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STOCHASTIC NETWORKS WITH MULTIPLE STABLE POINTS

NELSON ANTUNES, CHRISTINE FRICKER, PHILIPPE ROBERT, AND DANIELLE TIBI

Abstract. This paper analyzes stochastic networks consisting of a set of fi-
nite capacity sites where different classes of individuals move according to some
routing policy. The associated Markov jump processes are analyzed under a
thermodynamic limit regime, i.e. when the networks have some symmetry
properties and when the number of nodes goes to infinity. An intriguing sta-
bility property is proved: under some conditions on the parameters, it is shown
that, in the limit, several stable equilibrium points coexist for the empirical
distribution. The key ingredient of the proof of this property is a dimension re-
duction achieved by the introduction of two energy functions and a convenient
mapping of their local minima and saddle points. Networks with a unique
equilibrium point are also presented.

1. Introduction

This paper studies the asymptotic behavior of a class of stochastic networks. A
general description of the basic mechanisms of these systems is given in terms of a
finite particle system or in terms of a queueing network.

Description. As for some classical stochastic processes, like the zero range process,
see Liggett [17], one can give two alternative presentations for these networks.

A particle system. It can be thought of as a set of sites where K different types
of particles coexist. At a given site, for 1≤k≤K, external particles of type k with
mass Ak ∈ N arrive at rate λk. A type k particle stays an exponential time with
parameter γk at a site and then moves randomly to another site. A type k particle
leaves the system at rate µk. Mass constraint: The total mass of particles at any
site must be less than C ∈ N, so that a particle arriving at a site is accepted only
if this constraint is satisfied, otherwise it is rejected from the system.

A queueing network. It can be described as a set of identical finite capacity nodes
where customers move from one node to another node uniformly chosen at random,
being accepted if there is enough room and, otherwise, being rejected. If he is not
rejected during his travel through the network, a customer leaves the network after
his total service time. Different classes of customers access the network: Classes
differ by their arrival rates, total service times, residence times at the nodes and
also by the capacities they require at the nodes they visit. For example, a “light”
customer will require one unit of capacity while a “heavy” customer may ask for a
significant proportion of the total capacity of the node. External class k customers
arrive at rate λk at any node. During their total service time, which ends at rate
µk, class k customers are transferred from a node to another one at rate γk. A class

Date: January, 21 2007.
Key words and phrases. Stochastic Networks. Energy Function. Fixed Point Equations. Stable

Equilibrium Points. Metastability. Saddle Points. Mean Field Limits.

1



2 N. ANTUNES, C. FRICKER, PH. ROBERT, AND D. TIBI

k customer occupies Ak ∈ N units of capacity at any visited node, if this amount
of capacity is not available, he is rejected.

Large Distributed Networks and Statistical Mechanics. These stochastic networks
have been introduced in Antunes et al. [1] to represent the time evolution of a wire-
less network. Recent developments of mobile or sensor networks have given a strong
impetus to the analysis of the associated mathematical models. See Borst et al. [2],
Gupta and Kumar [11] and Kermarrec et al. [16] for example. The point of view of
statistical mathematics has been introduced in the analysis of stochastic networks
some time ago by Dobrushin to study various aspects of queueing networks such
as departure processes of queues, capacity regions or occupancy problems. See
Karpelevich et al. [12] for a survey. The networks considered quite recently have a
very large number of nodes, of the order of 105−106 nodes in practice, this estab-
lishes an even stronger connection with classical models of statistical physics. At
the same time, due to the variety of possible topological structures and algorithms
governing the behavior of these networks, new classes of mathematical models are
emerging. This is clearly a promising research area for statistical mechanics meth-
ods.

Outline of the Paper. Assuming Poisson arrivals and exponential distributions
for the various service times and residence times, the time evolution of such a
network is described by a Markov jump process with values in some finite (but large)
state space. These associated Markov processes are, in general, not reversible, and
little is known on the corresponding invariant distributions.

Mean-Field Convergence. These networks are analyzed under a thermody-
namic scaling, i.e. when the number of nodes N goes to infinity. It is shown,
Section 2, that the process of the empirical distribution (Y N (t)) of the system
converges to some dynamical system (y(t)) verifying

(1)
d

dt
y(t) = V

(
y(t)

)
, t ≥ 0,

where (V (y), y ∈ P(X )) is a vector field on P(X ), the set of probability distributions
on the finite set X defined by

X = {n = (nk) ∈ N
K : A1n1 + · · · + AKnK ≤ C}.

The dynamical system (y(t)) is therefore a limiting description of the original
Markov process (Y N (t)).

In general, the dimension of the state space P(X ) of (y(t)) is quite large so that
it is difficult to study this dynamical system in practice (an important example
considered at the end of the paper is of dimension 22). The classification of the
equilibrium points of (y(t)) with regard to the stability property is the main problem
addressed in this paper. As it will be seen (cf. Proposition 5) the analysis of these
points gives also insight on the limiting behavior of the invariant distribution of
Markov process (Y N (t)).

As a first result, it is shown that the equilibrium points are indexed by a “small”
K-dimensional subset of R

K
+ (the number K of different classes of customers is usu-

ally quite small). They are identified as those elements of the family of probability
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distributions νρ on X indexed by ρ = (ρk) ∈ R
K
+ ,

νρ(n)=
1

Z(ρ)

K∏

k=1

ρnk

k

nk!
, n ∈ X ,

where Z(ρ) is the partition function, for which ρ satisfies the fixed point equations

(2) ρk =
λk + γk

∑
m∈X mkνρ(m)

γk + µk

, 1 ≤ k ≤ K.

The probability νρ can also be seen as the invariant distribution of a multiclass
M/M/C/C queue. In fact the explicit limiting dynamics for the empirical distri-
bution of the nodes is formally similar to the evolution equation for the probability
distribution of the multiclass M/M/C/C queue with arrival rates λk, service rates
µk+γk and capacity requirements Ak, with the following crucial difference: the ”ex-
ternal” arrival rates λk are supplemented by ”internal” arrival rates (corresponding
to the mean arrival rates due to transfers from other nodes) which depend on the
current state of the network.

Although the equilibrium points are indexed by a subset of R
K
+ , a dimension

reduction of the dynamical system (y(t)) on P(X ) to some dynamical system of
R

K
+ does not seem to hold. This intriguing phenomenon has also been noticed by

Gibbens et al. [10] for a different class of loss networks. See below.
It is shown in Section 3 that there is a unique equilibrium point when all the

capacity requirements of customers are equal. For arbitrary capacity requirements,
a limiting regime of the fixed point equations with respect to ρ is also analyzed:
The common capacity C of the nodes goes to infinity and the arrival rates are
proportional to C. In this context, Theorem 2 shows that there is essentially one
unique solution: It is shown that, if ρ̄C is a solution of Equation (2) for capacity C
then, in the limit, ρ̄C ∼ ηC, where η is some vector with an explicit representation
in terms of the parameters of the network.

A Lyapounov Function. In Section 4, going back to the general case, a key
entropy-like function g is then introduced and shown to be a Lyapounov function
for (y(t)) so that the local minima of g on P(X ) correspond to the stable points of
(y(t)). Because of the order of magnitude of dimP(X ), the identification of the local
minima of g on P(X ) is still not simple. Using this Lyapounov function, it is proved
that, if πN is the invariant distribution of the process of the empirical distributions
(Y N (t)), then the support of any limiting point of (πN ) is carried by the set of
equilibrium points of (y(t)). In particular, when there is a unique equilibrium point
y∞ for (y(t)), the sequence of invariant distributions (πN ) converges to the Dirac
mass at y∞.

A dimension Reduction. A second key function φ on the lower dimensional
space R

K
+ is introduced in Section 5. The main result of the paper, Theorem 3,

establishes a one to one correspondence between the local minima of g on P(X )
and the local minima of φ. The dimension reduction for the problem of stability
of the equilibrium points is therefore achieved not through dynamical systems but
through the energy functions g and φ. This result is interesting in its own right
and seems to be a promising way of studying other classes of large networks.

Phenomenon of Bi-Stability for (y(t)). With these results, an example of a
network with two classes of customers and at least three zeroes for V is exhibited
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in Section 6, two of them being “stable” and the other one being a saddle point.
In this case the asymptotic dynamical system (y(t)) has therefore a bistability
property. This suggests the following (conjectured) bistability property for the
original process describing the state of the network: it lives for a very long time
in a region corresponding to one of the stable points and then, due to some rare
events, it reaches, via a saddle point, the region of another stable point and so
on. This conjectured phenomenon is known as metastability in statistical physics.
A formal proof of this phenomenon seems to be quite difficult to obtain. The
only tools available in this domain use either the Gibbsian characteristics of the
dynamics, see Olivieri and Vares [19], or at least the reversibility of the Markov
process, Bovier [3, 4]. None of these properties holds in our case.

Note that in Antunes et al. [1] it is proved that, for similar networks under Kelly’s
scaling, there is a unique equilibrium point. Contrary to the model considered here,
the capacity requirement of a customer in [1] does not depend on his class. On the
other hand, the networks analyzed here have a symmetrical structure: all the nodes
have the same capacity and the routing is uniform among all the other nodes. In
Antunes et al. [1], the routing mechanisms are quite general.

Multiple Stable Equilibrium Points and Local Dynamics in Stochastic

Networks. Asymptotic dynamical systems with multiple stable points are quite
rare in stochastic networks. Gibbens et al. [10] has shown, via an approximated
model, that such an interesting phenomenon may occur in a loss network with a
rerouting policy. Marbukh [18] analyzes, also through some approximation, the
bistability properties of similar loss networks. The dynamics of the networks of
Gibbens et al. [10], Marbukh [18] and of this paper are local in the following sense:
The interaction between two nodes only depends on the states of these two nodes
and not on the state of the whole network.

A key feature of these models is the subtle interplay between the local description
of the dynamics and its impact on the macroscopic state of the network through the
existence of several equilibrium points. In statistical physics these phenomena have
been known for some time. See den Hollander [8], Olivieri and Vares [19] and the
references therein for a general presentation of these questions. See also Bovier [3, 4]
for a potential theoretical approach in the case of reversible Markov processes and
Catoni and Cerf [6] for a study of the saddle points of perturbed Markov chains.
For the more classical setting of global dynamics, the large deviation approach is
developed in Freidlin and Wentzell [9].

Phase Transitions in Uncontrolled Loss Networks. This is a related topic. It is
known that, for some loss networks on infinite graphs, there may be several equi-
librium distributions. If the loss network is restricted to a finite sub-graph F of the
infinite graph G, its equilibrium distribution πF is uniquely determined. It turns
out that, depending on the boundary conditions on F , the sequence (πF , F ⊂ G),
may have distinct limiting values which are invariant distributions for the case of
the infinite graph. Significant results have already been obtained in this domain.
See Spitzer [22], Kelly [15] for a survey, Zachary [24], Zachary and Ziedins [25] and
Ramanan et al. [20].
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2. The Asymptotic Dynamical System

Two nodes i, j ∈ {1, . . . , N} of the network interact through the exchange of
customers at rate of the order of 1/N . Due to the symmetrical structure of the
network, a stronger statement holds: the impact on i of all nodes different from i
appears only through some averaged quantity. For 1 ≤ k ≤ K, the input rate of
class k customers at node i from the other nodes is

1

N − 1

∑

1≤j≤N, j 6=i

γkXN
j,k(t).

If this quantity is close to γkE(XN
1,k(t)), a mean field property is said to hold. Note

that, if the network starts from some symmetrical initial state, the random variables
XN

j,k(t), j = 1, . . . , N , have the same distribution.

Theorem 1. If Y N (0) converges weakly to z ∈ P(X ) as N tends to infinity, then

(Y N (t)) converges in the Skorohod topology to the solution (y(t)) of the ordinary

differential equation

(3) y′(t) = V (y(t)),

where (y(t)) is the solution starting from y(0) = z and, for y ∈ P(X ), the vector

field V (y) = (Vn(y), n ∈ X ) on P(X ) is defined by

(4) Vn(y) =

K∑

k=1

(λk + γk〈Ik, y〉)
(
yn−fk

1{nk≥1} − yn1{n+fk∈X}

)

+

K∑

k=1

(γk + µk)
(
(nk + 1)yn+fk

1{n+fk∈X} − nkyn

)

where 〈Ik, y〉 =
∑

m∈X mkym and fk is the kth unit vector of R
K .

By convergence in the Skorohod topology, one means the convergence in distribution
for Skorohod topology on the space of trajectories.

Note that Equation (4) gives the derivative dyn(t)/dt = Vn(y(t)) of yn(t) as
increasing proportionally to the difference yn−fk

− yn by some factor λk + γk〈Ik, y〉
which measures the speed at which nodes in state n− fk turn to state n (due to an
arrival of some type k customer). In this factor, γk〈Ik, y〉 is added to the external
arrival rate λk of class k customers at any node, and hence appears as the internal
arrival rate of class k customers at any node. This feature characterizes the mean
field property. Indeed, 〈Ik, y〉 is the mean number of class k customers per node
when the empirical distribution of the N nodes is y; so that γk〈Ik, y〉 is the mean
emission rate per node of class k customers to the rest of the network.

Proof. The martingale characterization of the Markov jump process (Y N
n (t)), see

Rogers and Williams [21], shows that

MN
n (t) = Y N

n (t) − Y N
n (0) −

∫ t

0

∑

w∈P(X )\{Y N (s)}

ΩN

(
Y N (s), w

) (
wn − Y N

n (s)
)

ds

is a martingale with respect to the natural filtration associated to the Poisson
processes involved in the arrival processes, service times and residence times. By
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using the explicit expression of the Q-matrix ΩN , trite (and careful) calculations
finally show that the following relation holds

Y N
n (t) = Y N

n (0) + MN
n (t) +

∫ t

0

K∑

k=1

(
λk +

γkN

N − 1

∑

m∈X

mkY N
m (s)

)
(5)

×
(
Y N

n−fk
(s)1{nk≥1} − Y N

n (s)1{n+fk∈X}

)
ds

+

∫ t

0

K∑

k=1

(γk + µk)
(
(nk + 1)Y N

n+fk
(s)1{n+fk∈X} − nkY N

n (s)
)

ds

+

∫ t

0

K∑

k=1

γk

N − 1

(
nkY N

n (s) − (nk − 1)Y N
n−fk

(s)1{nk≥1}

)
ds.

From there, with a similar method as in Darling and Norris [7], it is not difficult
to prove that if Y N (0) converges to z then

— the sequence (Y N (t)) of process is tight for the Skorohod topology;
— any limit (y(t)) of (Y N (t)) is continuous and satisfies the following deter-

ministic differential equation, y(0) = z and

y′
n(t) =

K∑

k=1

[
λk + γk

∑

m∈X

mkym(t)

]
[
yn−fk

(t)1{nk≥1} − yn(t)1{n+fk∈X}

]

+

K∑

k=1

(γk + µk)
[
(nk + 1)yn+fk

(t)1{n+fk∈X} − nkyn(t)
]
.

This is exactly Equation (4). The uniqueness of the solution of this differential
equation implies that such a limiting point (y(t)) is necessarily unique and therefore
that (Y N (t)) converges in distribution to (y(t)). The proposition is proved. �

The equilibrium points of the dynamical system defined by Equation (4) are the
probability distributions y ∈ P(X ) on X such that V (y) is zero. This condition can
be written as follows: For n ∈ X ,

(6)

(
K∑

k=1

[
(λk + γk〈Ik, y〉)1{n+fk∈X} + (γk + µk)nk

]
)

yn

=
K∑

k=1

(λk + γk〈Ik, y〉) yn−fk
1{nk≥1} + (γk + µk)(nk + 1)yn+fk

1{n+fk∈X}.

These equations are equivalent to local balance equations for the numbers of cus-
tomers of a classical M/M/C/C queue with K classes of customers such that, for
1 ≤ k ≤ K, class k customers

— arrive at rate λk + γk〈Ik, y〉;
— are served at rate γk + µk;
— require capacity Ak.

Consequently, (yn) is the invariant distribution of this queue. It is well known, see
Kelly [13] for example, that necessarily

(7) yn = νρ(n)
def.
=

1

Z(ρ)

K∏

k=1

ρnk

k

nk!
, n ∈ X ,
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where, for 1 ≤ k ≤ K, ρk is the ratio of the kth arrival and service rates,

(8) ρk =
λk + γk〈Ik, νρ〉

γk + µk

,

where 〈Ik, νρ〉 is the average value of the kth component under the probability
distribution νρ on X and Z(ρ) is the normalization constant, in other words the
partition function,

Z(ρ) =
∑

n∈X

K∏

k=1

ρnk

k

nk!
.

The equilibrium points of the dynamical system (y(t)) are indexed by R
K
+ whose

dimension is much smaller than P(X ) thereby suggesting a possible simpler de-
scription of the asymptotic behavior of the network. Despite this quite appealing
perspective, it turns out that such a dimension reduction cannot be achieved di-
rectly since the subset {νρ, ρ∈R

K
+ } of P(X ) is not left invariant by the dynamical

system (y(t)).
Denote by Bk(ρ) the blocking probability of a class k customer in an M/M/C/C

queue at equilibrium with K classes and loads ρ1, . . . , ρK , i.e.

Bk(ρ) =
1

Z(ρ)

∑

n:n+fk 6∈X

K∏

h=1

ρnh

h

nh!
,

it is easily checked that 〈Ik, νρ〉 = ρk(1 − Bk(ρ)), so Equation (8) becomes then

µkρk = λk − γkρkBk(ρ).

The following proposition summarizes these results.

Proposition 1. The equilibrium points of the dynamical system (y(t)) defined by

Equation (3) are exactly the probability distributions νρ on X ,

(9) νρ(n)=
1

Z(ρ)

K∏

ℓ=1

ρnℓ

ℓ

nℓ!
, n = (nℓ) ∈ X ,

where Z(ρ) is the partition function,

Z(ρ) =
∑

m∈X

K∏

ℓ=1

ρmℓ

ℓ

mℓ!
,

and ρ = (ρk, 1 ≤ k ≤ K) is a vector of R
K
+ satisfying the system of equations

λk = ρk


µk + γk

∑

n:n+fk 6∈X

K∏

ℓ=1

ρnℓ

ℓ

nℓ!

/
∑

n∈X

K∏

ℓ=1

ρnℓ

ℓ

nℓ!


 , 1 ≤ k ≤ K.(10)

There always exists at least one equilibrium point.

Proof. Only the existence result has to be proved. According to Equations (7)
and (8), y is an equilibrium point if and only if it is a fixed point of the function

P(X ) −→ P(X )

y −→ νρ(y),

with ρ(y) = (ρk(y)) and, for 1 ≤ k ≤ K, ρk(y) = (λk + γk〈Ik, y〉)/(µk + γk). This
functional being continuous on the convex compact set P(X ), it necessarily has a
fixed point by Brouwer’s Theorem. �
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A similar situation occurs in Gibbens et al. [10] where the equilibrium points
are also indexed by the solutions ρ ∈ R+ of some fixed point equations and the
bistability properties of the system are analyzed through numerical estimates. Here,
a detailed study of the stability properties of the equilibrium points is achieved.

Notation. In the following, one will denote

ρn

n!
=

K∏

k=1

ρnk

k

nk!
,

for n = (nk) ∈ X and ρ = (ρk) ∈ R
K
+ . The system of equations (10) can then be

rewritten as,

λk = ρk

(
µk + γk

∑
n:n+fk 6∈X ρn/n!
∑

n∈X ρn/n!

)
, 1 ≤ k ≤ K.

3. Uniqueness Results

In this section, several situations in which the asymptotic dynamical system (3)
has a unique equilibrium point, i.e. when the fixed point Equations (10) have a
unique solution, are presented.

3.1. Networks with Constant Requirements. It is assumed that all classes
of customers require the same capacity, i.e. that Ak = A for k = 1, . . . , K. By
replacing C by ⌊C/A⌋, it can be assumed that A = 1. In this case, if |n| denotes
the sum of the coordinates of n ∈ X ,

Bk(ρ) =
∑

n:n+fk 6∈X

ρn

n!

/
∑

n∈X

ρn

n!
=
∑

|n|=C

ρn

n!

/
∑

n∈X

ρn

n!

=
1

C!

(
K∑

k=1

ρk

)C /
C∑

ℓ=0

1

ℓ !

(
K∑

k=1

ρk

)ℓ

def.
= B1

(
∑

k

ρk

)
,

B1(θ) can be represented as the stationary blocking probability of an M/M/C/C
queue with one class of customers and arrival rate θ and service rate 1.

In this case, fixed point Equations (10) are

(11) ρk = λk /(µk + γkB1 (S)) , k = 1, . . . , K,

with S=ρ1 + · · · + ρK . By summing up these equations, one gets that S is the
solution of the equation

S =

K∑

k=1

λk

µk + γkB1(S)
.

It is easily checked that S → B1(S) is non-decreasing and therefore that the above
equation has a unique solution. The uniqueness of the vector (ρk) follows from
Equations (11). The following proposition has been proved.

Proposition 2. The asymptotic dynamical system (y(t)) has a unique equilibrium

point when capacity requirements are equal.

In particular, when there is only one class of customers, there is a unique solution
to Equations (10).
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3.2. A Limiting Regime of Fixed Point Equations. Here, the fixed point
equations (10) are analyzed under Kelly’s scaling, i.e. when the capacity C goes
to infinity and the arrival rates are proportional to C, of the order of λkC for the
kth class. For 1 ≤ k ≤ K, the total service rate µk and the rate of residence time
γk are kept fixed. It will be shown that, in this case, there is a unique equilibrium
point. Let (Nk, 1 ≤ k ≤ K) be a sequence of K independent Poisson processes with
intensity 1. As usual Nk(A) will denote the number of points of the kth process in
the subset A of R+. For C > 0, denote by ρC = (ρk(C), 1 ≤ k ≤ K), a solution of
the fixed point equations

λkC = ρk(C)


µk + γk

∑

n:n+fk 6∈X

ρn
C

n!

/
∑

n∈X

ρn
C

n!


 , 1 ≤ k ≤ K,

this can be rewritten as

(12) λk =
ρk(C)

C



µk + γk − γk

P

(
C −∑K

i=1 AiNi([0, ρi(C)]) ≥ Ak

)

P

(
C −∑K

i=1 AiNi([0, ρi(C)]) ≥ 0
)



 .

This problem is related to the limit of the loss probabilities investigated and solved
by Kelly [14] in a general setting in terms of an optimization problem. The propo-
sition below is a consequence of Kelly’s result.

Proposition 3 (Kelly’s Scaling). If (ρk(C), 1 ≤ k ≤ K) ∈ R
K
+ is such that

lim
C→+∞

ρk(C)/C = ρk, 1 ≤ k ≤ K,

with (ρk) ∈ R
K
+ and

(13) ρ1A1 + ρ2A2 + · · · + ρKAK ≥ 1,

then, for a ∈ N,

lim
C→+∞

P

(
C −∑K

k=1 AkNk([0, ρk(C)]) ≥ a
)

P

(
C −∑K

k=1 AkNk([0, ρk(C)]) ≥ 0
) = e−ωa

where ω is the unique non-negative solution of the equation

(14) ρ1A1e
−ωA1 + ρ2A2e

−ωA2 + · · · + ρKAKe−ωAK = 1.

The main result of this section can now be stated. Basically, it states that, under
a Kelly’s scaling, the fixed point equations (10) have a unique solution when the
capacity gets large.

Theorem 2. If µk > 0 for all 1 ≤ k ≤ K and if for any C > 0 the vector

(ρk(C, λC)) is any solution of Equation (10) then, for 1 ≤ k ≤ K,

lim
C→+∞

ρk(C, λC)

C
=

λk

µk + γk − γke−ωAk
,

where ω ≥ 0 is defined as

ω = inf

{
x ≥ 0 :

K∑

k=1

λkAke−xAk

µk + γk − γke−xAk
≤ 1

}
.
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Proof. For 1 ≤ k ≤ K, the function C → ρk(C) = ρk(C, λC)/C is bounded by
λk/µk. By taking a subsequence, it can be assumed that ρk(C) converges to some
finite ρk as C goes to infinity. Under the condition

A1
λ1

µ1
+ A2

λ2

µ2
+ · · · + AK

λK

µK

≥ 1,

then necessarily ρ1A1 + ρ2A2 + · · ·+ ρKAK ≥ 1, otherwise one would have, via the
law of large numbers for Poisson processes, for a ≥ 0,

(15) lim
C→+∞

P

(
C −

K∑

i=1

AiNi([0, Cρi(C)]) ≥ a

)
= 1,

and Equation (12) would then give the relation ρk = λk/µk for 1 ≤ k ≤ K, so that

ρ1A1 + ρ2A2 + · · · + ρKAK ≥ 1,

contradiction. From Proposition 3 and Equation (12), one gets that

λk = ρk

(
µk + γk − γke−ωAk

)
, 1 ≤ k ≤ K,

were ω is the solution of Equation (14) associated to (ρk). Equation (14) can then
be rewritten as

K∑

1

λkAke−ωAk

µk + γk − γke−ωAk
= 1.

The statement of the theorem is proved in this case.
Now, if it is assumed that A1λ1/µ1 + A2λ2/µ2 + · · · + AKλK/µK < 1 then,

since ρk ≤ λk/µk for all k, Relation (15) holds and Equation (12) finally gives that
ρk = λk/µk, 1 ≤ k ≤ K. The theorem is proved. �

4. An Energy Function on P(X )

In this section, a Lyapunov function is introduced. As it will be seen, it plays
a key role in the analysis of the fixed points of the asymptotic dynamical system.
Define the function g on the set P(X ) of probability distributions on X ,

(16) g(y) =
∑

n∈X

yn log(n!yn) −
K∑

k=1

∫ 〈Ik,y〉

0

log
λk + γkx

µk + γk

dx, y ∈ P(X ).

Recall that, for y ∈ P(X ), 〈Ik, y〉 =
∑

m∈X mkym and
◦

P(X ) denotes the interior of
the set P(X ).

Proposition 4. The function g is a Lyapunov function for the asymptotic dynam-

ical system (y(t)), that is,

〈V (y),∇g(y)〉 =
∑

n∈X

Vn(y)
∂g

∂yn

(y) ≤ 0, ∀y ∈
◦

P(X ),

and, for y ∈
◦

P(X ), the following assertions are equivalent:

(a) 〈V (y),∇g(y)〉 = 0;

(b) The coordinates of ∇g(y) are equal;

(c) y is an equilibrium point of (y(t)), i.e. V (y) = 0.



STOCHASTIC NETWORKS WITH MULTIPLE STABLE POINTS 11

Proof. The vector field V (y) = (Vn(y)) can be written as

Vn(y) =

K∑

k=1

[(
λk + γk〈Ik, y〉

)
yn−fk

1{nk≥1} + (µk + γk)(nk + 1)yn+fk
1{n+fk∈X}

−
(
(λk + γk〈Ik, y〉)1{n+fk∈X} + (µk + γk)nk

)
yn

]

=

K∑

k=1

(
F k

n+fk
(y) − F k

n (y)
)

where, for n ∈ X , F k
n (y) = (µk + γk)nkyn −

(
λk + γk〈Ik, y〉

)
yn−fk

1{nk≥1} and

F k
n (y) = 0 when n 6∈ X ; note that F k

n = 0 whenever nk = 0.

For y ∈
◦

P(X )

〈V (y),∇g(y)〉 =
∑

n∈X

K∑

k=1

∂g

∂yn

(y)
(
F k

n+fk
(y) − F k

n (y)
)

=

K∑

k=1

∑

n∈X

F k
n (y)

(
∂g

∂yn−fk

(y) − ∂g

∂yn

(y)

)
.

Since, for n ∈ X ,

∂g

∂yn

(y) = 1 + log(n!yn) −
K∑

k=1

nk log
λk + γk〈Ik, y〉

µk + γk

,

one finally gets that the relation

(17) 〈V (y),∇g(y)〉 =

K∑

k=1

∑

n∈X

F k
n (y) log

(
λk + γk〈Ik, y〉

)
yn−fk

(µk + γk)nkyn

holds. The quantity 〈V (y),∇g(y)〉 is thus clearly non-positive. On the other hand,
for k and n such that nk ≥ 1,

∂g

∂yn

(y) − ∂g

∂yn−fk

(y) = log





(
µk + γk

)
nkyn

(
λk + γk〈Ik, y〉

)
yn−fk



 ,

hence 〈V (y),∇g(y)〉 is zero if and only if the coordinates of ∇g(y) are equal and
this is equivalent to the system of equations

(
λk + γk〈Ik, y〉

)
yn−fk

= (µk + γk)nkyn

for all k and n such that nk ≥ 1, so that y is an equilibrium point of the asymptotic
dynamical system. The equivalence a), b) and c) is proved. �

Convergence of the Stationary Distribution. If F is some real valued function
on R

X and y ∈ P(X ), the functional operator associated to the Q-matrix ΩN is
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given by

ΩN (F )(y) =
∑

z∈P(X )\{y}

ΩN (y, z)(F (z)− F (y))

=
∑

n∈X

[
K∑

k=1

λkynN1{n+fk∈X}

(
F

(
y +

1

N
(en+fk

− en)

)
− F (y)

)

+
K∑

k=1

µknkynN

(
F

(
y +

1

N
(en−fk

− en)

)
− F (y)

)

+
∑

1≤k≤K

m∈X

γkN

N − 1
nkyn

(
Nym − 1{m=n}

)

×
(

F

(
y +

en−fk
− en

N
+

em+fk
− em

N
1{m+fk∈X}

)
− F (y)

)]
.

If it is assumed that the function F is of class C2 on R
K , then it is easy to check

that the sequence (ΩN (F )(y)) converges to the following expression

∑

n∈X




K∑

k=1

λkyn1{n+fk∈X}

〈
∇F (y), en+fk

−en

〉
+

K∑

k=1

µknkyn

〈
∇F (y), en−fk

−en

〉

+
∑

1≤k≤K

m∈X

γknkynym

(〈
∇F (y), en−fk

−en

〉
+
〈
∇F (y), em+fk

−em

〉1{m+fk∈X}

)


which is defined as Ω∞(F )(y). Moreover, by using Taylor’s Formula at the second
order, this convergence is uniform with respect to y ∈ P(X ). By Theorem 1, one
necessarily has

Ω∞(F )(y) = 〈∇F (y), V (y)〉, y ∈ P(X ).

Note that this identity can also be checked directly with the above equation.

Proposition 5. If πN denotes the invariant probability distribution of (Y N (t)) on

P(X ), then any limiting point of (πN ) is a probability distribution carried by the

equilibrium points of the asymptotic dynamical system (y(t)) of Theorem 1.

In particular, if (y(t)) has a unique equilibrium point y∞, then the sequence of

invariant distributions (πN ) converges to the Dirac mass at y∞.

Proof. The set P(X ) being compact, the sequence of distributions (πN ) is relatively
compact. Let π̃ be the limit of some subsequence (πNp

). If F is a function of class

C2 on R
X , then for p ≥ 0,

∫

P(X )

ΩNp
(F )(y)πNp

(dy) = 0.

The uniform convergence of ΩNp
(F ) to Ω∞(F ) implies that

0 =

∫

P(X )

Ω∞(F )(y) π̃(dy) =

∫

P(X )

〈∇F (y), V (y)〉 π̃(dy),

so that π̃ is an invariant distribution of the (deterministic) Markov process associ-
ated to the infinitesimal generator Ω∞.
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For t ≥ 0, denote (temporarily) by (y(x, t)) the dynamical system starting from
y(0) = x ∈ P(X ). Assume that there exist x ∈ P(X ) and s > 0 such that
y(x, s) ∈ ∂P(X ), i.e. there exists n ∈ X such that yn(x, s) = 0. Since (yn(x, t))
is non-negative and since the function t → y(x, t) is of class C1, it implies that
Vn(y(x, s)) = ẏn(x, s) = 0. This last relation, Relation (4) defining the vector field
(Vn(y)) and the equation yn(x, s) = 0 give that yn±fk

(x, s) = 0 for any k such
that n ± fk ∈ X and consequently, by repeating the argument, all the coordinates
of y(x, s) are null. Contradiction since y(x, s) is a probability distribution on X .
Hence, the boundary ∂P(X ) of P(X ) cannot be reached in positive time by (y(x, t)).
This entails, in particular, that ∂P(X ) is negligible for any invariant distribution
of (y(x, t)).

For x ∈ P(X ) and 0 < s′ < s, since the function g(y(x, ·)) is of class C1 on [s′, s]
and its derivative is 〈∇(g)(y(x, ·)), V (y(x, ·))〉, one has

(18) g(y(x, s)) − g(y(x, s′)) =

∫ s

s′

Ω∞(g)(y(x, u)) du,

By integrating with respect to π̃ this relation, the invariance of π̃ for the process
(y(x, t)) and Fubini’s Theorem show that
∫

P(X )

g(y(x, s)) π̃(dx) −
∫

P(X )

g(y(x, s′)) π̃(dx) = 0

=

∫

P(X )

∫ s

s′

Ω∞(g)(y(x, u)) du π̃(dx) = (s − s′)

∫

P(X )

Ω∞(g)(x) π̃(dx).

The integrand Ω∞(g)(x) = 〈∇g(x), V (x)〉 = 0 having a constant sign by Propo-
sition 4, one deduces that π̃-almost surely, Ω∞(g)(x) = 0. The probability π̃ is
thus carried by the equilibrium points of the dynamical system. The proposition is
proved. �

Asymptotic Independence. In the case where (y(t)) has a unique equilibrium point
y∞, by using the convergence of the invariant distributions πN to the Dirac dis-
tribution δy∞

and the fact that the coordinates of (XN
i (t)) are exchangeable, it is

easy (and quite classical) to show that for any subset I of coordinates, the random
variables (XN

i (t), i ∈ I) at equilibrium are asymptotically independent with y∞ as
a common limiting distribution. See Sznitman [23] for example. To summarize,
the uniqueness of an equilibrium point implies that, asymptotically, the invariant
distribution of the Markov process (XN

i (t)) has a product form.

5. A Dimension Reduction on R
K

In this section, a function φ on R
K
+ is introduced such that ρ ∈ R

K
+ is a zero of

∇φ if and only if the corresponding probability distribution νρ is an equilibrium
point of (y(t)). Furthermore, it is shown that ρ is a local minimum of φ if and only
if νρ is a local minimum of g on the set of probability distributions on X . In the
next section, the function φ will be used to prove the bistability of the dynamical
system (y(t)) in some cases.

For ρ = (ρk) ∈ R
K
+ , define

(19) φ(ρ) = − logZ(ρ) +

K∑

k=1

(βkρk − αk log(ρk))
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with αk = λk/γk, βk = (γk + µk)/γk, and Z is the partition function

Z(ρ) =
∑

n∈X

ρn

n!
.

Proposition 6. The probability distribution νρ on X is an equilibrium point of the

asymptotic dynamical system (y(t)) if and only if ∇φ(ρ) = 0.

Proof. Remark that, for 1 ≤ k ≤ K,

∂Z

∂ρk

(ρ) =
∑

n:n+fk∈X

ρn

n!
,

so that
∂φ

∂ρk

(ρ) =
µk

γk

− λk

ρkγk

+
∑

n:n+fk 6∈X

ρn

n!

/
∑

n∈X

ρn

n!
,

hence this quantity is 0 if and only if the fixed point equation (10) holds. The
proposition is proved. �

Local minima of φ and g. Proposition 1 has shown that an equilibrium point is
necessarily a probability vector νρ on X for some ρ ∈ R

K
+ . It has been shown that

the function g defined in Section 4 decreases along any trajectory of the dynamical
system (y(t)) by Proposition 4 so that if it starts in the neighborhood of a local
minimum of g, ultimately it reaches this point. At the normal scale, i.e. for a finite
network, it implies that, with an appropriate initial state, the state of the network
(XN(t)) will live for some (likely long) time in a subset of the states corresponding,
up to a scaling, to this local minimum. For this reason, it is important to be able
to distinguish stable from unstable equilibrium points of (y(t)). Due to the quite
complicated expression defining g, it is not clear how the stability properties of the
equilibrium points can be established directly with g. The function φ plays a key
role in this respect, it reduces the complexity of the classification of the equilibrium
points according to their stability properties.

Let y ∈
◦

P(X ). Taylor’s formula for g gives the relation, for y′ ∈ P(X ),

g(y′) = g(y) + 〈∇g(y), y′ − y〉 + t(y′ − y)Hy
g (y′ − y) + o(‖y′ − y‖2)

where Hy
g is the Hessian matrix of g,

Hy
g =

(
∂2g

∂ym∂yn

(y), m, n ∈ X
)

,

and tz is the transpose of vector z.
Propositions 1, 4 and 6 give the equivalence between

— y ∈ P(X ) is an equilibrium point;
— y = νρ with ∇φ(ρ) = 0.

— y ∈
◦

P(X ) and 〈∇g(y), y′ − y〉 = 0, ∀y′ ∈ P(X );

hence the relation

g(y′) = g(νρ) + t(y′ − νρ)Hνρ
g (y′ − νρ) + o(‖y′ − νρ‖2)

holds.
It is assumed throughout this section that the Hessian matrix has non-zero eigen-

values at νρ such that ∇φ(ρ) = 0. Consequently, for ρ such that ∇φ(ρ) = 0, the
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probability vector νρ is a local minimum of g, i.e. a stable equilibrium point of
(y(t)) if and only if the quadratic form associated to Hνρ

g satisfies the following
property

(20) thHνρ
g h ≥ 0 for all h = (hn) with

∑

n∈X

hn = 0.

It will be shown in the following theorem that Relation (20) is equivalent to the
fact that the Hessian of φ at ρ is a positive quadratic form, thereby establishing
the dimension reduction for the problem of classification.

Theorem 3 (Correspondence between the extrema of g and φ).
(1) A vector ρ ∈ R

K
+ is a local minimum of the function φ if and only if νρ is

a local minimum of the Lyapunov function g.
(2) If ρ is a saddle point for φ, then νρ is a saddle point for g.

Proof. According to the above remarks, one has to study, on one hand, the sign of
the quadratic form h → thHy

g h associated to g at y = νρ, ρ ∈ R
K
+ , on the vector

space of elements h = (hn) ∈ R
X such that the sum of the coordinates of h is 0;

and on the other hand, the sign of the quadratic form φ at ρ.

The Hessian of g and its quadratic form. It is easily checked that

∂2g

∂yn∂ym

(y) =
1

yn

1{n=m} −
K∑

k=1

nkmk

γk

λk + γk〈Ik, y〉 .

The quadratic form can be expressed as

thHy
g h =

∑

n∈X

h2
n

yn

−
K∑

k=1

γk

λk + γk〈Ik, y〉

(
∑

n∈X

nkhn

)2

.

The change of variable (hn) → (hn/
√

yn) shows that if

H =

{
h = (hn) ∈ R

X :
∑

n∈X

√
ynhn = 0

}
,

then it is enough to study the sign of the quadratic form Gy on H given by

Gy(h) =
∑

n∈X

h2
n −

K∑

k=1

γk

λk + γk〈Ik, y〉

(
∑

n∈X

nk

√
ynhn

)2

= 〈h, h〉 −
K∑

k=1

〈vy
k , h〉2 ,

where, for 1 ≤ k ≤ K, vy
k ∈ RX

+ is defined as

vy
k =

√
γk√

λk + γk〈Ik, y〉
(nk

√
yn, n ∈ X ) .

Set

wy
k

def.
=

√
γk√

λk + γk〈Ik, y〉
(√

yn(nk − 〈Ik, y〉), n ∈ X
)

,
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then it is easy to check that wy
k is the orthogonal projection of vy

k in the vector
space H , therefore

Gy(h) = 〈h, h〉 −
K∑

k=1

〈wy
k, h〉2 .

If Wy is the sub-vector space of H generated by the vectors wy
k , 1 ≤ k ≤ K and

PWy
[resp. PW⊥

y
] is the orthogonal projection on Wy [resp. on the orthogonal of

Wy], then

Gy(h) =
〈
PW⊥

y
(h), PW⊥

y
(h)
〉

+
〈
PWy

(h), PWy
(h)
〉
−

K∑

k=1

〈
wy

k , PWy
(h)
〉2

=
〈
PW⊥

y
(h), PW⊥

y
(h)
〉

+ Gy(PWy
(h)).(21)

To determine the sign Gy on H , it is thus enough to have the sign of Gy(h) for
h ∈ Wy, such an element can be written as h = a1w

y
1 + · · ·+aKwy

K with (ak) ∈ R
K ,

Gy(h) =
∑

1≤i,j≤K

aiaj

(
〈
wy

i , wy
j

〉
−

K∑

k=1

〈wy
k, wy

i 〉
〈
wy

k , wy
j

〉
)

hence, if Wy is the K × K matrix defined by Wy = (〈wy
k, wy

l 〉 , 1 ≤ k, l ≤ K),

(22) Gy(h) = taWy(I −Wy) a, for h =

K∑

k=1

akwy
k .

The eigenvalues of the matrix Wy being all real (it is symmetrical) and non-negative
since its associated quadratic form is non-negative, therefore Gy is positive on Wy

if and only if all the eigenvalues of Wy are in the interval (0, 1).

The Hessian of φ and its quadratic form. For ρ ∈ R
K
+ ,

∂2φ

∂ρk∂ρl

(ρ) = −∂2 log Z

∂ρk∂ρl

(ρ) +
αk

ρ2
k

1{k=l}

with (αk) = (λk/γk), for 1 ≤ k, l ≤ K. The derivatives of log Z have the following
properties,

(23) ρk

∂ log Z

∂ρk

(ρ) =
1

Z(ρ)

∑

n∈X

nk

ρn

n!
= 〈Ik, νρ〉,

and

− ρkρl

∂2 log Z

∂ρk∂ρl

(ρ) = − 1

Z(ρ)

∑

n∈X

nknl

ρn

n!

+

(
1

Z(ρ)

∑

n∈X

nk

ρn

n!

)(
1

Z(ρ)

∑

n∈X

nl

ρn

n!

)
+ 1{k=l}

1

Z(ρ)

∑

n∈X

nk

ρn

n!
,

hence

−ρkρl

∂2 log Z

∂ρk∂ρl

(ρ) = 〈Ik, νρ〉〈Il, νρ〉 − 〈Ik,l, νρ〉 + 1{k=l}〈Ik, νρ〉,

where

〈Ik,l, νρ〉 =
1

Z(ρ)

∑

n∈X

nknl

ρn

n!
.
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The quadratic form associated to φ at ρ ∈ R
K
+ is given by, for a = (ak) ∈ R

K ,

Φρ(a) =
∑

1≤k,l≤K

(
〈Ik, νρ〉〈Il, νρ〉 − 〈Ik,l, νρ〉

) ak

ρk

al

ρl

+

K∑

k=1

(αk + 〈Ik, νρ〉)
a2

k

ρ2
k

.

By using the change of variable (recall that αk = λk/γk),

a = (ak) →
(√

λk + γk〈Ik, νρ〉√
γk

ak

ρk

)
,

one gets that the sign of φρ has the same range as the sign of Ψρ, where:

Ψρ(a) = 〈a, a〉

+
∑

1≤k,l≤K

√
γk√

λk + γk〈Ik, νρ〉

√
γl√

λl + γl〈Il, νρ〉
(
〈Ik, νρ〉〈Il, νρ〉 − 〈Ik,l, νρ〉

)
akal

= 〈a, a〉 −
∑

1≤k,l≤K

〈
w

νρ

k , w
νρ

l

〉
akal,

with the above notations. Therefore, the sign of the quadratic form associated to
φ at ρ has the same values as the sign of Ψρ(a) defined by

(24) Ψρ(a) = ta (I −Wνρ) a, a = (ak) ∈ R
K .

Equations (22) and (24) show that Gνρ
is positive on Wνρ

if and only if Ψρ is

positive on R
K
+ which proves Assertion 1 of the theorem. Similarly, if ρ is a saddle

point of φ, Equation (24) shows that the matrix Wνρ has eigenvalues in (0, 1) and
in (1, +∞), so that Gνρ

takes positive and negative values on W , and hence on H ,
νρ is thus a saddle point of g. The theorem is proved. �

6. Bi-Stability of the Asymptotic Dynamical System

This section gives an example where the asymptotic dynamical system has at
least three fixed points: Two of them are stable and the other is a saddle point.
The corresponding stochastic network therefore exhibits a metastability property.
In the limit, it suggests that its state switches from one stable point to the other
after a long residence time. The problem of estimating the residence time in the
neighborhood of a stable point is not addressed here. According to examples from
statistical physics, the expected value of this residence time should be of exponential
order with respect to the size N of the network. For reversible Markov processes,
Bovier [3, 4, 5] present a potential theoretical approach to get lower and upper
bounds for this expected value.

A Network with Two Classes. A simple setting is considered here: There are two
classes of customers, K = 2, the capacity requirements are A1 = 1 (small customers)
and A2 = C (large ones) so that, at a given node, there may be n class 1 customers,
0 ≤ n ≤ C, or only one class 2 customer. It is assumed that γ1 = γ2 = 1 and
µ1 = µ2 = 0 so that a customer leaves the network only when it is rejected at some
node.

The two classes cannot coexist at a given node and, moreover, when a node
contains class 1 customers, it has to get completely empty before accommodating
a class 2 customer. Moreover, when the network is mostly filled with class 1 cus-
tomers, the competition for capacity at each node should be favorable to class 1
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customers, due to their large internal arrival rate (i.e. their arrival rate from all
the other nodes). This can explain the stability of a state with a high density in
class 1 customers. The same intuitive argument holds for the existence of a stable
state with a comparatively higher density in class 2 customers, though it is clear
that the occurence of this phenomenon should depend on the compared values of
the different arrivals, services and transfers rates.

Proposition 7. For a network with two classes of customers such that A1 = 1,
A2 = C, γ1 = γ2 = 1, µ1 = µ2 = 0, for C sufficiently large, there exist λ1 and

λ2 ∈ R+ such that the corresponding energy function φ has at least one saddle point

and two local minima.

From Theorem 3, one deduces that there exists a stochastic network whose asymp-
totic dynamical system has at least two stable points.

Figure 1. Function φ with one Saddle Point and Two Stable
Equilibrium Points. Two classes with λ1 = 0.68, λ2 = 9.0, A1 = 1
and A2 = C = 20.

Proof. Fix ρ ∈ R
2
+ and choose (λ1, λ2) ∈ R

2
+ so that ρ satisfies Equations (8), i.e.

(25) λk = ρk − 〈Ik, νρ〉 = ρk

(
1 − ∂ log Z

∂ρk

(ρ)

)
, k = 1, 2,

by Relation (23), so that νρ is an equilibrium point for the limiting dynamics. It
will be assumed for the moment that C = +∞. The corresponding function φ is
then given by

φ̃(ρ) = − log (ρ2 + eρ1) + ρ1 + ρ2 − λ1 log ρ1 − λ2 log ρ2.

Using Equation (25), one gets that

∂2φ̃

∂ρ2
1

(ρ) =
λ1

ρ2
1

− ρ2e
ρ1

(ρ2 + eρ1)2
=

ρ2 (ρ2 + (1 − ρ1)e
ρ1)

ρ1(ρ2 + eρ1)2

and
∂2φ̃

∂ρ2
2

(ρ) =
λ2

ρ2
2

+
1

(ρ2 + eρ1)2
> 0.



STOCHASTIC NETWORKS WITH MULTIPLE STABLE POINTS 19

Figure 2. Time Evolution of the proportion of nodes without
class 2 particle. Case N=12000 nodes, A1=1, A2=C=5, λ1=0.64,
λ2=2.71, µ1=µ2=0 and γ1=γ2=1.

If ρ̄ = (ρ̄1, ρ̄1) is chosen such that the inequality ρ̄2 < (ρ̄1 − 1) exp(ρ̄1) holds, then

∂2φ̃

∂ρ2
1

(ρ̄) < 0 and
∂2φ̃

∂ρ2
2

(ρ̄) > 0.

The constant C is now assumed to be finite and sufficiently large so that the above
inequalities with φ in place of φ̃ are satisfied, ρ̄ is a saddle point for φ. The function
φ is given by

φ(ρ) = − log

(
ρ2 +

C∑

n=0

ρn
1

n!

)
+ ρ1 + ρ2 − λ1 log ρ1 − λ2 log ρ2.

The function ρ2 → φ(ρ̄1, ρ2) is convex, ρ̄2 is a strict local minimum by construction
and therefore a global minimum. Similarly, the function ρ1 → φ(ρ1, ρ̄2) has a strict
local maximum at ρ̄1,

inf{φ(ρ) : ρ = (ρ1, ρ̄2), ρ1 < ρ̄1} < φ(ρ̄),

inf{φ(ρ) : ρ = (ρ1, ρ̄2), ρ̄1 < ρ1} < φ(ρ̄) = inf{φ(ρ) : ρ ∈ ∆},
with ∆ = {(ρ̄1, ρ2) : ρ2 ∈ R+ \ {0}}. Since φ((ρ1, ρ2)) converges to +∞ when ρ1 or
ρ2 converges to 0 or +∞, one concludes that the function φ has at least two local
finite minima, one on each side of ∆. The proposition is proved. Figure 1 gives an
example of such a situation. �
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[16] Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh, Probabilistic reliable

dissemination in large-scale systems, IEEE Transactions on Parallel and Distributed Systems
14 (2003), no. 3, 248–258.

[17] T.M. Liggett, Interacting particle systems, Grundlehren der mathematischen Wissenschaften,
Springer Verlag, New York, 1985.

[18] Vladimir Marbukh, Loss circuit switched communication network: performance analysis and

dynamic routing, Queueing Systems. Theory and Applications 13 (1993), no. 1-3, 111–141.
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