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Abstract

In a convolution model, we observe random variables whose distribution is the
convolution of some unknown density f and some known or partially known noise
density g. In this paper, we focus on statistical procedures, which are adaptive with
respect to the smoothness parameter τ of unknown density f , and also (in some
cases) to some unknown parameter of the noise density g.

In a first part, we assume that g is known and polynomially smooth. We pro-
vide goodness-of-fit procedures for the test H0 : f = f0, where the alternative H1

is expressed with respect to L2-norm (i.e. has the form ψ−2
n ‖f − f0‖2

2 ≥ C). Our
adaptive (w.r.t τ) procedure behaves differently according to whether f0 is polyno-
mially or exponentially smooth. A payment for adaptation is noted in both cases
and for computing this, we provide a non-uniform Berry-Esseen type theorem for
degenerate U -statistics. In the first case we prove that the payment for adaptation
is optimal (thus unavoidable).

In a second part, we study a wider framework: a semiparametric model, where g is
exponentially smooth and stable, and its self-similarity index s is unknown. In order
to ensure identifiability, we restrict our attention to polynomially smooth, Sobolev-
type densities f . In this context, we provide a consistent estimation procedure for
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s. This estimator is then plugged-into three different procedures: estimation of the
unknown density f , of the functional

∫

f2 and test of the hypothesis H0. These
procedures are adaptive with respect to both s and τ and attain the rates which
are known optimal for known values of s and τ . As a by-product, when the noise
is known and exponentially smooth our testing procedure is adaptive for testing
Sobolev-type densities.

Résumé

Dans un modèle de convolution, les observations sont des variables aléatoires réelles
dont la distribution est la convoluée entre une densité inconnue f et une densité de
bruit g supposée soit entièrement connue, soit connue seulement à paramètre près.
Nous étudions différentes procédures statistiques qui s’adaptent automatiquement
au paramètre de régularité τ de la densité inconnue f ainsi que (dans certains cas),
au paramètre inconnu de la densité du bruit.

Dans une première partie, nous supposons que g est connue et de régularité
polynomiale. Nous proposons un test d’adéquation de l’hypothèse H0 : f = f0

lorsque l’alternative H1 est exprimée à partir de la norme L2 (i.e. de la forme
ψ−2
n ‖f − f0‖2

2 ≥ C). Cette procédure est adaptative (par rapport à τ) et présente
différentes vitesses de test (ψn) en fonction du type de régularité de f0 (polynomiale
ou bien exponentielle). L’adaptativité induit une perte sur la vitesse de test, perte
qui est calculée grâce à un théorème de type Berry-Esseen non-uniforme pour des
U -statistiques dégénérées. Dans le cas d’une régularité polynomiale pour f , nous
prouvons que cette perte est inévitable et donc optimale.

Dans un second temps, nous nous placons dans le cadre plus large d’un modèle
semi-paramétrique, où g est la densité d’une loi stable (régularité de type expo-
nentiel) avec un indice d’auto-similarité s inconnu. Pour assurer l’identifiabilité du
modèle, la densité f est supposée appartenir à un espace de Sobolev (régularité poly-
nomiale). Dans ce cadre, nous proposons un estimateur consistant de s. Celui-ci est
ensuite injecté dans trois procédures différentes : l’estimation de f , de la fonction-
nelle

∫

f2 et le test de l’hypothèse H0. Ces procédures sont adaptatives par rapport
à s et à τ et atteignent les vitesses optimales du cas s et τ connus. Enfin, lorsque g
est connue et de régularité exponentielle, une conséquence de notre résultat est que
cette procédure de test est adaptative lorsque f0 appartient à un espace de Sobolev.

Key words: Adaptive nonparametric tests, convolution model, goodness-of-fit
tests, infinitely differentiable functions, partially known noise, quadratic functional
estimation, Sobolev classes, stable laws
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1 Introduction

Convolution model

Consider the convolution model where the observed sample {Yj}1≤j≤n comes
from the independent sum of independent and identically distributed (i.i.d.)
random variables Xj with unknown density f and Fourier transform Φ and
i.i.d. noise variables εj with known (maybe only up to a parameter) density g
and Fourier transform Φg

Yj = Xj + εj, 1 ≤ j ≤ n. (1)

The density of the observations is denoted by p and its Fourier transform Φp.
Note that we have p = f ∗ g where ∗ denotes the convolution product and
Φp = ΦΦg.

The underlying unknown density f is always supposed to belong to L1 ∩ L2.
We shall consider probability density functions belonging to the class

F (α, r, β, L) =
{

f : R → R+,
∫

f = 1,
1

2π

∫

|Φ (u)|2 |u|2β exp (2α|u|r) du ≤ L
}

,

(2)
for L a positive constant, α > 0, 0 ≤ r ≤ 2, β ≥ 0 and either r > 0 or β > 0.
Note that the case r = 0 corresponds to Sobolev densities whereas r > 0
corresponds to infinitely many differentiable (or supersmooth) densities.

We consider noise distributions whose Fourier transform does not vanish on
R: Φg(u) 6= 0, ∀ u ∈ R. Typically, nonparametric estimation in convolution
models gives rise to the distinction of two different behaviours for the noise
distribution. We alternatively shall consider (for some constant cg > 0),

polynomially smooth (or polynomial) noise

|Φg (u)| ∼ cg |u|−σ , |u| → ∞, σ > 1; (3)

exponentially smooth (or supersmooth or exponential) stable noise

|Φg (u)| = exp (−γ |u|s) , |u| → ∞, γ, s > 0. (4)

In this second case, the parameter s is called the self-similarity index of the
noise density and we shall consider that it is unknown.

Convolution models have been widely studied over the past two decades. We
will be interested here both in estimation of the unknown density f and in
testing the hypothesis H0 : f = f0, with a particular interest in adaptive
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procedures. Our first purpose is to provide goodness-of-fit testing procedures
on f , for the test of the hypothesis H0 : f = f0, which are adaptive with respect
to the unknown smoothness parameter of f . The second one is to study the
behaviour of different procedures (such as estimation of f , estimation of

∫

f 2

and goodness-of-fit test) in a setup where self-similarity index s is unknown.

Adaptive procedures in the convolution model

Concerning estimation, the asymptotically minimax setup in the context of
pointwise or Lp-norms and in the case of entirely known noise density g is
the most studied one. Major results in this direction prove that the smoother
the error density, the slower the optimal rates of convergence (see [6], [9],
[2], [10] concerning polynomial noise and [21], [7], [5] for exponential noise).
Adaptive estimation procedures were considered first by [21] and then by [11].
They constructed wavelets estimators which do not depend on smoothness
parameter of the density f to be estimated. Adaptive kernel estimators were
given in [5]. A different adaptive approach is used in [7] relying on penalized
contrast estimators.

Nonparametric goodness-of-fit testing has extensively been studied in the con-
text of direct observations (namely a sample distributed from the density f
to be tested), but also for regression or in the Gaussian white noise model.
We refer to [18], [16] for an overview on the subject. The convolution model
provides an interesting setup where observations may come from a signal ob-
served through some noise.

Nonparametric goodness-of-fit tests in convolution models were studied in [15]
and in [3]. The approach used in [3] is based on a minimax point of view com-
bined with estimation of the quadratic functional

∫

f 2. Assuming the smooth-
ness parameter of f to be known, the authors of [15] define a version of the
Bickel-Rosenblatt test statistic and study its asymptotic distribution under
the null hypothesis and under fixed and local alternatives, while [3] provides a
different goodness-of-fit testing procedure attaining the minimax rate of test-
ing in each of the three following setups: Sobolev densities and polynomial
noise, supersmooth densities and polynomial noise, Sobolev densities and ex-
ponential noise. The case of supersmooth densities and exponential noise is
also studied but the optimality of the procedure is not established in the case
r > s.

Our first goal here is to provide adaptive versions of these last procedures with
respect to the parameters (α, r, β). We restrict our attention to testing prob-
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lems where alternatives are expressed with respect to L2-norm. Namely, the
alternative has the form H1 : ψ−2

n ‖f − f0‖2
2 ≥ C. In such a case, the problem

relates with asymptotically minimax estimation of
∫

f 2.

Our second goal is to deal with the case of not entirely known noise distribu-
tion. This is a crucial issue as, assuming this noise distribution to be entirely
known is not realistic in many situations. However, in general, the noise den-
sity g has to be known for the model to be identifiable. Nevertheless, when the
noise density is exponentially smooth and the unknown density is restricted
to be less smooth than the noise, semiparametric models are identifiable and
they may be considered. The case of a Gaussian noise with unknown variance
γ and unknown density without Gaussian component has first been considered
in [19]. She proposes an estimator of the parameter γ which is then plugged in
an estimator of the unknown density. This work is generalized in [4] for expo-
nentially smooth noise with unknown scale parameter γ and unknown densities
belonging either to Sobolev classes, or to classes of supersmooth densities with
parameter r, r < s. Minimax rates of convergence are exhibited. In this con-
text, the unknown parameter γ acts as a real nuisance parameter as the rates
of convergence for estimating the unknown density are slower compared to
the case of known scale, those rates being nonetheless optimal in a minimax
sense. Another attempt to remove knowledge on the noise density appears in
[20] where the author studies a deconvolution estimator associated to a proce-
dure for selecting the error density between the Normal supersmooth density
and the Laplace polynomially smooth density (both with fixed parameter val-
ues).

In the second part of our work, we will be interested in estimation procedures
on f , adaptive both with respect to the smoothness parameter of f and to an
unknown parameter of the noise density. More precisely, in the specific setup
of Sobolev densities and exponential noise with symmetric stable distribution,
we will consider the case of unknown self-similarity index s. In this context,
we first propose an estimator of the self-similarity index s, which, plugged
into kernel procedures, provides estimators of the unknown density f with the
same optimal rate of convergence as in the case of entirely known noise density.
Using the same techniques, we also construct an estimator of the quadratic
functional

∫

f 2 (with optimal rate of convergence) and L2 goodness-of-fit test
statistic. Note that this work is very different from [4] as the self similarity
index s plays a different role from the scale parameter γ previously studied.
In particular, the range of applications of those results is entirely new.
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Notation, definitions, assumptions

In the sequel, ‖·‖2 denotes the L2-norm, M̄ is the complex conjugate of M and
< M,N >=

∫

M(x)N̄ (x)dx is the scalar product of complex-valued functions
in L2(R). Moreover, probability and expectation with respect to the distribu-
tion of Y1, . . . , Yn induced by the unknown density f will be denoted by Pf

and Ef .

We denote more generally by τ = (α, r, β) the smoothness parameter of the
unknown density f and by F(τ, L) the corresponding class. As the density f is
unknown, the a priori knowledge of its smoothness parameter τ could appear
unrealistic. Thus, we assume that τ belongs to a closed subset T , included in
(0,+∞)× (0, 2]× (0,+∞). For a given density f0 in the class F(τ0), we want
to test the hypothesis

H0 : f = f0

from observations Y1, . . . , Yn given by (1). We extend the results of [3] by
giving the family of sequences Ψn = {ψn,τ}τ∈T which separates (with respect
to L2-norm) the null hypothesis from a larger alternative

H1(C,Ψn) : f ∈ ∪τ∈T {f ∈ F(τ, L) and ψ−2
n,τ‖f − f0‖2

2 ≥ C}.

We recall that the usual procedure is to construct, for any 0 < ǫ < 1, a test
statistic ∆⋆

n (an arbitrary function, with values in {0, 1}, which is measurable
with respect to Y1, . . . , Yn and such that we accept H0 if ∆⋆

n = 0 and reject it
otherwise) for which there exists some C0 > 0 such that

lim sup
n→∞

{

P0[∆
⋆
n = 1] + sup

f∈H1(C,Ψn)
Pf [∆

⋆
n = 0]

}

≤ ǫ, (5)

holds for all C > C0. This part is called the upper bound of the testing rate.
Then, prove the minimax optimality of this procedure, i.e. the lower bound

lim inf
n→∞

inf
∆n

{

P0[∆n = 1] + sup
f∈H1(C,Ψn)

Pf [∆n = 0]

}

≥ ǫ, (6)

for some C0 > 0 and for all 0 < C < C0, where the infimum is taken over all
test statistics ∆n.

Let us first remark that as we use noisy observations (and unlike what happens
with direct observations), this test cannot be reduced to testing uniformity of
the distribution density of the observed sample (i.e. f0 = 1 with support on the
finite interval [0; 1]). As a consequence, additional assumptions used in [3] on
the tail behaviour of f0 (ensuring it does not vanish arbitrarily fast) are needed
to obtain the optimality result of the testing procedure in the case of Sobolev
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density (r = 0) observed with polynomial noise ((T) and (P)), respectively
with exponential noise ((T) and (E)). We recall these assumptions here for
reader’s convenience.

Assumption (T)

∃c0 > 0, ∀x ∈ R, f0(x) ≥
c0

1 + |x|2 .

Moreover, we also need to control the derivatives of known Fourier transform
Φg when establishing optimality results.

Assumption (P) (Polynomial noise) If the noise satisfies (3), then assume
that Φg is three times continuously differentiable and there exist A1, A2 such
that

|(Φg)′(u)| ≤ A1

|u|σ+1
and |(Φg)

′′

(u)| ≤ A2

|u|σ+2
, |u| → ∞.

Assumption (E) (Exponential noise) If the noise satisfies (4), then assume
that Φg is continuously differentiable and there exists some constants C > 0
and A3 ∈ R such that

|(Φg)′(u)| ≤ C|u|A3 exp(−γ|u|s), |u| → ∞.

Remark 1 Similar results may be obtained when we assume the existence of
some p ≥ 1 such that f0(x) is bounded from below by c0(1 + |x|p)−2 for large
enough x. In such a case, the Fourier transform Φg of the noise density is
assumed to be p times continuously differentiable, with derivatives up to order
p satisfying the same kind of bounds as in Assumption (P), when the noise is
polynomial, respectively in Assumption (E), when the noise is exponential.

Roadmap

Section 2 deals with the case of (known) polynomial noise. We provide a
goodness-of-fit testing procedure for the test H0 : f = f0, in two different
cases: the density f0 to be tested is either ordinary smooth (r0 = 0) or super-
smooth (r0 > 0). The procedures are adaptive with respect to the smoothness
parameter (α, r, β) of f . The proof of the upper bounds for the testing rate
relies mainly on a Berry-Esseen inequality for degenerate U -statistics of order
2, postponed to Section 4. In some cases, a loss for adaptation is noted with
respect to known testing rates for fixed known parameters. When the loss is
of order log log n to some power, we prove that this payment is unavoidable.

In Section 3, we consider exponential noise of symmetric stable law with un-
known self-similarity index s. In order to ensure identifiability, we restrict our
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attention to Sobolev classes of densities f . The first step (Section 3.1) is to
provide a consistent estimation procedure for the self-similarity index. Then
(Section 3.2) using a plug-in, we introduce a new kernel estimator of f where
both the bandwidth and the kernel are data dependent. We also introduce
an estimator of the quadratic functional

∫

f 2 with sample dependent band-
width and kernel. We prove that these two procedures attain the same rates of
convergence as in the case of entirely known noise distribution, and are thus
asymptotically optimal in the minimax sense. We also present a goodness-of-
fit test on f in this setup. We prove that the testing rate is the same as in the
case of entirely known noise distribution and thus asymptotically optimal in
the minimax sense. Proofs are postponed to Section 5.

2 Polynomially smooth noise

In this section, we shall assume that the noise density g is polynomial (3).
The unknown density f belongs to the class F(α, r, β, L). We are interested in
adaptive, with respect to the parameter τ = (α, r, β), goodness-of-fit testing
procedures. We assume that this unknown parameter belongs to the following
set

T = {τ = (α, r, β); τ ∈ [α; +∞) × [r; r̄] × [β; β̄]},
where α > 0, 0 ≤ r ≤ r̄ ≤ 2, 0 ≤ β ≤ β̄ and either r > 0 and α ∈ [α, α] or
both r = r̄ = 0 and β > 0.

Let us introduce some notation. We consider a preliminary kernel J , with
Fourier transform ΦJ , defined by

∀x ∈ R, J(x) =
sin(x)

πx
, ∀u ∈ R, ΦJ (u) = 1|u|≤1,

where 1A is the indicator function of the set A. For any bandwidth h = hn → 0
as n tends to infinity, we define the rescaled kernel Jh by

∀x ∈ R, Jh(x) = h−1J(x/h) and ∀u ∈ R, ΦJh(u) = ΦJ(hu) = 1|u|≤1/h.

Now, the deconvolution kernel Kh with bandwidth h is defined via its Fourier
transform ΦKh as

ΦKh(u) = (Φg(u))−1 ΦJ (uh) = (Φg(u))−1 ΦJh(u), ∀u ∈ R. (7)

In Section 3.2, we will consider a modification of this kernel to take into
account the case of not entirely known noise density g.

Next, the quadratic functional
∫

(f − f0)
2 is estimated by the statistic Tn,h
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Tn,h =
2

n(n− 1)

∑∑

1≤k<j≤n

< Kh(· − Yk) − f0, Kh(· − Yj) − f0 > . (8)

Note that Tn,h may not be positive, but its expected value is.

In order to construct a testing procedure which is adaptive with respect to the
parameter τ we introduce a sequence of finite regular grids over the set T of
unknown parameters: TN = {τi; 1 ≤ i ≤ N}. For each grid point τi we choose
a testing threshold t2n,i and a bandwidth hin giving a test statistic Tn,hi

n
.

The test rejects the null hypothesis as soon as at least one of the single tests
based on the parameter τi is rejected.

∆⋆
n =











1 if sup1≤i≤N |Tn,hi
n
|t−2
n,i > C⋆

0 otherwise,
(9)

for some constant C⋆ > 0 and finite sequences of bandwidths {hin}1≤i≤N and
thresholds {t2n,i}1≤i≤N .

We note that our asymptotic results work for large enough constant C⋆. In
practice we may choose it by Monte-Carlo simulation under the null hypoth-
esis, for known f0, such that we control the first-type error of the test and
bound it from above, e.g. by ǫ/2.

Typically, the structure of the grid accounts for two different phenomena. A
first part of the points is dedicated to the adaptation with respect to β in case
r̄ = r = 0, whereas the rest of the points is used to adapt the procedure with
respect to r (whatever the value of β).

In the two next theorems, we fix σ > 1. We note that the testing rates are
essentially different according to the two different cases where f0 belongs to
a Sobolev class (r0 = 0, α0 ≥ α and we assume β0 = β̄) and where f0 is a
supersmooth function (α0 ∈ [α, α], r0 > 0 and β0 ∈ [β, β̄] and then we focus
on r0 = r̄ and α0 = α). Note that in the first case, the alternative contains
functions f which are smoother (r > 0) than the null hypothesis f0.

When f0 belongs to Sobolev class F(α0, 0, β̄, L), the grid is defined as follows.
Let N and choose TN = {τi; 1 ≤ i ≤ N + 1} such that



























∀1 ≤ i ≤ N, τi = (0; 0; βi) and β1 = β < β2 < . . . < βN = β̄,

∀1 ≤ i ≤ N − 1, βi+1 − βi = (β̄ − β)/(N − 1),

and τN+1 = (α; r̄; 0)
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In this case, the first N points are dedicated to the adaptation with respect to
β when r̄ = r = 0, whereas the last point τN+1 is used to adapt the procedure
with respect to r (whatever the value of β).

Theorem 1 Assume f0 ∈ F(α0, 0, β̄, L). The test statistic ∆⋆
n given by (9)

with parameters

N = ⌈log n⌉; ∀1 ≤ i ≤ N :



















hin =
(

n√
log logn

)−2/(4βi+4σ+1)

t2n,i =
(

n√
log logn

)−4βi/(4βi+4σ+1) ,

hN+1
n = n−2/(4β̄+4σ+1); t2n,N+1 = n−4β̄/(4β̄+4σ+1),

and any large enough positive constant C⋆, satisfies (5) for any ǫ ∈ (0, 1), with
testing rate Ψn = {ψn,τ}τ∈T given by

ψn,τ =

(

n√
log logn

)−2β/(4β+4σ+1)

1r=0+n
−2β̄/(4β̄+4σ+1)1r>0, ∀ τ = (α, r, β) ∈ T .

Moreover, if f0 ∈ F(α0, 0, β̄, cL) for some 0 < c < 1 and if Assumptions (T)
and (P) hold, then this testing rate is adaptive minimax over the family of
classes {F(τ, L), τ ∈ [α,∞) × {0} × [β, β̄]} (i.e. (6) holds).

We note that our testing procedure attains the polynomial rate n−2β̄/(4β̄+4σ+1)

over the union of all classes containing functions smoother than f0. Note
moreover that this rate is known to be a minimax testing rate over the class
F(0, 0, β̄, L) by results in [3]. Therefore we prove that the loss of some power
of log logn with respect to the minimax rate is unavoidable. A loss appears
when the alternative contains classes of functions less smooth than f0.

The proof that our adaptive procedure attains the minimax rate relies on the
Berry-Esseen inequality presented in Section 4.

When f0 belongs to class F(α, r̄, β0, L) of infinitely many differentiable func-
tions, the grid is defined as follows. Let N1, N2 and choose TN = {τi; 1 ≤ i ≤
N = N1 +N2} such that







































∀1 ≤ i ≤ N1, τi = (0; 0; βi) and β1 = β < β2 < . . . < βN1 = β̄,

∀1 ≤ i ≤ N1 − 1, βi+1 − βi = (β̄ − β)/(N1 − 1),

and ∀1 ≤ i ≤ N2, τN1+i = (α; ri; β0) and r1 = r < r2 < . . . < rN2 = r̄,

∀1 ≤ i ≤ N2 − 1, ri+1 − ri = (r̄ − r)/(N2 − 1).
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In this case, the first N1 points are used for adaptation with respect to β in
case r̄ = r = 0, whereas the last N2 points are used to adapt the procedure
with respect to r (whatever the value of β).

Theorem 2 Assume f0 ∈ F(α, r̄, β0, L) for some β0 ∈ [β, β̄]. The test statis-
tic ∆⋆

n given by (9) with C⋆ large enough and

N1 = ⌈log n⌉; ∀1 ≤ i ≤ N1 :



















hin =
(

n√
log logn

)−2/(4βi+4σ+1)

t2n,i =
(

n√
log logn

)−4βi/(4βi+4σ+1) ,

N2 = ⌈log logn/(r̄−r)⌉; ∀1 ≤ i ≤ N2 :











hN1+i
n =

(

logn
2c

)−1/ri
, c < α exp

(

−1
r

)

t2n,N1+i = (logn)(4σ+1)/(2ri)

n

√
log log log n

,

satisfies (5), with testing rate Ψn = {ψn,τ}τ∈T given by

ψn,τ =

(

n√
log logn

)−2β/(4β+4σ+1)

1r=0+
(log n)(4σ+1)/(4r)

√
n

(log log logn)1/41r∈[r,r̄].

We note that if Assumptions (T) and (P) hold for f0 in F(α, r̄, β0, L), the
same optimality proof as in Theorem 1 gives us that the loss of the log log n to
some power factor is optimal over alternatives in

⋃

α∈[α,α],β∈[β,β̄] F(α, 0, β, L).

A loss of a (log log logn)1/4 factor appears over alternatives of supersmooth
densities (less smooth than f0) with respect to the minimax rate in [3]. We do
not prove that this loss is optimal.

3 Exponentially smooth noise in a semiparametric context

In this section, we assume the noise density g to be exponentially smooth
and stable (4), for some unknown s ∈ [s; s̄] and fixed (known) bounds
0 < s < s̄ ≤ 2. More precisely, we suppose that the noise has symmetric
stable law having Fourier transform

Assumption (S) Φg(u) = exp(−|u|s) where s ∈ [s; s̄].

The results of Section 3.1 are valid under the more general assumption (4)
with known scale parameter γ, which enables us to select the smoothness
parameter among the wider class of not necessarily symmetric stable densities
with known scale parameter. Nevertheless, the exact form of Fourier transform
Φg is needed for deconvolution purposes (see Section 3.2).
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For the model to be identifiable, we must assume that f is not too smooth,
i.e. its Fourier transform does not decay asymptotically faster than a known
polynomial of order β ′.

Assumption (A) There exists some known A > 0, such that |Φ(u)| ≥ A|u|−β′

for large enough |u|.

The notation qβ′ is used for the function u 7→ A|u|−β′

. Under assumptions (S)
and (A) the model is identifiable. Indeed, considering the Fourier transforms,
we get for all real number u

log |Φp(u)| = log |Φ(u)| − |u|s.

Now assume that we have the equality between two Fourier transform for the
observations Φp

1 = Φp
2, where Φp

1(u) = Φ1(u)e
−|u|s1 and Φp

2(u) = Φ2(u)e
−|u|s2 .

Without loss of generality, we may assume s1 ≤ s2. Then we get

|u|−s1 log |Φ1(u)| − 1 = |u|−s1 log |Φ2(u)| − |u|s2−s1

and taking the limit when |u| tends to infinity implies (with assumption (A))
that s1 = s2 and then Φ1 = Φ2 which proves the identifiability of the model.

In this context, Pf,s and Ef,s respectively denote probability and expectation
with respect to the model under parameters (f, s).

3.1 Estimation of the self-similarity index s

We first present a selection procedure ŝn which asymptotically recovers the
true value of the smoothness parameter s, with fast rate of convergence. We
use a discrete grid {s1, . . . , sN}, with a number N of points growing to infinity.

The asymptotic behavior of the Fourier transform Φp of the observations is
used to select the smoothness index s. More precisely, we have for any large
enough |u|

A|u|−β′

exp(−|u|s) ≤ |Φp(u)| ≤ exp(−|u|s),
namely, the function |Φp| asymptotically belongs to the pipe [qβ′(u)e−|u|s; e−|u|s].
Let us now consider a discrete grid 0 < s = s1 < s2 < . . . < sN = s̄ ≤ 2
and denote Φ[k](u) = e−|u|sk . These families of functions {Φ[k]}1≤k≤N and
{qβ′Φ[k]}1≤k≤N form an asymptotically decreasing family as there exists some
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positive real number u1 such that for all real u with |u| ≥ u1, we have

Φ[1](u) ≥ qβ′(u)Φ[1](u) ≥ Φ[2](u) ≥ · · · ≥ Φ[N ](u) ≥ qβ′(u)Φ[N ](u). (10)

If the size of the grid is sufficiently small, the modulus of the Fourier transform
Φp will asymptotically belong to one of the pipes [qβ′Φ[k]; Φ[k]]. Our estimation
procedure uses the empirical estimator

Φ̂p
n(u) =

1

n

n
∑

j=1

exp(−iuYj), ∀u ∈ R,

of the Fourier transform Φp at some point un which tends to infinity with
n. The procedure selects the smoothness parameter among {s1, . . . , sN} by
choosing the pipe [qβ′(un)Φ

[k](un); Φ
[k](un)] closest to the function |Φ̂p

n(un)|.
More precisely

ŝn =







































sk if 1
2

{

qβ′Φ[k] + Φ[k+1]
}

(un) ≤ |Φ̂p
n(un)| < 1

2

{

qβ′Φ[k−1] + Φ[k]
}

(un)

and 2 ≤ k ≤ N − 1,

s1 if |Φ̂p
n(un)| ≥ 1

2

{

qβ′Φ[1] + Φ[2]
}

(un),

sN if |Φ̂p
n(un)| < 1

2

{

qβ′Φ[N−1] + Φ[N ]
}

(un),

(11)
where {un}n≥0 is a sequence of positive real numbers growing to infinity and
to be chosen later. See Figure 1 for an illustration of this procedure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

qβ′Φ[k−1]

Φ[k]

qβ′Φ[k]

Φ[k+1]



























sk

Figure 1. Estimation procedure for s. When |Φ̂p
n(un)| lies in the grey region, we

choose ŝn = sk.
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This estimation procedure is well-defined for large enough n as for any 2 ≤
k ≤ N − 1, we have {qβ′Φ[k] + Φ[k+1]}(un) ≤ {qβ′Φ[k−1] + Φ[k]}(un)

This procedure is proved to be consistent, with an exponential rate of conver-
gence, in the following proposition.

Proposition 1 Under assumptions (S) and (A), consider the estimation pro-
cedure given by (11) where

un =

(

log n

2
− 2β ′ + as̄

2s̄
log logn

)1/s̄

,

for some fixed a > 1 and the equidistant grid s = s1 < s2 < . . . < sN = s̄ is
chosen as

|sk+1 − sk| = dn = s̄(log n)−1(log log n)−1 ;N − 1 = (s̄− s)/dn.

Then, ŝn is strongly consistent, i.e.

lim
n→∞

ŝn = s ; Pf,s − almost surely.

Moreover, for each number of observations n, denote by sn(s) the unique point
sk on the grid such that sk ≤ s < sk+1. We have

Pf,s(ŝn 6= sn(s)) ≤ exp

(

−A
2

4
(logn)a(1 + o(1))

)

,

where A is defined in Assumption (A) and a > 1 depends on the choice of un.

Remark 2 The result remains valid for any sequence dn satisfying

dnu
s̄
n log un ≤ 1 and log(1/dn) = o((logn)a).

3.2 Adaptive estimation and tests

For the rest of this section, we shall assume that the unknown density f belongs
to some Sobolev class F(0, 0, β, L) where β > 0 is the smoothness parameter
and L is a positive constant. We assume that the unknown parameter β belongs
to some known interval [β, β̄].

We now plug the preliminary estimator of s in the usual estimation and testing
procedures.

Let us introduce the kernel deconvolution estimator K̂n built on the prelimi-
nary estimation of s and defined by its Fourier transform ΦK̂n ,
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ΦK̂n(u)= exp







(

|u|
ĥn

)ŝn






1|u|≤1, (12)

where ĥn =

(

logn

2
− β̄ − ŝn + 1/2

ŝn
log log n

)−1/ŝn

. (13)

Note that both the bandwidth sequence ĥn and the kernel K̂n are random and
depend on observations Y1, . . . , Yn. Now, the estimator of f is given by

f̂n(x) =
1

nĥn

n
∑

j=1

K̂n

(

Yj − x

ĥn

)

. (14)

This estimation procedure is consistent and adaptively achieves the minimax
rate of convergence when considering unknown densities f in the union of
Sobolev balls F(0, 0, β, L) with β ∈ [β, β̄] ⊂ (1/2; +∞) and unknown smooth-
ness parameter s ∈ [s; s̄].

Note that when a function belongs to F(0, 0, β, L) and assumption (A) is
fulfilled, we necessarily have β ′ > β + 1/2.

Corollary 1 Under assumptions (S) and (A), for any β̄ > β > 1/2, the
estimation procedure given by (14) which uses estimator ŝn defined by (11)
with parameter values: un given by Proposition 1 with a > s̄/s,

dn = min
{

(logn)−(β̄−1/2)/s, s̄(logn log log n)−1
}

,

satisfies, for any real number x,

lim sup
n→∞

sup
s∈[s;s̄]

sup
β∈[β,β̄]

sup
f∈F(0,0,β,L)

(log n)(2β−1)/s
Ef,s|f̂n(x) − f(x)|2 <∞.

Moreover, this rate of convergence is asymptotically adaptive optimal.

Remark 3 This result is obtained by using that, with high probability, the
estimator ŝn is equal to the point sk on the grid such that sk ≤ s < sk+1

(see Proposition 1). Then, using the deconvolution kernel built on sk is as
good as using the true value s, as soon as the difference |sk − s| is sufficiently
small (which is ensured by the size of the grid). Note that the fact that we
underestimate s by using sk ≤ s is rather important as deconvolution with
overestimated s would lead to unbounded risk.

Note that the optimality of this procedure is a direct consequence of a result
by [8] where he considers the convolution model for circular data with β and s
fixed and known. Therefore we may say that there is no loss due to adaptation
neither with respect to s or β.

Using the same kernel estimator (12) and the same random bandwidth (13),
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we define

T̂n =
2

n(n− 1)

∑∑

1≤k<j≤n

<
1

ĥn
K̂n

(

· − Yk

ĥn

)

,
1

ĥn
K̂n

(

· − Yj

ĥn

)

> . (15)

Corollary 2 Under assumptions (S) and (A), for any β̄ > β > 0, the esti-
mation procedure given by (15) which uses estimator ŝn defined by (11) with
parameter values: un given by Proposition 1 with a > s̄/s,

dn = min
{

(logn)−2β̄/s, s̄(log n log log n)−1
}

,

satisfies,

lim sup
n→∞

sup
s∈[s;s̄]

sup
β∈[β,β̄]

sup
f∈F(0,0,β,L)

(logn)2β/s

{

Ef,s

∣

∣

∣

∣

T̂n −
∫

f 2

∣

∣

∣

∣

2
}1/2

<∞.

Moreover, under additional Assumption (E), this rate of convergence is asymp-
totically adaptive optimal.

The rate of convergence of this procedure is the same as in the case of known
self-similarity index s and known smoothness parameter β. It is thus asymp-
totically adaptive optimal according to results obtained by [3].

Let us now define, for any f0 ∈ F(0, 0, β̄, L),

T̂ 0
n =

2

n(n− 1)

∑∑

1≤k<j≤n

<
1

ĥn
K̂n

(

· − Yk

ĥn

)

−f0 ,
1

ĥn
K̂n

(

· − Yj

ĥn

)

−f0 > . (16)

This statistic is used for goodness-of-fit testing of the hypothesis

H0 : f = f0

versus H1(C,Ψn) : f ∈ ∪β∈[β,β̄]{f ∈ F(0, 0, β, L) and ψ−2
n,β‖f − f0‖2

2 ≥ C}.

The test is constructed as usual

∆⋆
n =











1 if |T̂ 0
n |t̂−2

n > C⋆

0 otherwise,
(17)

for some constant C⋆ > 0 and a random threshold t̂2n to be specified.

Corollary 3 Under assumptions (S) and (A), for any 0 < β < β̄, any L > 0
and for any f0 ∈ F(0, 0, β̄, L), consider the testing procedure given by (17)
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which uses the test statistic (16) with estimator ŝn defined by (11) with pa-
rameter values: un given by Proposition 1 with a > 1,

dn = min
{

(log n)−β̄/s, s̄(logn log logn)−1
}

,

with random threshold and (slightly modified) random bandwidth

t̂2n =

(

log n

2

)−2β̄/ŝn

; ĥn =

(

log n

2
− 2β̄

ŝn
log log n

)−1/ŝn

and any large enough positive constant C⋆. This testing procedure satisfies (5)
for any ǫ ∈ (0, 1) with testing rate

Ψn = {ψn,β}β∈[β,β̄] given by ψn,β =

(

logn

2

)−β/s

.

Moreover, if f0 ∈ F(0, 0, β̄, cL) for some 0 < c < 1 and if Assumptions (T)
and (E) hold, then this testing rate is asymptotically adaptive optimal over
the family of classes {F(0, 0, β, L), β ∈ [β; β̄]} and for any s ∈ [s; s̄] (i.e. (6)
holds).

Adaptive optimality (namely (6)) of this testing procedure directly follows
from [3] as there is no loss due to adaptation to β nor to s. Note also that
the case of known s and adaptation only with respect to β is included in our
results and is entirely new.

4 Auxiliary result: Berry-Esseen inequality for degenerate U-statistics
of order 2

This section is dedicated to the statement of a non-uniform Berry-Esseen type
theorem for degenerate U -statistics. It draws its inspiration from [13] which
provides a central limit theorem for degenerate U -statistics. Given a sample
Y1, . . . , Yn of i.i.d. random variables, we shall consider U -statistics of the form

Un =
∑∑

1≤i<j≤n

H(Yi, Yj),

where H is a symmetric function. We may assume, without loss of generality,
that E{H(Y1, Y2)} = 0 and thus Un is centered. We shall focus on degenerate
U -statistics, namely

E{H(Y1, Y2)|Y1} = 0 , almost surely.

Limit theorems for degenerate U -statistics when H is fixed (independent of
the sample size n) are well-known and can be found in any monograph on the
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subject (see for instance [17]). In that case, the limit distribution is a linear
combination of independent and centered χ2(1) (chi-square with one degree of
freedom) distributions. However, as noticed in [13], a normal distribution may
result in some cases where H depends on n. In such a context, [13] provides a
central limit theorem. But this result is not enough for our purpose (namely,
optimality in Theorem 1). Indeed, we need to control the convergence to zero
of the difference between the cumulative distribution function (cdf) of our
U -statistic, and the cdf of the Gaussian distribution. Such a result may be
derived using classical Martingale methods.

In the rest of this section, n is fixed. Denote by Fi the σ-field generated by
the random variables {Y1, . . . , Yi}. Define

v2
n = E(U2

n) ; Zi =
1

vn

i−1
∑

j=1

H(Yi, Yj), 2 ≤ i ≤ n

and note that as the U -statistic is degenerate, we have E(Zi|Y1, . . . , Yi−1) = 0.
Thus,

Sk =
k
∑

i=2

Zi, 2 ≤ k ≤ n,

is a centered Martingale (with respect to the filtration {Fk}k≥2) and Sn =
v−1
n Un. We use a non-uniform Berry-Esseen type theorem for Martingales pro-

vided by [14], Theorem 3.9. Denote by φ the cdf of the standard Normal
distribution and introduce the conditional variance of the increments Zj’s,

V 2
n =

n
∑

i=2

E(Z2
i |Fi−1) =

1

v2
n

n
∑

i=2

E















i−1
∑

j=1

H(Yi, Yj)





2
∣

∣

∣

∣

Fi−1











.

Theorem 3 Fix 0 < δ ≤ 1 and define

Ln =
n
∑

i=2

E|Zi|2+2δ + E|V 2
n − 1|1+δ.

There exists a positive constant C (depending only on δ) such that for any
0 < ǫ < 1/2 and any real x

|P(Un ≤ x) − φ(x/vn)| ≤ 16ǫ1/2 exp

(

− x2

4v2
n

)

+
C

ǫ1+δ
Ln.

5 Proofs

We use C to denote an absolute constant which values may change along the
lines.
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Proof of Theorem 1 (Upper bound). Let us give the sketch of proof
concerning the upper-bound of the test. The statistic Tn,hi will be abbreviated
by Tn,i. We first need to control the first-type error of the test.

P0(∆
⋆
n = 1) = P0(∃i ∈ {1, . . . , N + 1} such that |Tn,i| > C⋆t2n,i)

≤
N+1
∑

i=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i)).

The proof relies on the two following lemmas.

Lemma 1 For any large enough C⋆ > 0, we have

N
∑

i=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i)) = o(1).

Lemma 2 For large enough C⋆, there is some ǫ ∈ (0, 1), such that

P0(|Tn,N+1 − E0(Tn,N+1)| > C⋆t2n,N+1 − E0(Tn,N+1)) ≤ ǫ.

Lemma 1 relies on the Berry-Esseen type theorem (Theorem 3) presented in
Section 4. Its proof is postponed to the very end of the present proof. Proof
of Lemma 2 is easy and omitted. Note for the referee: omitted proofs appear
in the appendix.

Thus, the first type error term is as small as we need, as soon as we choose a
large enough constant C⋆ > 0 in (9). We now focus on the second-type error
of the test. We write

sup
τ∈T

sup
f∈F(τ,L)

Pf(∆
⋆
n = 0)

≤ 1r>0 sup
r∈[r;r̄],α≥α,β∈[β,β̄]

sup
f∈F(τ,L)

‖f−f0‖2
2≥Cψ2

n,τ

Pf(|Tn,N+1| ≤ C⋆t2n,N+1)

+ 1r=r̄=0 sup
α≥α,β∈[β;β̄]

sup
f∈F(α,0,β,L)

‖f−f0‖2
2≥Cψ2

n,(α,0,β)

Pf (∀1 ≤ i ≤ N, |Tn,i| ≤ C⋆t2n,i).

Note that when the function f in the alternative is supersmooth (r > 0), we
only need the last test (with index N+1), whereas when it is ordinary smooth
(r = r̄ = 0), we use the family of tests with indexes i ≤ N . In this second
case, we use in fact only the test based on parameter βf defined as the smallest
point on the grid larger than β (see the proof of Lemma 3 below).
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Lemma 3 We have

sup
α≥α

sup
β∈[β;β̄]

sup
f∈F(α,0,β,L)

‖f−f0‖2
2≥Cψ2

n,(α,0,β)

Pf(∀1 ≤ i ≤ N, |Tn,i| ≤ C⋆t2n,i) = o(1).

Lemma 4 Fix r > 0, for any α ≥ α, r ∈ [r; r̄], β ∈ [β; β̄]. For any ǫ ∈ (0; 1),
there exists some large enough C0 such that for any C > C0 and any f ∈
F(α, r, β, L) such that ‖f − f0‖2

2 ≥ Cψn,(α,r,β), we have

Pf(|Tn,N+1| ≤ C⋆t2n,N+1) ≤ ǫ.

The proof of Lemma 3 (resp. 4) is postponed (resp. omitted) to the very end
of the present proof. Thus, the second type error of the test converges to zero.
This ends the proof of (5).

We now present the proofs of the lemmas.

Proof of Lemma 1. Let us set ρn = (log log n)−1/2 and fix 1 ≤ i ≤ N . We
use the obvious notation p0 = f0 ∗ g. As we have

E0(Tn,i) = ‖Khi ∗ p0 − f0‖2
2 = ‖Jhi ∗ f0 − f0‖2

2,

and < Kh(· − Y1) − Jh ∗ f0, Jh ∗ f0 − f0 >= 0

we easily get

Tn,i−E0(Tn,i) =
2

n(n− 1)

∑∑

1≤k<j≤n

< Khi(·−Yk)−Jhi∗f0, Khi(·−Yj)−Jhi∗f0 > .

Let us set

H(Yj, Yk) = 2{n(n− 1)}−1 < Khi(· − Yk) − Jhi ∗ f0, Khi(· − Yj) − Jhi ∗ f0 >

and note that H is a symmetric function with E0{H(Y1, Y2)} = 0 and
E0{H(Y1, Y2)|Y1} = 0. As a consequence, Tn,i − E0(Tn,i) is a degenerate U -
statistic. Using Theorem 3 (and the notation of Section 4) to control its cdf,
we get that for any 0 < δ ≤ 1, for any 0 < ε < 1/2 and any x

|P0(Tn,i − E0(Tn,i) > x) − (1 − φ(x/vn))|

≤ 16ε1/2 exp

(

− x2

4v2
n

)

+
C

ε1+δ

{

n
∑

i=2

E0|Zi|2+2δ + E0|V 2
n − 1|1+δ

}

,

where v2
n = Var0(Tn,i) and

Zi =
1

vn

i−1
∑

j=1

H(Yi, Yj) and V 2
n =

n
∑

i=2

E0(Z
2
i |Fi−1)
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as in Section 4. Choose δ = 1 and consider ε as a constant (optimization in ε
is not necessary in our context), thus

|P0(Tn,i − E0(Tn,i) > x) − (1 − φ(x/vn))|

≤ C exp

(

− x2

4v2
n

)

+ C

{

n
∑

i=2

E0|Zi|4 + E0|V 2
n − 1|2

}

. (18)

We want to apply this inequality at the point x = C⋆t2n,i−E0(Tn,i). First, note
that

E0(Tn,i) = ‖Jhi ∗ f0 − f0‖2
2 =

1

2π

∫

|u|>1/(hi)
|Φ0(u)|2du ≤ L(hi)2β̄ ≤ Lt2n,i,

leading to
x ≥ (C⋆ − L)t2n,i = (C⋆ − L)(nρn)

−4βi/(4βi+4σ+1)

and we choose C⋆ > L. Now, the variance term v2
n satisfies (see [3])

v2
n = E0(Tn,i − E0(Tn,i))

2 =
C

n2(hi)4σ+1
(1 + o(1)).

Using the choice of the bandwidth hi, we obtain a bound of the first term in
(18)

C exp

(

− x2

4v2
n

)

≤ C exp

(

−(C⋆)2

C ′
ρ−2
n

)

= C(log n)−b,

where b = (C⋆)2/(C ′) can be chosen as large as we need. Let us deal with the
other terms appearing in (18). For large enough n,

| < Khi(· − Yk) − Jhi ∗ f0, Khi(· − Yj) − Jhi ∗ f0 > |

≤ 2

π

∫

|u|≤1/hi
|Φg(u)|−2du ≤ C

(hi)2σ+1

and thus, for any p ≥ 2,

E0{|H(Y1, Y2)|2p} ≤ Cn−4p(hi)−2p(2σ+1).

This leads to

n
∑

i=2

E0|Zi|4 ≤
1

v4
n

n
∑

i=2





i−1
∑

j=1

E0(H(Yi, Yj)
4) + 3

∑∑

1≤j 6=k≤i−1

E0(H(Yi, Yj)
2H(Yi, Yk)

2)





≤ 1

v4
n

n
∑

i=2

(

(i− 1)E0(H(Y1, Y2)
4) + 3(i− 1)(i− 2)E0(H(Y1, Y2)

2H(Y1, Y3)
2)
)

≤ O(1)

v4
n

n2
E0(H(Y1, Y2)

4) +
O(1)

v4
n

n3
E0(H(Y1, Y2)

2H(Y1, Y3)
2)

≤ O(1)
n3

n8(hi)4(2σ+1)
n4(hi)2(4σ+1) =

O(1)

n(hi)2
.
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Moreover, following the lines of the proof of Theorem 1 in [13] we get

E0|V 2
n − 1|2 ≤ 1

v4
n

(

E0(G
2(Y1, Y2)) +

1

n
E0(H

4(Y1, Y2))
)

,

where G(x, y) = E0(H(Y1, x)H(Y1, y)). In [1] this last term was bounded from
above for this model by Chi so

E0|V 2
n − 1|2 ≤ Chi.

Returning to (18) we finally get for x = C⋆t2n,i − E0(Tn,i),

|P0(Tn,i − E0(Tn,i) > x) − {1 − φ(x/vn)}| ≤ C
(

(log n)−b + hi
)

≤ C(log n)−b.

Finally we obtain, for b large when C⋆ is large

N
∑

i=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i)) ≤ N(1 − φ(x/vn) + C(logn)−b)

≤ CN
(

vnx
−1 exp(−x2/(2v2

n)) + (log n)−b
)

≤ CNρn(log n)−b ≤ C
(log log n)−1/2

log nb−1
.

Proof of Lemma 3. When r̄ = r = 0, let us fix some constant C > C0

(C0 will be chosen later) and a density f belonging to F(α, 0, β, L) for some
unknown α > α and β ∈ [β; β̄] which satisfies ‖f − f0‖2

2 ≥ Cψ2
n,(α,0,β) (choose

β as the largest one). In this proof, we abbreviate ψn,(α,0,β) to ψn,β since in
this case, the rate only depends on β. We define βf as the smallest point on
the finite grid {β = β1 < β2 < . . . < βN = β̄} such that β ≤ βf

βf ∈ {β = β0 < β1 < . . . < βN = β̄}, f ∈ F(α, 0, β, L), ‖f − f0‖2
2 ≥ Cψ2

n,β,

β ≤ βf and ∀βi < βf , we have β > βi. (19)

We shall abbreviate to hf , t
2
n,f and Tn,f the bandwidth, the threshold (both

defined in Theorem 1) and the statistic (8) corresponding to parameter βf .
We write

Pf(∀i ∈ {1, . . . , N}, |Tn,i| ≤ C⋆t2n,i)
≤Pf(|Tn,f − Ef (Tn,f)| ≥ −C⋆t2n,f + Ef (Tn,f))

≤Pf(|Tn,f − Ef (Tn,f)| ≥ ‖f − f0‖2
2 − C⋆t2n,f +Bf (Tn,f)), (20)

where

Bf(Tn,f) = Ef (Tn,f) − ‖f − f0‖2
2 = ‖Jh ∗ f‖2

2 − ‖f‖2
2 + 2〈f − Jh ∗ f, f0〉
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is in fact a bias term. It satisfies

|Bf(Tn,f)| ≤
∫

|u|≥1/hf

|Φ(u)|2du+ 2(
∫

|u|≥1/hf

|Φ(u)|2du
∫

|u|≥1/hf

|Φ0(u)|2du)1/2

≤Le−2α(h2β
f + 2hβ̄+β

f ) ≤ 3e−2αLh2β
f ,

as f belongs to F(α, 0, β, L) ⊆ F(α, 0, β, L).

Let us study the variance term Ef (Tn,f − Ef(Tn,f))
2. According to [3], this

term is upper-bounded by w2
n,f given by

Ef (Tn,f − Ef (Tn,f))
2 ≤ C

n2h4σ+1
f

+
4Ω2

g(f − f0)

n
1β≥σ = w2

n,f ,

and Ωg(f − f0) is a constant depending on f and g (but not n) and satisfying

|Ω2
g(f − f0)| ≤ C‖f − f0‖2−2σ/β

2 (see proof of Theorem 6 in [3]).

Using Markov’s inequality, this leads to the following upper bound of (20)

w2
n,f

(‖f − f0‖2
2 − C⋆t2n,f − 3e−2αLh2β

f )2
.

We will proceed differently when β < σ and when β ≥ σ. Let us first consider
the term concerning β < σ. The point is to use that f satisfies ‖f − f0‖2

2 ≥
Cψ2

n,β. Note that we have βf ≥ β, constants C > C⋆ and

ψ2
n,βt

−2
n,f =(nρn)

4(βf−β)(4σ+1)/{(4βf +4σ+1)(4β+4σ+1)},

ensuring that the term Cψ2
n,β − C⋆t2n,f is always positive. Moreover, as 0 ≥

β − βf ≥ −(β̄ − β)/ logn, we have

ψ2
n,βh

−2β
f = exp

{

16β(β − βf)

(4βf + 4σ + 1)(4β + 4σ + 1)
log(nρn)

}

≥ exp

{

− 16β̄(β̄ − β)

(4β + 4σ + 1)2
(1 + o(1))

}

=: C1(1 + o(1)).

Thus, we choose C0 = C⋆ + 3e−2αL/C1 such that for any C > C0, we have

‖f − f0‖2
2 − C⋆t2n,f − 3e−2αLh2β

f ≥ (C − C∗ − 3e−2αL/C1)ψ
2
n,β = aψ2

n,β,
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with a > 0. Thus, we get

sup
α>α

sup
β∈[β;β̄]

sup
f∈F(α,0,β,L)

‖f−f0‖2
2≥Cψ2

n,β

Pf(∀i ∈ {1, . . . , N}, |Tn,i| ≤ C⋆t2n,i)

≤ max







sup
β<σ

sup
f

C

n2h4σ+1
f ψ4

n,β

; sup
β≥σ

sup
f

C‖f − f0‖2−2σ/β
2

n(‖f − f0‖2
2 − C⋆t2n,f − 3e−2αLh2β

f )2







.

Finally, this leads to the bound

max

{

sup
β<σ

sup
f

C

n2h4σ+1
f ψ4

n,β

; sup
β≥σ

C

n‖f − f0‖2+2σ/β
2 (a/C)2

}

≤max







sup
β<σ

sup
f

C

n2h4σ+1
f ψ4

n,β

; sup
β≥σ

C

nψ
2+2σ/β
n,β







≤ ρn,

which converges to zero as n tends to infinity.

Proof of Theorem 1 (Lower bound).

As we already noted after the theorem statement, our test procedure attains
the minimax rate associated to the class F(α0, 0, β̄, L) where f0 belongs, when-
ever the alternative f belongs to classes of functions smoother than f0. There-
fore, the lower bound we need to prove concerns the optimality of the loss of
order (log log n)1/2 due to alternatives less smooth than f0.

More precisely, we prove (6), where the alternative H1(C,Ψn) is now restricted
to ∪β∈[β,β̄]{f ∈ F(0, 0, β, L) and ψ−2

n,β‖f −f0‖2
2 ≥ C} and ψn,β denotes the rate

ψn,τ when τ = (0, 0, β, L).

The general approach for proving such a lower bound (6) is to exhibit a finite
number of regularities {βk}1≤k≤K and corresponding probability distributions
{πk}1≤k≤K on the alternatives H1(C, ψn,βk

) (more exactly, on parametric sub-
sets of these alternatives) such that the distance between the distributions
induced by f0 (the density being tested) and the mean distribution of the
alternatives is small.

We use a finite grid B̄ = {β1 < β2 < . . . < βK} ⊂ [β, β̄] such that

∀β ∈ [β, β̄], ∃k : |βk − β| ≤ 1

log n
.

To each point β in this grid, we associate a bandwidth

hβ = (nρn)
− 2

4β+4σ+1 , ρn = (log log n)−1/2, and Mβ = h−1
β .
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We use the same deconvolution kernel as in [3], constructed as follows. Let G
be defined as in Lemma 2 in [3]. The function G is an infinitely differentiable
function, compactly supported on [−1, 0] and such that

∫

G = 0. Then, the
deconvolution kernel Hβ is defined via its Fourier transform ΦHβ by

ΦHβ(u) = ΦG(hβu)(Φ
g(u))−1.

Note that the factor ρn in the bandwidth’s expression corresponds to the loss
for adaptation.

We also consider for each β, a probability distribution πβ (also denoted πk
when β = βk) defined on {−1,+1}Mβ which is in fact the product of Rademacher
distributions on {−1,+1} and a parametric subset of H1(C, ψn,β) containing
the following functions

fθ,β(x) = f0(x)+
Mβ
∑

j=1

θjh
β+σ+1
β Hβ (x− xj,β) ,











θj i.i.d. with P(θj = ±1) = 1/2,

xj,β = jhβ ∈ [0, 1].

Convolution of these functions with g induces another parametric set of func-
tions

pθ,β(y) = p0(y) +
Mβ
∑

j=1

θjh
β+σ+1
β Gβ (y − xj,β)

where Gβ(y) = h−1
β G (y/hβ) = Hβ ∗ g(y).

As established in [3] (Lemmas 2 and 4), for any β, any θ ∈ {−1,+1}Mβ and
small enough hβ (i.e. large enough n) the function fθ,β is a probability density
and belongs to the Sobolev class F(0, 0, β, L) and pθ,β is also a probability
density. Moreover we have

1

K

∑

β∈B̄

πβ
(

‖fθ,β − f0‖2
2 ≥ Cψ2

n,β

)

−→
n→+∞

1,

which means that for each β, the random parametric family {fθ,β}θ belongs al-
most surely (with respect to the measure πβ) to the alternative set H1(C, ψn,β).
The subset of functions which are not in the alternative H1(C,Ψn) is asymp-
totically negligible. We then have,
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γn , inf
∆n

{

P0(∆n = 1) + sup
f∈H1(C,Ψn)

Pf(∆n = 0)

}

≥ inf
∆n







P0(∆n = 1) +
1

K

K
∑

k=1

sup
f∈H1(C,ψn,βk

)
Pf(∆n = 0)







≥ inf
∆n

{

P0(∆n = 1) +
1

K

K
∑

k=1

(∫

θ
Pfθ,βk

(∆n = 0)πk(dθ)

−πk(‖fθ,βk
− f0‖2

2 < Cψ2
n,βk

)
)}

≥ inf
∆n

{

P0(∆n = 1) +
1

K

K
∑

k=1

(∫

θ
Pfθ,βk

(∆n = 0)πk(dθ)
)

}

+ o(1).

Let us denote by

π =
1

K

K
∑

k=1

πk and Pπ =
1

K

K
∑

k=1

Pk =
1

K

K
∑

k=1

∫

θ
Pfθ,βk

πk(dθ).

Those notations lead to

γn≥ inf
∆n

{P0(∆n = 1) + Pπ(∆n = 0)}

≥ inf
∆n

{

1 −
∫

∆n=0
dP0 +

∫

∆n=0
dPπ

}

≥ 1 − sup
A

∫

A
(dP0 − dPπ)

≥ 1 − 1

2
‖Pπ − P0‖1, (21)

where we used Scheffé’s Lemma.

The finite grid B̄ is split into subsets B̄ = ∪lB̄l with B̄l ∩ B̄k = ∅ when l 6= k
and such that

∀l, ∀β1 6= β2 ∈ B̄l,
c log logn

log n
≤ |β1 − β2|.

The number of subsets B̄l is denoted by K1 = O(log log n) and the cardinality
|B̄l| of each subset B̄l is of the order O(logn/ log log n), uniformly with respect
to l.

The lower bound (6) is then obtained from (21) in the following way

γn ≥ 1 − 1

2K1

K1
∑

l=1

∥

∥

∥

∥

∥

∥

1

|B̄l|
∑

β∈B̄l

Pβ − P0

∥

∥

∥

∥

∥

∥

1

,

where Pβ =
∫

θ Pfθ,β
πβ(dθ) .

Here we do not want to apply the triangular inequality to the whole set of
indexes B̄. Indeed, this would lead to a lower bound equal to 0. Yet, if we do not
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apply some sort of triangular inequality, we cannot deal with the sum because
of too much dependency. This is why we introduced the subsets B̄l with the
property that two points in the same subset B̄l are far enough away from
each other. This technique was already used in [12] for the discrete regression
model.

Let us denote by ℓβ the likelihood ratio

ℓβ =
dPβ
dP0

=
∫ dPfθ,β

dP0

πβ (dθ).

We thus have

γn ≥ 1− 1

2K1

K1
∑

l=1

∫





1

|B̄l|
∑

β∈B̄l

ℓβ − 1



 dP0 = 1− 1

2K1

K1
∑

l=1

∥

∥

∥

∥

∥

∥

1

|B̄l|
∑

β∈B̄l

ℓβ − 1

∥

∥

∥

∥

∥

∥

L1(P0)

.

Now we use the usual inequality between L1 and L2-distances to get that

γn ≥ 1− 1

2K1

K1
∑

l=1

∥

∥

∥

∥

∥

∥

1

|B̄l|
∑

β∈B̄l

ℓβ − 1

∥

∥

∥

∥

∥

∥

L2(P0)

= 1− 1

2K1

K1
∑

l=1











E0





1

|B̄l|
∑

β∈B̄l

ℓβ − 1





2










1/2

.

Let us focus on the expected value appearing in the lower bound. We have

E0





1

|B̄l|
∑

β∈B̄l

ℓβ − 1





2

=
1

|B̄l|2
∑

β∈B̄l

Qβ +
1

|B̄l|2
∑

β,ν∈B̄l

β 6=ν

Qβ,ν ,

where there are two quantities to evaluate

Qβ = E0

(

(ℓβ − 1)2
)

and Qβ,ν = E0 (ℓβℓν − 1) .

The first term Qβ is treated as in [3]. It corresponds to the computation of
a χ2-distance between the two models induced by Pβ and P0 (see term ∆2 in
[3]). Indeed we have

Qβ ≤ CMβn
2h4β+4σ+2

β ≤ C
1

ρ2
n

.

This upper bound goes to infinity very slowly. The number of β’s in each B̄l
compensates this behaviour

1

|B̄l|2
∑

β∈B̄l

Qβ ≤ 1

|B̄l|ρ2
n

= O

(

(log log n)2

logn

)

= o(1).
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The second term is a new one (with respect to non-adaptive case). As G is
compactly supported and the points β and ν are far away from each other, we
can prove that this term is asymptotically negligible. Recall the expression of
the likelihood ratio for a fixed β

ℓβ =
∫ dPfθ,β

dP0

πβ (dθ) =
∫ n
∏

r=1



1 +
Mβ
∑

j=1

θj,βh
β+σ+1
β

Gβ (Yr − xj,β)

p0 (Yr)



πβ (dθ) .

Thus,

ℓβℓν =
∫ dPfθ,β

dP0
πβ (dθ)

∫ dPfθ,ν

dP0
πν (dθ)

=
∫ n
∏

r=1



1 +
Mβ
∑

j=1

θj,β h
β+σ+1
β

Gβ (Yr − xj,β)

p0 (Yr)





×
(

1 +
Mν
∑

i=1

θi,νh
ν+σ+1
ν

Gν (Yr − xi,ν)

p0 (Yr)

)

πβ (dθ.,β)πν (dθ.,ν) .

The random variables Yr are i.i.d. and E0

(

Gβ (Yr − xj,β)

p0 (Yr)

)

= 0. Thus we have

E0 (ℓβℓν) =
∫



1 +
Mβ
∑

j=1

Mν
∑

i=1,i⊂j

θj,βθi,νh
β+σ+1
β hν+σ+1

ν

E0

(

Gβ (Y1 − xj,β)Gν (Y1 − xi,ν)

p2
0 (Y1)

)]n

πβ (dθ.,β)πν (dθ.,ν) .

where the second sum concerns only some indexes i, denoted by i ⊂ j. This no-
tation stands for the set of indexes i such that [(i−1)hβ ; ihβ]∩[(j−1)hν ; jhν ] 6=
∅. From now on, we fix β > ν. Denote by G′ (resp. p′0) the first derivative of G
(resp. p0). (The density p0 is continuously differentiable as it is the convolution
product f0∗g where the noise density g is at least continuously differentiable).

Lemma 5 For any β > ν and any (i, j) ∈ {1, . . . ,Mν} × {1, . . . ,Mβ}, we
have

E0

(

Gβ (Y1 − xj,β)Gν (Y1 − xi,ν)

p2
0 (Y1)

)

=
hν
h2
β

Ri,j ,

where Rij satisfies

|Ri,j| ≤ (inf
[0,1]

p0)
−1‖G‖∞‖G′‖∞(1 + o(1))

and o(1) is uniform with respect to (i, j).
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The proof of this lemma is omitted. Applying Lemma 5, we get

Qβ,ν+1 =
∫



1 +
Mβ
∑

j=1

Mν
∑

i=1,i⊂j

θj,βθi,νh
β+σ+1
β hν+σ+1

ν

hν
(hβ)2

Ri,j





n

πβ (dθ.,β) πν (dθ.,ν) .

Lemma 6 Let U be a real valued random variable such that ∀k ∈ N, E

(

U2k+1
)

=
0. We have, for any integer n ≥ 1,

E (1 + U)n ≤ 1 +

⌊n
2
⌋

∑

k=1

n2k

(2k)!
E

(

U2k
)

,

where ⌊x⌋ is the largest integer which is smaller than x.

The proof is obvious and therefore omitted. Apply Lemma 6 to get the in-
equality

Qβ,ν ≤
⌊n

2
⌋

∑

k=1

n2k

(2k)!
(hβ+σ−1

β hν+σ+2
ν )2k

Eπ





Mβ
∑

j=1

Mν
∑

i=1,i⊂j

θj,βθi,νRi,j





2k

.

But the θ’s are i.i.d. Rademacher variables and the Ri,j’s are deterministic,
thus

Eπ





Mβ
∑

j=1

Mν
∑

i=1,i⊂j

θj,βθi,νRi,j





2k

=
∑

1≤j1,...,jk≤Mβ

∑

1≤i1,...,ik≤Mν

∀l,il⊂jl

(

k
∏

l=1

R2
il,jl

)

.

Using the bound on the Ri,j given by Lemma 5,

Eπ





Mβ
∑

j=1

Mν
∑

i=1,i⊂j

θj,βθi,νRi,j





2k

≤
(

(inf
[0,1]

p0)
−1‖G‖∞‖G′‖∞(1 + o(1))

)2k

hkν .

Indeed, each index jl may take at most Mβ = h−1
β different values but the

constraint il ⊂ jl implies that each index il is limited to at most hβ/hν different
values. Thus we get

Qβ,ν ≤ C

⌊n
2
⌋

∑

k=1

n2k

(2k)!

(

Chβ+σ+1
β hν+σ+1

ν

hν
h2
β

)2k

h−kν

≤ C

⌊n
2
⌋

∑

k=1



n2h
2β+2σ+1/2
β h2ν+2σ+1/2

ν

h5/2
ν

h
5/2
β





k

≤ C

⌊n
2
⌋

∑

k=1





h5/2
ν

ρ2
nh

5/2
β





k

≤ C
1

ρ2
n

h5/2
ν

h
5/2
β

.

As β > ν both belong to some set B̄l, we have β−ν ≥ c(log logn)/(log n) and
according to the choice of the bandwidths,

h5/2
ν

h
5/2
β

= (nρn)
−

20(β−ν)
(4β+4σ+1)(4ν+4σ+1) ≤ exp

{

− 20 c log log n

(4β̄ + 4σ + 1)2
(1+o(1))

}

≤ (log n)−w,

29



where the constant w (depending on the constant c used in the construction
of the sets B̄l) can be tailored to our need. Therefore

1

|B̄l|2
∑

β,ν∈|B̄l|

β 6=ν

Qβ,ν ≤
C

ρ2
n (logn)w

which goes to 0 as n goes to +∞. We finally obtain the upper bound

E0











1

|B̄l|
∑

β∈|B̄l|

ℓβ − 1





2




 ≤ O

(

1

|B̄l|ρ2
n

)

+O

(

1

ρ2
n (logn)w

)

= o(1),

which leads to

γn ≥ 1 − 1

2

1

K1

K1
∑

l=1

{

O

(

1

|B̄l|ρ2
n

)

+ O

(

1

ρ2
n (logn)c

)}1/2

= 1 + o(1).

Proof of Proposition 1. We fix ǫ > 0. Now,

Pf,s(|ŝn − s| ≥ ǫ) ≤ Pf,s(ŝn 6= sn(s)) + Pf,s(|s− sn(s)| ≥ ǫ).

As |s − sn(s)| ≤ dn which converges to zero, we get that for large enough n,
the term Pf,s(|s − sn(s)| ≥ ǫ) is equal to zero. Let us now consider the term
Pf,s(ŝn 6= sn(s)) = Pf,s(ŝn > sn(s)) + Pf,s(ŝn < sn(s)). Now, sn(s) is equal to
some sk (using the labeling among the points of the grid). We have

Pf,s(ŝn < sk) =
k−1
∑

j=1

Pf,s(ŝn = sj)

≤
k−1
∑

j=1

Pf,s

(

|Φ̂p
n(un)| ≥

1

2

{

qβ′Φ[j] + Φ[j+1]
}

(un)
)

≤
k−1
∑

j=1

Pf,s

(

|Φ̂p
n(un) − Φp(un)| ≥

1

2

{

qβ′Φ[j] + Φ[j+1]
}

(un) − |Φp(un)|
)

.

As |Φp(un)| ≥ qβ′(un)Φ
g(un) for large enough n, we get
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Pf,s(ŝn < sk)≤
k−1
∑

j=1

Pf,s

(

|Φ̂p
n(un) − Φp(un)| ≥

1

2

{

qβ′Φ[j] + Φ[j+1]
}

(un)(1 + o(1))
)

≤
k−1
∑

j=1

exp
[

−n
4

(

A2u−2β′

n exp(−2usj
n ) + exp(−2usj+1

n )
)

]

≤N exp
(

−n
4

exp(−2usn)
)

.

Now consider the case ŝn > sk.

Pf,s(ŝn > sk) ≤
N
∑

j=k+1

Pf,s

(

|Φ̂p
n(un)| ≤

1

2
{qβ′Φ[j−1] + Φ[j]}(un)

)

≤
N
∑

j=k+1

Pf,s

(

|Φ̂p
n(un) − Φp(un)| ≥ qβ′(un)Φ

g(un) −
1

2
{qβ′Φ[j−1] + Φ[j]}(un)

)

≤ NPf,s

(

|Φ̂p
n(un) − Φp(un)| ≥ qβ′(un){Φg(un) −

1

2
Φ[k](un)} + o(qβ′(un)Φ

g(un))
)

as |Φp(un)| ≥ qβ′(un)Φ
g(un) for large enough n and j − 1 ≥ k . According to

the choice of the grid, we have |s− sk| ≤ dn and dn log un → 0, which implies

Φg(un) −
1

2
Φk(un) = exp(−usn)

(

1 − 1

2
exp[usk

n (us−sk
n − 1)]

)

= exp(−usn)
(

1 − 1

2
exp[usk

n (s− sk) log un(1 + o(1))]
)

≥ exp(−usn)
(

1 − 1

2
exp(usk−s̄

n (1 + o(1)))
)

≥ 1

2
exp(−usn)(1 + o(1)),

where the first inequality comes from dn log un ≤ u−s̄n . This gives

Pf,s(ŝn > sk)≤NPf,s

(

|Φ̂p
n(un) − Φp(un)| ≥

1

2
qβ′(un)Φ

g(un)(1 + o(1))
)

≤N exp

(

−A
2

2
nu−2β′

n exp(−2usn)(1 + o(1))

)

.

In conclusion, as soon as we have dn log un ≤ u−s̄n , and logN = o((logn)α)
(which is ensured by our choice of dn) we get, for any ǫ > 0 and large enough
n,

Pf,s(|ŝn − s| ≥ ǫ) ≤ N exp

(

−A
2

2
nu−2β′

n exp(−2usn)(1 + o(1))

)

≤ exp

(

−A
2

2
(logn)α(1 + o(1))

)

.
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The last term gives a convergent series and then according to Borel Cantelli’s
lemma, Pf,s(|ŝn − s| ≥ ǫ i.o ) = 0 leading to the almost sure convergence of
ŝn.

Proof of Corollary 1. Note that the new choice of dn still satisfies the
requirements for Proposition 1 to be valid. We introduce respectively, hn, the
non-random version of the bandwidth ĥn and Kn the non-random version of
the kernel K̂n both constructed with self-similarity index sn(s). The Fourier
transform ΦKn of Kn thus satisfies

ΦKn(u)= exp((|u|/hn)sn(s))1|u|≤1

where hn =(2−1 logn− (β̄ − sn(s) + 1/2) log log n/sn(s))
−1/sn(s).

We also introduce the corresponding (classical) estimator

fn(x) = (nhn)
−1

n
∑

i=1

Kn(h
−1
n (x− Yi)).

Note that obviously, sn(s), Kn and hn are unknown to the statistician. These
objects are used only as tools to assess the convergence of the procedure. Now,
remark that we have

Ef,s[|f̂n(x)−f(x)|2] = Ef,s[|fn(x)−f(x)|21ŝn=sn(s)]+Ef,s[|f̂n(x)−f(x)|21ŝn 6=sn(s)]

= T1 + T2,

say. Let us focus on the first term

T1 ≤ Ef,s[|fn(x) − f(x)|2] = {Ef,s[fn(x)] − f(x)}2 + Vars{fn(x)},

introducing the bias and the variance of the estimator fn(x). The important
thing to note is that the kernel estimator fn uses parameter sn(s) which is not
equal to the true one s. Thus T1 is not the classical risk for kernel estimator
with known index s. Using Parseval’s equality

{Ef,s[fn(x)]−f(x)}2 =
1

4π

[∫

e−iuxΦ(u)
(

1|u|≤1/hn exp(−|u|s + |u|sn(s)) − 1
)

du
]2

≤ 1

4π

[

∫

|u|≤1/hn

|Φ(u)|
(

exp(−|u|s + |u|sn(s)) − 1
)

du+
∫

|u|>1/hn

|Φ(u)|du
]2

.

The second term in the right hand side is the classical bias and equals O(hβ−1/2
n ).

As soon as dnh
−s
n log(1/hn) converges to zero, we can use the following devel-

opment in the first term, uniformly for |u| ≤ 1/hn,
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exp(−|u|s + |u|sn(s)) − 1= exp{|u|s(sn(s) − s) log |u|(1 + o(1))} − 1

= |u|s(sn(s) − s) log |u|(1 + o(1)),

which leads to

{Ef,s[fn(x)] − f(x)}2

≤ 1

4π

[(

∫

|u|≤1/hn

|Φ(u)||u|s(sn(s) − s) log |u|du
)

(1 + o(1)) +O(hβ−1/2
n )

]2

≤O(d2
n)1β>s+1/2 +O(d2

nh
2β−2s−1
n log2(1/hn))1β≤s+1/2 +O(h2β−1

n ).

It can be easily seen that

d2
nh

−2s
n log2(1/hn)

≤ O(1)(logn)2s/sn(s)(log log n)2

log2 n(log logn)2
= O(1)(logn)2(s−sn(s))/sn(s)

≤O(1)(logn)2dn/s ≤ O(1) exp{2s̄/(s logn)} = O(1),

leading to

{Ef,s[fn(x)] − f(x)}2 ≤ O(d2
n)1β>s+1/2 +O(h2β−1

n ).

Moreover, when β > s+ 1/2, we use d2
n ≤ (logn)−(2β̄−1)/s = O(h(2β−1)

n ). With
this choice of dn, we thus ensure that in any case

{Ef,s[fn(x)] − f(x)}2 ≤ O(h2β−1
n ).

The variance of fn(x) is bounded by

Varf,s{fn(x)} =
1

4π2n
Ef,s

[

∫

|u|≤1/hn

e−iuxe|u|
sn(s)

(eiuY − Φp(u))du

]2

≤ 1

π2n

(

∫

|u|≤1/h̄n

e|u|
sn(s)

du

)2

= O

(

h2(sn(s)−1)
n exp(2/hsn(s)

n )

n

)

.

We finally get the bound

T1 ≤ O(h2β−1
n ) + O

(

h2(sn(s)−1)
n exp(2/hsn(s)

n )

n

)

.

Now, we prove that the second term T2 is negligible in front of the main term
T1, by using Proposition 1 and uniform bounds on |f̂n(x)| and |f(x)|. First,
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|f̂n(x)| ≤
∫

e|t|
s̄

1|t|≤1/ĥn
dt = O(ĥs̄−1

n exp{1/ĥs̄n})
≤O(1)(logn)(1−s̄)/s exp{(logn)s̄/s}

|f(x)| ≤
∫

|Φ(t)|dt = O(
∫

(1 + |t|2β)−1dt) = O(1),

and then

T2 =O((logn)2(1−s̄)/s exp{2(log n)s̄/s})Pf,s(ŝn 6= sn(s))

=O

(

(log n)2(1−s̄)/s exp

(

2(logn)s̄/s − A2

4
(logn)α(1 + o(1))

))

.

As soon as we choose α > s̄/s, this second term T2 will be negligible in front
of T1. In conclusion,

Ef,s[|f̂n(x) − f(x)|2] =O(h2β−1
n ) +O

(

h2(sn(s)−1)
n

exp(2/hsn(s)
n )

n

)

=O((logn)−(2β−1)/sn(s)) = O((logn)−(2β−1)/s).
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A Technical Proofs

Proof of Lemma 2. Using a Markov inequality and the usual controls on
bias and variance, we get

P0(|Tn,N+1−E0(Tn,N+1)| > C⋆t2n,N+1−E0(Tn,N+1)) ≤
Cn−2(hN+1)−(4σ+1)

(C⋆t2n,N+1 − C(hN+1)2β̄)2

= O(
1

C⋆ − C
),

and by choosing C⋆ large enough, this term is smaller than some ǫ > 0.

Proof of Lemma 4. Let us write

Pf(|Tn,N+1| ≤ C⋆t2n,N+1) ≤ Pf(|Tn,N+1−EfTn,N+1| ≥ ‖f−f0‖2
2−C⋆t2n,N+1−Bf (Tn,N+1))

where

|Bf(Tn,N+1)| = |Ef(Tn,N+1) − ‖f − f0‖2
2|

≤
∫

|u|≥1/hN+1
|Φ(u)|2du+ 2

(

∫

|u|≥1/hN+1
|Φ(u)|2du

∫

|u|≥1/hN+1
|Φ0(u)|2du

)1/2

≤
(

L(hN+1)2β exp{−2α/(hN+1)r} + 2L(hN+1)β+β̄ exp{−α/(hN+1)r}
)

(1 + o(1))

≤ 2L(hN+1)β+β̄ exp{−α/(hN+1)r}(1 + o(1)).

In the same way as in the proof of Lemma 3, we have

Ef (Tn,N+1 − Ef(Tn,N+1))
2 ≤ C

n2(hN+1)4σ+1
+

4Ω2
g(f − f0)

n
1β≥σ = w2

n,f ,

and Ωg(f − f0) is a constant depending on f and g (but not n) and satisfying

|Ω2
g(f − f0)| ≤ C‖f − f0‖2−2σ/β̄

2 . The rest of the proof follows the same lines
as Lemma 3. Indeed, Markov’s Inequality leads the following bound on the
second type error term

w2
n,f

(‖f − f0‖2
2 − C⋆t2n,N+1 − 2L(hN+1)2β exp{−α/(hN+1)r}(1 + o(1)))2

≤ max





Cn−2(hN+1)−4σ−1

(C0 − C⋆)2ψ4
n,r

;
C

n‖f − f0‖2+2σ/β̄
2 (C0 − C⋆)2





The first term in the right hand side is a constant which can be as small as
we need, by choosing a large enough constant C0. The second term converges
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to zero.

Proof of Lemma 5. As β > ν, the bandwidths satisfy hνh
−1
β = o(1). Then,

as G is compactly supported on [−1, 0], we have

E0

(

Gβ (Y1 − xj,β)Gν (Y1 − xi,ν)

p2
0 (Y1)

)

=
∫

R

Gβ (y − xj,β)Gν (y − xi,ν)

p0 (y)
dy

=
∫

[−1, 0]

Gβ (hνu+ xi,ν − xj,β)G (u)

p0 (hνu+ xi,ν)
du.

Apply the Taylor Formula to get

Gβ (hνu+ xi,ν − xj,β) =Gβ (xi,ν − xj,β) +
hν
h2
β

uG′

(

hν ũ1 + xi,ν − xj,β
hβ

)

and
1

p0 (hνu+ xi,ν)
=

1

p0 (xi,ν)
− p′0 (hν ũ2 + xi,ν)

p0 (hν ũ2 + xi,ν)
2hνu,

where 0 ≤ ũ1 ≤ u and 0 ≤ ũ2 ≤ u. As
∫

G = 0, we obtain

∫

[−1,0]

Gβ (hνu+ xi,ν − xj,β)G (u)

p0 (hνu+ xi,ν)
du

=
1

p0 (xi,ν)

hν
h2
β

∫

[−1,0]
uG′

(

hν ũ1 + xi,ν − xj,β
hβ

)

G(u)du

−hνGβ (xi,ν − xj,β)
∫

[−1,0]

p′0 (hν ũ2 + xi,ν)

p0 (hν ũ2 + xi,ν)
2uG (u) du

− h2
ν

h2
β

∫

[−1,0]

p′0 (hν ũ2 + xi,ν)

p0 (hν ũ2 + xi,ν)
2u

2G′

(

hν ũ1 + xi,ν − xj,β
hβ

)

G (u) du.

This leads to

E0

(

Gβ (Y1 − xj,β)Gν (Y1 − xi,ν)

p2
0 (Y1)

)

=
hν
h2
β

Ri,j

where

Ri,j =
1

p0 (xi,ν)

∫

[−1,0]
uG′

(

hν ũ1 + xi,ν − xj,β
hβ

)

G(u)du

−hβG
(

xi,ν − xj,β
hβ

)

∫

[−1,0]

p′0 (hν ũ2 + xi,ν)

p0 (hν ũ2 + xi,ν)
2uG (u) du

−hν
∫

[−1,0]

p′0 (hν ũ2 + xi,ν)

p0 (hν ũ2 + xi,ν)
2u

2G′

(

hν ũ1 + xi,ν − xj,β
hβ

)

G (u) du.
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satisfies

|Rij | ≤ (inf
[0,1]

p0)
−1‖G‖∞‖G′‖∞ + ‖G‖∞‖p′0‖∞( inf

[−1,1]
p0)

−2(hβ‖G‖∞ + hν‖G′‖∞),

which ends the proof of Lemma 5.

Proof of Theorem 2.

Assume now that f0 ∈ F(α, r̄, β0, L), for some β0 ∈ [β, β̄]. The proof follows
the same lines as the proof of Theorem 1.

For the first-type error we write

P0(∆
∗
n = 1)=

N1
∑

i=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i))

+
N2
∑

i−N1=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i)).

For the firstN1 terms we apply Lemma 1 with E0(Tn,i) = o(1)L(hi)
2β0 exp(−2α/hr̄i )

which is smaller than t2n,i for all i = 1, . . . , N1 and the same result follows. For
the last N2 terms we also use the Berry-Esseen inequality as in the proof of
Lemma 1 for

x = C⋆t2n,i − E0(Tn,i) ≥ C⋆t2n,i(1 − o(1))

as E0(Tn,i) = o(1)h2β0
i exp(−2α/hr̄i ) = o(1/n). We get x/vn = O(1)(log log log n)1/2

N2
∑

i−N1=1

P0(|Tn,i − E0(Tn,i)| > C⋆t2n,i − E0(Tn,i))

≤N2
vn

C⋆t2n,i
exp

(

−(C⋆)2t4n,i
4v2

n

)

≤ C1
(log log log n)−1/2

(log logn)b−1
= o(1),

for some b > 1 for C⋆ large enough. Indeed, all other calculations are similar as
they are related mostly to the distribution of the noise which didn’t change.

As for the second-type error,

sup
τ∈T

sup
f∈F(τ,L)

Pf(∆
⋆
n = 0)

≤ 1r=r̄=0 sup
α≥α,β∈[β;β̄]

sup
f∈F(α,0,β,L)

‖f−f0‖2
2≥Cψ2

n,(α,0,β)

Pf(∀1 ≤ i ≤ N1, |Tn,i| ≤ C⋆t2n,i)

+ 1r>0 sup
r∈[r;r̄],α∈[α,α],β∈[β,β̄]

sup
f∈F(τ,L)

‖f−f0‖2
2≥Cψ2

n,τ

Pf(∀N1 + 1 ≤ i ≤ N1 +N2, |Tn,i| ≤ C⋆t2n,i).
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For the first term in the previous sum we actually apply precisely Lemma 3.
For the second term we mimic the proof of Lemma 3 and choose some f in
F(α, r, β, L) such that ‖f−f0‖2

2 ≥ Cψ2
n,r, where we denote ψn,r = ψn,τ1r>0. We

define rf as the smallest point on the grid {r1, . . . , rN2} such that r ≤ rf . We
denote by hf , t

2
n,f and Tn,f the bandwidth, the threshold and the test statistic

associated to parameters α and rf (they do not depend on β). Then

Pf(∀N1 + 1 ≤ i ≤ N1 +N2, |Tn,i| ≤ C⋆t2n,i)
≤Pf(|Tn,f − Ef (Tn,f)| ≥ ‖f − f0‖2

2 − C⋆t2n,f − Bf(Tn,f)), (A.1)

where, as in Theorem 1

|Bf(Tn,f)|= |‖Jh ∗ f − f‖2
2 + 2〈f − Jh ∗ f, f0〉|

≤
(

Lh2β
f exp(−2α/hrf) + 2Lhβ+β0

f exp(−α/hrf − α/hr̄f)
)

(1 + o(1))

≤L(h2β
f + hβ+β0

f ) exp(−2α/hrf)(1 + o(1))

≤L(hβ+β∧β0

f ) exp(−2α/hrf)(1 + o(1)).

Using Markov’s inequality, we get the following upper bound for (A.1)

Varf(Tn,f)

(‖f − f0‖2
2 − C⋆t2n,f − Bf (Tn,f))2

. (A.2)

The variance is bounded from above by

Ef (Tn,f − Ef (Tn,f))
2 ≤ C

n2h4σ+1
f

+
4Ω2

g(f − f0)

n
, (A.3)

and similarly to [3] we show that Ω2
g(f − f0) ≤ ‖f − f0‖2

2(log ‖f − f0‖−2
2 )2σ/r .

We have

t2n,fψ
−2
n,r = (log n)(4σ+1)(1/rf −1/r)/2 ≤ 1,

and thus ‖f − f0‖2
2 − C⋆t2n,f ≥ (C − C⋆)ψ2

n,r. Moreover,

Bf (Tn,f)ψ
−2
n,r ≤ C(log log log n)−1/2 (log n)−(β+β∧β0)/rf−(4σ+1)/(2r)

× exp







−2α

(

logn

2c

)r/rf

+ log n







.

The construction of the grid ensures that −1/(log logn) ≤ r−rf ≤ 0 and thus
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exp







−2α

(

logn

2c

)r/rf

+ log n







= exp

{

− log n

c

[

α exp

(

r − rf
rf

log log n(1 + o(1))

)

− c

]}

≤ exp

{

− log n

c

[

α exp
(−1

r
(1 + o(1))

)

− c
]

}

= O(1),

as we chose the constant c < α exp(−1/r). Finally, we have Bf (Tn,f)ψ
−2
n,r =

o(1). Let us come back to (A.2). We distinguish two cases whether the first
or the second term in (A.3) is dominant. If the first term in the variance
dominates, we have the following bound for (A.2)

n−2h
−(4σ+1)
f

(C − C⋆)2ψ4
n,τ

≤ C

log log log n
→ 0.

On the other hand, if the second term in (A.3) is the larger one, the bound
(A.2) writes

n−1‖f − f0‖2
2(log ‖f − f0‖−2

2 )2σ/r

‖f − f0‖4
2(1 − C⋆/C + o(1))2

≤ Cn−1ψ−2
n,r(logψ−2

n,r)
2σ/r

= C(logn)−1/(2r)(log log log n)−1/2 = o(1).

This finishes the proof.

Proof of Corollary 2. We keep on with the same notation as in Subsec-
tion 3.2 and denote by I the functional

∫

f 2. In the same way as in the proof
of Corollary 1, we write

Ef,s[|T̂n − I|2] ≤ Ef,s[|Tn − I|2] + Ef,s[|T̂n − I|21{ŝn 6=sn(s)}]. (A.4)

Let us first focus on the first term appearing in the right hand side of (A.4).
We split it into the square of a bias term plus a variance term. The bias is
bounded by

|Ef,sTn − I| ≤ 1

2π

(

∫

|u|>1/hn

|Φ(u)|2du+
∫

|u|≤1/hn

| exp(2|u|sn(s) − 2|u|s) − 1||Φ(u)|2du
)

≤O(h−2β
n ) +

∫

|u|≤1/hn

2|u|s|sn(s) − s| log |u||Φ(u)|2du

≤O(h−2β
n ) +O(dn)1{s≤2β} +O(h2β−s

n log(1/hn)dn)1{s>2β}.

Like in the proof of Corollary 1, we have dnh
−s
n log(1/hn) = o(1) and thus

using that dn ≤ (log n)−2β̄/s = O((logn)−2β/s), we finally get

|Ef,sTn − I| ≤ O((logn)−2β/s).
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Concerning the variance term, we easily get

Varf,s(Tn) ≤
C1

n2
hsn(s)−1
n exp(4/hsn(s)

n ) +
C2

n
h2β+sn(s)−1
n exp(2/hsn(s)

n ),

where C1 and C2 are positive constants (we refer to [3], Theorem 4 for more
details). Using the form of the bandwidth hn, we have

Ef,s|Tn − I|2 = O

(

log n

2

)−4β/s

.

Let us now focus on the second term appearing in the right hand side of (A.4).
Denoting by h0 = (logn/2)−1/s, we have

|T̂n| ≤
1

2π

∫

|u|≤1/h0

exp(2|u|s̄)du = O(hs̄−1
0 exp(2/hs̄0)).

Moreover,

I = ‖f‖2
2 =

1

2π
‖Φ‖2

2

This leads to

Ef,s[|T̂n−I|21{ŝn 6=sn(s)}] ≤ C

(

logn

2

)(1−s̄)/s

exp







2

(

log n

2

)s̄/s






Pf,s(ŝn 6= sn(s))

≤ C

(

log n

2

)(1−s̄)/s

exp







2

(

logn

2

)s̄/s






exp

(

−A
2

4
(logn)a(1 + o(1))

)

,

and this term is negligible in front of the first term appearing in the right
hand side of (A.4) as soon as a > s̄/s. This leads to the result.

Proof of Corollary 3. We use the same notation as in Subsection 3.2.
Moreover, T 0

n is the test statistic constructed with the deterministic kernel Kn

and the deterministic bandwidth hn; and t2n is the threshold defined with the
parameter value sn(s) for the self-similarity index. The first type error of the
test is controlled by

Pf0,s(∆
⋆
n = 1) = Pf0,s(|T̂ 0

n |t̂−2
n > C⋆) ≤ Pf0,s(ŝn 6= sn(s)) + Pf0,s(|T 0

n |t−2
n > C⋆).

The first term on the right hand side of this inequality converges to zero
according to Proposition 1. Let us focus on the second term. We have

Pf0,s(|T 0
n |t−2

n > C⋆) ≤ 1

(C⋆)2t4n
Ef0,s(T

0
n)2 ≤ 1

(C⋆)2t4n

{

(Ef0,sT
0
n)2 + Varf0,sT

0
n

}

.

It is easily seen that
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Ef0,sT
0
n =

1

2π

∫

|u|≤1/hn

|Φ0(u)|2| exp(|u|sn(s) − |u|s) − 1|2du+
1

2π

∫

|u|>1/hn

|Φ0(u)|2du

≤ d2
n

2π

(

∫

|u|≤1/hn

|Φ0(u)|2|u|2s log2 |u|du
)

(1 + o(1)) +O(h2β̄
n )

≤O(d2
n)1β̄>s +O(h2β̄

n ) = O(h2β̄
n ).

the inequalities being valid as soon as h−sn dn log(1/hn) converges to zero. Like
in the proof of Theorem 4 in [3], we can show that

Varf0,s(T
0
n) ≤ O(1)

hsn(s)−1
n

n2
exp(4/hsn(s)

n ) +O(1)
h2β̄+sn(s)−1
n

n
exp(2/hsn(s)

n ).

Finally, we get

Pf0,s(|T 0
n |t−2

n > C⋆)

≤ 1

(C⋆)2t4n

{

O(h4β̄
n ) +O(1)

hsn(s)−1
n

n2
exp(4/hsn(s)

n ) +O(1)
h2β̄+sn(s)−1
n

n
exp(2/hsn(s)

n )

}

≤ O(1)

C⋆ .

Choosing C⋆ large enough achieves the control of the first error term. We now
turn to the second error term. Under hypothesis H1(C,Ψn), there exists some
β such that f belongs to F(0, 0, β, L) and ‖f − f0‖2

2 ≥ Cψn,β. We write

Pf,s(∆
⋆
n = 0) = Pf,s(|T̂ 0

n |t̂−2
n ≤ C⋆) ≤ Pf,s(ŝn 6= sn(s)) + Pf,s(|T 0

n |t−2
n ≤ C⋆).

As already seen, the first term in the right hand side of this inequality con-
verges to zero, so we only deal with the second one. We define Bf,s(T

0
n) =

Ef,sT
0
n − ‖f − f0‖2

2. Thus

Pf,s(|T 0
n |t−2

n ≤ C⋆) ≤ Pf,s(|T 0
n − Ef,sT

0
n | ≥ ‖f − f0‖2

2 − C⋆t2n +Bf,s(T
0
n))

≤ Varf,s(T
0
n)

(‖f − f0‖2
2 − C⋆t2n +Bf,s(T 0

n))2
. (A.5)

We compute this bias term Bf,s(T
0
n).

Bf,s(T
0
n) =

1

2π

∫

| exp(|u|sn(s) − |u|s)Φ(u)1|u|≤1/hn − Φ0(u)|2du−
1

2π

∫

|Φ(u) − Φ0(u)|2du

≤ 1

2π

∫

|u|≤1/hn

|[exp(|u|sn(s) − |u|s) − 1]Φ(u)|2du+
1

2π

∫

|u|>1/hn

|Φ(u)|2du

≤ d2
n

2π
(1 + o(1))

∫

|u|≤1/hn

|u|2s log2 |u||Φ(u)|2du+O(h2β
n )

≤O(d2
n)1β>s +O(h2β

n ) = O(h2β
n ).
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In fact, there exists some constant C1 > 0 depending only on L and on the
noise distribution such that Bf,s(T

0
n) ≤ C1h

2β
n . Under hypothesis H1(C,Ψn),

we also have ‖f − f0‖2
2 ≥ Cψ2

n,β. Thus,

‖f − f0‖2
2 − C⋆t2n +Bf,s(T

0
n)≥C

(

log n

2

)−2β/s

− C⋆
(

logn

2

)−2β̄/sn(s)

− C1

(

logn

2

)−2β/sn(s)

≥ a

(

log n

2

)−2β/s

.

where a = C − C⋆ − C1 is positive whenever C > C0 := C⋆ − C1. Returning to
(A.5), we get

Pf,s(|T 0
n |t−2

n ) ≤ ψ4
n,β

a2
Varf,s(T

0
n).

Computation of the variance follows the same lines as under hypothesis H0.
We obtain

Varf,s(T
0
n) ≤ O(1)

hsn(s)−1
n

n
exp(2/hsn(s)

n )

(

h2β
n +

exp(2/hsn(s)
n )

n

)

.

The choice of the bandwidth ensures that the second type error term converges
to zero.

Proof of Theorem 3. This proof follows the lines of Theorem 3.9 in [14].
Combining the Skorokhod representation Theorem and Lemma 3.3 in [14],
there exists a nonnegative random variable Tn such that for any 0 < ǫ < 1/2
and any real x,

|P(Un ≤ x)−φ(x)| = |P(Sn ≤ v−1
n x)−φ(x/vn)| ≤ 16ǫ1/2 exp{−x2/(4v2

n)}+P(|Tn−1| > ǫ).

Moreover, for any δ > 0,

P(|Tn − 1| > ǫ) ≤ 4ǫ−1−δ
E

[

|Tn − V 2
n |1+δ + |V 2

n − 1|1+δ
]

,

where Tn − V 2
n is a sum of Martingale differences. In the same way as in [14],

we obtain (as δ ≤ 1)

P(|Tn − 1| > ǫ) ≤ Cǫ−1−δ

[

n
∑

i=1

E|Zi|2+2δ + E|V 2
n − 1|1+δ

]

,

which concludes the proof.
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