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ABSTRACT 

 

The syncytiotrophoblast is the major component of the human placenta involved in feto-

maternal exchanges and hormone secretion. The syncytiotrophoblast arises from the fusion of 
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villous cytotrophoblasts. We recently demonstrated that functional gap junctional intercellular 

communication (GJIC) is an important prerequisite for syncytiotrophoblast formation and that 

Connexin 43 (Cx43) is present in both cytotrophoblasts and in the syncytiotrophoblast. To 

determine whether Cx43 is directly involved in trophoblast fusion, we used an antisense 

strategy in primary cultures of human villous cytotrophoblasts that spontaneously differentiate 

into the syncytiotrophoblast by cell fusion. We assessed the morphological and functional 

differentiation of trophoblasts by desmoplakin immunostaining, by quantifying hCG (human 

chorionic gonadotropin) production and by measuring the expression of specific trophoblast 

genes (hCG and HERV-W). Furthermore, we used the gap-FRAP method to investigate 

functional GJIC. Cytotrophoblasts treated with Cx43 antisense aggregated and fused poorly. 

Furthermore, less HERV-W env mRNA, hCGβ mRNA and hCG secretion were detected in 

Cx43 antisense-treated cytotrophoblasts than in cells treated with scrambled antisense. 

Treatment with Cx43 antisense dramatically reduced the percentage of coupled trophoblast 

cells. Taken together, these results suggest that Cx43 is directly involved in human 

trophoblast cell–cell communication, fusion and differentiation. 
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INTRODUCTION 

 

In humans, fetal cytotrophoblasts play a key role in the implantation of embryos and in 

placental development. In early pregnancy, mononuclear cytotrophoblasts (CT) proliferate 

and invade the maternal endometrium to form the anchoring villi. Cytotrophoblasts also 

differentiate into a multinucleated continuous layer known as the syncytiotrophoblast (ST). 

This layer, which covers the chorionic villi, is bathed with maternal blood in the intervillous 

spaces (Benirschke and Kaufmann, 2000). Due to its position, the syncytiotrophoblast is the 

site of numerous placental functions including exchanges, metabolism and the synthesis of the 

steroid and peptide hormones required for fetal growth and development (Eaton and 

Contractor, 1993,  Ogren and Talamentes, 1994). Some of these hormones, such as human 

chorionic gonadotropin (hCG) (Muyan and Boime, 1997), human placental lactogen (hPL) 

(Handwerger, 1991), and placental GH (PGH; also called GH variant) (Lacroix et al., 2002) 

are specific to pregnancy. In situ and in vitro studies have shown that the ST arises from the 

fusion of mononuclear CTs (Kliman et al., 1986,  Richard, 1961). The morphological aspects 

of this in situ differentiation pathway were recently described in the broader context of 

continuous trophoblast turnover including the continuous proliferation of CT stem cells, the 

recruitment of post-mitotic cells to the ST after membrane fusion and progression towards 

apoptosis (Mayhew, 2001). Isolated mononucleated CTs aggregate and fuse in vitro, forming 

a non-proliferative multinucleate syncytiotrophoblast that produces pregnancy-specific 

hormones (Kliman et al., 1986,  Malassiné et al., 1990). This in vitro differentiation involves 

all of the activities of normal CTs during in vivo maturation. The fusion of human CTs is a 

very important step in the formation of the ST, but remains poorly understood. This process is 

accompanied by a concomitant increase in cellular levels of cAMP, required for the synthesis 

of numerous trophoblast-specific proteins, and a decrease in basal Ca2+ activity (Cronier et al., 
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1999,  Roulier et al., 1994). Several factors are involved in the fusion of trophoblastic cells: a 

phosphatidylserine (PS) flip (Adler et al., 1995), a human endogenous retroviral envelope 

glycoprotein encoded by HERV-W (syncytin) (Blond et al., 2000,  Frendo et al., 2003,  Mi et 

al., 2000).  

Gap junctions are clusters of transmembrane channels composed of connexin (Cx) hexamers. 

In general, the effects of Cx expression have been attributed to gap junctional intercellular 

communication (GJIC) and sharing a common pool of intracellular messengers and 

metabolites. Gap junctions provide a pathway for the diffusion of ions and small molecules 

such as cAMP, cGMP, inositol triphosphate and Ca2+. Connexins represent a family of closely 

related membrane proteins, which are encoded by a multigene family that contains at least 20 

members in humans. These connexins have different biophysical properties, functional and 

regulatory characteristics (Willecke et al., 2002). The permeability of junctional channels is 

finely regulated. This regulation involves the cyclic phosphorylation and dephosphorylation 

of connexins and changes in intracellular Ca2+, H+ and cAMP concentrations. In addition, 

connexin expression varies during differentiation, proliferation and transformation processes 

and following treatment with biologically active substances such as growth factors and 

hormones (Bruzzone et al., 1996,  Kumar and Gilula, 1996,  Lau et al., 1992,  Loewenstein, 

1981). The exchange of molecules through gap junctions is thought to be involved in the 

control of cell proliferation, in the control of cell and tissue differentiation, in metabolic 

cooperation and in spatial compartmentalization during embryonic development (Bani-

Yaghoub et al., 1999,  Constantin and Cronier, 2000,  Lecanda et al., 1998,  Loewenstein, 

1981,  Saez et al., 1993).  

We previously demonstrated, that Cx 26, 32, 33, 40 and 45 are not detected in human 

trophoblast, whereas Cx 43 mRNA and protein are present between cytotrophoblastic cells 

and between cytotrophoblastic cells and the syncytiotrophoblast (Cronier et al., 2002). 
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Furthermore, in vitro studies using fluorescence recovery after photobleaching (gap-FRAP), 

demonstrated the presence of a functional gap junctional inter-trophoblastic communication 

before trophoblast fusion (Cronier et al., 2001,  Cronier et al., 1994). In addition, treatment of 

CT with heptanol (a non-specific junctional uncoupler blocking all connexin channels) 

inhibits trophoblastic GJIC leading to a decrease in ST formation suggesting a role for GJIC 

in trophoblastic fusion (Cronier et al. 1994).  

The possibility of non-specific actions for heptanol lead us, using an antisense strategy, to 

determine the specific functional role for Cx43 in trophoblastic fusion and differentiation. We 

assessed the morphological and functional differentiation of cultured human villous 

trophoblasts by desmoplakin immunostaining, by measuring hCG production and by 

measuring the expression of trophoblast-specific genes (hCG and HERV-W). Furthermore, 

we used the gap-FRAP method to investigate functional GJIC. 

MATERIALS AND METHODS 

 
Cell culture. 

Term placentas were obtained after elective cesarean section from healthy mothers who had 

had uncomplicated pregnancies. Villous tissue was dissected free of membranes, rinsed and 

minced in Ca2+
- and Mg2+-free Hank's balanced salt solution (HBSS). Cytotrophoblast cells 

were isolated after trypsin-DNase I digestion and discontinuous Percoll gradient fractionation 

using a slightly modified version of the method described by Kliman (Alsat et al., 1991,  

Cronier et al., 1997,  Kliman et al., 1986) as previously described (Frendo et al., 2001). 

Briefly, the villous sample was submitted to sequential enzymatic digestions, in a solution 

containing 0.5% (W/V) trypsin powder, (Difco), 5 IU/ml of DNase I, 25 mM HEPES, 4.2 mM 

MgSO4 and 1% (W/V) penicillin/streptomycin (Biochemical industrie) in HBSS. This process 

was monitored under a light microscope. The first and/or second digestion were discarded 

after light microscopy analysis to eliminate syncytiotrophoblast fragments and the following 
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four or five sequential digestions were kept. The cells collected during these last digestions 

were purified on a discontinuous percoll gradient (5 to 70% in 5% steps). The cells that 

sedimented in the middle layer (density 1.048-1.062 g/ml) were further purified using a  

monoclonal anti-human leukocytic antigen A, B and C antibodies (W6-32HL, sera Lab, 

Crawley Down, UK) as previously described Cronier et al., 2002.  This antibody reacts with 

most cell types (e.g. macrophages, fibroblasts, EVT) but not with villous cyto- or 

syncytiotrophoblast. Briefly, the isolated cells were transferred to culture dishes coated with 

the monoclonal antibody. After 15 minutes at 37°C, non-adherent cells were recovered by 

gently rocking the dishes and removing them with a pipette. Cytotrophoblastic cells were 

diluted to a final concentration of 5x105 cells/ml in Dulbecco's modified Eagle's medium 

(DMEM) containing 10% fetal calf serum (FCS). After 4 hours at 37°C in a 5% CO2 

atmosphere, non-adherent cells and syncytial fragments were removed by three washes with 

culture medium. After 3 hours of culture, 95% of the cells isolated from term placentas were 

cytotrophoblasts, as determined by cytokeratin 7-positive staining, using a specific 

monoclonal antibody (dilution 1:200, Dako). Cells were cultured in 2 ml of DMEM 

supplemented with 25 mM HEPES, 2 mM glutamine, 10% heat-inactivated FCS and 

antibiotics (100 IU/ml penicillin and 100 mg/ml streptomycin) at 37°C in a humidified 5% 

CO2-95% air atmosphere. 

 

Modulation of gene expression by antisense oligonucleotides. 

Synthetic antisense oligonucleotides targeting Connexin 43 were purchased from Biognostik 

(Gottingen, Germany). The phophorothioate-modified connexin 43 antisense -oligonucleotide 

is the reverse complement of a target sequence described in (Fishman et al., 1991) (table 1). 

The absence of duplex and hairpin formations and the absence of cross reactivity with related 

sequences in GenBank were checked. The cells were seeded into 35 mm dishes at a density of 
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100,000 cells per well, four hours before the addition of phosphorothioate-modified antisense. 

Typically, normal cultured cytotrophoblastic cells were incubated with 10 µM synthetic 

Connexin 43 antisense oligonucleotide and 10 µM scrambled antisense (control, Biognostik). 

After 48h of incubation, the cells were harvested and protein and total RNA were extracted.  

 

Immunocytochemistry. 

To detect desmoplakin, cultured cells were rinsed with PBS, fixed, and permeabilized in 

methanol at -20 °C, for 25 minutes. A monoclonal anti-desmoplakin antibody (1:400, Sigma-

Aldrich, Saint-Quentin Fallavier, France) was then applied, followed by fluorescein 

isothiocyanate (FITC)-conjugated goat anti-mouse immunoglobulin (1:400, Jackson 

Immunoresearch Laboratories, Wet Grove, PA, USA), as previously described (Alsat et al., 

1996,  Frendo et al., 2000b). After washing, samples were mounted in medium with DAPI for 

nuclear staining (Vector laboratories, Burlingame CA, USA). 

To detect Cx43, specimens were fixed for 10 min in methanol at –20°C. They were then 

washed three times in PBS and processed using a method similar to that described by Tabb et 

al. (Tabb et al., 1992). After incubation in a blocking solution consisting of 2% bovine serum 

albumin and 1% Triton X100 in PBS for 30 minutes at room temperature, specimens were 

washed three times in PBS and incubated overnight with monoclonal Cx43 primary 

antibodies (1:200, Transduction Laboratories, Lexington, KY). After five further washes in 

PBS, FITC-conjugated goat anti-mouse antibodies (1:100) were applied for 45 minutes at 

room temperature. After washing, samples were mounted in medium with DAPI for nuclear 

staining. The controls, which consisted of omitting the primary antibody or applying the non-

specific IgG of the same isotype, were all negative. 
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Gap-FRAP method. 

The degree of intercellular communication between neighboring cultured trophoblastic cells 

was determined by measuring the cell to cell diffusion of a fluorescent dye (Wade et al., 

1986) using an interactive laser cytometer (ACAS 570, Meridian Instruments, Okemos, MI, 

USA). Briefly, the cells were internally loaded for 10 minutes at room temperature with the 

membrane permeant molecule, 6-carboxyfluorescein diacetate (7 µg/ml in 0.25% DMSO; 

Sigma Chemical Co.). The highly fluorescent and membrane impermeable 6-

carboxyfluorescein moiety is released and accumulates within cells. After washing off the 

excess extracellular fluorogenic ester to prevent further loading, a cell adjacent to other cells 

was selected and its fluorescence was photobleached by strong laser pulses (488 nm). Digital 

images of the fluorescent emission excited by weak laser pulses were recorded at regular 

intervals for 12 minutes (scanning period 2 minutes before and after photobleaching) and 

stored for subsequent analysis. In each experiment, one labeled, isolated cell was left 

unbleached as a reference for the loss of fluorescence due to repeated scanning and dye 

leakage, and an isolated, bleached cell served as a control. When the return of fluorescence 

followed a fast step-like course, reaching ≥90% of the final steady state within <30 secondes 

of photobleaching, the diffusion of the dye was neither prevented by the cell membranes nor 

limited by the presence of gap junctions. We thus assumed that the fusion of cell membranes 

had been completed and that the cellular elements were part of a true syncytium. When the 

bleached cells were connected to unbleached contiguous cells by open gap junctions, the 

fluorescence recovery followed a slow exponential time course. Therefore, the analysis of the 

kinetics of fluorescence recovery makes it possible to distinguish between aggregated 

cytotrophoblastic cells and the syncytiotrophoblast. In our experimental conditions, GJIC was 

investigated (coupled cells or not) by measuring the percentage of coupled cells in a 
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population of neighboring cells. GJIC was analyzed 2 days after plating. Three different 

topologies were recognized: contiguous cytotrophoblastic cells, contiguous 

syncytiotrophoblasts, and contiguous cyto- and syncytiotrophoblasts. During trophoblast 

differentiation and cell treatments, the percentage of coupled cells was analyzed whatever the 

topology of the trophoblastic elements (Cronier et al., 1994). 

 

Syncytium formation analysis. 

Syncytium formation was followed by fixing and immunostaining cells so that the distribution 

of desmoplakin and nuclei in cells could be observed (Keryer et al., 1998). The staining of 

desmoplakin present at the intercellular boundaries in aggregated cells progressively 

disappears as the syncytium is formed (Alsat et al., 1996,  Douglas and King, 1990). The 

nuclei contained in 100 syncytia in a random area near the middle of the slides were counted. 

Three coverslips were examined for each experimental condition. Results are expressed as 

number of nuclei per syncytium. 

 

 

 

 

Hormone assay. 

The concentration of hCG was determined in culture media by use of the chemiluminescent 

immunoassay analyser ACS-180SE system (Bayer Diagnostics). The sensitivity of the assay 

was 2 mU/ml. All values are means ± SEM of triplicate determinations. 

 

RNA isolation and analysis. 
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Total RNA was extracted from cultured cells as described by Qiagen (Courtabeuf, France). 

The total RNA concentration was determined at 260 nm and its integrity was checked in a 1% 

agarose gel. The relative mRNA levels of the different genes were measured by quantitative 

RT-PCR, essentially as previously described (Frendo et al., 2000a), using an ABI Prism 7700 

Sequence Detection System (Perkin-Elmer Applied Biosystem) and the SYBR Green PCR 

Core Reagents kit (Perkin-Elmer Applied Biosystems). The nucleotide sequences of the 

primers used are listed in table 1. Each sample was analyzed in duplicate and a calibration 

curve was constructed in parallel for each analysis. The level of transcripts was normalized 

according to the RPLP0 gene (also known as 36B4), which encodes human acidic ribosomal 

phosphoprotein P0 as an endogenous RNA control, and each sample was normalized on the 

basis of its RPLP0 content. 

 

 

 

Immunoblot analysis. 

Cells were washed twice with ice-cold PBS, scraped and lysed at 4°C in a buffer containing 

150 mM NaCl, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulphate, 50 mM Tris-HCl 

(pH8) supplemented with protease inhibitors. The lysates were incubated at 4°C for 10 

minutes and then centrifuged for 10 minutes at 10000g to pellet the nuclei. Protein 

concentration was determined according to Bradford’s method (BioRad) using bovine serum 

albumin as the standard. Supernatants were then frozen at –70°C until further analysis. 

Immunobloting was performed in accordance with standard procedures. Cell lysates (30 µg) 

were mixed 3:1 (vol:vol) in a 100 mM Tris HCl (pH 6,8) buffer containing 1% SDS, 10% 

glycerol, 5% ß-mercaptoethanol. They were heated at 95°C for 15 minutes and then loaded on 

10% SDS-PAGE  gels. After transfer onto nitrocellulose membranes, the membranes were 
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incubated in Tris–buffered saline with 5% milk powder and 0.05% Tween 20 overnight at 

4°C. Immunostaining was performed in the same buffer with 1% powdered milk. The blots 

were probed with the following antibodies: a mouse monoclonal anti-connexin 43 

(Transduction Laboratories) at 1/1000 dilution and a cytokeratin 7-specific monoclonal 

antibody (dilution 1:1000, Dako). Finally blots were developed by using horse-radish 

peroxidase-conjugated antibodies (Jackson) and an enhanced chemiluminescence kit (Pierce 

supersignal, Interchim France). 

 

 

 

Statistical tests. 

Statistical analysis was performed using the StatView F-4.5 software package (Abacus 

Concepts, Inc., Berkeley, CA, USA). Values are presented as mean ± SEM. Significant 

differences were identified using Mann-Whitney analysis for hormonal secretions and 

ANOVA for antisense studies; p < 0.05 was considered significant. 

 

RESULTS 

 

Effect of Cx43 antisense on Cx43 protein production in human trophoblasts. 

We used an antisense strategy, to study the role of Cx43 in human trophoblast cell fusion. 

First, we confirmed that the oligonucleotide was efficiently taken up by cytotrophoblast cells 

by adding FITC-conjugated oligonucleotide to the cell culture. Oligonucleotides were taken 

up from the first hour by primary cells (20% of cells were labeled) and the proportion of 

labeled cells then increased progressively with time (26% at 2 hours, 35% at 24 hours and 

41% at 48 hours) (Fig. 1A). We then evaluated the efficiency and the specificity of Cx43 
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antisense treatment to block the production of the Cx43 protein. When term cytotrophoblastic 

cells were cultured for 48h in presence of a scrambled antisense (control), punctate 

immunostaining could be observed at the borders of adjacent cells (Fig. 1B) as previously 

described (Cronier et al., 2002). The addition of Cx43 antisense to the culture medium greatly 

decreased Cx43 immunostaining. We confirmed that the amount of Cx43 protein had indeed 

decreased by western blot analysis. The amount of Cx43 protein was clearly lower in Cx43 

antisense-treated cells than in scrambled antisense-treated control cells (Fig. 1C). In contrast, 

no difference in actin levels was observed between Cx43 antisense-treated cells and control 

cells.  

 

Effects of Cx43 antisense on the morphological differentiation of trophoblasts. 

In vitro, purified mononuclear cytotrophoblasts isolated from normal human term placentas 

aggregate and then fuse, forming the multinucleated syncytiotrophoblast. The fusion and 

differentiation of isolated human cytotrophoblast cells have been monitored by staining cells 

with anti-desmoplakin antibodies to reveal cell boundaries (Alsat et al., 1996,  Douglas and 

King, 1990). Indeed, the desmoplakin staining present at the intercellular boundaries of 

aggregated cells progressively disappears as the syncytiotrophoblast is formed. After 72 hours 

of culture, most mononuclear cytotrophoblasts had differentiated into syncytiotrophoblasts, as 

illustrated by the gathering of numerous nuclei in a large cytoplasmic mass a (Fig.2a). In 

contrast, cytotrophoblasts treated for 48 hours with 10 µM Cx43 antisense aggregated but did 

not fuse or fused poorly. Syncytiotrophoblasts were rare, as indicated by the persistence of 

desmoplakin immunostaining at the intercellular boundaries of aggregated cells (Fig.2b). 

To assess further the direct involvement of Cx43 in cell fusion and syncytium formation, we 

estimated the number of DAPI-stained nuclei per  syncytium. During the first 3 days of 

culture, the number of nuclei per syncytium increased (Fig.3). For instance, after 72 hours of 
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culture, 33% of syncytia observed contained more than 12 nuclei. In contrast, in the presence 

of Cx43 antisense, ST formation was impaired; only small syncytia with three to six nuclei 

were observed. At 72 hours, no syncytia with more than nine nuclei were observed, 

illustrating that Cx43 antisense disrupts cell-cell fusion. 

 

Functional analysis of the effects of Cx43 antisense on cell-cell communication. 

We used the Gap-Frap method to study the effect of Cx43 antisense on GJIC. GJIC was 

previously analyzed between cultured contiguous trophoblastic cells (Cronier et al., 1997), 

demonstrating that dye could diffuse between cytotrophoblastic cells, between cyto- and 

syncytiotrophoblasts and between syncytiotrophoblasts. In our study, the presence of 

scrambled antisense in the culture medium for 48 hours did not significantly affect the 

trophoblastic cell-to-cell communication (5.3% of coupled cells) compared to standard 

conditions (6%). In contrast, the presence of Cx43 antisense in the culture medium 

dramatically reduced the percentage of coupled trophoblastic cells (Fig.4). 

 

Effects of Cx43 antisense on gene expression and hormonal secretion. 

As previously reported, the formation of the syncytiotrophoblast by the fusion of 

cytotrophoblasts is associated with significant increases in hCGβ mRNA and hCG secretion. 

Cells treated with Cx43 antisense contained less hCGβ mRNA and secreted less hCG into the 

culture medium at 48 hours (p< 0.018) and 72h (p< 0.035) than cells treated with the 

scrambled antisense (Fig 5). 

We recently showed that the expression of HERV-W env, which is also called syncytin, 

increases during ST formation (Frendo et al., 2003) and is directly involved in the 

trophoblastic fusion process (Blond et al., 2000, Frendo et al., 2003). Thus, we used real-time 

quantitative RT-PCR to determine the levels of syncytin mRNA in cytotrophoblasts. HERV-
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W env mRNA levels were significantly lower (33% decrease after 48 hours of treatment; 

p<0.019) in Cx43 antisense-treated cells than in control cells treated with a scrambled 

antisense at 48 hours, which is the time point at which HERV-W is maximally expressed. 

 

DISCUSSION 

 
In this study, we show for the first time that Cx43 antisense impairs human trophoblast cell–

cell communication, human trophoblast fusion and differentiation as established on 

morphological and functional criteria. This suggests that Cx43 plays an important role in 

these processes. 

We used an in vitro model of cultured villous trophoblastic cells that has been used to study 

certain aspects of the dynamic processes that occur during villous differentiation (Kliman et 

al., 1986). To rule out of the possibility that villous trophoblast cells were contaminated by 

other cells containing Cx43 protein and transcripts, such as endothelial and mesenchymal 

cells, we added an additional purification step with a monoclonal anti-human leukocytic 

antigen A, B, and C. Furthermore, we thoroughly washed cultured trophoblastic cells after 

cellular adherence to eliminate syncytiotrophoblast fragments (Cronier et al., 1997, Guilbert 

et al., 2002). Following this procedure, 95% of cultured cells are positive for cytokeratin 7 

immunostaining (a specific marker of trophoblasts). As previously described, 

syncytiotrophoblast formation is associated with significant increases in αhCG mRNA, βhCG 

mRNA, leptin and PGH mRNA levels (Frendo et al., 2000b). 

Few human cell types can fuse together and differentiate into multinucleated syncytia. This 

process is involved in the formation of myotubes (Constantin and Cronier, 2000,  Mege et al., 

1994,  Wakelam, 1985), osteoclasts (Ilvesaro et al., 2000,  Zambonin Zallone et al., 1984) and 

the syncytiotrophoblast (Midgley et al., 1963). Although they share a common morphological 

differentiation process, the three cell types that are able to differentiate into a syncytium differ 
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notably. Due to its position, the syncytiotrophoblast maintains a strong polarity with an apical 

microvillous membrane both in situ and in vitro and is primarily engaged in absorption, 

exchanges and endocrine functions. In contrast, myotubes do not exhibit morphological 

polarity. The myoblast-myotube transition first requires the withdrawal of myoblasts from the 

cell to G0, whereas only the highly differentiated cells from the large pool of cytotrophoblastic 

cells in the G0 phase actually fuse with the syncytiotrophoblast (Huppertz et al., 1998). Unlike 

the syncytiotrophoblast, osteoclasts display strong locomotor activity. 

The cell-cell fusion process involved in syncytiotrophoblast formation is poorly understood. 

One membrane event thought to be involved in fusion is the phosphatidylserine (PS) flip. 

Phosphatidylserine is a phospholipid that is normally confined to the inner layer of the plasma 

membrane. However, prior to fusion, it translocates to the outer layer and facilitates 

intermembrane fusion (PS flip). Adler et al. (Adler et al., 1995) have shown that incubation 

with an anti-PS antibody inhibits the forskolin-induced syncytial fusion of choriocarcinoma 

cells. According to Huppertz (Huppertz et al., 1998), this PS flip is a consequence of the 

activation of an initiator caspase (e.g., caspase 8), suggesting that the molecular machinery of 

early apoptosis is involved in the fusion process. 

Other studies have suggested that human endogenous retroviruses play an important role 

(Blond et al., 2000,  Mi et al., 2000). Indeed, the production of recombinant syncytin (a 

glycoprotein encoded by Env-W retrovirus)  in a variety of cell types induces the formation of 

giant syncytia. Furthermore, the fusion of a human trophoblast cell line expressing 

endogenous syncytin is inhibited by an antisyncytin antiserum. Syncytin is highly expressed 

in normal human trophoblasts and recently we demonstrated using the same antisense strategy 

that syncytin is involved in human trophoblast cell fusion and differentiation (Frendo et al., 

2003).  
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In this study, we show that Cx43 expression is also involved in cell fusion. Gap junction have 

been implicated in placental development (for review see Winterhager et al., 2000). 

Ultrastructural studies have detected gap junctions between the trophoblastic layers in 

placentas (de Virgiliis et al., 1980,  Firth et al., 1980,  Malassiné and Leiser, 1984). 

Furthermore, gap junctions are present during cytotrophoblastic cell fusion in the guinea-pig 

placenta (Firth et al., 1980). In human trophoblast, we have previously demonstrated that Cx 

26, 32, 33,40 and 45 are not detected, whereas Cx 43 mRNA and protein are present. 

Furthermore, using gap-FRAP we have demonstrated the presence of a functional gap 

junctional inter-trophoblastic communication preceeding trophoblastic fusion. The low 

occurrence of coupled cells observed (5.3% after 2 days of culture) argues for a brief duration 

or paucity of this gap junctional communication. This is in accordance with the fact that in 

trophoblast primary cultures, gap junctions are only observed in a low number of cells with 

transmission electron microscopy (Cronier et al., 1994).  

The role of gap junctions in differentiation can be studied by chemically inhibiting gap 

junctional communication, by using an antisense oligonucleotide approach or by 

overexpressing connexin genes. A number of lypophilic substances, such as aliphatic 

alcohols, and compounds isolated from liquorice roots (glycyrrhetinic acid) can uncouple gap 

junctions channels. Long-term incubation with heptanol considerably reduces the degree of 

fusion of cultured myoblasts (Constantin and Cronier, 2000,  Mege et al., 1994) and 

preliminary studies showed that heptanol reversibly decreases gap junctional inter-

trophoblastic communication and trophoblastic cell fusion. Although its exact mechanism of 

action is not known, heptanol seems to decrease the fluidity of membraneous cholesterol-

reach domains (Johnston  et al.; 1980; Takens-Kwak et al.; 1992) leading to a decrease of the 

open probability of junctional channels. Furthermore, in cultured neonatal rat cardiomyocytes, 

heptanol does not decrease the number of gap junctional channels, and in pancreatic acinar 
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cells, there is a cessation of GJIC although gap junctions remain structurally intact (Chanson 

et al.; 1989). Nevertheless, heptanol have been implicated in other biological processes. For 

example, heptanol could modulate the activity of nicotinic acetylcholine receptor channels in 

cultured rat myotubes (Murrell et al.; 1991) and the Ca2+-activated K+ channel expressed in 

Xenopus oocyte (Chu and Treistman, 1997). Furthermore, heptanol and octanol were 

suspected to affect some of the initiating responses of intracellular calcium elevation 

(Venance et al.; 1998). The possibility of a non uncoupling action for heptanol and its non-

specific action blocking all the connexin channels lead us to develop an antisense strategy. It 

was demonstrated in this study, that treatment with a scrambled antisense does not affect the 

functional gap junctional communication and trophoblast differentiation whereas treatment 

with Cx 43 antisense abolishes gap junctional communication and reduces trophoblast 

differentiation. These data showed the major implication of Cx 43 expression in gap 

junctional communication and cytotrophoblastic cell-cell fusion. 

The main effects of Cx expression have been attributed to gap junctional 

communication. The existence of cell-to-cell channels allows the exchange of second 

messengers between aggregated trophoblastic cells and this exchange may regulate the fusion 

process. The nature of the messengers involved in the inter-trophoblastic gap junctional 

communication needs to be addressed in the near future. It is conceivable that Ca2+, IP3 and 

cAMP are exchanged, thus controlling various cellular effectors involved in fusion and in the 

transcription of syncytiotrophoblast-specific genes (Aronow et al., 2001,  Keryer et al., 1998). 

These intercellular messengers may also crosstalk with GJIC, as gap junction channels are 

regulated by cAMP and Ca2+. Thus, fusion may be correlated with a concomitant increase in 

cellular levels of cAMP (Roulier et al., 1994) and with a decrease in basal Ca2+ activity 

(Cronier et al., 1999).  
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In humans, data concerning GJIC and trophoblast differentiation have been obtained in vitro, 

and recently the principles of placental development have explained by gene knock-out 

approaches in mice (Rossant and Cross, 2001). Due to the striking diversity in placental 

structure and endocrine function, we must be careful when extrapolating findings regarding 

placental development from one species to another. In mice, Cx26 and Cx31 deficiencies 

cause placental alterations (Gabriel et al., 1998,  Plum et al., 2001) whereas in the human 

placenta, Cx26 and Cx31 are not expressed.  

In conclusion, cell fusion is the limiting factor in human villous trophoblast differentiation 

and studies are still required to improve our understanding of the various factors directly 

involved in  human trophoblast fusion and differentiation. In this study, we demonstrate for 

the first time that Cx43 is one of the componants involved in these processes. Pathological 

models, such as cytotrophoblasts isolated from T21-affected placentas (Frendo et al., 2001) 

and in which cell fusion and syncytiotrophoblast formation are defectuous (Frendo et al., 

2000b), should help to further our understanding of the cell-cell fusion process. 
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FIGURE LEGENDS 

 

Figure 1: Effects of Cx43 antisense on Cx43 protein production in human trophoblasts. 

Panel A: Oligonucleotide uptake by primary cytotrophoblasts. After 4 hours of culture, 

cytotrophoblasts were incubated with FITC-labeled scrambled oligonucleotide for 1h, 2h, 24h 

and 48h. At each time point, cells were washed three times in PBS, fixed and analyzed by 

fluorescence microscopy. Nuclei were stained in blue by DAPI. Intensely fluorescent green 

cells have internalized the scrambled antisense oligonucleotide (FITC). (X 600) 

Panel B: Immunodetection of Cx43 in cytotrophoblast cells isolated from normal placentas. 

Cells were treated for 48 hours with a scrambled (control) or a specific Cx43 antisense (Cx43 

antisense). Cell nuclei were labeled with DAPI (blue immunofluorescence). In the control, 

Cx43 punctuate immunofluorescence (IF) can be observed around nuclei and at the borders 

with neighboring trophoblastic cells. In cells treated with Cx43 antisense, the level of IF is 

largely decreased. (X 1000)  

Panel C: Cx43 protein levels in trophoblast cells after treatment with a scrambled antisense 

(control) or with a specific Cx43 antisense (Cx43 antisense) were determined by western 

blotting using a mouse anti-Cx43 monoclonal antibody. An anti-actin monoclonal antibody 

was used as a standard. Proteins obtained from rat brain lysate were used as a positive control. 

One representative experiment out of the three performed is shown. 

 

Figure 2: Effects of Cx43 antisense on the morphological differentiation of trophoblasts. 

Cytotrophoblasts isolated from human placentas were cultured in the presence of a scrambled 

antisense (Control) or with a specific Cx43 antisense (Cx43 antisense). After 72 hours of 

culture, the cells were fixed, immunostained with anti-desmoplakin monoclonal antibody and 

counterstained with DAPI. Large syncytia were observed in control cells (a) as 
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immunofluorescent staining disappeared when cells have fused to form the 

syncytiotrophoblast. In contrast, immunoflurescent staining can be observed at the boundaries 

between aggregated cytotrophoblasts in cells treated with a specific Cx43 antisense (b). 

 

Figure 3: Cell fusion index. 

Human cytotrophoblasts were incubated with a scrambled antisense (dark columns) or with a 

specific Cx43 antisense (white columns). After 24h (upper panel), 48h (middle panel) and 72h 

(lower panel), the cells were fixed, immunostained with anti-desmoplakin monoclonal 

antibody and counterstained with DAPI. One hundred syncytia were scored after staining and 

the nuclei were counted in each syncytium. Data show the distribution of syncytia as a 

function of the number of nuclei per syncytium. The figure illustrates the mean±SEM of three 

independent experiments. 

 

 

 

Figure 4: Functional intercellular communication measured by means of gap-FRAP 

method. 

Upper panel: Typical computer-generated images of fluorescence distribution in villous 

trophoblastic cells cultured in the presence of scrambled antisense for 48h measured during a 

gap-FRAP experiment. After a prebleach scan, the fluorescent dye was photobleached in 

some selected cells (polygons 1 and 2) by means of a strong laser illumination. Isolated cells 

(polygon 4) kept unbleached served as a control for the spontaneous fading of fluorescent 

emission. The evolution of fluorescence intensities was measured starting just after 

photobleaching for 12 min with a scanning period of 2 min. After 12 min (panel C), a 

fluorescence recovery had occured in area 1, whereas the fluorescence intensity remains weak 
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in area 2 indicating that cell 2 is not coupled to neighbouring cells. Panel D represents curves 

of fluorescence evolution in selected cells: fluorescence recovery in cell 1 follows a closely 

exponential time-course, reflecting the presence of open gap junctional channels. Note the 

low decrease of fluorescence intensity in the control unbleached cell (4) due to repeated 

scanning. 

Lower panel: Percentage of coupled cells between villous trophoblastic cells after 48h of 

culture in the presence of scrambled antisense (dark column) or Cx43 antisense (white 

column). Coupled cells were characterized by an exponential time course of fluorescence 

recovery from neighboring cells into a photobleached test cell. Functional communication 

was measured between cytotrophoblastic cells, between cyto- and syncytiotrophoblasts and 

between syncytiotrophoblasts. The number of intercellular contacts analyzed is indicated on 

top of the bars.  

 

Figure 5: hCG expression and secretion. 

Panel A: hCGβ mRNA levels were determined by real-time quantitative RT-PCR in 

cytotrophoblasts treated with an scrambled antisense used as a control (dark columns) or with 

a specific Cx43 antisense (white columns). These assays were carried out 24h, 48h and 72h 

after plating. Values are the levels of hCGβ mRNA normalized to the level of PPIA mRNA. 

Panel B: levels of hCG secreted into the culture medium at 24h, 48h and 72h of culture in 

presence of a scrambled antisense (dark columns) or of a specific Cx43 antisense (white 

columns).  

Values are means from three separate dishes ± SEM and the figure illustrates one 

representative experiment from the three performed. *: p < 0.05. 

Values of βhCG mRNA and hCG secretion in the three independent experiments are shown in 

tables. Graphs are representative of the experiment 1. 
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TABLE 1. RT-PCR primers and antisense oligonucleotides 
 
____________________________________________ 
 
Target mRNA  Oligonucleotides 
____________________________________________ 
HERV-W   (+) CGGACATCCAAAGTGATACATCCT    
   (-) TGATGTATCCAAGACTCCACTCCA 
 
RPLP0       (+) GGCGACCTGGAAGTCCAACT  

(-) CCATCAGCACCACAGCCTTC    
 
hCGβ    (+) GCTACTGCCCCACCATGACC   

(-) ATGGACTCGAAGCGCACATC  
 
CX43 antisense     GCAAGTGTAAACAGCG 
 
Scrambled      GNNNNNNNNNNNNNNG 
____________________________________________ 
 
Upper (+) and lower (-) primers used in RT-PCR assays. 
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