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ABSTRACT

Context. FUV radiation strongly affects the physical and chemical state of molecular clouds, from protoplanetary disks to entire galaxies.
Aims. The solution of the FUV radiative transfer equation can be complicated if the most relevant radiative processes such us dust scattering
and gas line absorption are included, and have realistic (non–uniform) properties, i.e. if optical properties are depth dependent.
Methods. We have extended thespherical harmonicsmethod to solve for the FUV radiation field in externally or internally illuminated clouds
taking into account gas absorption and coherent, nonconservative and anisotropic scattering by dust grains. The new formulation has been
implemented in theMeudon PDR codeand thus it will be publicly available.
Results. Our formalism allows us to consistently include: (i) varying dust populations and (ii ) gas lines in the FUV radiative transfer. The FUV
penetration depth rises for increasing dust albedo and anisotropy of the scattered radiation (e.g. when grains grow towards cloud interiors).
Conclusions. Illustrative models of illuminated clouds where only the dust populations are varied confirm earlier predictions for the FUV
penetration in diffuse clouds (AV<1). For denser and more embedded sources (AV>1) we show that the FUV radiation field inside the cloud can
differ by orders of magnitude depending on the grain properties and growth. Our models reveal significant differences regarding the resulting
physical and chemical structures for steep vs. flat extinction curves towards molecular clouds. In particular, we show that the photochemical
and thermal gradients can be very different depending on grain growth. Therefore, the assumptionof uniform dust properties and averaged
extinction curves can be a crude approximation to determinethe resulting scattering properties, prevailing chemistry and atomic/molecular
abundances in ISM clouds or protoplanetary disks.

Key words. ISM: dust, extinction – ISM: lines and bands – Radiative transfer – Methods: numerical – planetary systems: protoplanetary disks

1. Introduction

Far–UV (FUV) radiation (hν <13.6 eV) strongly affects the physical and chemical state of dusty molecular clouds in many
evolutionary stages: from star forming regions (Lequeux etal. 1981, Stutzki et al. 1988, Bally et al. 1998) and protoplanetary
disks (Johnstone et al. 1998, Aikawa et al. 2002), to circumstellar envelopes around evolved stars (Huggins & Glassgold1982,
Habing 1996) and supernova remnants (Shull & McKee 1979, Chevalier & Fransson 1994). Thus, the accurate knowledge of the
intensity of the FUV radiation field as a function of cloud depth is of crucial importance in a plethora of astrophysical environ-
ments. Penetration of FUV radiation strongly depends on dust grains properties through the scattering of photons, but it also
depends on the gas properties (chemical composition, density, etc.) through the absorption of hundreds of discret electronic lines
from the most abundant species (H, H2, and CO). This proccess is, in addition, an efficient excitation mechanism for molecu-
lar species (Black & van Dishoeck 1987, Sternberg & Dalgarno1989). Gas absorption lines reach extremely large opacities and,
due to saturation, they can be very broad and fully absorb theFUV continuum.

The so calledspherical harmonicsmethod, in which the specific intensity of the FUV radiation field is expanded into se-
ries of Legendre polynomials, is an efficient way to solve the plane–parallel radiative transfer equation if gas opacity is ne-
glected and if dust grains have uniform optical properties,e.g. the same extinction cross–section, albedo and scattering phase
function (Flannery et al. 1980, Roberge 1983). Nevertheless, astronomical observations over the full spectral domainshow a
more complex scenario, where dust grain populations evolvedepending on the environmental conditions from polycyclicaro-
matic hydrocarbons (PAHs) and very small grains (VSGs) to bigger grains (BGs) likely formed by accretion or coagulation
(Boulanger et al. 1988, Desert et al. 1990, Joblin et al. 1992, Draine 2003, Dartois 2005). Also, the average extinction law (e.g.,
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Cardelli, Clayton & Mathis 1989) is based on observations toward low–extinction line of sights (AV . 5), and it has been ques-
tioned by recent observations toward more embedded regions(AV ≥ 15). A better knowledge of the extinction properties at large
AV is critical. In particular, there is evidence that the reddening curve tends to flatten at high extinction depths (Moore et al. 2005),
consistent with grain growth and dust processing along the line of sight. Therefore, the attenuation of FUV radiation will dra-
matically depend on the (generally poorly understood) grain composition and optical properties that, of course, are likely to
change from source to source according to the interstellar (ISM) and circumstellar (CSM) dust life–cycle. In addition to this
dust–shielding, self–shielding through gas line absorption can result in an efficient protection of H2 and CO, and the starting
point of a rich chemistry even in irradiated media such as protoplanetary disks, translucent clouds, starbursts galaxies or, more
generally,photodissociation regions(PDRs; see Hollenbach & Tielens 1997 for a review).

The spherical harmonicsmethod also has been implemented to study the radiative transfer and dust extinction in galax-
ies as a whole by associating the source function with the emissivity of a given distribution of stars through the galaxy
(di Bartolomeo et al. 1995; Baes & Dejonghe 2001). Uniform grain properties and the absence of gas line absorption are as-
sumed. For unidimensional problems, thespherical harmonicsmethod is found to be by far the most efficient way to solve for
the radiative transfer equation compared to Monte Carlo or ray tracing techniques (Baes & Dejonghe 2001).

The detailed information provided by high angular resolution observations (e.g. Gerin et al. 2005, Goicoechea et al. 2006),
revealing fine differences even between similar sources, should be followed bya sophistication in the radiative transfer modeling.
Inclusion of gas (discrete line absorption) and varying grain populations (e.g. different extinction curves) as a function of cloud
depth requires a modification of the original method (Flannery et al. 1980; Roberge 1983). In this work we present an extension
of thespherical harmonicsmethod for a radiative transfer equation with depth dependent coefficients in plane–parallel geometry.
We used this method to solve for the radiation field in illuminated clouds at wavelengths longer than Lyman cut–off at∼912 Å
taking into account gas absorption and scattering by dust grains. The method can also include the source function for embedded
emission of photons, and therefore it can explicitly take into account any source of internal radiation.

In Secs. 2 and 3 we present the formulation of the method whilein Secs. 4 and 5 we show several astrophysical applications
to understand the role of FUV penetration for the photochemistry of molecular clouds. In particular, we present a few examples
including H Lyman lines, H2 electronic transitions within the Lyman and Werner bands and CO electronic transitions together
with varying dust properties. The penetration of FUV radiation for the typical conditions prevailing in a diffuse cloud (such us
ζ Ophiuchi) and in higher extinction objects (such as the Orion Bar or a strongly illuminated protoplanetary disk) are discussed.

2. The equation of radiative transfer with variable coeffici ents

The specific intensity of radiation,Iλ(s, µ), in plane-parallel geometry is a solution of the radiativetransfer equation:

µ
∂Iλ(s, µ)
∂s

= −[αλ(s) + σλ(s)] Iλ(s, µ) +
σλ(s)

2

∫ +1

−1
Rλ(s, µ, µ′) Iλ(s, µ′) dµ′ + jλ(s) (1)

where the spatial scales and the angleθ = cos−1µ are the independent variables and where the dependence of quantities on
wavelengthλ and onshas been explicitly written. In the most general problem,αλ(s) = α

g
λ
(s)+αd

λ
(s) is the line–plus–continuum

absorption coefficient,σλ(s) is the dust scattering coefficient, jλ(s) is the emission coefficient of any source of internal radiation
andRλ(s, µ, µ′) is the angular redistribution function (we assume that theradiation field has azimuthal symmetry about normal
rays). In this work, the opacity is due to coherent (no energyredistribution in the scattered photons), nonconservative (a fraction
of photons are absorbed), anisotropic scattering by dust grains as well as to gas line absorption, that is:

dτ = −(αλ + σλ) ds (2)

(note thatτ increases toward the decreasing direction ofs) and the radiative transfer Eq. (1) gets the more familiar form

µ
∂Iλ(τ, µ)
∂τ

= Iλ(τ, µ) −
ωλ(τ)

2

∫ +1

−1
Rλ(τ, µ, µ

′) Iλ(τ, µ
′) dµ′ − S∗λ(τ, µ) = Iλ(τ, µ) − Sλ(τ, µ) (3)

whereωλ =
σλ
αλ+σλ

is a new effective albedo (the dust scattering cross–section over the total dust+gas extinction cross–section)
which tends to the pure dust albedo for wavelengths free of lines, but tends to 0 (true gas absorption) at the line cores. Intermediate
values are found in the line wings.S∗λ =

jλ
αλ+σλ

is the source function for the true emission by ”embedded photon sources”. In
the following we assume thatS∗λ=0. Thus we ignore dust thermal emission (negligible in the FUV for ISM clouds) or any other
source of internal illumination. Hence, our source function only corresponds to the external illumination photons scattered by
dust grains. However, inclusion ofS∗λ in our method is trivial. The interested reader is refererred to Appendix A.

The cloud extends fromτ = 0 to τ = τmax with a possibility thatτmax= ∞. Boundary conditions requireIλ(τ, µ) to match the
incident intensity atτ = 0 andτ = τmax. Note the implicit sign convention onµ: θ = π points towards positive values ofτ, that
is µ = −1 for a ray perpendicular to the cloud and penetrating into itfrom τ = 0 (see Fig. 1). Thus, boundary conditions specify
χ−(µ) = Iλ(0, µ) (µ < 0) andχ+(µ) = Iλ(τmax, µ) (µ > 0), whereχ±(µ) are the illuminating radiation fields reaching both cloud
surfaces (of course they can be different).
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θ=cos µ−1

χ (µ)+

0cs
S* (µ)

smaxs
χ (µ)−

µ<0

τmaxτc0

µ>0

τ

Fig. 1. Adopted geometry and sign conventions for a cloud with embedded sources of photonsS∗(µ) and illuminated at both
surfaces byχ±(µ).

Compared to other works where thespherical harmonicsmethod has been applied to solve for the FUV radiation field (e.g.
Flannery et al. 1980; Roberge 1983; di Bartolomeo et al. 1995; Baes & Dejonghe 2001; Le Petit et al. 2006), the optical prop-
erties in the radiative transfer equation (e.g., effective albedo and asymmetry parameter) are wavelength– andcloud depth–
dependent for the first time.

3. The spherical harmonics method for line and continuum tra nsfer

3.1. The PL approximation

In this method, the angular dependence of the radiation fieldI (τ, µ) is expanded in a truncated series of Legendre polynomials
Pl(µ) which form a complete orthogonal set within the range (-1,1) in whichµ varies:

I (τ, µ) =
L∑

l=0

(2l + 1) fl(τ) Pl(µ) (4)

where the dependence onλ is no longer shown. In the following sections we show that themean intensity of the radiation field at
each depth pointJ(τ) has the simple formJ(τ) = f0(τ), i.e. the first coefficient of the expansion in Eq. (4), which is often the only
quantity needed for the integration of radiation field–dependent physical parameters (e.g. photoionization and photodissociation
rates). This is one of the reasons why the method is so attractive. However, a large number of expansion terms has to be used
in order to correctly sample the angular dependence of the radiation field, we typically useL + 1 = 2M = 20 (note that dust
scattering can be highly anisotropic at the considered wavelengths).

If the grain scattering phase functionp(τ, cosΘ) only depends on the angleΘ between the incident and scattered radiation,
R(τ, µ, µ′) can also be expanded (see e.g., Chandrasekhar 1960; Roberge 1983) as:

R(τ, µ, µ′) =
L∑

l=0

(2l + 1)σl(τ) Pl(µ) Pl(µ′) (5)

in terms of theσl(τ) coefficients of the Legendre expansion ofp(τ, cosΘ):

p(τ, cosΘ) =
L∑

l=0

(2l + 1)σl(τ) Pl(cosΘ) (6)

The standard model of scattering by interstellar grains (Henyey & Greenstein 1941) assumes the simple scattering phasefunction:

p(cosΘ) =
1− g2

(1+ g2 − 2g cosΘ)3/2
(7)

which can be also expanded in Legendre polynomials in terms of the ”g–asymmetry parameter” (=< cosΘ >) i.e., the mean

angle of the scattered radiation (g = 1/2
∫ +1

−1
µ p(µ) dµ, with µ = cosΘ). Here we adopt aτ-dependentHenyey–Greenstein phase

function(other phase functions can be used if they can also be expanded). Therefore we write:

p(τ, cosΘ) =
L∑

l=0

(2l + 1)gl(τ) Pl(cosΘ) (8)

wheregl(τ) = σl(τ) andg0(τ) = 1. Thus, the angular redistribution functionR(τ, µ, µ′) has two obvious limiting cases,g(τ) = 0
(isotropic scattering) andg(τ) = ±1 with R(τ, µ, µ′) = δ(µ ∓ µ′) (pure backward or forward scattering).
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Substitution of Eqs. (4) and (5) into the transfer equation (3) and using appropriate recurrence formulae leads to the finite
(L + 1) set of coupled, linear, first order differential equations in the unknownfl(τ) coefficients, withl = 0, ..., L.

l f ′l−1(τ) + (l + 1) f ′l+1(τ) = (2l + 1) [1− ω(τ)σl(τ)] fl(τ) (9)

wheref ′ = ∂ f /∂τ. We recall that compared to Roberge (1983) this isnot a constant coefficient equation so numerical integration
is necessary. In the ”PL approximation” a sufficiently large odd1 L value has to be chosen to obtain an accurate solution of the
problem. The system (9) can be written as:

f ′(τ) = A−1(τ) f (τ) (10)

with:

A(τ) =



0 h−1
0

h−1
1 0 2h−1

1

2h−1
2 0

. . .

3h−1
3 (L − 1)h−1

L−2
. . . 0 Lh−1

L−1
Lh−1

L 0



(11)

where:

hl(τ) = (2l + 1) (1− ω(τ)σl(τ)) (12)

In summary, we have to solve for a linear boundary value problem with non constant coefficients with the additional difficulty
of huge variations of the total opacity2 within small variations in the wavelength and cloud position grids, e.g. fromλ in a
saturated line center (τλ ∼107) to λ in an adjacent (line free) continuum region (τλ ∼10). In the following, we show an extension
of the spectral method of Flannery et al. (1980) and Roberge (1983) to solve for the FUV radiative transfer.

3.2. The eigenvalues solution

3.2.1. Numerical solution

TheA−1(τ) matrix hasL+1 = 2M eigenvalues which are real, non-zero and non-degenerate and which occur in positive-negative
pairs, see Appendix A of Roberge (1983). Using a similar notation as Roberge, letkm(τ), m = ±1, · · · ,±M be the eigenvalues
verifying k−m(τ) = −km(τ), andR(τ) be the matrix of eigenvectors, that is:
∑

j

A−1(τ)l j Rjm(τ) = km(τ) Rlm(τ) (13)

which also verifies theRl,−m(τ) = (−1)l Rlm(τ) relation. The depth–dependence of the eigenvalueskm(τ) and eigenvectorsRlm(τ)
complicates the solution of the problem compared to the (only dust) problem with uniform optical grain properties. The compu-
tation ofkm(τ) andRlm(τ) is given in Appendix C.

TheR(τ) matrix of eigenvectors can still be used to define an auxiliary set of variablesy(τ) = R−1(τ) f (τ), or:

fl(τ) =
−1∑

−M

Rlm(τ) ym(τ) +
M∑

1

Rlm(τ) ym(τ) (14)

so that

f ′ = A−1 R y (15)

Therefore, in terms of the newy(τ) variables, Eq. (10) can be rewritten as:

y′ = R−1 A−1 R y − R−1 R′ y = K y − R−1 R′ y (16)

To write Eq. (16) we have used the fact that (R−1A−1R)lm = kl δlm and thusK (τ) is a diagonal matrix with thekm(τ) eigenvalues
of A−1(τ) on its diagonal. The fact thatR′(τ) , 0 adds the last matrix term in Eq. (16) due to the depth–dependence of the

1 For even values ofL, A is singular (e.g. Roberge 1983)
2 We also developed the formalism to solve Eq. (10) throughfinite differences(Ascher et al. 1995). For only dust continuum transfer, results

are almost identical (within∼0.1%) to those obtained with thespherical harmonicsmethod (which is∼2 times faster). However, when line
absorption is included, thefinite differencenumerical solution always oscillate at the core of saturated lines and no optimal solution is found.
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coefficients. This term is neglected in Le Petit et al. (2006). However, R′ is not null neither when the grain optical properties
depend on the cloud depth (even if gas is neglected) nor when gas line absorption is included (even if grain properties are
uniform). Unfortunately, the system of Eqs. (16) is uncoupled only if theR−1 R′ y term is null (as in Roberge 1983), otherwise
more manipulations are required to solve the problem consistently. If we defineQ = R−1R′ y = −L y , then Eq. (16) can be
simply written as:

y′m = km(τ) ym+ [L y ]m(τ) (17)

for m = ±1, ...,±M. In order to solve this particular problem we turn the systemof differential equations (17) into an integral
problem. To do that we first introduce the following integralequation:

ym(τ) = eam(τ)

[
Cm +

∫ τ

τm

e−am(t) [L y ]m(t) dt

]
(18)

wheream(τ) is an arbitrary function so thatam(τm)=0. The system of Eqs. (18) represents a general set of integral equations that
verify ym(τm) = Cm (to be found from the boundary conditions). If a given function ym is a solution of the above equation, by
taking its derivative with respect toτ one gets:

y′m(τ) = a′m(τ)ym(τ) + [L y ]m(τ) (19)

which means thatym as defined in Eqs. (18) is also a solution of the original system of differential Eqs. (17) if and only if
a′m(τ) = km(τ). Therefore,am(τ) =

∫ τ
τm

km(t) dt. This demonstration shows that thekm eigenvalues ofA−1 (and no others) are the
right exponential factors that do attenuate the radiation field, which is consistent with the original problem described by Eqs. (10).
In the present work we solve Eqs. (18) with an iterative scheme2 and thus compute:

y(n+1)
m (τ) = e

∫ τ
τm

km(t) dt
[
C(n+1)

m +

∫ τ

τm

e−
∫ t

τm
km(t′) dt′ [L y (n)]m(t) dt

]
(20)

by using an appropriate (physical) initial guess fory(n)
m , wheren is the iteration step. This iterative procedure shows that the

solution if forced, at any step, by the exponential factore
∫ τ
τm

km(t) dt to follow the behavior dictated by the ”true” eigenvalues ofthe
problem (i.e. those of the original coupling matrixA−1) that are known before the iteration procedure is started. In Appendix B
we give details on the error bound associated with the iterative scheme and we show that the numerical solution derived for the
FUV radiation field correctly satisfies the original system of Eqs. (10).

At each iteration step we have to compute the integration constantsCm by a convenient selection ofτm. To ensure that only
exponentials with negative arguments appear, it is necessary to setτm = 0 for m < 0 andτm = τmax for m > 0. In order to have
easier to read equations, we now introduce some convenient notations:

E−m(τ) = exp

(∫ τ

0
km(t) dt

)
(m< 0) or E−m(τ) = exp

(
−

∫ τ

0
km(t) dt

)
(m> 0) (21)

Note thatE−−m(τ) = E−m(τ), andE−m(0) = 1. We also define:

E+m(τ) = exp

(∫ τmax

τ

km(t) dt

)
(m< 0) or E+m(τ) = exp

(
−

∫ τmax

τ

km(t) dt

)
(m> 0) (22)

with E+m(τmax) = 1 andE+m(τ) × E−m(τ) = E+m(0) = E−m(τmax). Using the above notations, we have:

ym(τ) = E−m(τ) Cm −
∫ τ

0

E−m(τ)

E−m(t)
qm(t) dt (m< 0) (23)

ym(τ) = E+m(τ) Cm +

∫ τmax

τ

E+m(τ)

E+m(t)
qm(t) dt (m> 0) (24)

Note the change of sign in the second equation due to the inversion of
∫ τ
τmax

. To further simplify these expressions, we define:

D−m(τ) =
∫ τ

0

E−m(τ)
E−m(t)

qm(t) dt (m< 0) (25)

D+m(τ) =
∫ τmax

τ

E+m(τ)
E+m(t)

qm(t) dt (m> 0) (26)

which satisfyD−m(0) = 0 andD+m(τmax) = 0. Therefore, they(τ) variables are finally written compactly as:

ym(τ) = E−m(τ) Cm − D−m(τ) (m< 0) (27)
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ym(τ) = E+m(τ) Cm + D+m(τ) (m> 0) (28)

and the originalfl(τ) terms in the Legendre expansion of the radiation fieldI (τ, µ) are then given by:

fl(τ) =
−1∑

m=−M

Rlm(τ)
(
Cm E−m(τ) − D−m(τ)

)
+

M∑

m=1

Rlm(τ)
(
Cm E+m(τ) + D+m(τ)

)
. (29)

3.2.2. Boundary conditions: Clouds with two sides illumination

We consider a unidimensional plane–parallel cloud of finitesize with an external radiation field at both cloud surfaces (τ = 0 and
τ = τmax) defined byχ−(µ) andχ+(µ) respectively (see Fig. 1). From Eq. (29) we have:

fl(0) =
−1∑

m=−M

Rlm(0)Cm+

M∑

m=1

Rlm(0)
(
Cm E+m(0)+ D+m(0)

)
(30)

fl(τmax) =
−1∑

m=−M

Rlm(τmax)
(
Cm E−m(τmax) − D−m(τmax)

)
+

M∑

m=1

Rlm(τmax) Cm. (31)

At theτ = 0 side, the solution must match, at eachλ, the incoming radiation field withµ < 0, i.e.I (0, µ) = χ−(µ), with

I (0, µ) =
L∑

l=0

(2l + 1) fl(0) Pl(µ) or : (32)

I (0, µ) =
−1∑

m=−M

Cm

L∑

l=0

(2l + 1)Rlm(0) Pl(µ) +
M∑

m=1

(
Cm E+m(0)+ D+m(0)

) L∑

l=0

(2l + 1)Rlm(0) Pl(µ). (33)

At theτ = τmax side, the solution must match, at eachλ, the incoming radiation field withµ > 0, i.e. I (τmax, µ) = χ+(µ), with:

I (τmax, µ) =
L∑

l=0

(2l + 1) fl(τmax) Pl(µ) or : (34)

I (τmax, µ) =
−1∑

m=−M

(
Cm E−m(τmax) − D−m(τmax)

) ∞∑

l=0

(2l + 1)Rlm(τmax) Pl(µ) +
M∑

m=1

Cm

L∑

l=0

(2l + 1)Rlm(τmax) Pl(µ). (35)

Nevertheless, since the orderL of the expansions is finite, the boundary conditionsI (0, µ) = χ−(µ) and I (τmax, µ) = χ+(µ) can
not be satisfied at allµ angles. In this work we useMarck’s3 conditionsthat requireI (0, µ < 0) andI (τmax, µ > 0) to match the
incident radiation fields atL + 1 = 2M strategic anglesµi given byPL+1(µi) = 0, that is, the roots of the Legendre polynomial of
degreeL + 1. Note that in theseµ±i (i = ±1, ...,±M) angles, the solution of the radiation fieldI (τ, µi) is ”exact”.

To further simplify the boundary conditions relations, we now define:

Tim(0, µi) =
L∑

l=0

(2l + 1)Rlm(0) Pl(µi) (µi < 0) (36)

Tim(τmax, µi) =
L∑

l=0

(2l + 1)Rlm(τmax) Pl(µi) (µi > 0) (37)

which gives:

I (0, µi) =
−1∑

m=−M

Cm Tim(0, µi) +
M∑

m=1

(
Cm E+m(0)+ D+m(0)

)
Tim(0, µi) (38)

I (τmax, µi) =
−1∑

m=−M

(
Cm E−m(τmax) − D−m(τmax)

)
Tim(τmax, µi) +

M∑

m=1

Cm Tim(τmax, µi) (39)

3 See e.g., Sen & Wilson (1990) for a different choice of boundary conditions.
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Therefore, the desiredCm constants at each iteration step are solutions of the 2M × 2M linear system (m= 0 excluded):

M∑

m= −M

Bim Cm = Hi (40)

with theBim coefficients as define in Table 1, and where

Hi =

{
I−(0, µi) −

∑M
m=1 D+m(0)Tim(0, µi) (µi < 0)

I+(τmax, µi) +
∑−1

m=−M D−m(τmax) Tim(τmax, µi) (µi > 0)
(41)

Bim = m< 0 m> 0

µi < 0 Tim(0, µi) Tim(0, µi) E+m(0)
µi > 0 Tim(τmax, µi) E−m(τmax) Tim(τmax, µi)

Table 1. Bim coefficients for the two sides illumination boundary conditions in Eq. (40)

For semi–infinite clouds (τmax=∞) with only one side illumination atτ=0 (µi < 0), boundary conditions have to be modified
to take into account theno radiationcondition atτ=∞ (µi > 0). It is straightforward to show that theCm constants are then
solutions of the same linear system shown in Eq. (40) with theBim coefficients now defined as in Table 2 and:

Hi =

{
I−(0, µi) (µi < 0)
0 (µi > 0)

(42)

Bim = m< 0 m> 0

µi < 0 Tim(0, µi) 0
µi > 0 0 Tim(τmax, µi)

Table 2. Bim coefficients for the one side illumination boundary conditions inEq. (40)

3.3. Iterative procedure

At very large optical depths (e.g. deep inside the cloud or atthe core of saturated lines) the intensity of the radiation field tends
to zero. Hence, the simplest way to initiate the iterative process is to setQ = R−1R′ y = 0. However, this may be far from the
real solution, and more realistic guesses should be tried. In practice, the assumptionτ → ∞ may be too crude and one can add
the effect of the external radiation perpendicular to the cloud that penetrates deepest in the cloud, i.e. attenuated by the smallest
eigenvaluek±1 (that associated with the radiation field in the|µ| ≃ 1 direction). Thus, we guess a first set ofym(τ), that we call
y0

m(τ), from the linear system:

−1∑

m=−M

Rlm(τ) y0
m(τ) +

M∑

m=1

Rlm(τ) y0
m(τ) = f approx

l (τ) (43)

with

f approx
0 (τ) =

1
2

I (0,−1) exp[−k1(τ) τ] +
1
2

I (τmax, 1) exp[k−1(τ)(τmax− τ)] (44)

Note that only thel = 0 terms have to be considered. As noted by Flannery et al. (1980) and Roberge (1983), the presence of dust
scattering implies that|k±1| , 1, i.e.the radiation field attenuation factor at large depths is notsimply e−τ but dominated by
thee−k1τ factor. This conclusion obviously applies for the present case with the difference thatk±1 is now depth–dependent and
includes line absorption. This important result can modifythe intensity of the FUV radiation field inside optically thick clouds by
orders of magnitude depending on the dust grain optical properties. At lower optical depths (e.g., diffuse clouds), the attenuation
factor still contains an important contribution from additional terms (k±2, k±3, ...).

Now that we have an educated guess for theym(τ) variables, we can estimate the new term in Eq. (16) carryingthe depth–
dependence of the gas and dust coefficients, i.e. theQ = R−1 R

′
y term. Note thatR−1R′ need to be evaluated only once, so

numerical cost is limited. However, special care should be taken for theR′ derivation. Details of theR−1 inversion andR′

derivation are given in Appendix D.
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We briefly describe the iterative computation ofQ: we start by usingQ0 = R−1R′ Y0 and then compute a first set ofC0
m from

the boundary conditions. With these firstC0
m andQ0 variables we can now use the general expression Eq. (20) to compute a new

set ofym(τ) to derive a more refinedQ term, and start this proccess again until some prescribed level of convergence inQ is
reached. Thus, ifn is the iteration index,Q(n+1) is computed fromQ(n+1) = R−1 R′ Y(n+1) with:

y(n+1)
m (τ) = C(n+1)

m E−m(τ) − D−(n)
m (τ) (m< 0) (45)

y(n+1)
m (τ) = C(n+1)

m E+m + D+(n)
m (τ) (m> 0) (46)

Those expressions have to be computed at each iteration by numerical integration.

3.4. Mean intensity and FUV photon escape probability

Once we have obtained the full depth and angular descriptionof the intensity of the radiation fieldI (τ, µi) through thefl(τ)
coefficients, we show here the simple form thatJ(τ) takes. The angular average of the specific intensity is defined as:

J(τ) =
1
2

∫ +1

−1
I (τ, µ) dµ (47)

From the expansion ofI (τ, µ) we have:
∫ +1

−1
I (τ, µ) dµ =

∑

l

(2l + 1) fl(τ)
∫ +1

−1
Pl(µ) dµ (48)

where the only no null sum corresponds to
∫ +1

−1
P0(µ) dµ = 2. Therefore, as anticipated in Sec. 3.1, the mean intensityof the

radiation field at each wavelength and depth reduces toJ(τ) = f0(τ), that is:

J(τ) =
−1∑

m=−M

(
Cm E−m(τ) − D−m(τ)

)
+

M∑

m=1

(
Cm E+m(τ) + D+m(τ)

)
(49)

where we use the fact thatR0m(τ) = 1 for all m andτ. Despite the simplicity of this relation, in many cases of astrophysical
interest (e.g. a two sides illuminated cloud) one needs to distinguish the fraction of the radiation field coming from each side of
the cloud. In this case, two half sums have to be computed. In Appendix E we give the analytic formulae to compute the mean
radiation intensityJ±(τ) coming from each side. The resultingJ±(τ) values can be used to evaluate the escape probably of any
FUV photon emitted within the cloud, e.g. within H2 line cascades. In particular, the probability for a photon emitted atτ=τ′

(inside the cloud) to reachτ=0 (orτ=τmax) is given by theJ−(τ′)/J−(0) (or J+(τ′)/J+(τmax)) intensity ratios. These probabilities
can then be further used to determine the H2 level detailed balance. We also note that in this method the first terms of the intensity
expansion in Eq. (4) are directly related to the moments of the radiation field, i.e.f0(τ) = J(τ), the mean intensity;f1(τ) = H(τ),
the Eddington flux; andf2(τ) = 3 K(τ) − J(τ) whereK(τ) is theK–moment.

From the numerical point of view, themethodologydescribed in the previous sections has been implemented in the
Meudon PDR code4, a photochemical model of a unidimensional plane–parallelstationary PDR (Le Bourlot et al. 1993;
Le Petit et al. 2006 and references therein) and will be the FUV radiative transfer method used in the code. In the following
sections we illustrate several of the new possibilities with some relevant astrophysical examples.

Fig. 2. Radiative transfer models for a cloud with a total extinction of AV=1 and a density ofnH=103 cm−3, illuminated at both
sides by the mean ISRF. Part of the resulting FUV spectra (∼912-1300 Å) close to the cloud surface is shown. The blue spectra
correspond to a model with R’=0 in Eq. (16) (depth dependence neglected), and the red one corresponds to the new ”exact”
computation.

4 Available athttp: //aristote.obspm.fr/MIS /
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4. Applications: Comparison with previous approaches

In this section we compare the main differences of the newexactcomputation versus the line–plus–continuum approach (R′ = 0)
used by Le Petit et al. (2006) in theMeudon PDR code. Since the previous version of the code used a single–dust albedo and
g–asymmetry parameter with no wavelength or depth dependence, and the extinction curve was not related to the grain properties
used in the model, here we just make the comparison by assuming R′ = 0 in the new computation, and limit ourselves to the
uniform dust properties case. In the following examples we explicitely include all the H, H2 and CO electronic absorption lines
arising from rotational levels up toJ=6 (for H2) andJ=1 (for CO). The FGK approximation (Federman et al. 1979) is applied for
the rest of levels. Note that the exact method allows one to take into account the overlaps between H, H2 and CO lines neglected
in more crude approaches.

Apart from having a radiative transfer method to consistently solve for the dust grain varying populations problem (Section 5),
the next largest difference between the new computation compared to Le Petit et al. (2006) is the effect of line–wing absorption
of back–scattered radiation. At line core wavelengths, photons penetrating into the cloud are purely absorbed by the gas (the
effective albedo equals 0). Due to saturation and opacity broadening, many absorption lines become very wide deep inside
the cloud. As a consequence, the FUV radiation field is more attenuated than in the (only) dust continuum transfer case. At
continuum wavelengths free of lines, a fraction of photons coming from the external illumination sources can be absorbed by
the dust (depending on the exact dust albedo value) or be back–scattered (depending on the exactg value) and provide an
additional contribution to the radiation field at the cloud surface (about 10% of increase forg =< cosθ >≃ 0.6). At line wing
wavelengths, where dust and gas opacities are of the same order (and the effective albedo is in between 0 and the grain albedo),
some of the back–scattered photons can again reach the surface of the cloud while another fraction will be absorbed in thewings.
Therefore, as shown by our calculations, line wings are ”numerically more challenging”. The fraction of absorbed photons in
the line wings depends on the wavelength separation to the line core and on the transition upper level life time (because it
determines the resulting line profile broadening). To illustrate these differences we consider a cloud with a constant density
nH=103 cm−3 and a total extinction depth ofAV=1, illuminated at both sides by the mean interstellar radiation field (ISRF,
χ = 1) as defined by Draine (1978). These physical conditions resemble those of a diffuse cloud such as parts ofζ Ophiuchi (e.g.
Black & Dalgarno 1977). An uniform grain size distribution similar to that of Mathis et al. (1977) is assumed. Figure 2 shows part
of the resulting FUV spectra (∼912-1300 Å) close to the cloud surface. These spectra clearly show that the effect of H2 line wing
absorption of back-scattered photons is larger in theexactcomputation compared to theR′ = 0 approach (Le Petit et al. 2006).
Note that this is true only forH2 lines. Atomic hydrogen lines exhibit the opposite effect, i.e. a decrease of the line wing absorption
of back-scattered photons compared to theR′ = 0 approach. Figure 10 shows the impact of the same two,exactandR′ = 0,
computations in the resulting cloud structure (left: H/H2 transition andright: H2 photodissociation rate). In spite of the different
line profiles predicted by each type of model, the final cloud physical conditions remain very similar. Therefore, we conclude
that all computations made with the previous version of theMeudon PDR code(Le Petit et al. 2006), where line transfer was
computed (assumingR′ = 0 and uniform dust properties), are consistent with the presentexactcalculation. The larger effect of
the H2 line–wing absorptions in theexactcalculation increases the attenuation of the illuminatingradiation field, which results
in a H/H2 transition layer slightly shifted to lower extinction depths. This general result obviously applies to any FUV radiative
transfer model including gas line absorption compared to (only dust) continuum models, i.e. the contribution of gas absorption
(H2 lines mostly) decrease the photoionization rate (of neutral carbon particularly) and the photodissociation rate of species
with thresholds close to the Lyman cut. An adventage of including gas line absorption is that predicted spectra can be directly
compared with spectral observations provided by FUV telescopes.

Fig. 3. Impact of the new ’exact’ radiative transfer computation compared to an alternative approach that assumesR′=0
(Le Petit et al. 2006). Grain properties are uniform in all the cloud (MRN).Left panel:H/H2 transition.Right panel:H2 pho-
todissociation rate as a function of cloud depth. A cloud with a density ofnH=103 cm−3, a total extinction depth of AV=1 and
illuminated at both sides by the mean ISRF is considered. These results show that for the case of uniform dust grain properties
theerror associated withR′=0 assumption is small.
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5. Applications: Grain growth, varying dust populations

With the method presented in Sec. 3, we can now consistently explore the effect of more realistic (non–uniform) dust properties
in the FUV penetration into more embedded objects e.g., dense molecular clouds or protoplanetary disks. As a representative
example, we present several models for a dense and strongly illuminated cloud (with an ionization parameter ofχ/nH = 1 cm3)
with grain radii varying dust populations. From the chemical point of view we only concentrate here on the effects that the
different FUV attenuation depths have on the classical H/H2 and C+/C/CO layered structures predicted by PDR models. In
particular, we consider a cloud with a constant densitynH = n(H) + 2n(H2)=105 cm−3 and a total extinction ofAV=20 which is
illuminated at both sides by 105 times the ISRF. These physical conditions resemble those ofa dense PDR such as the Orion Bar
(e.g. Tielens & Hollenbach 1985) or a photoevaporating diskaround a massive star (e.g. Johnstone, Hollenbach, & Bally 1998).
At any depth we consider that dust grains follow a size distributiondn= na dagiven by:

na(τ) =
∑

i

na,i(τ) =
∑

i

Ai(τ) nH(τ) a−βi da ai,−(τ) < a(τ) < ai,+(τ) (50)

where a± refers to the grain radius distribution lower and upper limits andi = 1, ..., n refers to each component of the grain
mixture. In Eq. (50) we have explicitly particularized for the simple power–law case, although more complicated problems may
require other prescriptions ofna (e.g. such as those in Weingartner & Draine 2001). Grain properties were taken from Laor &
Draine (1993) for silicates and graphite. With these tabulations we compute the optical parameters of the grain mixturefor each
wavelength and cloud depth. In particular, we compute theQabs, Qsca andQext efficiencies and the grain albedoQsca/Qext. We
finally use angλ–asymmetry factor averaged over the grain distribution as (see e.g., Wolfire & Cassinelli 1986):

gλ(τ) =

∫ a+(τ)

a−(τ)

∑
i π a2 gi(a, λ, τ) Qsca(a, λ, τ) na,i(τ) da

∫ a+(τ)

a−(τ)

∑
i π a2 Qsca(a, λ, τ) na,i(τ) da

(51)

Afterwards, theextinction curve A(λ, τ)/AV(τ) and the absolute dust extinction coefficientαd
λ
(τ) are determined at each depth

and used to settle the total line–plus–continuum opacity (as defined in Eq. 2) and the effective albedo. The dust extinction
coefficient (cm−1) is given byαd(λ, τ) = ng πa2 Qext, whereng is the number of dust grains (per cm3). Thus, we compute:

αd(τ) =
∫ a+(τ)

a−(τ)
π a2


∑

i

Qi
ext(a, τ)Ai(τ) nH(τ) aβ

 da (52)

The Ai(τ) grain coefficients are determined at each depth position assuming that the gas–to–dust mass ratio has to be constant
(∼100) in the whole cloud (i.e., the number of grains is reducedif grain sizes increase). However, in order to keep the grain

Fig. 4. Grains mixture optical parameters as a function of wavelength and cloud depth (the red curve corresponds to the illumi-
nated cloud edge AV=0 and the blue curve to the center of the cloud at AV=10) for the”MRN to BGs” (left) and”VSGs to MRN”
(right) examples respectively. The shaded region shows the spectral region taken into account in the FUV radiative transfer.
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Fig. 5. Resulting extinction curves as a function of wavelength (only the FUV range is shown) and cloud depth (the red curve
corresponds to the cloud edge AV=0 and the blue curve to AV=10) for the”MRN to BGs” (left) and”VSGs to MRN” (right)
examples respectively.

mixture homogeneous, the AS il/AGra ratio is kept fixed. Contribution of discrete absorption lines, i.e. the contribution ofαg
λ
(τ),

is included in similar fashion as described in Le Petit et al.(2006; Sec. 4.3). The total opacity at each depth is then given by:

dτλ =

(
1+
αg

αd

)
A(λ)
AV

dτV =

1+
α

g
λ

αd
λ


(

Eλ−V

EB−V

1
RV
+ 1

)
dτV (53)

where all the variables are depth dependent and where we haveassumed that, in the visible band, the extinction is only produced
by dust and therefore we usedτλ =

A(λ)
AV

dτV = αd
λ

ds to relate the spatial scale with extinction depth. Note thatwe compute the
extinction curve, at each cloud position, directly from thederived grain properties.

For this ”grain growth example” we consider that grain radiiincrease as a function of the cloud depth according to:

ai,±(τ) = ai,±(0)+ [ai,±(τc) − ai,±(0)]

(
τ

τc

)γ±
(54)

whereai,±(0) defines the grain radii at the edge of the cloud (τ = 0) andai,±(τc) refers to the grain radii at the center of the cloud.
We choseγ±=2/3. Obviously, this is just an illustrative example since we do not explicitly solve for the grain nucleation/growth
(e.g. Salpeter 1974) nor the erosion/sputtering problem (e.g. Barlow 1978), which depends on theparticular type of source. The
crucial point here is to provide a method to consistently solve for the FUV radiative equation if, as suggested by observations,
the grains size distribution changes toward embedded objects (Moore et al. 2005) and/or if spatial fluctuations of the gas to dust
ratio do exist along the line of sight (Padoan et al. 2006).

In the following, grains follow a power–law distribution ofsizes given by Eq. (50) withβi=3.5 at each cloud position. A
mixture of silicates and graphite grains defined byAS il/AGra = 1.1 and witha−(AV = 0)=5 nm, a+(AV = 0)=250 nm and
a−(AV = 10)=50 nm,a+(AV = 10)=2500 nm was selected. Therefore, the grain mixture at AV=0 corresponds to the size
distribution proposed by Mathis, Rumpl & Nordsieck (1977; this size distribution is called MRN hereafter) to fit the mean
galactic extinction curve (see also Fitzpatrick & Massa 1990). At AV=10 grains have grown by a factor 10 and we call them
Big Grains(BGs). In the second example we only change the size distribution to a−(AV = 0)=1 nm,a+(AV = 0)=50 nm and
a−(AV = 10)=5 nm,a+(AV = 10)=250 nm. Thus, the grain mixture at AV=0 corresponds tovery small grains(VSGs). At AV=10
grains have grown by a factor of 5 and follow a MRN distribution again. The third final example considers a uniform grain size
distribution (MRN) in the whole cloud. The resulting optical properties, extinction curves, dust opacities, Ai coefficients and radii
distributions for these examples are shown in Figs. 4, 5, 6 and 7 (left panel), respectively.

Some time ago, Sandell & Mattila (1975) emphasized that the albedo and anisotropy of dust grain scattering have important
effects on photodissociation rates for ISM molecules.The present computation of the FUV radiation field (continuum+lines)
at each cloud position (see Fig. 8 for the resulting FUV spectra at different AV) allows an explicit integration of consistent C
photoionization rates together with H2 and CO photodissociation rates. Once the FUV radiation fieldhas been determined and
the photo rates calculated, steady-state chemical abundances are computed for a given network of chemical reactions. Finally, we
compute the thermal structure of the cloud by solving the balance between the most important gas heating and cooling processes
(Le Bourlot et al. 1993; Le Petit et al. 2006 and references therein).

Depending on the grain properties these examples show FUV radiation fields that change by orders of magnitude at large
AV (Fig. 7 right panel). Note that the mean radiation intensity at the cloud surface J(0) cannot be larger than the illuminat-
ing radiation field itself, i.e.,J(0)/χ < 1. The exact ratio depends on the particular dust scatteringproperties (∼0.53-0.54 for
these models of optically thick clouds). The influence of thedifferent grain distributions in the attenuation of FUV radiation
is obvious, the FUV penetration depth is larger when dust scattering is more efficient, i.e., when grain albedo and scattering
anisotropy increase (as dust grains grow toward bigger grains). Note that the only difference between models is the change of
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Fig. 6. Dust mass absorption coefficients (per gas gr) as a function of wavelength and cloud depth (the red curve corresponds
to the cloud edge AV=0 and the blue curve to AV=10) for the”MRN to BGs” (left) and ”VSGs to MRN” (right) examples
respectively. The different grain material Ai coefficients required to keep a constant gas–to–dust mass ratio are also shown as a
function ofAV in the small insets.

Fig. 7. Left: Adopted grain averaged radii distribution for the”MRN to BGs” (left) and ”VSGs to MRN” (right) examples
respectively.Right: Resulting mean intensity of the FUV continuum (at∼1132 Å) as a function of the cloud depth for the three
different varying grain populations discussed in the text. The ordinate shows the mean intensity normalized by the illuminating
radiation field (χ=105 in Draine’s units).

grain size distributions across the cloud. Therefore, the assumption of uniform dust properties and averaged extinction curves
can be one of the crudest approximations made to determine the resulting cloud physical and chemical state. Figure 9 shows
the impact of the different grain growth curves on the resulting cloud structure:kinetic temperature, H2 photodissociation rate,
C photoionization rate and CO photodissociation rates (left column), H/H2 transition, and C+/C/CO abundances (right column).
The different intensities of the FUV radiation field for each dust population result in very different photoionization and photodis-
sociation rates which ultimately determine the prevailingchemistry. This conclusion qualitatively agrees with earlier calculations
for ISM diffuse clouds (Roberge, Dalgarno & Flannery 1981) and should beextended to more embedded objects where there are
observational evidences (e.g. Moore et al. 2005) of flatter extinction curves (consistent with grain growth). The H/H2 and C+/C
layered structures in our models are different even in similar sources (same density and illumination) if grain properties signif-
icantly disagree, or if dust grains vary along the observed region. Different ionization fractions, molecular ions enhancements,
and C+/C/CO abundances should thus be observed. In particular, photochemistry can still be important at large AV if anisotropic
scattering of the illuminating radiation is efficient (e.g., ”MRN to BGs” model). In this case, CO photodissociation and carbon
ionization still dominate the CO destruction and C+ formation respectively deeper inside the cloud. As a result, the predicted
abundance of neutral and ionized carbon at AV=10 is enhanced compared to standard MRN dust models (see Fig.9).

Secondly, the intensity of the FUV radiation field also determines much of the thermal structure of the cloud through the
efficiency of the grain photoelectric effect, the dominant heating mechanism (e.g. Draine 1978). Since FUV radiation penetrates
deepest when dust grains are bigger, the photoelectric heating rate is kept high deeper inside the cloud. Thus, a larger fraction
of the gas is maintained warm at large extinction depths. Warmer temperatures also affect the rates of chemical reactions with
activation energy barriers. For the smallest dust grains, FUV attenuation is so high that photoelectric heating soon becomes
inefficient and the gas is colder at large extinctions depths. Notethat since grain ionization is very large in the surface of the
cloud (due to the high illumination in the selected example), the maximum efficiency of the photoelectric effect, i.e. the maximum
temperature, is reached deeper inside the cloud where the grain ionization has decreased. The general effects described here must
play a significant role in illuminated sources where grain growth takes place, specially in protoplanetary disks, circumstellar
envelopes around evolved stars and dense molecular clouds near H regions. In these cases, the FUV penetration depth is
increased if dust grains evolve toward bigger grains, leading to larger photochemically active regions.
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Fig. 8.Radiative transfer models for a cloud with a total extinction of AV=20 and a density ofnH=105 cm−3, illuminated at both
sides by 105 times the mean ISRF. Part of the resulting FUV spectra (∼912-1300 Å) at different extinction depths: AV=0 (cloud
surface), AV=0.1, AV=2 and AV=3 are shown in each box. In each panel, the red (blue) curve corresponds to the”MRN to BGs”
(”VSGs to MRN”) example.

Conversely, molecular species such as CO will be more abundant in irradiated regions where the smallest grains dominatethe
extinction efficiency. Figure 10 shows the effects of grain growth in a diffuse cloud (AV=1), with a density ofnH=103 cm−3, and
illuminated by the mean ISRF. Although the resulting variations are not so large compared to optically thick clouds, thedifferent
photoionization and photodissociation rates also translate into different atomic and molecular abundances.

In particular, the C+/C and C+/CO abundance ratios change up to a factor∼10 depending on the assumed grain properties.
Note that for optically thin clouds, the mean intensity at one surface can have a significant contribution from the other side
illumination (that increases with the scattering efficiency). As an example, the mean intensity at AV=0 in the ”MRN to BGs”
grain model (J(0)/χ≃0.63; red curves in Fig. 10) is a factor∼20% larger than in the ”VSGs to MRN” model (blue curves). This
effect slightly modifies the dissociation and ionization ratesat the cloud surface.

In summary, as gas photodissociation and heating determinemuch of the chemistry in FUV irradiated gas, the resulting
source structure is severely altered by the assumed (or observed) grain properties. Therefore, understanding dust properties and
grain variations in individual sources is a crucial step to determine the source physical and chemical state.
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Fig. 9. Impact of the different FUV radiative transfer models on the kinetic temperature, H2 photodissociation rate, C photoion-
ization rate and CO photodissociation rate (left column), H/H2 transition and C+/C/CO column densities (right column). A cloud
with a density ofnH=105 cm−3, a total extinction depth of AV=20 and illuminated at both sides by 105 times the mean ISRF is
considered. Although not clearly seen in these boxes, all physical parameters show an horizontal tangent at Av= 10, consistent
with their null variation with respect to the depth positionat half cloud (as expected for a symmetrically illuminated cloud).
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Fig. 10.Same as Figure 9 for a cloud withnH=103 cm−3, a total extinction depth of AV=1 and illuminated at both sides by the
the mean ISRF. Dust grains grow according to Eq. (54) with Ac

V=1.086τcV=0.5.
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6. Summary and conclusions

1. An extension of the spherical harmonics method to solve for the radiative transfer equation with depth dependent coefficients
in plane–parallel geometry has been presented. The method can be used to solve for the FUV radiation field in externally or
internally illuminated clouds, taking into account gas absorption and coherent, nonconservative and anisotropic scattering by
dust grains. Our extended formulation thus allows to consistently include (i) gas lines and (ii ) varying dust populations.

2. We have shown that the penetration of FUV radiation is heavily influenced by dust properties. According to the dust ISM
and CSM life–cycle, such properties likely change from source to source but also they change within the same object. The
FUV penetration depth rises for increasing dust albedo and anisotropy of the scattered radiation when grains grow at large
AV (as suggested observationally). Therefore, the modeled physical and chemical state of illuminated molecular clouds,
protoplanetary disks or entire galaxies can be altered by large factors if a more realistic treatment of the interactionbetween
radiation and matter is considered.

3. The new formulation has been implemented in theMeudon PDR codeand thus it will be publicly available. Particular
examples where only the dust populations are changed show intensities of the FUV radiation field that differ by orders
of magnitude at large AV. Therefore, the resulting photochemical and thermal structures of molecular clouds can be very
different depending on the assumed grain properties and growth.
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Appendix A: Inclusion of embedded sources of emission ( S∗ , 0)

In this appendix we give the recipe to include the true emission by ”embedded sources of photons” in the method described in
section 3. In this case the source function includes the scattering of photons by dust grains plus a non nullS∗λ =

jλ
αλ+σλ

term (see
Eq. 3 and Fig. 1), wherejλ(s) is the emission coefficient (line or continuum) of any source of internal radiation.

Firstly, the angular dependence ofS∗(τ, µ) has to be also expanded in a truncated series of Legendre polynomialsPl(µ) as:

S∗(τ, µ) =
L∑

l=0

(2l + 1) sl(τ) Pl(µ) (A.1)

where the dependence withλ is omitted. The inclusion of Eqs. (A.1) into the transfer equation (3) leads to an additional term in
the set of coupled, linear, first order differential equations in the unknownfl(τ) coefficients:

l f ′l−1(τ) + (l + 1) f ′l+1(τ) = (2l + 1) [1− ω(τ)σl(τ)] fl(τ) − (2l + 1) sl(τ) (A.2)

Therefore, the system of equations (A.2) is now non-homogeneous and can be written as:

f ′(τ) = A−1(τ) f (τ) + A−1(τ) g(τ) (A.3)

wheregl(τ) = −sl(τ)/(1−ω(τ)σl(τ)). Although the method can be easily used for anisotropic source functions, in most practical
applications, the embedded sources of photons emit isotropically and therefore the terms in the expansion ofS∗(τ) in Eq. (A.1)
reduce tosl(τ) = S∗(τ) δl0, and thus,gl(τ) reduces tog0(τ) = −S∗(τ)/(1− ω(τ)) with gl(τ) = 0 if l , 0. Using the same set of
auxiliary variablesy(τ) = R−1(τ) f (τ), Eq. (16) is now written as:

y′ = K y − R−1 R′ y + K R−1 g (A.4)

Note that by insertingRR−1 betweenA−1 andg, we have simplifiedR−1 A−1 g asK R−1 g. This result is particularly useful5,
since it avoids computingA−1 completely. Hence, the last matrix product,Q̃ = K R−1 g, makes the system non–homogeneous:

y′m = km(τ) ym+ [L y ]m(τ) + q̃m(τ) (A.5)

Eq. (A.5) can also be solved with the iterative scheme described in section 3 by including the additionalq̃m term, i.e.,

y(n+1)
m (τ) = e

∫ τ
τm

km(t) dt
[
C(n+1)

m +

∫ τ

τm

e−
∫ t

τm
km(t′) dt′

(
[L y (n)]m(t) + q̃m(t)

)
dt

]
(A.6)

It is straightforward to show that thefl(τ) terms in the Legendre expansion of the radiation fieldI (τ, µ) are still given by Eq. (29).
The only change compared to theS∗=0 case is that theqm(τ) variables in theD−m(τ) andD+m(τ) integrals (Eqs. 25 and 26) have to
be substituted byqm(τ) − q̃m(τ), that is:

D−m(τ) =
∫ τ

0

E−m(τ)
E−m(t)

(qm(t) − q̃m(t)) dt (m< 0) (A.7)

D+m(τ) =
∫ τmax

τ

E+m(τ)

E+m(t)
(qm(t) − q̃m(t)) dt (m> 0) (A.8)

The iterative procedure can now be initiated taking into account that at large optical depths the intensity of the radiation field is
isotropic and tends to the ratio of the true emission to the true absorption:

I (τ→ ∞) ≃ S∗(τ)
1− ω(τ)

δl0 (A.9)

In practice, the assumptionτ → ∞ may be too crude. We have computed that by adding the effect of the external radiation that
penetrates deepest into the cloud, the iterative scheme is more robust. Therefore, the first set ofym(τ) variables in the iterative
procedure,y0

m(τ), are computed from the linear system:

+M∑

m=−M

Rlm(τ) y0
m(τ) = f approx

l (τ) =
s0(τ)

1− ω(τ)
+

1
2

I (0,−1) exp[−k1(τ) τ] +
1
2

I (τmax, 1) exp[k−1(τ)(τmax− τ)] (A.10)

where only thel = 0 terms are considered.
We have successfully applied the above method by associating S∗ to thermal emission of dust. These kind of computations

are useful if the radiative transfer calculation is extended to the IR domain (λ > 1 µm), where scattering of IR photons by dust
grains is still significative. In the FUV domain,S∗ can represent any source of internal illumination. In a future paper we plan to
include ”secondary” line photons in the embedded source function. Thisline FUV radiation fieldarises from the H2 radiative de-
excitations that follow the H2 excitation by collisions with electrons and cosmic rays (Prasad & Tarafdar 1983) and is generally
poorly treated. However, it constributes to molecular photodissociation deep inside molecular clouds where thecontinuum FUV
radiation fieldhas been attenuated.

5 This is true whatever the isotropy properties of the source function are, and not only for the isotropic case.
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Appendix B: Numerical solution and error limits

In Sec. 3.2.1 we turn the system of differential equations (17) into and integral problem (Eqs. 18)that we solve numerically
through an iterative scheme (Eqs. 20). In this appendix we provide a bound on the error associated with this procedure andwe
verify that the derived solution satisfies the original system of equations (10).

Given a numerical approximationy(n)
m to the true solutionym, we investigate if our iterative proccess converges for allλ and

AV of the wavelength and cloud depth grids. Thus, we compute:

y(n+1)
m (τ) = eam(τ)

[
C(n+1)

m +

∫ τ

τm

e−am(t) [L y (n)]m(t) dt

]
with

[
Ly (n)

]
m

(t) =
∑+M

i=−M Lmi(t) y(n)
i (t) (B.1)

and write the error in stepn+ 1 as∆(n+1)
m = ym− y(n+1)

m wherem= ±1, ...,±M. Note that this is the difference between the trueym

(unknown) and our numerical approximation at stepn+ 1. Since the above equations are linear,∆(n+1)
m reduces to:

∆(n+1)
m (τ) ≃ eam(τ)

+M∑

i=−M

(∫ τ

τm

e−am(t) Lmi(t)∆
(n)
i (t) dt

)
(B.2)

because the boundary conditions term (Cm −C(n+1)
m ) is small and damped almost everywhere by the exponential term (as shown

numerically). If we now define∆(n),MAX
i = maxt |∆(n)

i (t)|, the maximum error at iteration stepn in the Legendre expansion of order
i (i = 0, 1, ..., L) at any depth position, then:

∆(n+1),MAX
m <

+M∑

i=−M

∆
(n),MAX
i

(∫ τ

τm

e[am(τ)−am(t)] Lmi(t) dt

)
(B.3)

By taking the maximum error at iteration stepn at any depth position and at any Legendre order,∆(n),MAX = maxm∆
(n),MAX
m , we

arrive to a severe upper limit to the error between the true solution and the numerical approximation at stepn+ 1:

∆(n+1),MAX < ∆(n),MAX
+M∑

i=−M

(∫ τ

τm

e[am(τ)−am(t)] Lmi(t) dt

)
= ∆(n),MAX · A (B.4)

Therefore, convergence is guaranteed ifA < 1 as∆(n+1),MAX < ∆(1),MAXAn. Obviously convergence occurs also for less restrictive
conditions but this is harder to constrain. In our computations we findA < 1 for almost all wavelengths and depth positions. Only
at some specific locations in the (AλV) grid (those associated with some line wings),A can take values< 10. However, a close
look at successive variations of∆(n+1)

m − ∆(n)
m at those locations shows that∆(n+1)

m − ∆(n)
m is effectively null after a few iterations.

A final test to validate our numerical solution is to compute the numerical derivative of our solution and comparef with A f ′

(see Eq. (10)). Although grain properties are kept uniform,inclusion of gas absorption makesR′(τ) , 0 and thusL ′(τ) , 0
in Eq. (17). Figure B.1 shows a typical example for a test cloud with AV = 1 andnH = 300 cm−3, illuminated by the standard
radiation field on both sides. In particular, we compare thefl (l=0) component off with A f ′ atλ = 914.26 Å, a H2 line wing with
a total optical depth of 80. Hence, variations of physical conditions along the cloud are large. It can be seen that the agreement is
excellent. In a continuum ”free of lines” wavelength range,agreement is perfect, and there is nothing to show. Hence, the derived
numerical solution is a very good approximated solution to the radiative transfer problem.

Appendix C: Eigenvalues and eigenvectors of A−1(τ)

We describe here our method to compute the eigenvalues and eigenvectors of theA−1(τ) matrix (see Eq.(13)). Note thatA(τ) and
A−1(τ) have the same eigenvectors, butk−1

m (τ) andkm(τ) eigenvalues respectively.
A first trick is to turn this diagonalization problem to a symmetric problem. Let us callRm(τ) an eigenvector ofA(τ) with

Rlm(τ) components andk−1
m (τ) eigenvalues. Thus,R(τ) is the matrix formed by theRm(τ) eigenvectors and we can write:



0 h−1
0 . . . .

h−1
1 0 2h−1

1 . . .

. 2h−1
2 0

. . . . .

. . 3h−1
3

. . . (L − 1)h−1
L−2 .

. . .
. . . 0 Lh−1

L−1
. . . . Lh−1

L 0



.



R0m

R1m

R2m
...

RL−1,m

RLm



= k−1
m (τ)



R0m

R1m

R2m
...

RL−1,m

RLm
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with hl(τ) = (2l + 1) (1− ω(τ)σl(τ)). If we now defineG(τ) as diagonal matrix withgll (τ) = h1/2
l (τ), left-multiplication of the

previous equation byG(τ) and insertion of the identity matrix I= G−1(τ) G(τ) betweenA(τ) andR(τ) gives6:


0 1√
h0h1

. . . .
1√
h0h1

0 2√
h1h2

. . .

. 2√
h1h2

0
. . . . .

. . 3√
h2h3

. . . L−1√
hL−2hL−1

.

. . .
. . . 0 L√

hL−1hL

. . . . L√
hL−1hL

0



.



h1/2
0 R0m

h1/2
1 R1m

h1/2
2 R2m
...

h1/2
L−1RL−1,m

h1/2
L RLm



= k−1
m (τ)



h1/2
0 R0m

h1/2
1 R1m

h1/2
2 R2m
...

h1/2
L−1RL−1,m

h1/2
L RLm



(C.1)

This new symmetric matrix is called̃A(τ), andR̃(τ) is the matrix of its eigenvectors. ThẽA(τ) matrix has the same eigenvalues
k−1

m (τ) asA(τ), although the eigenvectorsR(τ) andR̃(τ) are different but related bỹR(τ) = G(τ) R(τ). These symmetric matrixes
are easier to diagonalize numerically. Eigenvectors are computed by the recurrence relation:

R0m(τ) = 1

R1m(τ) = (1− ω(τ))/km(τ)

Rlm(τ) =
1

lkm(τ)
[
hl−1(τ) Rl−1,m(τ) − (l − 1)km(τ) Rl−2,m(τ)

]
(C.2)

where, compared to Roberge (1983),ω(τ) is aτ–dependent effective albedo including line absorption.

Appendix D: Inverse and derivative of R(τ)

Here we show howR−1(τ) is computed. Unfortunately,A(τ) is not a symmetric matrix, so thatR−1(τ) , RT(τ). However, we
can apply the same method as above to turnR−1(τ) into R̃T (τ). SinceÃ(τ) is symmetric, the matrix formed with its eigenvectors
is orthogonal. Thus, using the same notations, we have:

R̃T(τ) R̃(τ) = J(τ) = (G(τ) R(τ))T G(τ) R(τ) (D.1)

whereJ(τ) is a diagonal matrix withJll (τ) =
∥∥∥R̃l(τ)

∥∥∥2
elements. Hence:

R−1(τ) = J−1(τ) RT(τ) G2(τ) (D.2)

The inclusion of the depth dependence in the spherical harmonics method unfortunately forces to calculate theR(τ) derivative
respect toτ. Ideally, we could start to derivate theRlm(τ) recurrence relations shown in Eq (C.2) to get:

R′0m = 0

6 Left-multiplication by a diagonal matrix multiplies rows by a constant, and right multiplication multiplies columns.
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Fig. B.1.Comparison off andA f ′ for l=0 andλ = 914.26 Å. The abscissa corresponds toτv for the upper scale and toτline for
the lower scale.
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R′1m = −
ω′km + (1− ω)k′m

k2
m

R′lm = −
k′m
lk2

m

[
hl−1Rl−1,m− (l − 1)kmRl−2,m

]
+

1
lkm

[
h′l−1Rl−1,m+ hl−1R′l−1,m− (l − 1)

(
k′mRl−2,m + kmR′l−2,m

)]
(D.3)

with

h′l (τ) = −(2l + 1) [ω′(τ)σl(τ) + ω(τ)σ′l (τ)] (D.4)

Unfortunately,ω′, σ′l andk′m have to be computed also numerically, which is quite unstable in the most external cloud positions
due to the large variations ofτλ at line wing wavelengths (where the line opacity becomes comparable to the dust opacity)
compared to deeper inside the cloud whereτλ at the same wavelength becomes saturated (the dust opacity becomes insignificant
respect to the line opacity). Besides, a symmetric difference scheme does not provide satisfactory results because ωn+1−ωn−1

τn+1−τn−1
only

gives an approximation toω′ at τ = τn−1+τn+1
2 which, in general, is notτn. We solved this problem by derivating directly the

computed values ofR(τ). To avoid irregular steps inτ, a second order polynomial was fit toRlm(τi−2), Rlm(τi) andRlm(τi+2), and
the value of its analytical derivative was then used. The resulting derivativeR′(τ) is smooth enough to be applied in the numerical
computation.

Appendix E: Mean radiation field intensity

In section 3.4 we deduced the simple form that the mean intensity takes in the spherical harmonics method, i.e.J(τ) = f0(τ).
However, in some cases of astrophysical interest (e.g. a twosides asymmetrically illuminated cloud) one needs to distinguish the
fraction of radiation field coming from each side of the cloud. In this case, two half sums have to be computed. Here we give the
analytical expressions that we use to computeJ±(τ). For radiation coming from theτ = 0 side we have:

J−(τ) =
1
2

∫ 0

−1
I (τ, µ) dµ =

1
2

∑

l

(2l + 1) fl(τ)
∫ 0

−1
Pl(µ) dµ (E.1)

And for radiation coming from theτ = τmax side we have:

J+(τ) =
1
2

∫ +1

0
I (τ, µ) dµ =

1
2

∑

l

(2l + 1) fl(τ)
∫ +1

0
Pl(µ) dµ (E.2)

If we defineQl =
∫ +1

0
Pl(µ) dµ, with:

Ql =



1 l = 0
0 l even and> 0
Pl−1(0)

l+1 l odd
(E.3)

parity gives
∫ 0

−1
Pl(µ) dµ = (−1)l Ql = −Ql (usingQl = 0 for l even). Inserting Eq. (29) in Eqs (E.1) and (E.2) we get:

J−(τ) =
1
2

−1∑

m=−M

(
Cm E−m(τ) − D−m(τ)

)
1−

L∑

l=1

(2l + 1)Ql Rlm(τ)

 +
1
2

M∑

m=1

(
Cm E+m(τ) + D+m(τ)

)
1−

L∑

l=1

(2l + 1)Ql Rlm(τ)

 (E.4)

J+(τ) =
1
2

−1∑

m=−M

(
Cm E−m(τ) − D−m(τ)

)
1+

L∑

l=1

(2l + 1)Ql Rl,m(τ)

 +
1
2

M∑

m=1

(
Cm E+m(τ) + D+m(τ)

)
1+

L∑

l=1

(2l + 1)Ql Rlm(τ)

 (E.5)

Taking into account the fact thatQl = 0 if l is even, andRl,−m = −Rlm if l is odd, we now define (form> 0)

Sm(τ) =
∑

l odd

(2l + 1)Ql Rl,m(τ) (E.6)

to write:

J−(τ) =
1
2

−1∑

m=−M

(
Cm E−m(τ) − D−m(τ)

)
(1+ Sm(τ)) +

1
2

M∑

m=1

(
Cm E+m(τ) + D+m(τ)

)
(1− Sm(τ)) (E.7)

J+(τ) =
1
2

−1∑

m=−M

(
Cm E−m(τ) − D−m(τ)

)
(1− Sm(τ)) +

1
2

M∑

m=1

(
Cm E+m(τ) + D+m(τ)

)
(1+ Sm(τ)) (E.8)

Therefore, the fraction of the mean intensity coming from each side of the cloud can be easily determined at each depth. The
resultingJ±(τ) values can then be used to evaluate the escape probably of any FUV photon emitted within the cloud.


