
Transforming Asynchronous Systems with Crash-Stop

Failures and Failure Detectors to the General Omission

model

Carole Delporte-Gallet, Hugues Fauconnier, Felix Freiling, Lucia Draque

Penso, Andreas Tielmann

To cite this version:

Carole Delporte-Gallet, Hugues Fauconnier, Felix Freiling, Lucia Draque Penso, Andreas Tiel-
mann. Transforming Asynchronous Systems with Crash-Stop Failures and Failure Detectors to
the General Omission model. TR2007-001. 16 pages Rapport Interne LIAFA Université Paris
7 Rapport interne University of Mannheim Departme.. 2007. <hal-00130766v2>

HAL Id: hal-00130766

https://hal.archives-ouvertes.fr/hal-00130766v2

Submitted on 9 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47121867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00130766v2




Transforming Asynchronous Systems with Crash-Stop

Failures and Failure Detectors to the General Omission Model∗

Carole Delporte-Gallet1 , Hugues Fauconnier1, Felix Freiling2

Lucia Draque Penso2, Andreas Tielmann1

1 LIAFA University of Paris 7 - Denis Diderot
2 University of Mannheim

Laboratory for Dependable Distributed Systems

University of Paris 7
LIAFA

Technical Report TR 2007-001
&

University of Mannheim
Department for Mathematics and Computer Science

Technical Report TR 2007-001

February, 2007

Abstract

This paper studies the impact of omission failures on asynchronous distributed sys-
tems with crash-stop failures. For the large group of problem specifications that are
restricted to correct processes, we show how to transform a crash-stop related problem
specification into an equivalent omission one. For that, we provide transformations
for algorithms and failure detectors, such that if and only if an algorithm using a fail-
ure detector satisfies a problem specification, then the transformed algorithm using
the transformed failure detector satisfies the transformed problem specification. Our
transformed problem specification is ensured to be non-trivial, and moreover, the trans-
formation reveals itself to be in a reasonable sense weakest failure detector preserving.

Our results help to use the power of the well-understood crash-stop model to au-
tomatically derive solutions for the general omission model, which has recently raised
interest for being noticeably applicable for security problems in distributed environ-
ments equipped with security modules such as smartcards [10], [11], [1].

∗Work of the authors was supported by the PROCOPE-project.

1



Keywords: Transformations, Asynchronous Systems, Failure Detectors, Crash-
Stop, General Omission

1 Introduction

Message omission failures, which have been introduced in [12] and been refined in [16] put
the blame of a message loss to a specific process instead of an unreliable message channel.
This property has lead to the development of reductions from security problems in the
byzantine failure model [13], such as eletronic commerce and voting [11], fair-exchange [1]
and secure multiparty computation [10], to well-known distributed problems in the general
omission model, such as consensus [6], where both process crashes and message omissions
may take place. The general omission model can be obtained from the byzantine failure
model by considering processes as parties that contain a tamper proof security module, such
as a smartcard, which executes randomized [11] or deterministic [15] distributed algorithms
and exchanges authenticated and cryptographed messages. Hence, in such a scenario, note
that security module messages must go through their untrusted hosting parties, which are
able to drop messages but not modify them. Therefore, the only failures that may appear
to the trusted security modules are message omissions and process crashes (due to self-
destruction of the security modules or destruction by a malicious party). Thus, since the
blame of a message drop (an omission) is put only at the security modules of the malicious
parties, the security modules of the honest parties remain correct (i.e. failure-free), even if
another party decides to drop messages from/to it.

In this paper, we want to provide the general omission model with the benefits of a
well-understood system model like the crash-stop model. We show, that in asynchronous
systems, both models are equivalent for problem specifications that are only related to
correct processes1. This means, that we are able to transform an algorithm that uses a
failure detector (as introduced in [5]) to solve a problem specification in the crash-stop
model into an algorithm that uses a transformed failure detector to satisfy the equivalent
problem in the general omission model. We show the problem equivalence by proving
also the inverse implication, that is, that if a transformed algorithm using a transformed
failure detector satisfies a transformed problem specification, then the original algorithm
using the original failure detector solves the original problem specification (see also Figure
1). Moreover, our transformation preserves also the “is weaker than” relation [4] between
failure detectors. This means, that if a failure detector is a weakest failure detector for a
certain (crash-stop) problem, then its transformation is a weakest of all transformed failure
detectors for the transformed problem.

For clarity, we use the term correct only for processes that do not make any failure at
all. Processes that do not crash are called crash-correct and processes that are able to send

1This type of problem specifications are somehow similar to non-uniform specifications. They are defined
similarly to the ones in [3].

2



A D Σ

trans(A) trans(D) trans(Σ)

uses

uses

to satisfy

to satisfy

g.o. failures
c.s. failures

Figure 1: The Three Transformations

and receive messages to/from correct processes (possibly indirect) are called connected.
This definition of connected processes has been introduced in [8]. To simplify, we consider
only permanent omissions. Note that this restriction is not limiting, as we simply delegate
the masking of transient omissions to the underlying asynchronous communication layer.

The intuition behind our problem transformation is to exchange every crash-correct
in the specification with crash-correct & connected (and likewise for the failure detector
transformation). This means, that everything demanded for crash-correct processes in the
original problem specification is now demanded for crash-correct & connected processes. To
transform a crash-stop algorithm into one that is able to satisfy such a transformed speci-
fication, we augment it with two additional send-primitives (added as new communication
layers). With these new primitives, we are able to “simulate” a crash-stop environment
for the transformed algorithms. For crash-correct & connected processes, reliable commu-
nication is possible and not crash-correct & connected processes are not able to influence
them.

Since it is in general not possible to provide guarantees for processes that are not
connected, we limit ourselves to transform only problem specifications that refer exclusively
to the state of processes before they crash. As an extension of our result, it would be
possible to consider the specific case where only less than half of the processes are allowed
to crash. In such a scenario, it would be possible for a process to check whether it is
connected or not. It simply has to ping all other processes (e.g., before every step) and if
it receives from less than the majority of the processes an answer, it keeps waiting forever
and satisfies at least the safety properties of a problem specification.

The problem of automatically increasing the fault tolerance of problems in environments
with crash-stop failures has been extensively studied before (e.g., [2], [14], [7], or [3]).
The results of [14], [7], and [3] assume in contrast to ours synchronous systems and no
failure detectors. In [14], several transformations from crash-stop to send omission, to
general omission, and to Byzantine faults are proposed. In [7], round-based algorithms with
broadcast primitives are transformed into crash-stop-, general omission-, and Byzantine-

3



tolerant algorithms. Asynchronous systems are considered in [2], but in the context of link
failures instead of omission failures and also without failure detectors. The types of link
failures that are considered in [2] are eventually reliable and fair-lossy links. Eventually
reliable links can lose a finite (but unbounded) number of messages and fair-lossy links
satisfy that if infinitely many messages are sent over it, then infinitely many messages do
not get lost. To show our results, we extend the system model of [2] such that we can
model omission failures, failure patterns, and failure detectors. Another definition for a
system model with crash-recovery failures2, omission failures, and failure detectors is given
in [9].

To the best of our knowledge, this is the first paper that investigates an automatic
transformation to increase the fault tolerance of distributed algorithms in asynchronous
systems augmented with failure detectors. We here give a transformation from the crash-
stop model to the general omission model.

We organize this paper as follows. In section 2, we define our formal system model, in
section 3, we define our general problem and algorithm transformations, in section 4 we
define our main theorem and sketch the proof, and finally, in section 5, we summarize and
discuss our results. The detailed proof can be found in the appendix.

2 Model

The asynchronous distributed system is assumed to consist of n distinct processes Π =
{p1, . . . , pn}. Each pair pi, pj of processes is connected via a direct communication channel.
The asynchrony of the system means, that there are no bounds on the relative process
speeds and message transmission delays. To allow an easier reasoning, a discrete global
clock T is added to the system. The discrete range of the clock ticks is the set of natural
numbers N. The processes do not have access to the clock, it is only used for making
statements about the system. The system model used here is derived from that in [2]. It
has been adapted to model also failure detectors and permanent omission failures.

Algorithms An algorithm A is defined as a vector of local algorithm modules (or simply
modules) A(Π) = 〈A(p1), . . . , A(pn)〉. Each local algorithm module A(pi) is associated
with a process pi ∈ Π and defined as a deterministic infinite state automaton. The local
algorithm modules can exchange messages via send and receive primitives. We assume all
messages to be unique.

Histories A local history of a local algorithm module A(pi), denoted HA[i], is a finite
or an infinite sequence s0

i e1
i s1

i e2
i s2

i . . . of alternating states and events of type send,
receive, queryFD, or internal. We define HA[i]/t to be the maximal prefix of HA[i] where

2In an environment with crash-recovery failures, crashed processes are allowed to recover and participate
again in the distributed computation.

4



all events have occurred before time t. A history HA of A(Π) is a vector of local histories
〈HA[1],HA[2], . . . ,HA[n]〉.

Failures and Failure Patterns A failure pattern F is a function that maps each value
t from T to an output value that specifies which failures have occurred up to time t during
an execution of a distributed system. Such a failure pattern is totally independent of any
algorithm. A crash-failure pattern C : T → 2Π denotes the set of processes that have
crashed up to time t (∀t : C(t) ⊆ C(t + 1)).

Additionally to the crash of a process, it can fail by not sending or not receiving a
message. We say that it omits a message. The message omissions do not occur because of
link failures, they model overflows of local message buffers or the behavior of a malicious
adversary with control over the message flow of certain processes. It is important that
for every omission, there is a process responsible for it. As we already mentioned, we
consider only permanent omissions and leave the treatment of transient omissions over
to the underlying asynchronous communication layer. There are two types of permanent
omissions: permanent send omissions and permanent receive omissions. Intuitively, a
process has a permanent send omission if it always fails by not sending messages to a
certain other process after a certain point in time. Analogously, a process has a permanent
receive omission if it always fails by not receiving messages from a certain other process
after a certain point in time. In the following, to do not get confused, we use ps if we think
of the sending process and pd for the destination. The permanent omissions are modeled
via send-/receive-omission failure patterns:

OS : T → 2Π×Π and OR : T → 2Π×Π

If (ps, pd) ∈ OS(t)/OR(t), then process ps/pd has a permanent send/receive-omission to
process pd/ps at time t. All the failure patterns defined so far can be put together to a
single failure pattern F = (C,OS , OR).

We here define some predicates processes might fulfill depending on the failure pattern
and the time t.

crashed(F , t) := {p | p ∈ C(t)}
crash-correct(F , t) := {p | p 6∈ C(t)}

send-omissive(F , t) := {ps | ∃pd : (ps, pd) ∈ OS(t)}
receive-omissive(F , t) := {pd | ∃ps : (ps, pd) ∈ OR(t)}.

omissive(F , t) := send-omissive(F , t) ∪ receive-omissive(F , t)

The following predicates are used to formalize our notion of connected processes. We first
define a process p to be directly-reachable from a process q, if every message sent by q to p
will be received by p. This means, that there occurs no omission in the direction from q to
p and the crash-correctness of q implies the crash-correctness of p. Reachable is then the

5



transitive closure of directly-reachable. To define the connected processes, we formalize the
notion of “are able to send/receive messages to/from correct processes” with the definition
of out-/in-connected. More formally:

directly-reachable(F , t) := {(p, q) | (q, p) 6∈ OS(t) ∧ (p, q) 6∈ OR(t)
∧ q ∈ crash-correct(F , t) → p ∈ crash-correct(F , t)}

reachable(F , t) := {(pd, ps) | (pd, ps) ∈ directly-reachable(F , t)
∨ ∃r ∈ Π : ((pd, r) ∈ reachable(F , t) ∧ (r, ps) ∈ reachable(F , t))}

in-connected(F , t) := {pd | ∃c ∈ correct(F) : (pd, c) ∈ reachable(F , t)}
out-connected(F , t) := {ps | ∃c ∈ correct(F) : (c, ps) ∈ reachable(F , t)}

connected(F , t) := in-connected(F , t) ∩ out-connected(F , t)

Instead of crash-correct, we write also cc and instead of crash-correct∩ connected, we write
cc+c. We define for every predicate ϕ:

ϕ(F) :=
⋃
t∈T

{ϕ(F , t) | ∀t′ ≥ t : ϕ(F , t) = ϕ(F , t′)} (e.g., ϕ = connected).

This means, that ϕ(F) is the set where the failure pattern does not change anymore (at
least in relevance to ϕ). We define the point in time when a process stops/some processes
stop fulfilling a predicate ϕ:

tnot(ϕ,F ,p,q,...) := max{t | (p, q, . . .) ∈ ϕ(F , t)}.

If (p, q, . . .) ∈ ϕ(F), then we say that tnot(ϕ,F ,p,q,...) = ∞.
We define an environment E to be a set of possible failure patterns. E t

c.s. denotes the
set of all failure patterns where only crash-stop faults occur and at most t processes crash.
E t

g.o. denotes the set of all failure patterns where crash-stop and omission faults may occur
and at most t processes are not crash-correct and connected (clearly, E t

c.s. ⊆ E t
g.o.).

Failure Detectors A failure detector provides (possibly incorrect) information about
the failure pattern that occurs in an execution [5]. A failure detector history FDH with
range R is a function from Π×T to R. FDH(p, t) is the value of the failure detector module
of process p at time t. A failure detector D is a function that maps a failure pattern F to
a set of failure detector histories with range RD. D(F) denotes the set of possible failure
detector histories permitted by D for the failure pattern F .

Reliable Links A reliable link does not create, duplicate, or lose messages. Formally,
the link from pi to pj is reliable in history H according to failure pattern F , if H satisfies:

L1: (No Creation) For all messages m, if pj receives m from pi, then pi sends m to pj .

6



L2: (No Duplication) For all messages m, pj receives m from pi at most once.

L3: (No Loss) For all messages m, if pi sends m to pj , (pi, pj) 6∈ OS(F), (pj , pi) 6∈ OR(F),
and pj executes receive actions infinitely often, then pj receives m from pi.

We specify, that our underlying communication channels ensure reliable links.

Problem Specifications Let Π be a set of processes and A be an algorithm. We define
H(A(Π), E) to be the set of all tuples (HA,F) such that HA is a history of A(Π) and F ∈ E .
A system S(A(Π), E) of A(Π) is a subset of H(A(Π), E). A problem specification Σ is a set
of tuples of histories and failure patterns and a system S satisfies a problem specification
Σ, if S ⊆ Σ. Take Consensus as an example: It is specified by making statements about
some variables propose and decide in the states of a history (e.g., the value of decide has
eventually to be equal at all (crash-)correct processes).

We say that a problem specification Σ is cc-restricted, if for all (H,F) ∈ Σ, and for all
(H ′,F ′) with H[i]/tnot(cc,F,pi)

= H ′[i]/tnot(cc,F′,pi)
(for all pi), the following holds: (H ′,F ′) ∈

Σ. Analogously, a problem specification Σ is cc+c-restricted, if for all (H,F) ∈ Σ, and for
all (H ′,F ′) with H[i]/tnot(cc+c,F,pi)

= H ′[i]/tnot(cc+c,F′,pi)
(for all pi): (H ′,F ′) ∈ Σ.

Intuitively, a cc-restricted problem specification makes only assumptions about cc pro-
cesses. Consider the specification of non-uniform Consensus (see Table 1). The three
properties validity, agreement, and termination are only related to correct processes (and
the initial states of all processes) and therefore, the states of a process pi after its time of
disconnection (tnot(cc+c,F ,pi)) does not have any influence on whether Consensus is reached
or not. Therefore, non-uniform Consensus is cc-restricted.

3 From Crash-Stop to General Omission

To improve the fault-tolerance of algorithms, we simulate a single state of the original
algorithm with several states of the simulation algorithm. For these additional states, we
augment the original states with additional variables. Since an event of the simulation
algorithm may lead to a state where only the augmentation variables change, the sequence
of the original variables may stutter. We call a history H ′ a stuttered and augmented ex-
tension of a history H (H ≤sa H ′), if H and H ′ differ only in the value of the augmentation
variables and all additional states are caused by differences in these variables.

Transformation of Problem Specifications To transform a problem specification, we
first show a transformation of a tuple of a trace and a failure pattern. Based on this trans-
formation, we transform a whole problem specification. The intuition behind this trans-
formation is that for crash-correct restricted problem specifications, everything demanded
for crash-correct processes is only demanded for crash-correct & connected processes after

7



the transformation. More formally:

(H ′,F ′) ∈ trans((H,F)) ⇔ ∀pi ∈ Π : H[i]/tnot(cc,F,pi)
≤sa H ′[i]/tnot(cc+c,F′,pi)

This implies that for all pi: tnot(cc,F ,pi) ≤ tnot(cc+c,F ′,pi).

trans(Σ) = {(H ′,F ′) | (H ′,F ′) ∈ trans((H,F)) ∧ (H,F) ∈ Σ}

A transformation of non-uniform Consensus, where properties of certain propose- and
decision-variables of (crash-)correct processes are specified would lead to a specification
where the same properties are ensured for the states of crash-correct & connected processes,
because only histories with the same states (disregarding the augmentation variables) are
allowed in the transformation at this processes (see also table 1). We also take the states
of processes before they become disconnected into account, because they (e.g., their initial
states for the propose variables) may also have an influence on the fulfillment of a problem
specification, although they are after their disconnection not allowed to have this influence
anymore.

Consensus trans(Consenus)
Validity: The decided value of every The decided value of every

cc process must have been cc+c process must have been
proposed. proposed.

Agreement: No two cc processes decide No two cc+c processes decide
differently. differently

Termination: Every cc process eventually Every cc+c process eventually
decides. decides

Table 1: Transformation of non-uniform Consensus

Transformation of Failure Detector Specifications We allow all failure detector
histories for a failure pattern F in trans(D) that are allowed in the crash-stop version of
F in D:

trans(D)(F) :=
⋃
F ′

{D(F ′) | ∀t : cc(F ′, t) = cc+c(F , t)}

If we take an Ω failure detector [4] which outputs only failure detector histories with a
cc common leader at all cc processes as example, then the transformed failure detector
outputs these failure detector histories if and only if they provide a cc+c common leader at
all cc+c processes.

Transformation of Algorithms In our algorithm transformation, we add new commu-
nication layers such that some of the omission failures in the system become transparent
to the algorithm (see Figure 2). We transform a given algorithm A into another algorithm
A′ = trans(A) in two steps:

8



pi pj

A
A′

three way handshake layer

relaying layer

m

m

m

m′

m′

Figure 2: Additional Communication Layers

• In the first step, we remove the send and receive actions from A and simulate them
with a three-way-handshake (3wh) algorithm. The algorithm is described in Figure 3.
The idea of the 3wh-algorithm is to substitute every send-action with an exchange
of three messages. This means, that to send a message to a certain process, it is
necessary for a process to be able to send and to receive messages from it. Moreover,
while the communication between connected processes is still possible, processes that
are only in-connected or only out-connected (and not both) become totally discon-
nected. Hence, we eliminate influences of disconnected processes not existing in the
crash-stop case.

• Then, in the second step, we remove the send and receive actions from the three
way handshake algorithm and simulate them with a relaying algorithm. The relaying
algorithm is described in Figure 4. The idea of the relay algorithm is to relay every
message to all other processes, such that they relay it again and all crash-correct &
connected processes can communicate with each other, despite the fact that they are
not directly-reachable.

To execute the simulation algorithms in parallel with the actions from A, we add some
new (augmentation) variables to the set of variables in the states of A. Whenever a step
of the simulation algorithms is executed, the state of the original variables in A remains
untouched and only the new variables change their values. Whenever a process queries a
local failure detector module D(pi), we translate it to a query on trans(D)(pi).

4 Proof

9



Algorithm 3wh
1: upon event 〈3wh-send(pi,m, pj)〉 do
2: trigger 〈send(pi, [1,m], pj)〉;
3:
4: upon event 〈deliver(pj , [l,m], pi)〉 do
5: if (l = 1) then
6: trigger 〈send(pi, [2,m], pj)〉;
7: elseif (l = 2) then
8: trigger 〈send(pi, [3,m], pj)〉;
9: elseif (l = 3) then
10: trigger 〈3wh-deliver(pj ,m, pi)〉;

Figure 3: The Three Way Handshake Algorithm for Process pi.

Main Theorem We now define the main theorem of this work. Assume a problem
specification Σ is cc-restricted. Then, if and only if there is an algorithm A that satisfies Σ
using a failure detector D in an environment with at most t crash-stop failures (0 ≤ t ≤ n)
and no omission failures, then trans(A) satisfies trans(Σ) using trans(D) in an environment
where at most t processes are not crash-correct & connected. This theorem does not only
show that our transformation works, it furthermore ensures that we do not transform to a
trivial problem specification, but to an equivalent one, since we prove both directions. We
say, that St

c.s.(A) := H(A(Π), E t
c.s.) and St

g.o.(A
′) := H(A′(Π), E t

g.o.).

Theorem 1. Let Σ be a cc-restricted problem specification. Then, if A is an algorithm
using a failure detector D and A′ = trans(A) is the transformation of A using trans(D), it
holds that:

∀t with 0 ≤ t ≤ n : St
c.s.(A) ⊆ Σ ⇔ St

g.o.(A
′) ⊆ trans(Σ)

Proof. Because of the lack of space, we will only give an intuition of the proof here and
postpone the formal proof into the appendix. We divide up the proof into two parts. Let
Sc.s. := St

c.s.(A) and Sg.o. := St
g.o.(A

′) and assume that A′ = trans(A).

“⇒”: Assume that Sc.s. ⊆ Σ. By constructing for a given (H,F) in Sg.o. a tuple (H ′,F ′) in
Sc.s. with (H,F) ∈ trans((H ′,F ′)), we can show that Sg.o. ⊆ trans(Sc.s.) (Proposition
1 in the appendix). In this construction, we remove the added communication layers
from H and use the properties of our two send-primitves to prove the reliability of
the links in H ′. We ensure “No Loss” with the relaying algorithm and “No Creation”
with the three way handshake algorithm. As we know from the definition of trans,
that trans(Sc.s.) ⊆ trans(Σ), we can conclude that Sg.o. ⊆ trans(Σ).

10



Algorithm Relay
1: upon event 〈init〉 do
2: relayedi := ∅;
3: deliveredi := ∅;
4:
5: upon event 〈relay-send(pi,m, pj)〉 do
6: for k := 1 to n do
7: trigger 〈send(pi, [m, pj ], pk)〉;
8: relayedi := relayedi ∪ {[m, pj ]};
9:
10: upon event 〈deliver(pj , [m, pk], pi)〉 do
11: if (k = i) and (m 6∈ deliveredi) then
12: trigger 〈relay-deliver(sender(m),m, pi)〉;
13: deliveredi := deliveredi ∪ {m};
14: elseif (k 6= i) and ([m, pk] 6∈ relayedi) then
15: for l := 1 to n do
16: trigger 〈send(pi, [m, pk], pl)〉;
17: relayedi := relayedi ∪ {[m, pk]};

Figure 4: The Relaying Algorithm for Process pi.

“⇐”: Assume that Sg.o. ⊆ trans(Σ). We construct a history H ′ for all histories H in Sc.s.,
such that H ′ is in Sg.o. ⊆ trans(Σ). Together with the fact, that Σ is cc restricted,
we can use this to prove that Sc.s. ⊆ Σ (Proposition 2 in the appendix).

Weakest Failure Detectors A failure detector [4] is a weakest failure detector for a
problem specification, if it is necessary and sufficient. Sufficient means, that there exists
an algorithm using this failure detector that satisfies the problem specification, whereas
necessary means, that every other sufficient failure detector is reducible to it. In the
appendix we prove quite straighforwardly that our transformations preserve the weakest
failure detector property at least according to the class of transformed failure detectors.

Theorem 2. If D is the weakest failure detector for Σ, then trans(D) is the weakest
transformed failure detector for trans(Σ).

11



5 Summary

We have given transformations for algorithms, failure detectors, and problem specifications,
so crash-stop resilient algorithms can be automatically enhanced to tolerate the more severe
general omission failures, highly applicable in practical settings running security problems.

References

[1] Gildas Avoine, Felix C. Gärtner, Rachid Guerraoui, and Marko Vukolic. Gracefully degrading
fair exchange with security modules. In The 5th European Dependable Computing Conference
(EDCC), pages 55–71, 2005.

[2] Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. Simulating reliable links with
unreliable links in the presence of process crashes. In Proceedings in the 10th International
Workshop on Distributed Algorithms (WDAG96), pages 105–122, 1996.

[3] Rida A. Bazzi and Gil Neiger. Simulating crash failures with many faulty processors (extended
abstract). In WDAG ’92: Proceedings of the 6th International Workshop on Distributed Al-
gorithms, pages 166–184, London, UK, 1992. Springer-Verlag.

[4] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. In Maurice Herlihy, editor, Proceedings of the 11th Annual ACM Symposium
on Principles of Distributed Computing (PODC’92), pages 147–158, Vancouver, BC, Canada,
1992. ACM Press.

[5] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, 1996.

[6] Soma Chaudhuri. Agreement is harder than consensus: set consensus problems in totally
asynchronous systems. In Proceedings of Principles of Distributed Computing 1990, 1990.

[7] C. Delporte-Gallet, R. Guerraoui H. Fauconnier, and B. Pochon. The perfectly-synchronised
round-based model of distributed computing (to appear). Information & Computation, 2007.

[8] Carole Delporte-Gallet, Hugues Fauconnier, and Felix C. Freiling. Revisiting failure detection
and consensus in omission failure environments. In ICTAC, pages 394–408, 2005.

[9] Danny Dolev, Roy Friedman, Idit Keidar, and Dahlia Malkhi. Brief announcement: Fail-
ure detectors in omission failure environments. In Symposium on Principles of Distributed
Computing, page 286, 1997.

[10] Milan Fort, Felix Freiling, Lucia Draque Penso, Zinaida Benenson, and Dogan Kesdogan.
Trustedpals: Secure multiparty computation implemented with smartcards. In ESORICS
’06: 11th European Symposium On Research In Computer Security, pages 34–48, Hamburg,
Germany, 2006. Springer-Verlag.

[11] Felix Freiling, Maurice Herlihy, and Lucia Draque Penso. Optimal randomized omission-
tolerant uniform consensus in message passing systems. In 9th International Conference on
Principles of Distributed Systems (OPODIS), December 2005.

[12] Vassos Hadzilacos. Ph.d. thesis, Harvard University, 1984. Technical report TR11-84.
[13] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. 4(3):382–401, July

1982.
[14] Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of distributed algo-

rithms. Journal of Algorithms, 11(3):374–419, 1990.

12



[15] Philippe Parvedy and Michel Raynal. Optimal early stopping uniform consensus in syn-
chronous systems with process omission failures. In SPAA ’04: Proceedings of the sixteenth
annual ACM symposium on Parallelism in algorithms and architectures, pages 302–310, New
York, NY, USA, 2004. ACM Press.

[16] K. J. Perry and S. Toueg. Distributed agreement in the presence of processor and communi-
cation faults. IEEE Trans. Softw. Eng., 12(3):477–482, 1986.

13



A Formal Proof

Theorem 2. If D is the weakest failure detector for Σ, then trans(D) is the weakest
transformed failure detector for trans(Σ).

Proof. If D is the weakest failure detector for Σ, then trans(D) is sufficient for trans(Σ)
(Theorem 1). Assume a transformed failure detector D′′ = trans(D′) is sufficient for
trans(Σ). Then, we know, that D′ is sufficient for Σ (Theorem 1)) and moreover, D′
is reducible to D (since D is the weakest failure detector for Σ). If the reduction algorithm
is TD′→D , then trans(TD′→D) using trans(D′) emulates the outputs of trans(D). Therefore,
D′′ = trans(D′) is reducible to trans(D).

Proposition 1. Sg.o. ⊆ trans(Sc.s.)

Proof. The proposition is equivalent to

(H,F) ∈ Sg.o. ⇒ (H,F) ∈ trans(Sc.s.)

From the definition of trans follows:

(H,F) ∈ Sg.o. ⇒ ∃(H ′,F ′) ∈ Sc.s. : ∀pi ∈ Π : H ′[i]/tnot(cc,F′,pi)
≤sa H[i]/tnot(cc+c,F,pi)

(1)

We will in the following construct a new history H ′ and a failure pattern F ′ from H and
F which satisfy equation (1):

(a) At first, we undo step 2 of the transformation and remove the variables, additional
states, and events of the relaying algorithm from H. This means, that every time a
relay-send or relay-receive event in H occurs, this event is substituted by an send/re-
ceive event of the underlying communication channel. We let the inserted events take
place at the time when the relay events have been completed (since a process may
take several steps to accomplish the relaying task). We call the intermediate history
we get after this H1.

(b) Then, we undo step 1 and remove the variables, additional states, and events of the
three way handshake algorithm from H1 (in the same way as above). We call this
intermediate history H2.

(c) After that, we construct F ′, such that ∀t : cc(F ′, t) = cc+c(F , t) ∧ omissive(F ′) = ∅.
To build H ′ from H2, we substitute every query on a failure detector trans(D) in H2

with a query on D in H ′ and remove all states and events for every process pi that
occur after time tnot(cc,F ′,pi).

14



H −→ H1 −→ H2 −→ H ′

(a): undo step 2 (b): undo step 1 (c): crash not
(the relaying) (the 3wh) cc+c processes

Figure 5: Construction of H ′

The schedule of the construction is illustrated in Figure 5. From the construction of H ′

and F ′ it is clear, that ∀pi ∈ Π : H ′[i]/tnot(cc,F′,pi)
≤sa H[i]/tnot(cc+c,F,pi)

. It remains to
show, that (H ′,F ′) ∈ Sc.s.. This means, that at most t processes crash in F ′ (Lemma 1),
H ′ is a history of A(Π) using D (Lemma 2), and all links in H ′ are reliable according to
F ′ (Lemma 3).

Lemma 1. At most t processes crash in F ′.

Proof. Follows immediately from (c).

Lemma 2. H ′ is a history of A(Π) using D.

Proof. All events and states are from A(Π), because all additional events and states have
been removed. If algorithm A makes use of a failure detector D, then trans(D)(F) = D(F ′)
(Since ∀t : cc(F ′, t) = cc+c(F , t)).

Lemma 3. All links in H ′ are reliable according to F ′.

Proof. We have to show the three properties of reliable links, namely: No Creation (Lemma
5), No Duplication (Lemma 6), and No Loss (Lemma 7).

To prove lemma 5, we first need to show the auxiliary lemma 4:

Lemma 4. Let ts be the time a send event from A(pi) to A(pj) in H2 occurs, tr be the time
of the corresponding receive event in H2, and tj := tnot(cc+c,F ,pj) and ti := tnot(cc+c,F ,pi).
Then:

ts ≥ ti ⇒ tr ≥ tj

Proof. The above lemma is equivalent to: tr < tj implies ts < ti. At first, we observe that
ts < tr and pi 6∈ C(ts) (because the receive event is executed at time ts). Assume tr < tj .
Since A(pj) receives the message, we can conclude:

tnot(reachable,F ,pj ,pi) > tr > ts (2)

15



Since the in H2 removed 3wh-algorithm has only allowed to 3wh-deliver messages after
having received a [3,m] message (lines 9-10 in Figure 3), which is only sent from a process
after having on his part received a [2,m] message (lines 7-8 ), we are sure that after the
3wh-send event, A(pi) was able to receive the [2,m] message from A(pj) and therefore:

tnot(reachable,F ,pi,pj) > ts (3)

From the definition of connected follows:

∃c ∈ correct(F), tnot(reachable,F ,c,pj) ≥ tj > tr > ts (4)
∃c′ ∈ correct(F), tnot(reachable,F ,pj ,c′) ≥ tj > tr > ts (5)

If we put all paths together, we have:

with (2) and (4) : ∃c ∈ correct(F), tnot(reachable,F ,c,pi) > ts (6)
with (3) and (5) : ∃c′ ∈ correct(F), tnot(reachable,F ,pi,c′) > ts (7)

Equation (6) and (7) imply tnot(connected,F ,pi) > ts and together with pi 6∈ C(ts), we conclude
that ti > ts.

Lemma 5. (No Creation in H ′.) For all messages m, if pj receives m from pi in H ′, then
pi sends m to pj in H ′.

Proof. We know, that there is no creation in H. In our construction, send events of the
same layer can only decrease in the local history of crashed processes in step (c) (after the
time of their crash). But since Lemma 4 shows that messages that are sent from a process
that is already disconnected in F (and therefore crashed in F ′) can only be received by
processes that are already disconnected too, the corresponding receive events also get lost
in H ′.

Lemma 6. (No Duplication in H ′.) For all messages m: pj receives m from pi at most
once.

Proof. In the 3wh-algorithm, no message is delivered more than once and in the relay-
algorithm, every message received is remembered in a variable deliveredi (lines 11-13 in
Figure 4).

Lemma 7. (No Loss in H ′ according to F ′.) For all messages m, if pi sends m to pj and
pj executes receive actions infinitely often, then pj receives m from pi.

Proof. In the removed relaying algorithm, after every relay-send event, the message m is
relayed by A(pi) to all other processes (lines 6-7 in Figure 4). If a cc+c process (in F)
receives such a relayed message, it checks in lines 11-12 whether it is the recipient and has

16



not yet delivered it (and relay-delivers m in this case). Otherwise, it propagates m further
to all other processes (lines 14-16).

Since pi is at the time of the in step (a) in H1 inserted send-event out-connected in F
(otherwise, pi would have already crashed in F ′), there is a path of directly-reachable cc+c
processes to a (totally) correct process in F . A correct process will receive m and relay
it (possibly indirectly) to A(pj), since pj is in-connected in F (because it takes infinitely
many steps in (H ′,F ′)).

The following lemma is used for the proof of proposition 2.

Lemma 8. Let (H ′
1,F ′1) be in trans((H1,F1)) and (H ′

2,F ′2) be in trans((H2,F2)). Then,
for all pi ∈ Π:

H ′
1[i]/tnot(cc+c,F′1,pi)

= H ′
2[i]/tnot(cc+c,F′2,pi)

⇒ H1[i]/tnot(cc,F1,pi)
= H2[i]/tnot(cc,F∈,pi)

Proof. Follows from the definition of trans and the fact, that tnot(cc,F ,pi) ≤ tnot(cc+c,Ftr,pi).

Proposition 2. Sc.s. ⊆ Σ

Proof. Assume (H,F) ∈ Sc.s.. We then build an new history H ′ from H and simulate all
links according to the specification of the three-way-handshake and the relay algorithm
such that (H ′,F) ∈ trans((H,F)) and (H ′,F) ∈ Sg.o. ⊆ trans(Σ) (F ∈ E t

c.s. implies that
F ∈ E t

g.o). This means, that there exists a (H ′′,F ′′) ∈ Σ, with (H ′,F) ∈ trans((H ′′,F ′′)).
Together with Lemma 8 and the fact, that Σ is cc restricted, we can conclude that (H,F) ∈
Σ.

17


