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1. Introduction

Quantum information aims at the treatment and transport of information using
the laws of quantum physics. For these goals, continuous variables (CV) of the
electromagnetic field have emerged as a powerful tool [1, 2, 3]. In this context,
entanglement is an essential ressource. The purpose of this paper is to link the very
powerful mathematical description of gaussian states based on covariance matrices
and the experimental production and manipulation of entanglement.

Experimentally, entanglement can be obtained directly by type-II parametric
interaction below the oscillation deamplifying either the vacuum fluctuations as was
demonstrated in the seminal experiment by Ou et al. [4] (or in recent experiments
[5]) or the fluctuations of a weak injected beam [7]. It can also be obtained above the
oscillation threshold in a non frequency degenerate configuration [6]. It can also be
obtained indirectly by mixing on a beam splitter two independent squeezed beams.
The required squeezing can be produced by Kerr effects – using optical fibers [8] or cold
atoms in an optical cavity [9] – or by type-I parametric interaction in a cavity [10, 11].
Single-pass type-I interaction in a non-colinear configuration can also generate directly
entangled beams as demonstrated recently by Wenger et al. in the pulsed regime [12].
All these methods produce a symmetric entangled state enabling dense coding, the
teleportation of coherent [13, 11, 14] or squeezed states [15] or entanglement swapping
[16, 14]. These experiments generate an entangled state with a covariance matrix
in the so-called ‘standard form’ [17, 18], without having to apply any local linear
unitary transformations such as beam-splitting or phase-shifts to exploit it optimally
in quantum information protocols.

However, it has been recently shown in [20] that, when a birefringent plate is
inserted inside the cavity of a type-II optical parametric oscillator, i.e. when mode
coupling is added, the generated two-mode state remains symmetric but entanglement
is not observed on orthogonal quadratures: the state produced is not in the standard
form. The entanglement of the two emitted modes in this configuration is not optimal:
it is indeed possible by passive ”global” operations to select modes that are more
entangled. Our original system provides thus a good insight into the quantification
and manipulation of the entanglement resources of two-mode Gaussian states. In
particular, as just anticipated, it allows to confirm experimentally the theoretical
predictions on the entangling capacity of passive optical elements and on the selection
of the optimally entangled bosonic modes [21].

The paper is organized as follows: we start by giving a general overview of
gaussian states and defining the covariance matrix formalism, focusing in particular
on two-mode states. Over the last years, a great deal of attention has been
devoted to defining not only criterion of entanglement but also quantification of this
entanglement. Section 3 focuses on different such measures which are interpreted in the
covariance matrix formalism. Effects of mode coupling on the generated entanglement
is then discussed in detail (section 4). The experimental setup used to generate
and quantify the entanglement is presented in section 5. In section 6, experimental
measures of entanglement are realized and we discuss on the effect of noise of the
covariance matrix on the entanglement measures. Finally, we show how optimization
of the resource is obtained by a passive operation – namely a polarization adjustment
– operated on the two-mode state (section 7).
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2. Gaussian states: general overview

A continuous variable (CV) system is described by a Hilbert space H =
⊗n

i=1 Hi

resulting from the tensor product of infinite dimensional Fock spaces Hi’s. Let âi
and â†i be the annihilation and creation operators acting on Hi (ladder operators),

and x̂i = (âi + â†i ) and p̂i = (âi − â†i )/i be the related quadrature phase operators.

The corresponding phase space variables will be denoted by xi and pi. Let X̂ =
(x̂1, p̂1, . . . , x̂n, p̂n) denote the vector of the operators x̂i and p̂i. The canonical
commutation relations for the X̂i can be expressed in terms of the symplectic form Ω

[X̂i, X̂j ] = 2iΩij ,

with Ω ≡
n

⊕

i=1

ω , ω ≡
(

0 1
−1 0

)

.

The state of a CV system can be equivalently described by a positive trace-class
operator (the density matrix ̺) or by quasi–probability distributions. In the following,
we shall adopt the Wigner quasi–probability function W (R) defined, for any density
matrix, as the Fourier transform of the symmetrically ordered characteristic function
[22]:

W (R) ≡ 1

π2

∫R2n

Tr [̺DY ] eiY
T ΩR d2nY , R ∈ R2n ,

where the displacement operators DY (describing the effect on the field of a classical
driving current) are defined as

DY = eiY
T ΩX̂ , Y ∈ R2n . (1)

The 2n-dimensional space of definition of the Wigner function, associated to the
quadratic form Ω, is referred to as phase space, in analogy with classical Hamiltonian
dynamics. In Wigner phase space picture, the tensor product H =

⊗Hi of the Hilbert
spaces Hi’s of the n modes results in the direct sum Γ =

⊕

Γi of the phase spaces
Γi’s.

States with Gaussian characteristic functions and quasi–probability distributions
are referred to as Gaussian states. Such states are at the heart of information
processing in CV systems [2] and are the subject of our analysis. By definition,
a Gaussian state ̺ is completely characterised by the first and second statistical
moments of the field operators, which will be denoted, respectively, by the vector

of first moments X̄ ≡
(

〈X̂1〉, 〈X̂2〉, . . . , 〈X̂2n−1〉, 〈X̂2n〉
)

and the covariance matrix

(CM) Γ of elements

Γij ≡
1

2
〈X̂iX̂j + X̂jX̂i〉 − 〈X̂i〉〈X̂j〉 , (2)

where, for any observable ô, the expectation value 〈ô〉 ≡ Tr(̺ô). Notice that,
according to our definition of the quadrature operators in terms of the ladder operators,
the entries of the CM are real numbers. Being the variances and covariances of
quantum operators, such entries are obtained by noise variance and noise correlation
measurements. They can be expressed as energies by multiplying them by the quantity
~ω, where ω is the frequency of the considered mode. In fact, for any n-mode state
the quantity ~ωTr (Γ/4) is just the contribution of the second moments to the average

of the “free” Hamiltonian
∑n
i=1(â

†
i âi + 1/2).
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Coherent states, resulting from the application of displacement operators DX

to the vacuum state |0〉, are Gaussian states with CM Γ = 1 and first statistical
moments X̄ = X . First moments can be arbitrarily adjusted by local unitary
operations (displacements), which cannot affect any property related to entropy or
entanglement. In the present experimental case, the fields are produced by an OPO
below the oscillation threshold, and the means are actually zero. Let us note that this
can be done without any loss of generality.

The canonical commutation relations and the positivity of the density matrix ̺
imply

Γ + iΩ ≥ 0 , (3)

meaning that all the eigenvalues of the (hermitian) matrix Γ + iΩ have to be greater
or equal than zero. Inequality (3) is the necessary and sufficient constraint the matrix
Γ has to fulfill to be a CM corresponding to a physical Gaussian state [23, 24]. Note
that the previous condition is necessary for the CM of any (generally non Gaussian)
state, as it generalises to many modes the Robertson-Schrödinger uncertainty relation,
reducing to the familiar Heisenberg principle for pure, uncorrelated states. We mention
that such a constraint implies Γ ≥ 0.

A major role in the theoretical and experimental manipulation of Gaussian states
is played by unitary operations which preserve the Gaussian character of the states
on which they act. Such operations are all those generated by terms of the first and
second order in the field operators. So, beside the already discussed displacements,
also the unitary operations generated by terms of the second order are Gaussian. As
a consequence of the Stone-Von Neumann theorem, any such operation at the Hilbert
space level corresponds, in phase space, to a symplectic transformation, i.e. to a
linear transformation S which preserves the symplectic form Ω, so that Ω = STΩS,
i.e. it preserves the commutators between the different operators. Symplectic
transformations on a 2n-dimensional phase space form the (real) symplectic group,
denoted by Sp(2n,R). Such transformations act linearly on first moments and “by
congruence” on covariance matrices (i.e. so that Γ 7→ STΓS). One has DetS = 1,
∀S ∈ Sp(2n,R).

Ideal beam splitters, phase shifters and squeezers are described by symplectic
transformations. In fact single and two–mode squeezings occurring, respectively, in
degenerate and non degenerate parametric down conversions, are described by the
operators

Uij,r,ϕ = e
1
2
(εâ†

i
â†

j
−ε∗âiâj) with ε = r ei2ϕ , r ∈ R, ϕ ∈ [0, 2π], (4)

resulting in single-mode squeezing of mode i for i = j. The representation in phase
space of the operation Uij,r,ϕ for i 6= j is given by the linear transformation Sij,r,ϕ

Sij,r,ϕ =









c− hs 0 ks 0
0 c+ hs 0 −ks
ks 0 c+ hs 0
0 −ks 0 c− hs









for i 6= j , (5)

where c = cosh(2r), s = sinh(2r), h = cos(2ϕ), k = sin(2ϕ) (r and ϕ are same as in
Eq. (4)) and the matrix is understood to act on the couple of modes i and j. Beam
splitters are described by the operators

Oij,θ = eθâ
†
i
âj−θâiâ

†
j , θ ∈ [0, 2π], (6)
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corresponding to symplectic rotations Rij,θ in phase space

Rij,θ =









cos(θ) 0 − sin(θ) 0
0 cos(θ) 0 − sin(θ)

sin(θ) 0 cos(θ) 0
0 sin(θ) 0 cos(θ)









for i 6= j . (7)

The angle θ is defined by Eq. (6) and, again, the matrix is understood to act on the i
and j modes. Single-mode symplectic operations are easily retrieved as well, being just
combinations of single mode (two dimensional) rotations and of single mode squeezings
of the form diag ( er, e−r) for r > 0. Now, symplectic transformations in phase space
are generated by exponentiation of matrices written as JΩ, where J is antisymmetric
[25]. Such generators can be symmetric or antisymmetric. The operations Rij,θ,
generated by antisymmetric operators are orthogonal and, acting by congruence on
the CM Γ, preserve the value of TrΓ. Since TrΓ gives the contribution of the second
moments to the average of the Hamiltonian

⊕

i a
†
iai, these transformations are said to

be ‘passive’, or ‘energy preserving’ (they belong to the compact subgroup of Sp(2n,R)).
Instead, operations Sij,r,ϕ, generated by symmetric operators, are not orthogonal and
do not preserve TrΓ (they belong to the non compact subgroup of Sp(2n,R)). This
mathematical difference between squeezers and phase space rotations accounts, in
a quite elegant way, for the difference between ‘active’ (i.e. energy consuming) and
‘passive’ (i.e. energy preserving) optical transformations.

Finally, let us recall that, due to Williamson theorem [26], the CM of a n–mode
Gaussian state can always be written as

Γ = ST νS , (8)

where S ∈ Sp(2n,R) and ν is the CM

ν = diag(ν1, ν1, . . . , νn, νn) , (9)

corresponding to a tensor product of thermal states with diagonal density matrix ̺⊗

given by

̺⊗ =
⊗

i

2

νi + 1

∞
∑

k=0

(

νi − 1

νi + 1

)

|k〉ii〈k| , (10)

|k〉i being the k-th number state of the Fock space Hi. The dual (Hilbert space)
formulation of Eq. (8) then reads: ̺ = U † ̺⊗ U , for some unitary U .
The quantities νi’s form the symplectic spectrum of the CM Γ and can be computed
as the eigenvalues of the matrix |iΩΓ| [27]. Such eigenvalues are in fact invariant under
the action of symplectic transformations on the matrix Γ.

The symplectic eigenvalues νi encode essential informations on the Gaussian state
Γ and provide powerful, simple ways to express its fundamental properties. For
instance, in terms of the symplectic eigenvalues νi, the uncertainty relation (3) simply
reads

νi ≥ 1 . (11)

Also the entropic quantities of Gaussian states can be expressed in terms of their
symplectic eigenvalues and invariants. Notably, the purity Tr ̺2 of a Gaussian state ̺
is simply given by the symplectic invariant Det Γ =

∏n
i=1 νi, being Tr ̺2 = (Det Γ)−1/2

[28].
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2.1. Two–mode states

Since this work is focused on two–mode Gaussian states, we briefly review here some
of their basic properties. The expression of the two–mode CM Γ in terms of the three
2 × 2 matrices α, β, γ will be useful

Γ ≡
(

α γ
γT β

)

. (12)

For any two–mode CM Γ there exist local symplectic operations S1 and S2 (each Sj
acting on one of the two modes), such that their direct sum Sl = S1⊕S2 (corresponding
to the tensor product of local unitary operations) brings Γ to the so called standard
form Γsf [18, 17]

STl ΓSl = Γsf ≡









a 0 c+ 0
0 a 0 c−
c+ 0 b 0
0 c− 0 b









. (13)

States whose standard form fulfills a = b are said to be symmetric. Let us
recall that any pure state is symmetric and fulfills c+ = −c− =

√
a2 − 1. The

correlations a, b, c+, and c− are determined by the four local symplectic invariants
DetΓ = (ab − c2+)(ab − c2−), Detα = a2, Detβ = b2, Detγ = c+c−. Therefore, the
standard form corresponding to any CM is unique (up to a common sign flip in c−
and c+).

For two–mode states, the uncertainty principle Ineq. (3) can be recast as a
constraint on the Sp(4,R) invariants DetΓ and ∆(Γ) = Detα+ Detβ + 2 Detγ:

∆(Γ) ≤ 1 + DetΓ . (14)

The symplectic eigenvalues of a two–mode Gaussian state will be named ν− and
ν+, with ν− ≤ ν+, with the Heisenberg uncertainty relation reducing to

ν− ≥ 1 . (15)

A simple expression for the ν± can be found in terms of the two Sp(4,R) invariants
(invariants under global, two–mode symplectic operations) [29, 30]

2ν2
± = ∆(Γ) ±

√

∆(Γ)2 − 4 Det Γ . (16)

A subclass of Gaussian states with a major interest in experimental quantum
optics and in the practical realization of CV quantum information protocols is
constituted by the nonsymmetric two–mode squeezed thermal states. Let Sr =
S12,r,π/4 be the two mode squeezing operator with real squeezing parameter r, and let
̺⊗
νi be a tensor product of thermal states with CM Γν± = 11ν− ⊕ 12ν+, where ν± is

the symplectic spectrum of the state. A nonsymmetric two-mode squeezed thermal
state ξνi,r is defined as ξνi,r = Sr̺

⊗
νiS

†
r , corresponding to a standard form with

a = ν− cosh2 r + ν+ sinh2 r ,

b = ν− sinh2 r + ν+ cosh2 r , (17)

c± = ± ν− + ν+
2

sinh 2r .

In the symmetric instance (with ν− = ν+ = ν) these states reduce to two–mode
squeezed thermal states. The covariance matrices of these states are symmetric
standard forms with

a = ν cosh 2r , c± = ±ν sinh 2r . (18)
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These are the states which occur in most realistic parametric down conversion
processes, like the one which will be discussed later on in the paper. In the pure
case, for which ν = 1, one recovers the two–mode squeezed vacuum. Such states
encompass all the standard forms associated to pure states: any two–mode Gaussian
state can be reduced to a squeezed vacuum by means of unitary local operations.

3. Entanglement of two-mode Gaussian states

This section aims at reviewing the main results on the qualification and quantification
of entanglement for Gaussian states of CV systems, which will be exploited in the
following.

The positivity of the partially transposed state (PPT criterion) is necessary and
sufficient for the separability of two–mode Gaussian states [18] (and, more generally, of
all (1+n)–mode Gaussian states under 1×n-mode bipartitions [31] and of bisymmetric
(m + n)–mode Gaussian states under m × n-mode bipartitions [32]). In general,
the partial transposition ˜̺ of a bipartite quantum state ̺ is defined as the result
of the transposition performed on only one of the two subsystems in some given basis.
It can be promptly inferred from the definition of the Wigner function W (X) that
the action of partial transposition amounts, in phase space, to a mirror reflection
of one of the four canonical variables. In terms of Sp(2,R) ⊕ Sp(2,R) invariants,
this reduces to a sign flip in Det γ. Therefore the invariant ∆(Γ) is changed into
∆̃(Γ) = ∆(Γ̃) = Detα + Det β − 2 Det γ. Now, the symplectic eigenvalues ν̃∓ of Γ̃
read

ν̃∓ =

√

√

√

√∆̃(Γ) ∓
√

∆̃(Γ)2 − 4 Det Γ

2
. (19)

The PPT criterion thus reduces to a simple inequality that must be satisfied by the
smallest symplectic eigenvalue ν̃− of the partially transposed state

ν̃− ≥ 1 , (20)

which is equivalent to

∆̃(Γ) ≤ Det Γ + 1 . (21)

The above inequalities imply Det γ = c+c− < 0 as a necessary condition for a two–
mode Gaussian state to be entangled. Therefore, the quantity ν̃− encodes all the
qualitative characterization of the entanglement for arbitrary (pure or mixed) two–
modes Gaussian states.

Let us now briefly focus on the entanglement qualification of symmetric states,
which will be the subject of the experimental investigations presented in the paper.
It is immediately apparent that, because a = b, the partially transposed CM in
standard form Γ̃ (obtained by flipping the sign of c−) is diagonalized by the orthogonal,
symplectic transformation R12,π/4 of Eq. (7), resulting in a diagonal matrix with
entries a∓ |c∓|. The symplectic eigenvalues of such a matrix are then easily retrieved
by applying local squeezings. In particular, the smallest eigenvalue ν̃− is simply given
by

ν̃− =
√

(a− |c+|)(a− |c−|) . (22)

Note that also the original standard CM Γ with a = b could be diagonalized (not

symplectically, since the four diagonal entries are generally all different) by the same
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beam splitter transformationR12,π/4, with the same orthogonal eigenvalues a∓|c∓|. It
is immediate to verify that ν̃− is just given by the geometric average between the two
smallest of such orthogonal eigenvalues of Γ. The two quadratures resulting from the
previous beam splitter transformation select orthogonal directions in phase space with
respect to the original ones, so they will be referred to as ‘orthogonal’ quadratures.
Notice that, in the experimental practice, this allows for the determination of the
entanglement through the measurement of diagonal entries (noise variances) of the CM
after the application of a balanced beam splitter (which embodies the transformation
R12,π/4).

To explore further consequences of this fact, let us briefly recall some
theoretical results on the generation of entanglement under passive (energy-preserving)
transformations, which will be precious in the following. As shown in Ref. [21],
the minimum value for ν̃− (i.e. the maximal entanglement) attainable by passive
transformations is given by ν̃2

− = λ1λ2, where λ1 and λ2 are the two smallest
eigenvalues of Γ. Therefore, the entanglement of symmetric states in standard form

cannot be increased through energy preserving operations, like beam splitter and phase
shifters. On the other hand, as it will be carefully discussed in great detail in the next
section, the insertion of a birefringent plate in a type-II optical parametric oscillator
results in states symmetric but not in standard form. In such a case the entanglement
can be optimized by the action of a (passive) phase shifter.

A measure of entanglement which can be computed for general Gaussian states
is provided by the negativity N , first introduced in Refs. [33, 34], later thoroughly
discussed and extended in Ref. [29] to CV systems. The negativity of a quantum state
̺ is defined as

N (̺) =
‖ ˜̺‖1 − 1

2
, (23)

where ˜̺ is the partially transposed density matrix and ‖ô‖1 = Tr|ô| stands for the
trace norm of the hermitian operator ô. The quantity N (̺) is equal to |∑i λi|, the
modulus of the sum of the negative eigenvalues of ˜̺, quantifying the extent to which
˜̺ fails to be positive. Strictly related to N is the logarithmic negativity EN , defined
as EN ≡ log2 ‖ ˜̺‖1, which constitutes an upper bound to the distillable entanglement

of the quantum state ̺. Both the negativity and the logarithmic negativity have
been proven to possess the crucial property of being monotone under LOCC (local
operations and classical communications) [29, 35].

For any two–mode Gaussian state ̺ the negativity is a simple decreasing function
of ν̃−, which is thus itself an inverse quantifier of entanglement:

‖ ˜̺‖1 =
1

ν̃−
⇒ N (̺) = max

[

0,
1 − ν̃−
2ν̃−

]

, (24)

EN (̺) = max [0,− log2 ν̃−] . (25)

This expression quantifies the amount by which PPT inequality (20) is violated.
The symplectic eigenvalue ν̃− thus completely qualifies and quantifies the quantum
entanglement of a Gaussian state Γ.

For symmetric Gaussian states one can also compute [19] the entanglement of
formation EF [36]. We recall that the entanglement of formation EF of a quantum
state ̺ is defined as

EF (̺) = min
{pi,|ψi〉}

∑

i

piE(|ψi〉) , (26)
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where the minimum is taken over all the pure states realizations of ̺:

̺ =
∑

i

pi|ψi〉〈ψi| .

The quantity EF satisfies all the requirements of a proper entanglement measure.
The asymptotic regularization of the entanglement of formation is equal to the
entanglement cost EC(̺), defined as the minimum number of singlets (maximally
entangled antisymmetric two-qubit states) which is needed to prepare the state ̺
through local operations and classical communication [37]. In formulæ:

EC(̺) = lim
n→∞

EF (̺⊗n)

n
. (27)

The optimal convex decomposition of Eq. (26) can be found for symmetric states
and turns out to be Gaussian, allowing for the determination of the entanglement of
formation EF :

EF = max [0, h(ν̃−)] , (28)

with

h(x) =
(1 + x)2

4x
log2

(

(1 + x)2

4x

)

− (1 − x)2

4x
log2

(

(1 − x)2

4x

)

.

Such a quantity is, again, a decreasing function of ν̃−, thus providing a quantification of
the entanglement of symmetric states equivalent to the one provided by the logarithmic
negativity EN .

In the nonsymmetric case, an important result is that for any entangled two–mode
Gaussian state ̺, the symplectic eigenvalue ν̃− (and, consequently, the logarithmic
negativity) can be estimated with remarkable accuracy by only determining the global
purity Tr ̺2 of the state, and the two local purities Tr ̺2

1,2 of each of the two reduced
single–mode states ̺i = Trj̺. For the aforementioned class of nonsymmetric thermal
squeezed states, the estimate becomes actually an exact quantification, since the
logarithmic negativity of these states is a function of the three purities only [38]. These
states are indeed the maximally entangled two–mode Gaussian states at fixed global
and local purities, and thus they are the states one would like to produce and exploit
in any continuous-variable quantum information processing. On the other hand, the
symmetric instance, which carries the highest possible entanglement [39] (and which
is the experimental product of the present paper), is the one that enables continuous-
variable teleportation of an unknown coherent state [13, 11, 14] with a fidelity
arbitrarily close to 1 even in the presence of noise (mixedness), provided that the
state is squeezed enough (ideally, a unit fidelity requires infinite squeezing). Actually,
the fidelity of such an experiment, if the squeezed thermal states employed as shared
resource are optimally produced, turns out to be itself a measure of entanglement and
provides a direct, operative quantification of the entanglement of formation present in
the resource [40].

4. Effects of mode coupling on the entanglement generation

As mentioned in the introduction, entanglement is very often produced by mixing on
a beam splitter two squeezed modes. In the general case, the squeezed quadratures
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have an arbitrary phase difference. We denote θ + π/2 the phase difference between
the two squeezed quadratures. The CM of the squeezed modes is then

ΓA+A− =









a 0 0 0
0 1/a 0 0
0 0 b c
0 0 c b′









, (29)

while the CM of the two modes after the beam-splitter is

ΓA1A2
= RTπ/4.ΓA+A− .Rπ/4 =









n1 k′ k k′

k′ n2 k′ −k
k k′ n1 k′

k′ −k k′ n2









(30)

where

b =
cos2 θ

a
+ a sin2 θ , b′ = a cos2 θ +

sin2 θ

a
, c =

(

a− 1

a

)

sin θ cos θ ,

n1=
cos2 θ + a2(sin2 θ + 1)

2a
, n2 =

a2 cos2 θ + sin2 θ + 1

2a
,

k =

(

1 − a2

2a

)

cos2 θ , k′ =

(

a2 − 1

2a

)

sin θ cos θ .

Let us first note that expression 30 can be brought back to the expression given on
fig. 5 of [20] via local unitary operations which do not modify the entanglement.

The CM of the squeezed (A±) modes gives a good insight into the properties of
the two-mode state. One can see that the intermodal blocks are zero, meaning that
the two modes are uncorrelated. Consequently, they are the two most squeezed modes
of the system (no further passive operation can select more squeezed quadratures).
But one can also note that the two diagonal blocks are not diagonal simultaneously.
This corresponds to the tilt angle of the squeezed quadrature. In order to maximize
the entanglement, the two squeezed quadratures have to be made orthogonal, which
can be done by a phase-shift of one mode relative to the other.

It is easy in fact to compute the logarithmic negativity quantifying entanglement
between the entangled modes A1 and A2, when the two squeezed quadratures are
rotated of π/2 + θ. One has EN (ΓA1A2

) = −(1/2) log ν̃2, with

ν̃2 =

(

1

4a2

)

{

2
(

a4 + 1
)

cos2(θ) + 4a2 sin2(θ)

−
√

2
(

a2 − 1
)

√

cos2(θ)
[

a4 + 6a2 + (a2 − 1)
2
cos(2θ) + 1

]

}

. (31)

The symplectic eigenvalue ν̃ is obviously a periodic function of θ, and it is globally
minimized for θ = k π, with k ∈ Z. The entanglement, in other words, is maximized
for orthogonal modes in phase space, as already predicted in Ref. [21]. Notice that
this results holds for general nonsymmetric states, i.e. also in the case when the two
modes A1 and A2 possess different individual squeezings. For symmetric states, the
logarithmic negativity is depicted as a function of the single–mode squeezing a and
the tilt angle θ in figure 1.

In the experiment we will discuss below, the entanglement is produced by a single
device, a type-II OPO operated below threshold. When no coupling is present in the
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Figure 1. Logarithmic negativity as a function of the single–mode squeezing a
and the tilt angle θ between the two non-orthogonal quadratures in presence of
mode coupling.

optical cavity, the entangled modes are along the neutral axis of the crystal while
the squeezed modes corresponds to the ±45◦ linear polarization basis. However, we
have shown theoretically and experimentally in [20] that a coupling can be added via

a birefringent plate which modifies the quantum properties of this device: the most
squeezed quadratures are non-orthogonal with an angle depending on the plate angle.
When the plate angle increases, the squeezed (A−) quadrature rotates of a tilt angle θ
and the correlations are degraded. The evolution is depicted on figure 2 through the
noise ellipse of the superposition modes.

A+

A-

q

A+
A-

q
A+

A-

Figure 2. Fresnel representation of the noise ellipse of the ±45◦ rotated modes
when the coupling is increased. The noise ellipse of the −45◦ mode rotates and the
noise reduction is degraded when the coupling increases while the +45◦ rotated
mode is not affected.

Eqn. 31 shows that when coupling is present, it is necessary to perform an
operation on the two modes in order to optimize the available entanglement. Before
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Figure 3. Experimental setup. A continuous-wave frequency-doubled Nd:YAG
laser pumps below threshold a type II OPO with a λ/4 plate inserted inside
the cavity (Q0). The generated two-mode vacuum state is characterized by two
simultaneous homodyne detections. The infrared output of the laser is used as
local oscillator after filtering by a high-finesse cavity. SA1,2,3: spectrum analyzers.
Q1,2,3,4 and H1,...,5 : respectively quarter and half waveplates. PD Lock: FND-
100 photodiode for locking of the OPO. PD Split: split two-element InGaAs
photodiode for tilt-locking of the filtering cavity.

developing experimental measures of entanglement and optimization of the available
resource in our system, let us detail our experimental setup.

5. Experimental setup and homodyne measurement

The experimental scheme is depicted on figure 3 and relies on a frequency-degenerate
type-II OPO below threshold. The system is equivalent to the one of the seminal
experiment by Ou et al. but a λ/4 birefringent plate has been inserted inside the
optical cavity (Q0). When this plate is rotated, it results in a linear coupling between
the signal and idler modes which induces above threshold a phase locking effect at
exact frequency degeneracy [47, 48]. This triply-resonant OPO is pumped below
threshold with a continuous frequency-doubled Nd:YAG laser. The input flat mirror
is directly coated on one face of the 10mm-long KTP crystal. The reflectivities for the
input coupler are 95% for the pump (532nm) and almost 100% for the signal and idler
beams (1064nm). The output coupler (R=38mm) is highly reflecting for the pump
and its transmission is 5% for the infrared. At exact triple resonance, the oscillation
threshold is less than 20 mW. The OPO is actively locked on the pump resonance
by the Pound-Drever-Hall technique. The triple resonance is reached by adjustment
of both the crystal temperature and the frequency of the pump laser. Under these
conditions, the OPO can operate stably during more than one hour without mode-
hopping. The birefringent plate Q0 inserted inside the cavity is exactly λ/4 at 1064
nm and almost λ at the 532 nm pump wavelength. Very small rotations of this plate
around the cavity axis can be operated thanks to a piezoelectric actuator.

Measurements of the quantum properties of arbitrary quadratures of light mode
are generally made using homodyne detection [41]. When an intense local oscillator
is used, one obtains a photocurrent which is proportional to the quantum noise of
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the light in a quadrature defined by the phase-shift between the local oscillator and
the beam measured. This photocurrent can be either sent to a spectrum analyzer
which calculates the noise power spectrum or numerized for further treatments like
tomographic measurements of the Wigner function [43] or selection [44]. As mentioned
above, one can also characterize the entanglement by looking at linear combinations of
the optical modes as opposed to linear combinations of the photocurrents [17, 18]. The
two modes which form the entangled state must be transformed via the beam splitter
operation (Rπ/4), that is they are mixed on a 50/50 beam splitter or a polarizing
beam-splitter preceded by λ/2 waveplate (H2) into two modes which will be both
squeezed if the original state is entangled.

Homodyne detection allows for a simple and direct measurement of the 2 × 2
diagonal blocks of the 4×4 CM. In order to measure the 2×2 off-diagonal blocks, linear
combinations of the fields can be used as we will show below. In order to characterize
simultaneously two modes a single phase reference is needed. To implement this, we
have built a simultaneous double homodyne detection (Fig. 3, in box). The difference
photocurrents are sent into two spectrum analyzers triggered by the same signal (SA1

and SA3). Two birefringent plates (Q4, H3) inserted in the local oscillator path are
rotated in order to compensate residual birefringence. A λ/4 (Q3) plate can be added
on the beam exiting the OPO in order to transform the in-phase detections into in-
quadrature ones (making the transformation (x̂+, p̂+, x̂−, p̂−) → (x̂+, p̂+, p̂+, x̂+)). In
such a configuration, two states of light with squeezing on orthogonal quadratures give
in phase squeezing curves on the spectrum analyzers. This has two goals: firstly, it
simplifies the measurements of the phase-shift between the two homodyne detections
and secondly it is necessary for the measurement of the off-diagonal blocks of the CM
as we will show now.

Let us describe precisely the procedure used to extract the values of the CM
from the homodyne detection signals. These signals consist in an arbitrary pair of
spectrum analyzer traces which are represented in figure 4. The horizontal axis is the
local oscillator (LO) phase which is scanned as a function of time via a piezoelectric
transducer while the vertical axis gives the noise power relative to the shot noise
expressed in decibels (dB).

We make no assumption on the form of the CM which is written in the general
case

Γ =

(

Γ+ C±

CT± Γ−

)

=









a b c d
b e f g
c f h i
d g i j









When the LO phase is chosen so that zero corresponds to the long axis of the noise
ellipse of the first mode, the CM is written in the form

Γ =









a′ 0 c′ d′

0 e′ f ′ g′

c′ f ′ h′ i′

d′ g′ i′ j′









=

(

Γ′
+ C′

±

C′T
± Γ′

−

)

a′ and c′ correspond respectively to the maximum and minimum noise levels measured
in a linear scale on the spectrum analyzer for the first mode, which we will choose
arbitrarily to be A+. One can also easily determine h′, i′ and j′ from the spectrum
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Figure 4. Spectrum analyzer traces as a function of the local oscillator phase.

analyzer traces for A−: when the LO phase is chosen so that zero corresponds to the
long axis of the noise ellipse of the second mode, the CM is written in the form

Γ′′
− =

(

h′′ 0
0 j′′

)

and Γ′
− can be easily deduced from Γ′′

− by applying a rotation. The angle of this
rotation is given by the phase shift ϕ between the two traces (see Fig.4). This operation
is performed numerically. We have now measured both diagonal blocks.

In order to measure the non-diagonal blocks, one records on an additional
spectrum analyzer a third signal, the difference between the two homodyne detection
signals (these signals being themselves the difference between their respective
photodiodes photocurrents, see Fig. 3). Let us consider the case where the waveplate
Q3 is not present, for a given LO phase ψ1, the homodyne detections will give
photocurrents which are proportional to the amplitude noise for the A+ beam, x̂+ and
to the phase noise for the A− beam, p−. The signal recorded on spectrum analyzer
SA2 is, in this case, proportional ŝ = x̂+ − p̂− whose variance is

〈̂i2〉 = 〈x̂2
+〉 + 〈p̂2

−〉 − 2〈x̂+p̂−〉 = a′ + j′ − 2d′.

a′ and j′ being already known, it is easy to extract d′ from this measurement. For a
LO phase ψ1 + π/2, one will get using a similar procedure e′, h′ and f ′. Let us know
add the wave plate Q3. For a LO phase ψ1, one will get a′, h′ and c′ and for ψ1 + π/2
e′, j′ and g′ thus completing the measurement of the CM.

6. Experimental measures of entanglement by the negativity

As described previously, the entanglement is deduced experimentally from the CM.
As all experimental measurements, the measurement of the CM is subject to noise.
It is thus critical to evaluate the influence of this noise on the entanglement. A
quantitative analysis, relating the errors on the measured CM entries (in the A±

basis) to the resulting error in the determination of the logarithmic negativity (the
latter quantifying entanglement between the corresponding A1 and A2 modes) has
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Figure 5. Error δEN on the logarithmic negativity between modes A1 and A2,
as a function of the error δΓ on the entries of the diagonal (a) and off-diagonal (b)
2×2 blocks of the measured CM Γ in the A± basis, given by Eq. (32). In plot (a):
the solid red curve refers to equal errors (of value δΓ) on the eight entries of the
diagonal blocks, the dotted blue curve refers to equal errors on the four diagonal
entries of the diagonal blocks while the dashed green curve refers to equal errors
on the off-diagonal entries of the diagonal blocks (non standard form entries). At
δΓ & 0.16 some of the considered states get unphysical. In plot (b): the solid red
curve refers to equal errors on the four entries of the off-diagonal block, the dotted
blue curve refers to equal errors on the two off-diagonal entries of the off-diagonal
block (non standard form entries), while the dashed green curve refers to equal
errors on the diagonal entries of the off-diagonal block (standard form entries).
At δΓ & 0.19 some of the considered states get unphysical.

been carried out and is summarized in Fig. 5 in absence of mode coupling. In general,
the determination of the logarithmic negativity is much more sensitive to the errors
on the diagonal 2×2 blocks α and β (referring to the reduced states of each mode, see
Eq. (12)) of the CM Γ than on the off-diagonal ones (γ, and its transpose γT , whose
expectations are assumed to be null). Let us remark that the relative stability of the
logarithmic negativity with respect to the uncertainties on the off-diagonal block adds
to the reliability of our experimental estimates of the entanglement. Notice also that,
concerning the diagonal blocks, the errors on diagonal (standard form) entries turn out
to affect the precision of the logarithmic negativity more than the errors on off-diagonal
(non standard form) entries. This behavior is reversed in the off-diagonal block, for
which errors on the off-diagonal (non standard form) entries affect the uncertainty on
the entanglement more than errors on the diagonal (standard form) entries.

Experimentally, we have measured the noise on the CM elements to be at best
on the order of a few percents of the measured values for the diagonal blocks,
corresponding to a fraction of a dB [42]. This is the case for the diagonal blocks
which are well-known since they are directly related to the noise measurements of A+

and A−. The situation is less favorable for the off-diagonal blocks which require the
two homodyne detections to be very precisely in phase since signals from these two
detections are used. As a consequence, these blocks show a large experimental noise.
As shown on Fig. 5 (b), this may lead in some cases to unphysical CM, yielding for
instance a negative determinant and complex values for the logarithmic negativity.
Typical values are 0.07 ± 0.05 dB or 1 ± 1 dB for the diagonal elements of the off-
diagonal blocks. A phase difference between the two homodyne detections of a few
degrees can easily explain such values, especially when the squeezing is large as in our
case. In the following, we will set these terms to zero in agreement with the form of
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the CM of Eq. 29.
Let us first give an example of entanglement determination from measurements

of CM elements, in the absence of mode coupling. Without the plate, the squeezing
of the two superposition modes is expected on orthogonal quadratures (the ideal CM
is then in the form 29 with θ = 0). Spectrum analyzer traces while scanning the local
oscillator phase are shown on figure 6: the rotated modes are squeezed on orthogonal
quadratures.

The state is produced directly in the standard form and the CM in the A± basis
can be extracted from this measurement:

Γ(ρ = 0) =









0.33 0 (0) (0)
0 7.94 (0) (0)

(0) (0) 7.94 0
(0) (0) 0 0.33









(32)

The resulting smallest symplectic eigenvalue is the geometric average of the two
minimal diagonal elements : ν̃− = 0.33, yielding a logarithmic negativity EN =
− log2(ν̃−) = 1.60 between the modes A1 and A2.
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Figure 6. Normalized noise variances at 3.5 MHz of the ±45◦ modes while
scanning the local oscillator phase. The first plot corresponds to in-phase
homodyne detections and the second one in-quadrature. Squeezing is well
observed on orthogonal quadratures. (RBW 100 kHz, VBW 1 kHz)

7. Experimental non standard form and optimization by linear optics

As discussed previously, when the plate angle is increased, the state produced is not
anymore in the standard form but rather similar to eqn. 29. Figure 7 gives the
normalized noise variances at 3.5 MHz of the rotated modes while scanning the local
oscillator phase for an angle of the plate ρ = 0.3◦. The first plot shows that the
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squeezing is not obtained on orthogonal quadratures. The CM takes the following
form:

Γ(ρ = 0.3◦) =









0.4 0 (0) (0)
0 12.59 (0) (0)

(0) (0) 9.54 −5.28
(0) (0) −5.28 3.45









(33)

In this instance, the logarithmic negativity between A1 and A2 is much lower than
the previous value: EN = 1.13.

As stated above, entanglement can be increased via passive operations performed
simultaneously on the two modes. Such operations include phase-shifts and beam
splitters, which can be readily performed on co-propagating, orthogonally polarized
beams [24]. The minimal combination of waveplates can be shown to consist in three
waveplates : two λ/4 waveplates (Q1 and Q2 on Fig. 3) and one λ/2 waveplate
(H1). When using a combination of these three plates, the state can be put back into
standard form which will maximize the entanglement. This operation consists in a
phase-shift of the rotated modes. Figure 7 gives the normalized noise variances before
and after this operation. The CM is changed to:

Γ(ρ = 0.3◦) =









0.4 0 (0) (0)
0 12.59 (0) (0)

(0) (0) 12.59 0
(0) (0) 0 0.4









, (34)

giving a logarithmic negativity EN = 1.32 between A1 and A2, larger than the value
before the operation. It is also the maximal value than can be obtained considering
the available entanglement. This value is smaller than the one obtained when the
cavity waveplate (Q0) is not tilted since tilting this waveplate reduces the correlations

Let us remark again that this transformation is non-local in the sense of the EPR
argument: it has to be performed before spatially separating the entangled modes for
a quantum communication protocol for instance.

8. Conclusion

We have described the powerful tools underlying the description of continuous
variables systems in quantum optics. These tools allow for a nice pictorial view
of two-mode Gaussian entangled states. Specifically, we have illustrated their
properties through the description and manipulation of the entanglement produced
experimentally with an original device, a type-II optical parametric oscillator
containing a birefringent plate. We have demonstrated the capabilities of this system
through entanglement measurements and manipulation of entangled states, showing
in particular how entanglement can be maximized using purely passive operations.

We have also studied quantitatively the influence on the entanglement of the
noise affecting the measurement of the elements of the CM. We thus showed that
the most significant covariances (exhibiting the highest stability against noise) for
an accurate entanglement quantification are the diagonal terms of the diagonal single-
mode blocks, and the off-diagonal terms of the intermodal off-diagonal block, the latter
being the most difficult to measure with high precision. Alternative methods have been
devised to tackle this problem [49, 38] based on direct measurements of global and
local invariants of the CM. Such techniques have been implemented in the case of
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Figure 7. Normalized noise variances at 3.5 MHz of the rotated modes while
scanning the local oscillator phase for an angle of the plate of 0.3◦, before and
after the non-local operation. The homodyne detections are in-quadrature. After
this operation, squeezing is observed on orthogonal quadratures.

pulsed beams [50] but no experiment to date has been performed for continuous-wave
beams.
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[19] G. Giedke, M. M. Wolf, O. Krüger, R. F. Werner, and J. I. Cirac, Entanglement of formation
for symmetric Gaussian states, Phys. Rev. Lett 91, 107901 (2003).

[20] J. Laurat, L. Longchambon, T. Coudreau, G. Keller, N. Treps, and C. Fabre, Effects of mode
coupling on the generation on Einstein-Podolsky-Rosen entanglement in a type-II OPO below
threshold, Phys. Rev. A 71, 022313 (2005).

[21] M. M. Wolf, J. Eisert, and M. B. Plenio, Entangling power of passive optical elements, Phys.
Rev. Lett. 90, 047904 (2003).

[22] A. M. Barnett and P. M. Radmore, Methods in theoretical quantum optics (Clarendon Press,
Oxford, 1997).

[23] R. Simon, E. C. G. Sudarshan, and N. Mukunda, Gaussian-Wigner distributions in quantum
mechanics and optics, Phys. Rev. A 36, 3868 (1987).

[24] R. Simon, N. Mukunda, and B. Dutta, Quantum noise matrix for multimode systems: U(n)
invariance, squeezing and normal forms, Phys. Rev. A 49, 1567 (1994)

[25] Arvind, B. Dutta, N. Mukunda, and R. Simon, The Real Symplectic Groups in Quantum
Mechanics and Optics, Pramana 45, 471 (1995), and quant-ph/9509002.

[26] J. Williamson, Am. J. Math. 58, 141 (1936); R. Simon, S. Chaturvedi, and V. Srininivasan,
Congruences and canonical forms for a positive matrix: Application to the Schweinler-
Wigner extremum principle, J. Math. Phys. 40, 3632 (1999).

[27] Here |A| stands for the absolute value of the diagonalizable matrix A, to be understood in the
usual operatorial sense: if A = T−1DT , where D is diagonal and T is a diagonalizing operator,
then |A| = T−1|D|T , where |D| is just the diagonal matrix with the absolute values of the
eigenvalues of A as entries.

[28] M. G. A. Paris, F. Illuminati, A. Serafini, and S. De Siena, Purity of Gaussian states:
measurement schemes and time evolution in noisy channels, Phys. Rev. A 68, 012314 (2003).

[29] G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314



Entanglement of two-mode Gaussian states: characterization and experimental . . . 20

(2002).
[30] A. Serafini, F. Illuminati, and S. De Siena, Symplectic invariants, entropic measures and

correlations of Gaussian states, J. Phys. B: At. Mol. Opt. Phys. 37, L21 (2004).
[31] R. F. Werner and M. M. Wolf, Bound entangled Gaussian states, Phys. Rev. Lett. 86, 3658

(2001).
[32] A. Serafini, G. Adesso, and F. Illuminati, Unitarily localizable entanglement of Gaussian states,

Phys. Rev. A 71, 032349 (2005).
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