety of stamps. For each alphabet A, denote

by V(A∗) the set of all languages of A∗ whose syntactic stamp is in V.

Then V is a C-variety of languages. Further, the correspondence V → V is

a bijection between C-varieties of stamps and C-varieties of languages.

The identity approach can be extended to C-varieties of stamps as fol-

lows. Let u, v be two words of B∗. A stamp ϕ : A∗ →M is said to satisfy the

C-identity u = v if, for every C-morphism f : B∗ → A∗, ϕ ◦ f(u) = ϕ ◦ f(v).

If M is ordered, we say that ϕ satisfies the C-identity u 6 v if, for every

C-morphism f : B∗ → A∗, ϕ ◦ f(u) 6 ϕ ◦ f(v). By extension, we say that a

language satisfies an identity if its syntactic stamp satisfies this identity.

Example 5.1. Let ϕ : A∗ →M be a stamp. Consider the identity

xyx = x (1)

If C is the class of all morphisms, ϕ satisfies (1) if and only if, for all x, y ∈

A∗, ϕ(xyx) = ϕ(x). Now, if C is the class of length-preserving morphisms,

ϕ satisfies (1) if and only if, for all x, y ∈ A, ϕ(xyx) = ϕ(x). If C is the

class of length-multiplying morphisms, ϕ satisfies (1) if and only if, for each

k > 0 and for all x, y ∈ Ak, ϕ(xyx) = ϕ(x).

The definition of identities can be extended to profinite identities to obtain

a generalisation of Reiterman’s theorem to C-varieties 14,22.

It follows from the previous results that the star-height problem amounts

to showing that the lp-varieties of stamps corresponding to the languages of

star-height 6 n are decidable. But even if these varieties of stamps cannot

be characterized precisely, one can still hope to find some identity satisfied

by all languages of star-height 6 1. It would then suffice to find a regular

language not satisfying this identity to have an example of a language of

star-height > 1.

For recent developments about C-varieties, we refer the reader to the

papers 8,9,22.
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6. Shuffle product

Introducing the shuffle product into the picture leads to several interesting

questions. First, what are the varieties of languages closed under shuffle?

The commutative varieties of languages closed under shuffle were char-

acterised by Perrot 17: they correspond to the varieties of commutative

monoids whose groups belong to a given variety of commutative groups.

The variety of all rational languages is also closed under shuffle. Are there

other examples? Esik and Simon 12 answered this question negatively. Let

us say that a variety of languages is proper if it is not equal to the variety

of all rational languages.

Theorem 6.1 (Esik-Simon 1998). The variety of commutative lan-

guages is the largest proper variety of languages closed under shuffle.

Is there a similar result for positive varieties of languages? That is, is

there a largest proper positive variety of languages closed under shuffle?

The answer was given in 7.

Theorem 6.2 (Cano Gómez, Pin 2004). There is a largest positive va-

riety not containing (ab)∗. It is also the largest proper positive variety closed

under length preserving morphisms and the largest proper positive variety

closed under shuffle.

A characterisation of the corresponding variety of ordered monoids W

was given in the same paper.

Theorem 6.3 (Cano Gómez, Pin 2004). An ordered monoid belongs

to W if and only if, for every pair (a, b) of mutually inverse elements,

and for every element z of the minimal ideal of the submonoid generated by

a and b, (abzab)ω 6 ab. In particular W is decidable.

It would be interesting to know whether a similar result holds for lp-

varieties of languages: is there a largest proper lp-variety of languages closed

under shuffle? Is there a largest proper positive lp-variety of languages

closed under shuffle?

7. Conclusion

The successive improvements over Eilenberg’s variety theory have consid-

erably enlarged the scope of the algebraic approach to the study of regu-

lar languages. It has been applied succesfully to a large range of applica-

tions, including logic and finite model theory, circuit complexity, abstract
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complexity, communication complexity, infinite words and other structures.

However, several exciting problems remain unsolved and we would like to

encourage the semigroup community to work on these questions.
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