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Abstract

In this paper, we study additive coalescents. Using their representation as fragmentation
processes, we prove that the law of a large class of eternal additive coalescents is absolutely
continuous with respect to the law of the standard additive coalescent on any bounded time
interval.
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1 Introduction

The paper deals with additive coalescent processes, a class of Markov processes which have been
introduced first by Evans and Pitman [11]. In the simple situation of a system initially composed
of a finite number k of clusters with masses m1,m2, . . . ,mk, the dynamics are such that each
pair of clusters (mi,mj) merges into a unique cluster with mass mi + mj at rate mi + mj ,
independently of the other pairs. In the sequel, we always assume that we start with a total
mass equal to 1 (i.e. m1 + . . . + mk = 1). This induces no loss of generality since we can then
deduce the law of any additive coalescent process through a time renormalization. Hence, an
additive coalescent lives on the compact set

S↓ = {x = (xi)i≥1, x1 ≥ x2 ≥ . . . ≥ 0,
∑

i≥1

xi ≤ 1},

endowed with the topology of uniform convergence.
Evans and Pitman [11] proved that we can define an additive coalescent on the whole real line

for a system starting at time t = −∞ with an infinite number of infinitesimally small clusters.
Such a process will be called an eternal coalescent process. More precisely, if we denote by
(Cn(t), t ≥ 0) the additive coalescent starting from the configuration (1/n, 1/n, . . . , 1/n), they
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proved that the sequence of processes (Cn(t + 1
2 ln n), t ≥ −1

2 ln n) converges in distribution
on the space of càdlàg paths with values in the set S↓ toward some process (C∞(t), t ∈ R),
which is called the standard additive coalescent. We stress that this process is defined for all
time t ∈ R. A remarkable property of the standard additive coalescent is that, up to time-
reversal, its becomes a fragmentation process. Namely, the process (F (t), t ≥ 0) defined by
F (t) = C∞(− ln t) is a self-similar fragmentation process with index of self similarity α = 1/2,
with no erosion and with dislocation measure ν given by

ν(x1 ∈ dy) = (2πy3(1 − y)3)−1/2dy for y ∈]1/2, 1[, ν(x3 > 0) = 0.

We refer to Bertoin [7] for the definition of erosion, dislocation measure, and index of self
similarity of a fragmentation process and a proof. Just recall that in a fragmentation process,
distinct fragments evolve independently of each others.

Aldous and Pitman [1] constructed this fragmentation process (F (t), t ≥ 0) by cutting the
skeleton of the continuum Brownian random tree according to a Poisson point process. In
another paper [2], they gave a generalization of this result: consider for each n ∈ N a decreasing
sequence rn,1 ≥ . . . ≥ rn,n ≥ 0 with sum 1, set σ2

n =
∑n

i=1 r2
n,i and suppose that

lim
n→∞

σn = 0 and lim
n→∞

rn,i

σn
= θi for all i ∈ N.

Assume further that
∑

i θ2
i < 1 or

∑

i θi = ∞. Then, it is proved in [2] that if Mn = (Mn(t), t ≥
0) denotes the additive coalescent process starting with n clusters with mass rn,1 ≥ . . . ≥ rn,n,
then (M (n)(t − lnσn), t ≥ ln σn) has a limit distribution as n → ∞, which can be obtained
by cutting a specific inhomogeneous random tree with a point Poisson process. Furthermore,
any extreme eternal additive coalescent can be obtained this way up to a deterministic time
translation.

Bertoin [4] gave another construction of the limit of the process (M (n)(t − ln σn), t ≥ ln σn)
in the following way. Let bθ be the bridge with exchangeable increments defined for s ∈ [0, 1] by

bθ(s) = σbs +

∞
∑

i=1

θi(1l{s≥Vi} − s),

where (bs, s ∈ [0, 1]) is a standard Brownian bridge, (Vi)i≥1 is an i.i.d. sequence of uniform
random variable on [0,1] independent of b and σ = 1 −∑i θ2

i . Let εθ = (εθ(s), s ∈ [0, 1]) be
the excursion obtained from bθ by Vervaat’s transform, i.e. εθ(s) = bθ(s + m mod 1) − bθ(m),
where m is the point of [0,1] where bθ reaches its minimum. For all t ≥ 0, consider

ε
(t)
θ (s) = ts − εθ(s), S

(t)
θ (s) = sup

0≤u≤s
ε
(t)
θ (u),

and define F θ(t) as the sequence of the lengths of the constancy intervals of the process

(S
(t)
θ (s), 0 ≤ s ≤ 1). Then the limit of the process (M (n)(t − ln σn), t ≥ lnσn) has the law

of (F θ(e−t), t ∈ R). Miermont [13] studied the same process in the special case where εθ is the
normalized excursion above the minimum of a spectrally negative Lévy process. More precisely
let (Xt, t ≥ 0) be a Lévy process with no positive jump, with unbounded variation and with
positive and finite mean. Let X(t) = sup0≤s≤t Xt and denote by εX = (εX(s), s ∈ [0, 1]) the nor-

malized excursion with duration 1 of the reflected process X−X. We now define in the same way

as for bθ, the processes ε
(t)
X (s), S

(t)
X (s) and FX(t). Then, the process (FX(e−t), t ∈ R) is a mix-

ture of some eternal additive coalescents (see [13] for more details). Furthermore, (FX(t), t ≥ 0)
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is a fragmentation process in the sense that distinct fragments evolve independently of each
other (however, it is not necessarily homogeneous in time). It is quite remarkable that the
Lévy property of X ensures the branching property of FX . We stress that there exist other
eternal additive coalescents for which this property fails. Notice that when the Lévy process X
is the standard Brownian motion B, the process (FB(e−t), t ∈ R) is then the standard additive
coalescent and (FB(t), t ≥ 0) is a self-similar and time-homogeneous fragmentation process.

In this paper, we study the relationship between the laws P(X) of (FX(t), t ≥ 0) and P(B) of
(FB(t), t ≥ 0). We prove that, for certain Lévy processes (Xt, t ≥ 0), the law P(X) is absolutely
continuous with respect to P(B) and we compute explicitly the density. Our main result is the
following:

Theorem 1.1. Let (Γ(t), t ≥ 0) be a subordinator with no drift. Assume that E(Γ1) < ∞
and take any c ≥ E(Γ1). We define Xt = Bt − Γt + ct, where B denotes a Brownian motion
independent of Γ. Let (pt(u), u ∈ R) and (qt(u), u ∈ R) stand for the respective density of Bt

and Xt. In particular pt(u) = 1√
2πt

exp(−u2

2t ). Let S1 be the space of positive sequences with sum

1. We consider the function h : R+ × S1 defined by

h(t,x) = etc p1(0)

q1(0)

∞
∏

i=1

qxi
(−txi)

pxi
(−txi)

with x = (xi)i≥1.

Then, for all t ≥ 0, the function h(t, ·) is bounded on S1 and has the following properties:

• h(t, F (t)) is a P(B)-martingale,

• for every t ≥ 0, the law of the process (FX(s), 0 ≤ s ≤ t) is absolutely continuous with
respect to that of (FB(s), 0 ≤ s ≤ t) with density h(t, FB(t)).

Let us notice that h(t, ·) is a multiplicative function, i.e. it can be written as the product of
functions, each of them depending only on the size of a single fragment. In the sequel we will
use the notation

h(t, x) = etcx

(

p1(0)

q1(0)

)x qx(−tx)

px(−tx)
for x ∈]0, 1] and t ≥ 0,

so we have h(t,x) =
∏

i h(t, xi). This multiplicative form of h(t, ·) implies that the process FX

has the branching property (i.e. distinct fragments evolve independently of each other) since
FB has it. Indeed, for every multiplicative bounded continuous function f : S↓ 7→ R+, for all
t′ > t > 0 and x ∈ S↓, we have, since h(t, FB(t)) is a P(B)-martingale,

E(X)
(

f(F (t′))
∣

∣F (t) = x
)

=
1

h(t,x)
E(B)

(

h(t′, F (t′))f(F (t′))
∣

∣F (t) = x
)

.

Using the branching property of FB and the multiplicative form of h(t, ·), we get

E(X)
(

f(F (t′))
∣

∣F (t) = x
)

=
1

h(t,x)

∏

i

E(B)
(

h(t′, F (t′))f(F (t′))
∣

∣F (t) = (xi, 0, . . .)
)

.

And finally we deduce

E(X)
(

f(F (t′))
∣

∣F (t) = x
)

=
1

h(t,x)

∏

i

h(t, xi)E
(X)
(

f(F (t′))
∣

∣F (t) = (xi, 0, . . .)
)

=
∏

i

E(X)
(

f(F (t′))
∣

∣F (t) = (xi, 0, . . .)
)

.
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Let Mx (resp. Mxi
) be the random measure on ]0,1[ defined by Mx =

∑

i δsi
where the sequence

(si)i≥1 has the law of F (t′) conditioned on F (t) = x (resp. F (t) = (xi, 0, . . .)). Hence we have,
for every bounded continuous function g : R 7→ R,

E

(

exp(− < g,Mx >)
)

=

∞
∏

i=1

E

(

exp(− < g,Mxi
>)
)

,

which proves that Mx has the law of
∑

i Mxi
where the random measures (Mxi

)i≥1 are indepen-
dent. Hence the process FX has the branching property. Notice also that other multiplicative
martingales have already been studied in the case of branching random walks [9, 10, 14, 12].

This paper will be divided in two sections. The first section is devoted to the proof of this
theorem and in the next one, we will use the fact that h(t, FB(t)) is a P(B)-martingale to describe
an integro-differential equation solved by the function h.

2 Proof of Theorem 1.1

The assumptions and notation in Theorem 1.1 are implicitly enforced throughout this section.

2.1 Absolute continuity

In order to prove Theorem 1.1, we will first prove the absolute continuity of the law P
(X)
t of

FX(t) with respect to the law P
(B)
t of FX(t) for a fixed time t > 0 and for a finite number of

fragments. We begin first by a definition:

Definition 2.1. Let x = (x1, x2, . . .) be a sequence of positive numbers with sum 1. We call the
random variable y = (xj1 , xj2, . . .) a size biased rearrangement of x if we have:

∀i ∈ N, P(j1 = i) = xi,

and by induction

∀i ∈ N\{i1, . . . , ik}, P(jk+1 = i | j1 = i1, . . . , jk = ik) =
xi

1 −∑k
l=1 xil

.

Notice that for every Lévy process X satisfying hypotheses of Theorem 1.1, we have
∑∞

i=1 Fi(t) =

1 P
(X)
t -a.s. (it is clear by the construction from an excursion of X since X has unbounded vari-

ation, cf [13], Section 3.2). Hence the above definition can be applied to FX(t).
The following lemma gives the distribution of the first n fragments of FX(t), chosen with a

size-biased pick:

Lemma 2.2. Let (F̃X
1 (t), F̃X

2 (t), . . .) be a size biased rearrangement of FX(t). Then for all
n ∈ N, for all x1, . . . , xn ∈ R+ such that S =

∑n
i=1 xi < 1, we have

P
(X)
t (F̃X

1 ∈ dx1, . . . , F̃
X
n ∈ dxn) =

tn

q1(0)
q1−S(St)

n
∏

i=1

qxi
(−txi)

1 −∑i
k=1 xk

dx1 . . . dxn.

Proof. On the one hand, Miermont [13] gave a description of the law of FX(t): let T (t) be a
subordinator with Lévy measure z−1qz(−tz)1lz>0dz. Then FX(t) has the law of the sequence of

the jumps of T (t) before time t conditioned on T
(t)
t = 1.
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One the other hand, consider a subordinator T on the time interval [0, u] conditioned by
Tu = y and pick a jump of T by size-biased sampling. Then, its distribution has density

zuh(z)fu(y − z)

yfu(y)
dz,

where h is the density of the Lévy measure of T and fu is the density of Tu (see Theorem 2.1 of
[15]). Then, in the present case, we have

u = t, y = 1, h(z) = z−1qz(−tz), fu(z) =
u

z
qz(u − zt) (cf. Lemma 9 of [13]).

Hence we get

P
(X)
t (F̃X

1 ∈ dz) =
tqz(−tz)q1−z(zt)

(1 − z)q1(0)
dz.

This proves the lemma in the case n = 1. The proof for n ≥ 2 uses an induction. Assume that
we have proved the case n − 1 and let us prove the case n. We have

P
(X)
t (F̃X

1 ∈ dx1, . . . , F̃
X
n ∈ dxn) =

P
(X)
t (F̃X

1 ∈ dx1, . . . , F̃
X
n−1 ∈ dxn−1)P

(X)
t (F̃X

n ∈ dxn | F̃X
1 ∈ dx1, . . . , F̃

X
n−1 ∈ dxn−1).

Furthermore, Perman, Pitman and Yor [15] have proved that the n-th size biased picked jump
∆n of a subordinator before time u conditioned by Tu = y and ∆1 = x1, . . . ,∆n−1 = xn−1

has the law of a size biased picked jump of the subordinator T before time u conditioned by
Tu = y − x1 − . . . − xn−1. Hence we get:

P
(X)
t (F̃X

1 ∈ dx1, . . . , F̃
X
n ∈ dxn) =

(

tn−1

q1(0)
q1−Sn−1(Sn−1t)

n−1
∏

i=1

qxi
(−txi)

1 − Si

)

tqxn(−txn)q1−Sn(Snt)

(1 − Sn)q1−Sn−1(Sn−1t)
dx1 . . . dxn,

where Si =
∑i

k=1 xk. And so the lemma is proved by induction.

Since the lemma is clearly also true for P(B) (take Γ = c = 0), we get:

Corollary 2.3. Let (F (t), t ≥ 0) be a fragmentation process. Let (F̃1(t), F̃2(t), . . .) be a size
biased rearrangement of F (t). Then for all n ∈ N, for all x1, . . . , xn ∈ R+ such that S =
∑n

i=1 xi < 1, we have

P
(X)
t (F̃1 ∈ dx1, . . . , F̃n ∈ dxn)

P
(B)
t (F̃1 ∈ dx1, . . . , F̃n ∈ dxn)

= hn(t, x1, . . . , xn),

with hn(t, x1, . . . , xn) =
p1(0)

q1(0)

q1−S(St)

p1−S(St)

n
∏

i=1

qxi
(−txi)

pxi
(−txi)

.

To establish that the law of FX(t) is absolutely continuous with respect to the law of FB(t)
with density h(t, ·), it remains to check that the function hn converges as n tends to infinity to

h P
(B)
t -a.s. and in L1(P

(B)
t ). In this direction, we first prove two lemmas:

5



Lemma 2.4. We have
qy(−ty)
py(−ty) < 1 for all y > 0 sufficiently small. As a consequence, if (xi)i≥1

is a sequence of positive numbers with limi→∞ xi = 0, then the product
∏n

i=1
qxi

(−txi)

pxi
(−txi)

converges

as n tends to infinity.

Proof. Since Xt = Bt − Γt + tc, notice that we have

∀s > 0, ∀u ∈ R, qs(u) = E

(

ps(u + Γs − cs)
)

.

Hence if we replace ps(u) by its expression 1√
2πs

exp(−u2

2s ), we get

qs(u)

ps(u)
= exp

(

cu − c2s

2

)

E

[

exp

(

−Γ2
s

2s
− Γs(

u

s
− c)

)]

. (1)

i.e., for all y > 0, for all t ≥ 0,

qy(−ty)

py(−ty)
= exp

(

−y(ct +
c2

2
)

)

E

[

exp

(

−
Γ2

y

2y
+ Γy(t + c)

)]

.

Using the inequality (c − a)(c − b) ≥ −
(

b−a
2

)2
, we have

−
Γ2

y

2y
+ Γy(t + c) ≤ y(t + c)2

2

and we deduce
qy(−ty)

py(−ty)
≤ e

t2y

2 .

Fix c′ ∈]0, c[, let f be the function defined by f(y) = P(Γy ≤ c′y). Since Γt is a subordinator
with no drift, we have limy→0 f(y) = 1 (indeed, Γy = o(y) a.s., see [3]). On the event {Γy ≤ c′y},
we have

exp

(

−y(ct +
c2

2
)

)

exp

(

−
Γ2

y

2y
+ Γy(t + c)

)

≤ exp(−y(
1

2
(c − c′)2 + t(c − c′)))

≤ exp(−εy),

with ε = 1
2(c − c′)2. Hence, we get the upper bound

qy(−ty)

py(−ty)
≤ e−εyf(y) + (1 − f(y))e

yt2

2 .

Since f(y) → 1 as y → 0, we deduce

e−εyf(y) + (1 − f(y))e
yt2

2 = 1 − εy + o(y).

Thus, we have
qy(−ty)
py(−ty) < 1 for y small enough, and so the product converges for every sequence

(xi)i≥0 which tends to 0.

We prove now a second lemma:

Lemma 2.5. We have

lim
s→1−

q1−s(st)

p1−s(st)
= etc.
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Proof. We use again Identity (1) established in the proof of Lemma 2.4. We get:

q1−s(st)

p1−s(st)
= exp

(

tsc − c2

2
(1 − s)

)

E

[

exp

(

− Γ2
1−s

2(1 − s)
− Γ1−s(

ts

1 − s
− c)

)]

.

For s close enough to 1, ts
1−s − c ≥ 0, hence we get

E

[

exp

(

− Γ2
1−s

2(1 − s)
− Γ1−s(

ts

1 − s
− c)

)]

≤ 1

and we deduce

lim sup
s→1−

q1−s(st)

p1−s(st)
≤ etc.

For the lower bound, we write

E

[

exp

(

− Γ2
1−s

2(1 − s)
− Γ1−s(

ts

1 − s
− c)

)]

≥ E

[

exp

(

− Γ1−s

2(1 − s)
− Γ1−s(

ts

1 − s
− c)

)

1l{Γ1−s≤1}

]

≥ E

[

exp

(

−Γ1−s
1 + 2ts

2(1 − s)

)

1l{Γ1−s≤1}

]

≥ E

[

exp

(

−Γ1−s
1 + 2ts

2(1 − s)

)]

− P(Γ1−s ≥ 1).

Since Γt is a subordinator with no drift, limu→0
Γu

u = 0 a.s., and we have for all K > 0,

lim
u→0+

E

[

exp

(

−K
Γu

u

)]

= 1.

Hence, we get

lim inf
s→1−

q1−s(st)

p1−s(st)
≥ etc.

We are now able to prove the absolute continuity of P
(X)
t with respect to P

(B)
t . Since Sn =

∑n
i=1 xi converges P

(B)
t -a.s. to 1, Lemma 2.4 and 2.5 imply that Hn = hn(t, F̃1(t), . . . , F̃n(t))

converges to H = h(t, F (t)) P(B)-a.s.
Let us now prove that Hn is uniformly bounded, which implies the L1 convergence. We have

already proved that there exists ε > 0 such that:

∀x ∈]0, ε[,
qx(−tx)

px(−tx)
≤ 1.

Besides, it is well known that, if Xt = Bt − Γt + ct, its density (t, u) → qt(u) is continuous on

R∗
+×R. Hence, on [ε, 1], the function x → qx(−tx)

px(−tx) is continuous and we can find an upper bound

A > 0 of this function . As there are at most 1
ε fragments of F (t) larger than ε, we deduce the

upper bound:
∞
∏

i=1

qFi
(−tFi)

pFi
(−tFi)

≤ A
1
ε .
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Likewise, the function S → q1−S(St)
p1−S(St) is continuous on [0, 1[ and has a limit at 1, so it is bounded

by some D > 0 on [0, 1]. Hence we get

Hn ≤ A
1
ε D

p1(0)

q1(0)
P(B)-a.s.

So Hn converges to H P(B)-a.s. and in L1(P(B)). Furthermore, by construction, Hn is a P(B)-
martingale, hence we get for all n ∈ N,

E(B)(H | F̃1, . . . , F̃n) = Hn,

and so, for every bounded continuous function f : S1 → R, we have

E(X)
[

f(F (t))
]

= E(B)
[

f(F (t))h(t, F (t))
]

.

Hence, we have proved that, for a fixed time t ≥ 0, the law of FX(t) is absolutely continuous
with respect to that of FB(t) with density h(t, FB(t)). Furthermore, Miermont [13] has proved
that the processes (FX(e−t), t ∈ R) and (FB(e−t), t ∈ R) are both eternal additive coalescents
(with different entrance laws). Hence, they have the same semi-group of transition and we get
the absolute continuity of the law of the process (FX(s), 0 ≤ s ≤ t) with respect to that of
(FB(s), 0 ≤ s ≤ t) with density h(t, FB(t)).

2.2 Sufficient condition for equivalence

We can now wonder whether the measure P(X) is equivalent to the measure P(B), that is whether
h(t, F (t)) is strictly positive P(B)-a.s. A sufficient condition is given by the following proposition.

Proposition 2.6. Let φ be the Laplace exponent of the subordinator Γ, i.e.

∀s ≥ 0,∀q ≥ 0, E(exp(−qΓs)) = exp(−sφ(q)).

Assume that there exists δ > 0 such that

lim
x→∞

φ(x)xδ−1 = 0, (2)

then the function h(t, F (t)) defined in Theorem 1.1 is strictly positive P(B)-a.s.

We stress that the condition 2 is very weak. For instance, let π be the Lévy measure of
the subordinator and I(x) =

∫ x
0 π(t)dt where π(t) denotes π(]t,∞[). It is well known that φ(x)

behaves like xI(1/x) as x tends to infinity (see [3] Section III). Thus, the condition 2 is equivalent
to I(x) = o(xδ) as x tends to 0 (recall that we always have I(x) = o(1)).

Proof. Let t > 0. We must check that
∏∞

i=1
qxi

(−txi)

pxi
(−txi)

is P
(B)
t -almost surely strictly positive.

Using (1), we have:

qy(−ty)

py(−ty)
= exp

(

−y(ct +
c2

2
)

)

E

[

exp

(

−
Γ2

y

2y
+ Γy(t + c)

)]

.

Since we have
∑∞

i=1 xi = 1 P
(B)
t -a.s., we get

∞
∏

i=1

qxi
(−txi)

pxi
(−txi)

≥ exp

(

−ct +
c2

2

) ∞
∏

i=1

E

[

exp

(

−Γ2
xi

2xi
+ cΓxi

)]

.
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Hence we have to find a lower bound for E

[

exp
(

−Γ2
y

2y + cΓy

)]

. Since c ≥ E(Γ1), we have

E

[

exp

(

−
Γ2

y

2y
+ cΓy

)]

≥ E

[

exp

(

Γy

y
(E(Γy) −

Γy

2
)

)]

.

Set A = E(Γ1) and let us fix K > 0. Notice that the event E(Γy) − Γy

2 ≥ −Ky is equivalent to
the event Γy ≤ (2A + K)y and by Markov inequality, we have

P(Γy ≥ (2A + K)y) ≤ A

2A + K
.

Hence we get

E

[

exp

(

−
Γ2

y

2y
+ cΓy

)]

≥ E

[

exp

(

Γy

y
(E(Γy) −

Γy

2
)1l{Γy≤(2A+K)y}

)]

≥ E
(

exp(−KΓy)1l{Γy≤(2A+K)y}
)

≥ E (exp(−KΓy)) − E
(

exp(−KΓy)1l{Γy>(2A+K)y}
)

≥ exp(−φ(K)y) − A

2A + K
.

This inequality holds for all K > 0. Hence, with ε > 0 and K = y−
1
2
−ε, we get

E

[

exp

(

−
Γ2

y

2y
+ cΓy

)]

≥ exp
(

−φ(y−
1
2
−ε)y

)

− Ay
1
2
+ε.

Furthermore, the product
∏∞

i=1 E

[

exp

(

−Γ2
xi

2xi
+ cΓxi

)]

is strictly positive if the series

∞
∑

i=1

1 − E

[

exp

(

−Γ2
xi

2xi
+ cΓxi

)]

converges. Hence, a sufficient condition is

∃ ε > 0 such that
∞
∑

i=1

(

1 − exp

(

−φ(x
− 1

2
−ε

i )xi

)

+ x
1
2
+ε

i

)

< ∞ P
(B)
t -a.s.

Recall that the distribution of the Brownian fragmentation at time t is equal to the distribu-
tion of the jumps of a stable subordinator T with index 1/2 before time t conditioned on Tt = 1
(see [1]). Hence, it is well known that we have for all ε > 0

∞
∑

i=1

x
1
2
+ε

i < ∞ P
(B)
t -a.s. (see Formula (9) of [1]).

Thus, we have equivalence between P
(B)
t and P

(X)
t as soon as there exist two strictly positive

numbers ε, ε′ such that, for x small enough

φ(x− 1
2
−ε)x ≤ x

1
2
+ε′ .

One can easily check that this condition is equivalent to (2).
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In Theorem 1.1, we have supposed that Xt can be written as Bt+Γt−ct, with c ≥ E(Γ1) and
Γt subordinator. We can wonder whether the theorem applies for a larger class of Lévy processes.
Notice first that the process X must fulfill the conditions of Miermont’s paper [13] recalled in the
introduction, i.e. X has no positive jumps, unbounded variation and finite and positive mean.
Hence, a possible extension of the Theorem would be for example for Xt = σ2Bt + Γt − ct, with
σ > 0, σ 6= 1. In fact, it is clear that Theorem 1.1 fails in this case. Let just consider for example
Xt = 2Bt. Using Proposition 3 of [13], we get that

(FX(2t), t ≥ 0)
law
= (FB(t), t ≥ 0).

But, it is well known that we have

lim
n→∞

n2F ↓
n(t) = t

√

2/π P(B)-a.s. (see [6])

Hence, the laws P
(B)
t and P

(B)
2t are mutually singular.

3 An integro-differential equation

Since h(t, F (t)) is the density of P(X) with respect to P(B) on the sigma-field Ft = σ(F (s), s ≤ t),
it is a P(B)-martingale. Hence, in this section, we will compute the infinitesimal generator of a
fragmentation to deduce a remarkable integro-differential equation.

3.1 The infinitesimal generator of a fragmentation process

In this section, we recall a result obtained by Bertoin and Rouault in an unpublished paper [8].
We denote by D the space of functions f : [0, 1] 7→]0, 1] of class C1 and with f(0) = 1. For

f ∈ D and x ∈ S↓, we set

f(x) =
∞
∏

i=1

f(xi).

For α ∈ R+ and ν measure on S↓ such that
∫

S↓(1 − x1)ν(dx) < ∞, we define the operator

Gαf(x) = f(x)

∞
∑

i=1

xα
i

∫

ν(dy)

(

f(xiy)

f(xi)
− 1

)

for f ∈ D and x ∈ S↓.

Proposition 3.1. Let (X(t), t ≥ 0) be a self-similar fragmentation with index of self-similarity
α > 0, dislocation measure ν and no erosion. Then, for every function f ∈ D, the process

f(X(t)) −
∫ t

0
Gαf(X(s))ds

is a martingale.

Proof. We will first prove the following lemma

Lemma 3.2. For f ∈ D,y ∈ S↓, r ∈ [0, 1], we have

∣

∣

∣

f(ry)

f(r)
− 1
∣

∣

∣
≤ 2CfeCf r(1 − y1),

with Cf =
∣

∣

∣

∣

∣

∣

f ′

f2

∣

∣

∣

∣

∣

∣

∞
.
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Notice that, since f is C1 on [0, 1] and strictly positive, Cf is always finite.

Proof. First, we write

| ln f(ry1) − ln f(r)| ≤
∣

∣

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

∣

∣

∞
(1 − y1)r ≤ Cf (1 − y1)r.

We deduce then

f(ry)

f(r)
− 1 ≤ f(ry1)

f(r)
− 1 ≤ eCf (1−y1)r − 1 ≤ CfeCf (1 − y1)r.

Besides we have

ln
1

f(x1)
≤ 1

f(xi)
− 1 ≤ Cfxi, which implies f(x) ≥ f(x1) exp(−Cf

∞
∑

i=2

xi).

Hence we get
f(ry)

f(r)
≥ f(ry1)

f(r)
exp(−Cf (1 − y1)r) ≥ exp(−2Cf (1 − y1)r),

and we deduce

1 − f(ry)

f(r)
≤ 2CfeCf (1 − y1)r.

We can now prove Proposition 3.1. We denote by T the set of times where some dislocation
occurs (which is a countable set). Hence we can write

f(X(t)) − f(X(0)) =
∑

s∈[0,t]∩T

(

f(X(s)) − f(X(s−))
)

,

as soon as
∑

s∈[0,t]∩T

∣

∣

∣
f(X(s)) − f(X(s−))

∣

∣

∣
< ∞

For s ∈ T , if the i-th fragment Xi(s−) is involved in the dislocation, we set ks = i and we denote
by ∆s the element of S↓ according to X(s−) has been broken. Hence, we have

∑

s∈[0,t]∩T

∣

∣

∣
f(X(s)) − f(X(s−))

∣

∣

∣
=

∑

s∈T ∩[0,t]

f(X(s−))

( ∞
∑

i=1

1lks=i

∣

∣

∣

f(Xi(s−)∆s)

f(Xi(s−))
− 1
∣

∣

∣

)

.

Hence, since a fragment of mass r has a rate of dislocation νr(dx) = rαν(dx), the predictable
compensator is

∫ t

0
ds f(X(s−))

∫

S↓

ν(dy)

∞
∑

i=1

Xα
i (s−)

∣

∣

∣

f(Xi(s−)y)

f(Xi(s−))
− 1
∣

∣

∣

≤ 2CfeCf

∫ t

0

∞
∑

i=1

Xi(s−)

∫

S↓

(1 − y1)ν(dy)ds.

≤ 2CfeCf t

∫

S↓

(1 − y1)ν(dy)
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Hence
∑

s∈[0,t]∩T

∣

∣

∣
f(X(s)) − f(X(s−))

∣

∣

∣
< ∞ a.s.,

and thus we have

f(X(t)) − f(X(0)) =
∑

s∈[0,t]∩T

(

f(X(s)) − f(X(s−))
)

,

i.e.

f(X(t)) − f(X(0)) =
∑

s∈T ∩[0,t]

f(X(s−))

( ∞
∑

i=1

1lks=i

(

f(Xi(s−)∆s)

f(Xi(s−))
− 1

)

)

,

whose predictable compensator is

∫ t

0
ds f(X(s−))

∫

S↓

ν(dy)
∞
∑

i=1

Xα
i (s−)

(

f(Xi(s−)y)

f(Xi(s−))
− 1

)

=

∫ t

0
Gαf(X(s))ds.

3.2 Application to h(t, F (t))

Let F (t) be a fragmentation process and qt(x) be the density of a Lévy process fulfilling the
hypotheses of Theorem 1.1. We have proved in the first section that the function

Ht = h(t, F (t)) = etc p1(0)

q1(0)

∞
∏

i=1

qFi(t)(−tFi(t))

pFi(t)(−tFi(t))

is a P(B)-martingale (since it is equal to dP
(X)

dP(B) |Ft). We set

g(t, x) = etcx qx(−tx)

px(−tx)
for x ∈]0, 1], t ≥ 0 and g(t, 0) = 1.

Set now g(t,x) =

∞
∏

i=1

g(t, xi(t)) for x ∈ S↓, t ≥ 0.

So we have, as
∑

i Fi(t) = 1 P(B)-a.s.,

Ht =
p1(0)

q1(0)
g(t, F (t)) for all t ≥ 0.

It is well known that if qt(u) is the density of a Lévy process Xt = Bt − Γt + ct, the
function (t, u) 7→ qt(u) is C∞ on R∗

+ × R. Hence (t, x) 7→ g(t, x) is also C∞ on R+×]0, 1] and in
particular, for all x ∈ [0, 1], the function t → g(t, x) is C1 and so ∂tg(t, x) is well defined. The
next proposition gives a integro-differential equation solved by the function g when g has some
properties of regularity at points (t, 0), t ∈ R+.

Proposition 3.3. 1. Assume that for all t ≥ 0, ∂xg(t, 0) exists and the function (t, x) →
∂xg(t, x) is continuous at (t, 0). Then g solves the equation:











∂tg(t, x) +
√

x

∫ 1

0

dy
√

8πy3(1 − y)3

(

g(t, xy)g(t, x(1 − y)) − g(t, x)
)

= 0

g(0, x) = qx(0)
px(0) .
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2. If the Lévy measure of the subordinator Γ is finite, then the above conditions on g hold.

Proof. Let us first notice that the hypotheses of the proposition imply that the integral

∫ 1

0

dy
√

8πy3(1 − y)3

(

g(t, xy)g(t, x(1 − y)) − g(t, x)
)

is well defined and is continuous in x and in t. Indeed, this integral is equal to

2

∫ 1
2

0

dy
√

8πy3(1 − y)3

(

g(t, xy)g(t, x(1 − y)) − g(t, x)
)

.

And for all y ∈]0, 1/2[, x ∈]0, 1], t ∈ R+, there exist c, c′ ∈ [0, x] such that

g(t, xy)g(t, x(1 − y)) − g(t, x)

y
= x(g(t, x)∂xg(t, c) − g(t, xy)∂xg(t, c′)).

Thanks to the hypothesis that the function (t, x) → ∂xg(t, x) is continuous on R+ × [0, 1],
|x(g(t, x)∂xg(t, c) − g(t, xy)∂xg(t, c′))| is uniformly bounded on [0, T ] × [0, 1] × [0, 1

2 ] and so by
application of the theorem of dominated convergence, the integral is continuous in t on R+ and
in x on [0,1].

We begin by proving the first point of the proposition. Recall that, according to Proposition
3.1, the generator of the Brownian fragmentation is

G 1
2
f(x) = f(x)

∞
∑

i=1

√
xi

∫

ν(dy)

(

f(xiy)

f(xi)
− 1

)

,

with

ν(y1 ∈ du) = (2πu3(1 − u)3)−1/2du for u ∈]1/2, 1[, ν(y1 + y2 6= 1) = 0 (cf. [5]).

Hence,

Mt = g(t, F (t)) − g(0, F (0)) −
∫ t

0
G 1

2
g(s, F (s)) + ∂tg(s, F (s))ds

is a P(B)-martingale. Since g(t, F (t)) is already a P(B)-martingale, we get

G 1
2
g(s, F (s)) + ∂tg(s, F (s)) = 0 P(B)-a.s. for almost every s > 0,

i.e. for almost every s > 0

g(s, F (s))

∞
∑

i=1

[

F
1/2
i (s)

∫

S↓

ν(dy)

(

g(s, Fi(s)y)

g(s, Fi(s))
− 1

)

+
∂tg(s, Fi(s))

g(s, Fi(s))

]

= 0 P(B)-a.s.

With F (s) = (x1, x2, . . .), we get

∞
∑

i=1

[

x
1/2
i

∫

S↓

ν(dy)

(

g(s, xiy)

g(s, xi)
− 1

)

+
∂tg(s, xi)

g(s, xi)

]

= 0 P(B)
s -a.s.

Notice also that this series is absolutely convergent. Indeed, thanks to Lemma 3.2, we have

∣

∣

∣
x

1/2
i

∫

S↓

ν(dy)

(

g(s, xiy)

g(s, xi)
− 1

)

∣

∣

∣
≤ Cg,sxi

∫

S↓

(1 − y1)ν(dy),

13



where Cg,s is a positive constant (which depends on g and s), and, besides we have

g(t, x) = exp

(

−x
c2

2

)

E

[

exp

(

−Γ2
x

2x
+ Γx(t + c)

)]

.

Thus, by application of the theorem of dominated convergence, it is easy to prove that the

function t → E

[

exp
(

−Γ2
x

2x + Γx(t + c)
)]

is derivable with derivative

∂tE

[

exp

(

−Γ2
x

2x
+ Γx(t + c)

)]

= E

[

Γx exp

(

−Γ2
x

2x
+ Γx(t + c)

)]

.

Notice also that this quantity is continuous in x on [0,1].
Hence we have

∀xi ∈]0, 1[,∀s > 0,
∂tg(s, xi)

g(s, xi)
> 0.

Thus we deduce ∞
∑

i=1

∂tg(s, xi)

g(s, xi)
< ∞ P(B)

s -a.s.

Let define

k(t, x) = ∂tg(t, x) +
√

x

∫ 1

0

dy
√

8πy3(1 − y)3

(

g(t, xy)g(t, x(1 − y)) − g(t, x)
)

.

Hence we have ∞
∑

i=1

k(s, xi) = 0 P(B)
s -a.s. for almost every s > 0, (3)

and ∞
∑

i=1

|k(s, xi)| < ∞ P(B)
s -a.s. for almost every s > 0. (4)

Furthermore, x → k(t, x) is continuous on [0, 1], hence, thanks to the following lemma, we get
for almost every s > 0, k(s, x) = 0 for x ∈ [0, 1]. And, since s → k(s, x) is continuous on R+,
we deduce k ≡ 0 on R+ × [0, 1].

Lemma 3.4. Fix t > 0. Let P
(B)
t denote the law of the Brownian fragmentation at time t. Let

k : [0, 1] 7→ R be a continuous function, such that

∞
∑

i=1

k(xi) = 0 P
(B)
t -a.s. and

∞
∑

i=1

|k(xi)| < ∞ P
(B)
t -a.s.

Then k ≡ 0 on [0,1].

Proof. Let F (t) = (F1(t), F2(t) . . .) be a Brownian fragmentation at time t where the sequence
(Fi(t))i≥1 is ordered by a size-biased pick. We denote by S the set of positive sequence with
sum less than 1. Since F (t) has the law of the size biased reordering of the jumps of a stable
subordinator T (with index 1/2) before time t, conditioned by Tt = 1 (see [1]), it is obvious that
we have

∀x ∈]0, 1 − S[, P
(B)
t (F1 ∈ dx | (Fi)i≥3) > 0,
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where S =
∑

i≥3 Fi. Let Qt be the measure on S defined by

∀A ⊂ S, Qt(A) = P
(B)
t ((Fi)i≥3 ∈ A)

and λ the Lebesgue measure on [0, 1]. Hence we have, for all y ∈ S - Qt-a.s.

∀x ∈]0, S[, k(x) + k(1 − S − x) +

∞
∑

i=1

k(yi) = 0 λ-a.s.,

where S =
∑

i yi. We choose now y ∈ S such that this equality holds for almost every x ∈]0, S[.
Thus, we get that there exists a constant C = C(y) such that

k(x) + k(1 − S − x) = C, for all x ∈]0, S[ λ-a.s.

Since k is continuous, this equality holds in fact for all x ∈ [0, S]. Furthermore, we have also

∀s ∈]0, 1[, Qt(S ∈ ds) > 0.

Hence, this implies the existence for almost every s ∈]0, 1[ of a constant Cs such that

k(x) + k(1 − s − x) = Cs for all x ∈]0, s[.

Thanks to the continuity of k, we can deduce that this property holds in fact for all s ∈ [0, 1].
Hence we have

∀x, y ∈ [0, 1]2, such that x + y ≤ 1, k(x + y) = k(x) + k(y).

So k is a linear function and since
∑∞

i=1 xi = 1 P
(B)
t -a.s., we get k ≡ 0 on [0,1].

We prove now the point 2 of Proposition 3.3.

Proof. Assume that the Lévy measure of Γ is finite. It is obvious that g has the same regularity
that the function qx(−tx)

px(−tx) . Recall now that we have

qx(−tx)

px(−tx)
= exp

(

−x(ct +
c2

2
)

)

E

[

exp

(

−Γ2
x

2x
+ Γx(t + c)

)]

.

Hence a sufficient condition for g to fulfill the hypotheses of Proposition 3.3 is

• ut(x) = E

[

exp
(

−Γ2
x

2x + Γx(t + c)
)]

is derivable at 0.

• w(t, x) = u′
t(x) is continuous at (t, 0) for t ∈ R+.

We write ut(x) = at(x, x) with

at(y, z) = E

[

exp

(

−
Γ2

y

2z
+ Γy(t + c)

)]

.

Since the function (y, z) → y2

2z2 exp
(

−y2

2z + y(t + c)
)

is bounded on R+ × [0, 1], we get

∂zat(y, z) = E

[

Γ2
y

2z2
exp

(

−
Γ2

y

2z
+ Γy(t + c)

)]

for z ∈]0, 1].
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Recall that the generator of a subordinator with no drift and Lévy measure π is given for every
bounded function f C1 with bounded derivative by

∀y ∈ R+, Lf(y) =

∫ ∞

0
(f(y + s) − f(y))π(ds), (c.f. Section 31 of [16]).

Hence, we get for all z0 > 0,

∂yat(y, z0) = E(Lat(Γy, z0))

= E

[

∫ ∞

0

(

exp

(

−(Γy + s)2

2z0
+ (Γy + s)(t + c)

)

− exp

(

−
Γ2

y

2z0
+ Γy(t + c)

))

π(ds)

]

.

And we deduce

u′
t(x) = E

[

Γ2
x

2x2 exp
(

−Γ2
x

2x + Γx(t + c)
)]

+ E

[
∫ ∞

0

(

exp

(

−(Γx + y)2

2x
+ (Γx + y)(t + c)

)

− exp

(

−Γ2
x

2x
+ Γx(t + c)

))

π(dy)

]

,

We must prove that (t, x) → u′
t(x) is continuous at (t, 0) for t ≥ 0. For every Lévy measure

π, the first term has limit 0 as (t′, x) tends to (t, 0) (by dominated convergence). For the second
term, notice that we have for all x ∈]0, 1],

∣

∣

∣
exp

(

−(Γx + y)2

2x
+ (Γx + y)(t + c)

)

− exp

(

−Γ2
x

2x
+ Γx(t + c)

)

∣

∣

∣
≤ 2 exp

(

(t + c)2x

2

)

,

and for all y > 0, exp
(

− (Γx+y)2

2x + (Γx + y)(t + c)
)

− exp
(

−Γ2
x

2x + Γx(t + c)
)

converges almost

surely to −1 as (t′, x) tends to (t, 0). Hence, if π(R+) < ∞, we deduce that the lim(t′,x)→(t,0) u′
t(x)

exists (and is equal to −π(R+)).
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