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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47122366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00128750


ha
l-

00
12

87
50

, v
er

si
on

 1
 -

 5
 F

eb
 2

00
7

LONGEST COMMON SEPARABLE PATTERN BETWEEN

PERMUTATIONS

MATHILDE BOUVEL, DOMINIQUE ROSSIN, AND STÉPHANE VIALETTE

Abstract. In this article, we study the problem of finding the longest common
separable pattern between several permutations. We give a polynomial-time
algorithm when the number of input permutations is fixed and show that the
problem is NP-hard for an arbitrary number of input permutations even if
these permutations are separable.

On the other hand, we show that the NP-hard problem of finding the longest
common pattern between two permutations cannot be approximated better
than within a ratio of

√
Opt (where Opt is the size of an optimal solution) when

taking common patterns belonging to pattern-avoiding classes of permutations.

1. Introduction and basic definitions

A permutation π is said to be a pattern within a permutation σ if σ has a
subsequence that is order-isomorphic to π. Within the last few years, the study
of the pattern containment relation on permutations has become a very active
area of research in both combinatorics and computer science. In combinatorics,
much research focused on closed classes of permutations, i.e., permutations that
are closed downwards under forming subpermutations. A huge literature is devoted
to this subject. To cite only a few of a plethora of suitable examples, Knuth
considered permutations that do not contain the pattern 312 [15], Lovàsz considered
permutations that do not contain the pattern 213 [17] and Rotem those that do
not contain 231 nor 312 [19].

Surprisingly enough, there is considerably less research on algorithmic aspects
of pattern involvement. Actually, it appears to be a difficult problem to decide
whether a permutation occurs as a pattern in another permutation. Indeed, the
problem in this general version is NP -complete [5]. The case of separable patterns,
i.e., permutations that contain neither the subpattern 3142 nor 2413, was proved
to be solvable in O(kn6) time and O(kn4) space in [5], where k is the length of
the pattern and n is the length of the target permutation. The design of efficient
algorithms for the recognition of a fixed pattern in a permutation is considered
in [2] and in particular a O(n5 log n) time algorithm is given for finding separable
patterns. L. Ibarra subsequently improved the complexity for separable patterns
to O(kn4) time and O(kn3) space in [14]. Beside separable patterns, only a few
restricted cases were considered. A O(n log log n) time algorithm is presented in [10]
for finding the longest increasing or decreasing subpermutation of a permutation of
length n.

In the present paper we continue this line of research on separable patterns by
considering the problem of finding a maximum length common separable pattern
to a set of permutations, i.e., given a set of permutations, find a longest separable
permutation that occurs as a pattern in each input permutation. Of particular

1



2 MATHILDE BOUVEL, DOMINIQUE ROSSIN, AND STÉPHANE VIALETTE

importance in this context, we do not impose here the input permutations to be
separable.

This paper is organized as follows. In the remainder of Section 1, we briefly
discuss basic notations and definitions that we will use throughout. In Section 2,
we give a polynomial-time algorithm for finding the largest common separable pat-
tern that appears as a pattern in a fixed number of permutations. Section 3 is
devoted to proving hardness of the problem. Finally, some inapproximation issues
are presented in Section 4.

1.1. Permutations. A permutation σ ∈ Sn is a bijective map from [1..n] to itself.
The integer n is called the length of σ. We denote by σi the image of i under σ. A
permutation can be seen as a word σ1σ2 . . . σn containing exactly once each letter
i ∈ [1..n]. For each entry σi of a permutation σ, we call i its index and σi its value.

Definition 1 (Pattern in a permutation). A permutation π ∈ Sk is a pattern of
a permutation σ ∈ Sn if there is a subsequence of σ which is order-isomorphic to
π; in other words, if there is a subsequence σi1σi2 . . . σik

of σ (with 1 ≤ i1 < i2 <
. . . < ik ≤ n) such that σiℓ

< σim
whenever πℓ < πm.

We also say that π is involved in σ and call σi1σi2 . . . σik
an occurrence of π in σ.

A permutation σ that does not contain π as a pattern is said to avoid π.
Classes of permutations of interest are the pattern-avoiding classes of permuta-
tions : the class of all permutations avoiding the patterns π1, π2 . . . πk is denoted
S(π1, π2, . . . , πk), and Sn(π1, π2, . . . , πk) denotes the set of permutations of length
n avoiding π1, π2, . . . , πk.

Example 1. For example σ = 142563 contains the pattern 1342, and 1563, 1463,
2563 and 1453 are the occurrences of this pattern in σ. But σ ∈ S(321): σ avoids
the pattern 321 as no subsequence of length 3 of σ is isomorphic to 321, i.e., is
decreasing.

If a pattern π has an occurrence σi1σi2 . . . σik
in a permutation σ of length

n, let I and V be two subintervals of [1..n] such that {i1, i2, . . . , ik} ⊆ I and
{σi1 , σi2 , . . . , σik

} ⊆ V ; then we say that π has an occurrence in σ in the intervals
I of indices and V of values, or that π is a pattern of σ using the intervals I of
indices and V of values in σ.

Among the pattern-avoiding classes of permutations, we are particularly inter-
ested here in the separable permutations.

Definition 2 (Separable permutation). The class of separable permutations, de-
noted Sep, is Sep = S(2413, 3142).

There are numerous characterizations of separable permutations, for example
in terms of permutation graphs [5], of interval decomposition [21, 4, 6], or with
ad-hoc structures like the separating trees [5, 14]. Separable permutations have
been widely studied in the last decade, both from a combinatorial [20, 11] and an
algorithmic [3, 5, 14] point of view.

We define two operations of concatenation on permutation patterns:

Definition 3 (Pattern concatenation). Consider two patterns π and π′ of respec-
tive lengths k and k′. The positive and negative concatenations of π and π′ are
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defined respectively by:

π ⊕ π′ = π1 · · ·πk(π′
1 + k) · · · (π′

k′ + k)

π ⊖ π′ = (π1 + k′) · · · (πk + k′)π′
1 · · ·π′

k′

The following property, whose proof is straightforward with separating trees, is
worth noticing for our purpose:

Property 1. If both π and π′ are separable patterns, then π⊕π′ and π⊖π′ are also
separable. Conversely, any separable pattern π of length at least 2 can be decomposed
into π = π1⊕π2 or π = π1⊖π2 for some smaller but non-empty separable patterns
π1 and π2.

1.2. Pattern problems on permutations. The first investigated problem on
patterns in permutations is the Pattern Involvement Problem:
Problem 1 (Pattern Involvement Problem).
Input: A pattern π and a permutation σ.
Output: A boolean indicating whether π is involved in σ or not.

It was shown to be NP -complete in [5]. However, in [5] the authors also exhibit
a particular case in which it is polynomial-time solvable: namely when the pattern
π in input is a separable pattern.

Another problem of interest is the Longest Common Pattern Problem (LCP for
short):
Problem 2 (LCP Problem).
Input: A set X of permutations.
Output: A pattern of maximal length occurring in each σ ∈ X.

This problem is clearly NP -hard in view of the complexity of Problem 1. We
showed in [6] that it is solvable in polynomial time when X = {σ1, σ2} with σ1 a
separable permutation (or more generally, when the length of the longest simple
permutation [8, 7, 9] involved in σ1 is bounded).

In this paper, we will consider a restriction of Problem 2. For any (pattern-
avoiding) class C of permutations, we define the Longest Common C-Pattern Prob-
lem (LCCP for short):
Problem 3 (LCCP Problem).
Input: A set X of permutations.
Output: A pattern of C of maximal length occurring in each σ ∈ X.

In particular, we focus in this paper on the Longest Common Separable Pattern
Problem (LCSepP) which in fact is LCCP where C = Sep.

To our knowledge, complexity issues of the LCCP Problem are still unexplored.
We will show in this paper that the LCSepP Problem is NP -hard in general, but
solvable in polynomial-time when the cardinality of the set X of permutations in
input is bounded by any constant K. However the method we use in our polynomial-
time algorithm for solving LCSepP on K permutations is specific to separable
patterns and cannot be extended to any class C of pattern-avoiding permutations.

Some classes C of permutations are known for which even the Recognition Prob-
lem (i.e., deciding if a permutation belongs to C) is NP -hard, so that LCCP on K
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permutations must be NP -hard for those classes. [1] gives the example of the class
of 4-stack sortable permutations.

However, we are not aware of any example of finitely based pattern-avoiding
classes of permutations (with a finite number of excluded patterns) for which the
Recognition Problem is NP -hard. Thus an open question is to know if the LCCP
problem for K permutations is polynomial-time solvable for any finitely based C,
or to exhibit such a class C for which this problem is NP -hard.

2. Polynomial algorithm for the longest common separable pattern
between a finite number of permutations

In [5], the authors show that the problem of deciding whether a permutation
π is a pattern of a permutation σ is NP -complete. A consequence is that the
problem of finding a longest common pattern between two or more permutations
in NP -hard. However, they describe a polynomial-time algorithm for solving the
Pattern Involvement Problem when the pattern π is separable. This algorithm
uses dynamic programming, and processes the permutation according to one of its
separating trees.

With the same ideas, we described in [6] a polynomial-time algorithm for finding
a longest common pattern between two permutations, provided that one of them is
separable. Notice that a longest common pattern between two permutations, one
of them being separable, is always separable.

In this section, we generalize the result obtained in [6] giving a polynomial-time
algorithm for finding a longest common separable pattern between K permutations,
K being any fixed integer, K ≥ 1. Notice that we make no hypothesis on the K
input permutations.

Like in [5] and [6], our algorithm will use dynamic programming. However, since
we do not have a separability hypothesis on any of the permutations, we cannot
design an algorithm based on a separating tree associated to one of the permutations
in input. To compute a longest common separable pattern between the input
permutations, we will only consider sub-problems corresponding to K-tuples of
intervals of indices and values, one such pair of intervals for each permutation.

Namely, let us consider K permutations σ1, . . . , σK , of length n1, . . . , nK respec-
tively, and denote by n the maximum of the nq’s, 1 ≤ q ≤ K. For computing a
longest common separable pattern between σ1, . . . , σK , we will consider a dynamic
programming array M of dimension 4K, and when our procedure for filling in M
ends, we intend that M(i1, j1, a1, b1, . . . , iK , jK , aK , bK) contains a common sepa-
rable pattern π between σ1, . . . , σK that is of maximal length among those using,
for any q ∈ [1..K], intervals [iq..jq] of indices and [aq..bq] of values in σq. If we are
able to fill in M in polynomial time, with the above property being satisfied, the
entry M(1, n1, 1, n1, . . . , 1, nK , 1, nK) will contain, at the end of the procedure, a
longest common separable pattern between σ1, . . . , σK .

Algorithm 1 shows how the array M can indeed be filled in in polynomial time.
In Algorithm 1, Longest is the naive linear-time procedure that runs through a set
S of patterns and returns a pattern in S of maximal length.

Before giving the details of the proof of our algorithm for finding a longest
common separable pattern, we state and prove two lemmas. They should help
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Algorithm 1 Longest common separable pattern between K permutations

1: Input: K permutations σ1, . . . , σK of length n1, . . . , nK respectively

2: Create an array M :
3: for any integers iq, jq, aq and bq ∈ [1..nq], for all q ∈ [1..K] do

4: M(i1, j1, a1, b1, . . . , iK , jK , aK , bK)← ǫ
5: end for

6: Fill in M :
7: for any integers iq, jq, aq and bq ∈ [1..nq], iq ≤ jq, aq ≤ bq, for all q ∈ [1..K],

by increasing values of
∑

q(jq − iq) + (bq − aq) do

8: if ∃q ∈ [1..K] such that iq = jq or aq = bq then

9: if ∀q ∈ [1..K], ∃hq ∈ [iq..jq] such that σq
hq
∈ [aq..bq] then

10: M(i1, j1, a1, b1, . . . , iK , jK , aK , bK)← 1
11: else

12: M(i1, j1, a1, b1, . . . , iK , jK , aK , bK)← ǫ
13: end if

14: else

15: /*∀q ∈ [1..K], iq < jq and aq < bq /*
M(i1, j1, a1, b1, . . . , iK , jK , aK , bK)← Longest(S⊕ ∪ S⊖ ∪ S) where

S⊕ = {M(i1, h1 − 1, a1, c1 − 1, . . . , iK , hK − 1, aK , cK − 1)⊕M(h1, j1, c1, b1,

. . . , hK , jK , cK , bK) : iq < hq ≤ jq, aq < cq ≤ bq, ∀q ∈ [1..K]}
S⊖ = {M(i1, h1 − 1, c1, b1, . . . , iK , hK − 1, cK , bK)⊖M(h1, j1, a1, c1 − 1,

. . . , hK , jK , aK , cK − 1) : iq < hq ≤ jq, aq < cq ≤ bq, ∀q ∈ [1..K]}
S = {1} if ∀q ∈ [1..K], ∃hq ∈ [iq..jq] such that σq

hq
∈ [aq..bq],

= {ǫ} otherwise.

16: end if

17: end for

18: Output: M(1, n1, 1, n1, . . . , 1, nK , 1, nK)

understanding how common separable patterns can be merged, or on the contrary
split up, to exhibit other common separable patterns. We are also interested in the
stability of the maximal length property when splitting up patterns.

Lemma 1. Let π1 be a common separable pattern between σ1, . . . , σK that uses the
intervals [iq..hq − 1] of indices and [aq..cq − 1] (resp. [cq..bq]) of values in σq, for
all q ∈ [1..K].

Let π2 be a common separable pattern between σ1, . . . , σK that uses the intervals
[hq..jq] of indices and [cq..bq] (resp. [aq..cq − 1]) of values in σq, for all q ∈ [1..K].

Then π = π1 ⊕ π2 (resp. π = π1 ⊖ π2) is a common separable pattern between
σ1, . . . , σK that uses the intervals [iq..jq] of indices and [aq..bq] of values in σq, for
all q ∈ [1..K].

Proof. We give a proof for π = π1 ⊕ π2 (the case π = π1 ⊖ π2 being similar).
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⊕ π2

σ1 =

σ2 =

i1

i2

h1

h2

j1

j2

values ∈ [a1..c1 − 1] values ∈ [c1..b1]

values ∈ [a2..c2 − 1] values ∈ [c2..b2]

π =

h1 − 1

h2 − 1

π1

Figure 1. Proof of lemma 1 for K = 2

Fix some q ∈ [1..K]. By hypothesis, there exist occurrences of π1 and π2 in σq,
the occurrence of π1 using the intervals [iq..hq − 1] of indices and [aq..cq − 1] of
values, and the occurrence of π2 using the intervals [hq..jq] of indices and [cq..bq]
of values. It is then easily noticed (see Figure 1) that all the elements used in
one of these occurrences form an occurrence of the pattern π = π1 ⊕ π2 in σq in
the intervals [iq..jq] of indices and [aq..bq] of values. This argument holds for any
q ∈ [1..K] and hence π is a common separable pattern between σ1, . . . , σK using
the intervals [iq..jq] of indices and [aq..bq] of values in σq, for all q ∈ [1..K].

� �

Lemma 2. Let π be a common separable pattern of maximal length between σ1, . . . , σK

among those using the intervals [iq..jq] of indices and [aq..bq] of values in σq, for
all q ∈ [1..K].

If π = π1⊕π2 (resp. π = π1⊖π2), with π1 and π2 non-empty separable patterns,
then there exist indices (hq)q∈[1..K] and values (cq)q∈[1..K], with iq < hq ≤ jq, aq <
cq ≤ bq, ∀q ∈ [1..K], such that:

i) π1 is a common separable pattern of maximal length between σ1, . . . , σK among
those using the intervals [iq..hq − 1] of indices and [aq..cq − 1] (resp. [cq..bq])
of values in σq, for all q ∈ [1..K], and

ii) π2 is a common separable pattern of maximal length between σ1, . . . , σK among
those using the intervals [hq..jq] of indices and [cq..bq] (resp. [aq..cq − 1]) of
values in σq, for all q ∈ [1..K].

Proof. Again, consider the case π = π1 ⊕ π2 (the case π = π1 ⊖ π2 being similar).
Fix some q ∈ [1..K]. By hypothesis, π = π1 ⊕ π2 has an occurrence in σq in the

intervals [iq..jq] of indices and [aq..bq] of values. By definition of positive pattern
concatenation, this occurrence splits into two occurrences of π1 and π2 respectively
(see again Figure 1). More precisely, there exist hq ∈ [iq +1..jq] and cq ∈ [aq +1..bq]
such that π1 (resp. π2) has an occurrence in the intervals [iq..hq−1] (resp. [hq..jq])
of indices and [aq..cq − 1] (resp. [cq..bq]) of values. This argument holding for all
q ∈ [1..K], it becomes clear that π1 (resp. π2) is a common separable pattern
between σ1, . . . , σK that uses the intervals [iq..hq − 1] (resp. [hq..jq]) of indices and
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[aq..cq − 1] (resp. [cq..bq]) of values in σq, for all q ∈ [1..K]. What remains to prove
is that π1 and π2 are of maximal length among all such patterns.

Assume that π1 is not of maximal length among the common separable patterns
between σ1, . . . , σK using interval [iq..hq − 1] of indices and interval [aq..cq − 1] of

values in σq, for all q ∈ [1..K]. Then, there exists πlong
1 , a common separable pattern

between σ1, . . . , σK using interval [iq..hq − 1] of indices and interval [aq..cq − 1]

of values in σq, for all q ∈ [1..K], such that |πlong
1 | > |π1|. Now by Lemma 1,

πlong
1 ⊕ π2 is a common separable pattern between σ1, . . . , σK using the intervals

[iq..jq] of indices and [aq..bq] of values in σq, for all q ∈ [1..K]. And we have

|πlong
1 ⊕ π2| > |π1 ⊕ π2| = |π|, contradicting the maximality of π. So π1 is a

common separable pattern of maximal length between σ1, . . . , σK among those
using interval [iq..hq − 1] of indices and interval [aq..cq − 1] of values in σq, for all
q ∈ [1..K]. In the same way, we prove that π2 is a common separable pattern of
maximal length between σ1, . . . , σK among those using interval [hq..jq] of indices
and interval [cq..bq] of values in σq, for all q ∈ [1..K], ending the proof of the
lemma. � �

Proposition 1. Algorithm 1 is correct: it outputs a longest common separable
pattern between the K permutations in input.

Proof. Consider the array M returned by Algorithm 1. We show by induction on
∑

q(jq − iq)+ (bq − aq) that M(i1, j1, a1, b1, . . . , iK , jK , aK , bK) contains a common

separable pattern π between σ1, . . . , σK that is of maximal length among those
using, for any q ∈ [1..K], intervals [iq..jq] of indices and [aq..bq] of values in σq.

First, there is no loss of generality in assuming that iq ≤ jq and aq ≤ bq

for all q ∈ [1..K], since otherwise the above statement is clearly true (indeed,
M(i1, j1, a1, b1, . . . , iK , jK , aK , bK) contains ǫ and either [iq..jq] = ∅ or [aq..bq] = ∅
for some q ∈ [1..K]).

If
∑

q(jq − iq) + (bq − aq) = 0, then iq = jq and aq = bq for all q ∈ [1..K]. Con-

sequently, the pattern we would like M(i1, j1, a1, b1, . . . , iK , jK , aK , bK) to contain
is a longest common separable pattern between σ1, . . . , σK that uses only index
iq = jq and value aq = bq in σq for all q ∈ [1..K]. Such a pattern is either ǫ or
1. And it is 1 if and only if ∀q ∈ [1..K], σq

iq
= aq that is to say if and only if

∀q ∈ [1..K], ∃hq ∈ [iq..jq] such that σq
hq
∈ [aq..bq]. On lines 8 to 12 of Algorithm 1,

we see that in this case M(i1, j1, a1, b1, . . . , iK , jK , aK , bK) is set correctly.
If

∑

q(jq − iq) + (bq − aq) > 0, we must consider two subcases:

If ∃q ∈ [1..K] such that iq = jq or aq = bq, let us call π a common sep-
arable pattern between σ1, . . . , σK that is of maximal length among those us-
ing, for any q ∈ [1..K], intervals [iq..jq] of indices and [aq..bq] of values in σq.
Then, just as before, π is either 1 or ǫ, because in at least one of the permuta-
tions, say σq, the occurrence of π can use at most one index (if iq = jq) or at
most one value (if aq = bq). And again, lines 8 to 12 of Algorithm 1 show that
M(i1, j1, a1, b1, . . . , iK , jK , aK , bK) contains 1 or ǫ. More precisely, the condition
on line 9 ensures that it contains 1 exactly when 1 has an occurrence in σq in the
intervals [iq..jq] of indices and [aq..bq] of values, for any q ∈ [1..K].

It remains to consider the recursive case when ∀q ∈ [1..K], iq < jq and aq < bq.
In this case, consider π a common separable pattern π between σ1, . . . , σK that is
of maximal length among those such that, for any q ∈ [1..K], π has an occurrence
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in σq in the intervals [iq..jq] of indices and [aq..bq] of values. Since π is separable,
then either π = ǫ, or π = 1, or π = π1 ⊕ π2, or π = π1 ⊖ π2 where π1 and π2 are
smaller but non-empty separable patterns. Now consider πalgo a longest pattern in
the set S⊕ ∪ S⊖ ∪ S where

S⊕ = {M(i1, h1 − 1, a1, c1 − 1, . . . , iK , hK − 1, aK , cK − 1)⊕M(h1, j1, c1, b1,

. . . , hK , jK , cK , bK) : iq < hq ≤ jq, aq < cq ≤ bq, ∀q ∈ [1..K]}
S⊖ = {M(i1, h1 − 1, c1, b1, . . . , iK , hK − 1, cK , bK)⊖M(h1, j1, a1, c1 − 1,

. . . , hK , jK , aK , cK − 1) : iq < hq ≤ jq, aq < cq ≤ bq, ∀q ∈ [1..K]}
S = {1} if ∀q ∈ [1..K], ∃hq ∈ [iq..jq] such that σq

hq
∈ [aq..bq],

= {ǫ} otherwise.

By induction hypothesis, each entry of M that appears in the set S⊕ ∪ S⊖ is
a common separable pattern between σ1, . . . , σK whose occurrence in σq, for any
q ∈ [1..K], uses indices and values in the prescribed intervals, and that is of maximal
length among all such patterns. Notice also that S = 1 if and only if 1 has an
occurrence in σq in the intervals [iq..jq] of indices and [aq..bq] of values, for all q ∈
[1..K]. An immediate consequence of those two facts and of Lemma 1 is that πalgo

is a common separable pattern between σ1, . . . , σK which has, for any q ∈ [1..K],
an occurrence in σq in the intervals [iq..jq] of indices and [aq..bq] of values. What is
left is to prove that |πalgo| = |π|. This is clear when π = ǫ or 1. So assume that π =
π1⊕π2, the case π = π1⊖π2 being very similar. Since π = π1⊕π2 has an occurrence
in each σq in the intervals [iq..jq] of indices and [aq..bq] of values, by Lemma 2,
there exists indices (hq)q∈[1..K] and values (cq)q∈[1..K], with iq < hq ≤ jq, aq <
cq ≤ bq, ∀q ∈ [1..K], such that π1 has an occurrence in each σq in the intervals
[iq..hq − 1] of indices and [aq..cq − 1] of values and π2 has an occurrence in each σq

in the intervals [hq..jq] of indices and [cq..bq] of values. Lemma 2 also states that π1

and π2 are of maximal length among the common separable patterns in the given
intervals of indices and values. So by induction hypothesis, |M(i1, h1 − 1, a1, c1 −
1, . . . , iK , hK − 1, aK , cK − 1)| = |π1| and |M(h1, j1, c1, b1, . . . , hK , jK , cK , bK)| =
|π2|. Consequently, |π| = |π1⊕π2| = |M(i1, h1−1, a1, c1−1, . . . , iK , hK−1, aK , cK−
1)| + |M(h1, j1, c1, b1, . . . , hK , jK , cK , bK)| ≤ |πalgo|. The inequality |π| ≥ |πalgo|
being obvious by maximality of π, we conclude that |π| = |πalgo|. This ends the
proof in the case π = π1⊕π2. For the case π = π1⊖π2, the proof follows the exact
same steps, with π1 having an occurrence in each σq in the intervals [iq..hq − 1] of
indices and [cq..bq] of values and π2 having an occurrence in each σq in the intervals
[hq..jq] of indices and [aq..cq − 1] of values. � �

Proposition 2. Algorithm 1 runs in time O(n6K+1) and space O(n4K+1).

Proof. Algorithm 1 handles an array M of size O(n4K), where each cell contains
a pattern of length at most n, so that the total space complexity is O(n4K+1).
For filling in one entry M(i1, j1, a1, b1, . . . , iK , jK , aK , bK), if ∃q ∈ [1..K] such that
iq = jq or aq = bq (lines 9 to 13 of Algorithm 1), the time complexity is O(nK).
If no such q exists (line 15 of Algorithm 1), the time complexity needed to fill in
M(i1, j1, a1, b1, . . . , iK , jK , aK , bK), using the entries of M previously computed, is
O(n2K+1). Indeed, we search for an element of maximal length among O(n2K)
elements, each element being computed in O(n)-time as the concatenation of two
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G:

1 2 3 4 5 6 7 8 9 10

π = 2 3 5 4 1

1

Figure 2. Shown here is the correspondence between the permu-
tation π = 2 3 5 4 1 and the associated matching diagram G.

previously computed entries of M . Consequently, the total time complexity to fill
in M is O(n6K+1). � �

A consequence of propositions 1 and 2 is:

Theorem 1. For any fixed integer K, the problem of computing a longest common
separable pattern between K permutations is in P .

We may wonder whether a longest common separable pattern between two per-
mutations σ1 and σ2 (computed in polynomial time by Algorithm 1) is a good
approximation of a longest common pattern between σ1 and σ2 (whose computa-
tion is NP -hard). Section 4 gives a negative answer to this question, by the more
general Corollary 1.

3. Hardness result

We proved in the preceding section that the LCSepP problem is polynomial-time
solvable provided a constant number of input permutations. We show here that the
CSepP problem (the general decision version of LCSepP), is NP -complete.
Problem 4 (CSepP Problem).
Input: A set X of permutations and an integer k.
Output: A boolean indicating if there a separable pattern of length k occurring in
each σ ∈ X.

Actually, we will prove more, namely that the CSepP problem is NP -complete
even if each input permutation is separable. An immediate consequence is the NP -
hardness of LCSepP. For ease of exposition, our proof is given in terms of matching
diagrams.

Definition 4 (Matching Diagram). A matching diagram G of size n is a vertex-
labeled graph of order i.e., number of vertices, 2n and size i.e., number of edges, n
where each vertex is labeled by a distinct label from {1, 2, . . . , 2n} and each vertex
i ∈ {1, 2, . . . , n} (resp. j ∈ {n+1, n+2, . . . , 2n}) is connected by an edge to exactly
one vertex j ∈ {n + 1, n + 2, . . . , 2n} (resp. i ∈ {1, 2, . . . , n}). We denote the set of
vertices and edges of G by V (G) and E(G), respectively.

It is well-known that matching diagrams of size n are in one-to-one correspon-
dence with permutations of length n (see Figure 2 for an illustration).
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Let G and G′ be two matching diagrams. The matching diagram G′ is said to
occur in G if one can obtain G′ from G by a sequence of edge deletions. More
formally, the deletion of the edge (i, j), i < j, consists in (1) the deletion of the
edge (i, j), (2) the deletion of the two vertices i and j, and (3) the relabeling of all
vertices k ∈ [i + 1..j− 1] to k− 1 and all the vertices k > j to k− 2. Therefore, the
decision version of the LCSepP is equivalent to the following problem: Given a set
of matching diagrams and a positive integer k, find a matching diagram of size k
which occurs in each input diagram [16].

Clearly, two edges in a matching diagram G are either crossing

1

or

nested

1

. Moreover, it is easily seen that an occurrence in G of a matching
diagram G′ of which all edges are crossing (resp. nested) correspond to an occur-
rence in the permutation associated with G of an increasing (resp. decreasing)
subsequence.

For the purpose of permutations, convenient matching diagrams are needed.
A matching diagram is called a tower if it is composed of pairwise nested edges

and a staircase if it is composed of pairwise crossing edges . A
matching diagram is called a tower of staircases if its edge set can be partitioned

in nested staircases .

Theorem 2. The CSepP problem is NP -complete even if each input permutation
is separable.

Proof. CSepP is clearly in NP . For proving hardness, we reduce from the Independent-
Set problem which is known to be NP -complete [13] . Let G be an arbitrary graph
instance of the Independent-Set problem. Write V (G) = {1, 2, . . . , n}. We now
detail the construction of n + 1 matching diagrams G0, G1, G2, . . . , Gn, each cor-
responding to a separable permutation. First the matching diagram G0 is a tower
of n staircases A0,1, A0,2, . . . , A0,n, each of size n + 1 (see Figure 3, middle part;
staircases are represented by shaded forms), i.e.,

∀j, 1 ≤ j ≤ n, |A0,j | = n + 1.

Each matching diagram Gi, 1 ≤ i ≤ n, is composed of two crossing towers of n
staircases each referred as Ai,1, Ai,2, . . . , Ai,n and Bi,1, Bi,2, . . . , Bi,n (see Figure 3,
bottom part), and defined as follows:

∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n, |Ai,j |
{

n + 1 if i 6= j

n if i = j

∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n, |Bi,j |
{

n + 1 if (i, j) /∈ E(G)

n if (i, j) ∈ E(G).

It is simple matter to check that all matching diagrams Gi, 0 ≤ i ≤ n, correspond to
separable permutations and that our construction can be carried on in polynomial
time. This ends our construction.

We claim that there exists an independent set V ′ ⊆ V (G) of size k in G if and
only if there exists a matching diagram Gsol of size n2 +k that occurs in each input
matching diagram Gi, 0 ≤ i ≤ n.

Suppose that there exists an independent set V ′ ⊆ V (G) of size k in G. Consider
as a solution Gsol the tower of n staircases C1, C2, . . . , Cn (see Figure 3, top part)
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of total size n2 + k, where the size of each staircase is defined according to the
following: |Ci| = n if i /∈ V ′ and |Ci| = n + 1 if i ∈ V ′. We claim that Gsol occurs
in each input matching diagram Gi, 0 ≤ i ≤ n. Indeed, by construction, for any
i ∈ V (G), if i /∈ V ′ then Gsol occurs in Side–A of Gi and if i ∈ V ′ then Gsol occurs
in Side–B of Gi. To complete the claim, we note that Gsol occurs in G0 (G0 is
indeed a tower of n staircases, each of size n + 1).

Conversely, suppose that there exists a matching diagram Gsol of size n2 +k that
occurs in each input matching diagram Gi, 0 ≤ i ≤ n. Let us prove the following:

Claim 1. Gsol is a tower of n staircases. Furthermore, for any i ∈ [1..n], Gsol

occurs completely in Side–A or completely in Side–B in Gi.

Proof. Let us first focus on an occurrence of Gsol in G0. Since G0 is a tower of
staircases, then it follows that Gsol is a tower of staircases as well. We now prove
that Gsol is a tower of n staircases. Indeed, suppose, aiming at a contradiction,
that Gsol is a tower of n′ < n staircases. Then it follows that Gsol has size at most
(n + 1)(n − 1) = n2 − 1 < n2 + k. This is the desired contradiction, and hence
Gsol is a tower of n staircases C1, C2, . . . , Cn, each of size at most n + 1. We now
turn to considering an occurrence of Gsol in Gi, 1 ≤ i ≤ n. We prove that Gsol

occurs completely in Side–A or completely in Side–B (see Figure 3). Suppose, for
the sake of contradiction, that Gsol matches at least one edge in Side–A, say e, and
at least one edge in Side–B, say e′. By construction, e and e′ are crossing edges in
Gi, and hence e and e′ are matched by two edges that belong to the same staircase
in Gsol (Gsol is indeed a tower of staircases). We now observe that any edge in
Side–A crosses the edge e′ and any edge in Side–B crosses the edge e. Then it
follows that the occurrence of Gsol in Gi induces a single staircase. But Gsol is a
tower of n staircases, each of size at most n+1. A contradiction. Therefore, in any
matching diagram Gi, 1 ≤ i ≤ n, Gsol occurs completely in Side–A or completely
in Side–B. �

As an important consequence of the claim, there is thus no loss of generality in
assuming that each staircase of Gsol has size n or n+1, and hence Gsol is composed
of n−k staircases of size n and k staircases of size n+1 (since Gsol has size n2 +k).
Consider now the subset V ′ ⊆ V (G) defined as follows: i ∈ V (G) belongs to V ′ if
and only if |Ci| = n + 1, i.e., the staircase Ci has size n + 1 in Gsol. According to
the above, V ′ has certainly size k. We shall show that V ′ is an independent set in
G. Indeed, let i ∈ V ′ and consider the matching diagram Gi. Since i ∈ V ′ then it
follows that |Ci| = n + 1, and hence Gsol occurs in Side–B in Gi (the latter follows
from the fact that |Ai,i| = n). But, by construction, for 1 ≤ j ≤ n, |Bi,j | = n + 1
if and only if (i, j) is not an edge in G (in particular, |Bi,i| = n + 1). Hence, the
vertex i is not connected to any vertex in V ′. Therefore, since the argument applies
to each matching diagram Gi with i ∈ V ′, V ′ is an independent set in G. � �

4. Approximation ratio

In this section, we return to the LCCP Problem for K permutations. As said
before, the general LCP Problem is NP-hard as well as the Pattern Involvement
Problem [5]. In this section we prove the following result:



12 MATHILDE BOUVEL, DOMINIQUE ROSSIN, AND STÉPHANE VIALETTE

Gsol :
Cn

��
C2

��C1
��

n staircases Ci
each of size n or n + 1

G0 :
A0,n

����A0,2
�� ��A0,1

�� ��
n staircases A0,j
each of size n + 1

Gi :

1 ≤ i ≤ n

Side–A

Side–B

Ai,n
����Ai,2

����Ai,1
����

n staircases Ai,j
each of size n or n + 1

Bi,n
����Bi,2

����Bi,1
����n staircases Bi,j

each of size n or n + 1

1

Figure 3. Reduction in the proof of Theorem 2

Theorem 3. For all ǫ > 0 and C, a pattern-avoiding class of permutations, there
exists a sequence (σn)n∈N of permutations σn ∈ Sn such that

|πn| = o
(

n0.5+ǫ
)

where πn is the longest pattern of class C involved in σn.

Before proving this result we need the following Lemma.

Lemma 3. Given a permutation π ∈ Sk, the number of permutations σ ∈ Sn such

that π is involved in σ is at most (n− k)!
(

n
k

)2
.

Proof. Let π = π1π2 . . . , πk and σ = σ1σ2 . . . σn be such that π is involved in σ.
There exist i1 < i2 < . . . < ik such that σi1σi2 . . . σik

is order-isomorphic to π.
Then σ = u1σi1u2σi2 . . . ukσik

uk+1 where ui is a factor of σ. We will call ui’s the
blocks associated to σ, π and an occurrence of π in σ.

Conversely, suppose we are given a permutation π ∈ Sk, and u1, u2, . . . , uk+1 k+1
sequences of distinct numbers in {1 . . . n} such that |u1|+ |u2|+ . . .+ |uk+1| = n−k.
Let E = {n1, n2, . . . nk} the k integers in {1 . . . n} which do not appear in a block
ui. We denote by j̄ the jth smallest element in E. Then the permutation σ =
u1π1u2π2 . . . πkuk+1 is a permutation of Sn and π is involved in σ. For example, if
π = 2143, n = 9, u1 = 31, u2 = ∅, u3 = 8, u4 = 65 and u5 = ∅ then E = {2, 4, 7, 9}
and σ = 314289657.

Note that two different lists of blocks could lead to the same permutation σ if π
has several occurrences in σ as shown in Figure 4.
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2431 −→











(1, ∅, ∅, 56, ∅)

(1, ∅, 4, 6, ∅)

(1, ∅, 45, ∅, ∅)

−→ 1374562

Figure 4. Relation between pattern, blocks and permutation

Thus, the number of permutations σ such that π is involved in σ is at most
the number of different lists of blocks. There are

(

n
n−k

)

different choices for the

numbers that appear in one of the ui. Then there are (n− k)! different orders for
these numbers. The last step is to cut the word so obtained into k + 1 (possibly
empty) blocks u1, u2, . . . uk+1. There are

(

n
n−k

)

such choices. Hence we have the
claimed formula. � �

We can now prove Theorem 3.

Proof. We make the proof by contradiction. We first prove that if the result were
false, every permutation of length n would contain a pattern of C of length ex-
actly k = ⌈n0.5+ǫ⌉. Next, we show that the number of permutations of length n
containing one permutation of C⋂

Sk as a pattern is strictly less than n!.
Suppose that there exist ǫ > 0 and C a pattern-avoiding class of permutations

such that for every permutation σ ∈ Sn, the longest pattern π ∈ C of σ has length
|π| ≥ ⌈|σ|0.5+ǫ⌉ = k. As C is closed - every pattern π of a permutation σ ∈ C is also
in C- for every permutation σ ∈ Sn there exists a pattern π ∈ C of σ whose length
is exactly |π| = k.

But the number of permutations in C⋂

Sk is at most ck by [18]. By Lemma
3, for each permutation in C⋂

Sk, the number of permutations in Sn having this

permutation as a pattern is at most (n−k)!
(

n

k

)2
. Thus the number of permutations

in Sn having a pattern in C⋂

S≥k is at most ck(n−k)!
(

n
k

)2
. But with k = ⌈n0.5+ǫ⌉,

ck(n − k)!
(

n
k

)2
= o

(

nn1−2ǫ
)

= o (n!). Note that a similar proof is given in [12] for

finding the smallest permutation containing all patterns of a given length. � �

Corollary 1. The LCP Problem cannot be approximated with a tighter ratio than√
Opt by the LCCP Problem, where C is a pattern-avoiding class of permutations,

and Opt is the size of an optimal solution to the LCP Problem.

Proof. Consider the LCP Problem between σ and σ. Then the optimal solution to
the LCP Problem is σ. But the solution to the LCCP Problem is a longest pattern
of σ belonging to the class C. By Theorem 3, such a pattern may have size

√

|σ|
asymptotically. � �
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