
A lambda-calculus with constructors

Ariel Arbiser, Alexandre Miquel, Alejandro Rı́os

To cite this version:

Ariel Arbiser, Alexandre Miquel, Alejandro Ŕıos. A lambda-calculus with constructors.
RTA’06, 2006, Seattle, United States. Springer, pp.181-196, 2006. <hal-00150884>

HAL Id: hal-00150884

https://hal.archives-ouvertes.fr/hal-00150884

Submitted on 3 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Hal-Diderot

https://core.ac.uk/display/47121039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00150884

A �-calculus with constructors

Ariel Arbiser1, Alexandre Miquel2, and Alejandro R��os1
1 Departamento de Computaci�on { Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires, Argentina
farbiser,riosg@dc.uba.ar2 PPS & Universit�e Paris 7 { Case 7014, 2 Place Jussieu

75251 PARIS Cedex 05 { France.
alexandre.miquel@pps.jussieu.fr

Abstract. We present an extension of the �(�)-calculus with a case con-
struct that propagates through functions like a head linear substitution,
and show that this construction permits to recover the expressiveness
of ML-style pattern matching. We then prove that this system enjoys
the Church-Rosser property using a semi-automatic `divide and conquer'
technique by which we determine all the pairs of commuting subsystems
of the formalism (considering all the possible combinations of the nine
primitive reduction rules). Finally, we prove a separation theorem similar
to B�ohm's theorem for the whole formalism.

1 Introduction
Lambda-calculus has been introduced by Church in the 30's [6] as a universal
language to express computations of functions. Despite its remarkable simplic-
ity, �-calculus is rich enough to express all recursive functions. Since the rise
of computers, �-calculus has been used fruitfully as the basis of all functional
programming languages, from LISP to the languages of the ML family. From the
theoretical point of view, untyped �-calculus enjoys many good properties [3],
such as Church and Rosser's property expressing determinism of computations.
In Logic, �-calculus is also a fundamental tool to describe the computational
contents of proofs via the Curry-Howard correspondence.

Although arbitrarily complex data structures can be encoded in the pure �-
calculus, modern functional programming languages provide primitive constructs
for most data structures, for which a purely functional encoding would be inef-
�cient. One of the most popular extensions of �-calculus is pattern-matching on
constructed values (a.k.a. variants), a problem that has been widely investigated
in functional programming [12, 9, 13] and in rewriting [14, 7, 5, 11, 10].

However, introducing objects of di�erent kinds|functions and constructed
values|in the same formalism addresses the problem of their interaction. What
does it mean to apply a constructed value to an argument? Should the con-
structed value accumulate the extra argument? Or should it produce an error?
Similarly, what does it mean to perform case analysis on a function?

Unfortunately, these problems are usually not addressed in the literature
because they are irrelevant in a typed setting|applications go with functions,

2

case analyses with variants. However, one should not forget that one of the
reasons of the success of the �-calculus in computer science and in logic lies
in its excellent operational semantics in the untyped case. The best example is
given by B�ohm's separation theorem [4] that expresses that two observationally
equivalent ��-normal �-terms are intentionally equal. In the pure �-calculus, ��-
normal terms are not canonical forms because they cannot be further reduced;
they are canonical forms because the computational behaviour of a ��-normal
term cannot be expressed by another ��-normal term.

The situation is far from being as clear when we add pattern-matching to
the untyped �-calculus. As far as we know, there is no generalisation of B�ohm's
theorem for this kind of extension. One reason for that is that the notion of
normal form is not as clear as in the pure �-calculus, precisely because the tra-
ditional operational semantics says nothing about the computational behaviour
of ill-typed constructions, such as a case analysis over an abstraction.
An extended operational semantics of case analysis In this paper, we propose
an extension of the untyped �-calculus with constructors and case analysis that
�lls the holes of the traditional operational semantics. Technically, the main
novelty is that we let application and case analysis (written fj�jg:M) commute
via the (ill-typed1) reduction rule
(CaseApp) fj�jg: (MN) ! (fj�jg:M)N :
(Here, � denotes a case binding, that is a �nite map from constructors to terms.)
Symmetrically, we introduce a reduction rule
(CaseLam) fj�jg: (�x :N) ! �x : (fj�jg:M) (x =2 FV (�))
to let case analysis go through abstractions. In this way, case analysis can be
understood as a form of head linear explicit substitution. . . of constructors.

Surprisingly, the system we obtain is not only computationally sound|we
will show (section 3) that it is conuent and conservative over the untyped ��-
calculus|but it also permits to decompose ML-style pattern matching (with
patterns of any arity) from the construction fj�jg:M that only performs case
analysis on constant constructors (section 2).

Finally, we will show (section 4) a theorem of weak separation for the whole
calculus, using a separation technique inspired by B�ohm's [4, 3]. For this reason,
the formalism provides a special constant written z and called the daimon (fol-
lowing the terminology and notation of [8]) that requests the termination of the
program|something like an exit system call|and which will be used as the
main technical device to observe normal forms and separate them.

Proofs and technical details are omitted from this extended abstract, but are
available in the long version of the paper [1].
1 Observe that M is treated as a function in the l.h.s. of the rule whereas it is treated
as a constructed value in the r.h.s. This rule should not be confused with the rule of
commutative conversion (fj�jg:M)N = fj�N jg:M that comes from logic, a rule which
is well-typed. . . but incompatible with the reduction rules of our calculus!

3

2 Syntax and reduction rules
2.1 Syntax
The �-calculus with constructors distinguishes two kinds of names: variables
(written x, y, z, etc.) and constructors (written c, c0, etc.) The set of variables
and the set of constructors are written V and C, respectively. In what follows,
we assume that both sets V and C are denumerable and disjoint.

The terms (written M , N , etc.) and the case bindings (written �, �, etc.) of
the �-calculus with constructors are inductively de�ned as follows:

Terms M;N ::= x (Variable)
j c (Constructor)
j z (Daimon)
jMN (Application)
j �x :M (Abstraction)
j fj�jg:M (Case construct)

Case bindings �; � ::= c1 7!M1; : : : ; cn 7!Mn (ci 6= cj for i 6= j)
The sets of terms and case bindings are denoted by �C and B, respectively,

and their disjoint union by �C+B.

Constructor binding Each case binding � is formed as a �nite unordered list
of constructor bindings of the form (c 7! M) whose l.h.s. are pairwise distinct.
We say that a constructor c is bound to a term M in a case binding � if the
binding (c 7!M) belongs to the list �. From the de�nition of case bindings, it is
clear that a constructor c is bound to at most one term in a given case binding �.
When there is no such binding, we say that the constructor c is unbound in �.

The size of a case binding � = (c1 7! M1; : : : ; cn 7! Mn) is written j�j and
de�ned by j�j = n.

We also introduce an (external) operation of composition between two case
bindings � and �, which is written � � � and de�ned by:

� � (c1 7!M1; : : : ; cn 7!Mn) � c1 7! fj�jg:M1; : : : ; cn 7! fj�jg:Mn
(where � � (c1 7!M1; : : : ; cn 7!Mn)). Notice that this operation is not syntac-
tically associative, since:

(� � �) � (ci 7!Mi)i=1::n � (ci 7! fj� � �jg:Mi)i=1::n
whereas

� � (� � (ci 7!Mi)i=1::n � (ci 7! fj�jg: fj�jg:Mi)i=1::n
However, composition of case bindings only makes sense in the presence of the
case conversion reduction rule fj�jg: fj�jg:M ! fj� � �jg:M (see 2.2), for which
both right hand sides above are convertible.

4

Free variables and substitution The notions of bound and free occurrences
of a variable are de�ned as expected. The set of free variables of a termM (resp.
a case binding �) is written FV (M) (resp. FV (�)).

As in the (ordinary) �-calculus, terms are considered up to �-conversion (i.e.
up to a renaming of bound variables). Notice that the renaming policy of the
�-calculus with constructors is strictly the same as in the �-calculus: it only
a�ects (bound) variable names, but leaves constructor names unchanged.

The external substitution operation of the �-calculus, written Mfx := Ng,
is extended to the �-calculus with constructors as expected. The same operation
is also de�ned for case bindings (notation: �fx := Ng).

2.2 Reduction rules
The �-calculus with constructors has 9 primitive reduction rules that are de-
picted in Fig. 1.

Beta-reduction
AppLam (AL) (�x :M)N ! Mfx := Ng
AppDai (AD) zN ! z
Eta-reduction
LamApp (LA) �x :Mx ! M (x =2 FV (M))
LamDai (LD) �x :z ! z
Case propagation
CaseCons (CO) fj�jg: c ! M ((c 7! M) 2 �)
CaseDai (CD) fj�jg:z ! z
CaseApp (CA) fj�jg: (MN) ! (fj�jg:M)N
CaseLam (CL) fj�jg: �x :M ! �x : fj�jg:M (x =2 FV (�))
Case conversion
CaseCase (CC) fj�jg: (fj�jg:M) ! fj� � �jg:M

Fig. 1. Reduction rules of the �-calculus with constructors

In what follows, we will be interested not only in the system induced by the
9 reduction rules taken together, but more generally in the subsystems formed
by all subsets of these 9 rules. We write �BC the calculus generated by all rules
of Fig. 1, and BC the calculus generated by all rules but AppLam (a.k.a. �).

Notice that AppLam (a.k.a �) and LamApp (a.k.a. �) are the only reduction
rules that may apply to an ordinary �-term in �BC .

5

2.3 An example
In �BC , the predecessor function (over unary integers) is implemented as

pred � �n : fj0 7! 0; s 7! �z : zjg: n
(where 0 and s are two distinct constructors). From the rules AppLam (=�) and
CaseCons it is obvious that

pred 0 ! fj0 7! 0; s 7! �z : zjg: 0 ! 0 :
More interesting is the case of pred (s N) (where N is an arbitrary term)

pred (s N) ! fj0 7! 0; s 7! �z : zjg: (s N)
! (fj0 7! 0; s 7! �z : zjg: s) N ! (�z : z) N ! N

which shows how the case construct captures the head occurrence of the construc-
tor s via the reduction rule CaseApp. More generally, ML-style pattern-matching
(on disjoint patterns) is translated in �BC as follows:

match N with
j c1(x1; : : : ; xn1) 7! M1
j c2(x1; : : : ; xn2) 7! M2
j � � �

becomes
fjc1 7! �x1 � � �xn1 :M1 ;
c2 7! �x1 � � �xn2 :M2 ;
� � �

jg �N

3 The Church-Rosser property
In this section, we aim to prove that �BC is conuent. For that, we will prove a
much more general result by characterising among the 29 = 512 possible subsets
of the 9 primitive reduction rules which subsets induce a subsystem of �BC which
is conuent, and which ones do not.

3.1 Preliminary de�nitions
Let us �rst recall some classic de�nitions.
De�nition 1. | An Abstract Rewriting System (ARS) is a pair A = (jAj;!A)
formed by an arbitrary set jAj (called the carrier of A) equipped with a binary
relation !A on jAj. We denote by !�A the reexive-transitive closure of !A,
and by !=A the reexive closure of !A.
De�nition 2. | An ARS A is strongly normalising (SN) if there is no in�nite
sequence of objects (Mi)i2N 2 jAjN such that Mi !A Mi+1 for all i 2 N.
De�nition 3. | Let A = (S;!A) and B = (S;!B) be two ARSs de�ned on
the same carrier set S. We say that:
{ A weakly commutes with B, written A ==w B, if for all M;M1;M2 s.t.
M !A M1 and M !B M2 there exists M3 s.t. M1 !�B M3 and M2 !�A M3.

6

{ A commutes with B, written A == B, if for all M;M1;M2 s.t. M !�A M1
and M !�B M2 there exists M3 s.t. M1 !�B M3 and M2 !�A M3.

An ARS A is said to be weakly conuent or weakly Church-Rosser (WCR)
(resp. conuent, or Church-Rosser (CR)) if A ==w A (resp. if A == A).

Given two ARSs A and B de�ned on the same carrier set, we write A + B
the (set-theoretic) union of both relations. The conuence proof of �BC relies on
standard results of rewriting [2], and in particular in the following two lemmas:
Lemma 1. | If A ==w B and A+B is SN, then A == B.
Proof: Same proof-technique as for Newman's lemma [2]. 2
Lemma 2. | If A == B and A == C then A == (B + C).

3.2 Critical pairs and closure conditions
Each of the 9 primitive reduction rules of �BC describes the interaction between
two syntactic constructs of the language, which is reected by the name of the
rule: AppLam for `Application over a Lambda', etc. These reduction rules induce
13 di�erent critical pairs, that are summarised in Fig. 2 and 3.

Critical pairs occur for all pairs of rules of the form FooBar=BarBaz. A
quick examination of Fig. 2 and 3 reveals that each time we have to close such
a critical pair, we need to use the third rule FooBaz when this rule exists. This
occurs for the 6 critical pairs (2), (4), (5), (6), (7) and (8) of Fig. 2; in the other
cases, the critical pair is closed by the only rules FooBar and BarBaz.

This remark naturally suggests the following de�nition:
De�nition 4 (Closure conditions). | We say that a subset s of the 9 rules
given in Fig. 1 ful�ls the closure conditions and write s j= CC if:
(CC1)
(CC2)
(CC3)
(CC4)
(CC5)
(CC6)

AppLam 2 s ^ LamDai 2 s) AppDai 2 s
LamApp 2 s ^ AppDai 2 s) LamDai 2 s
CaseApp 2 s ^ AppLam 2 s) CaseLam 2 s
CaseApp 2 s ^ AppDai 2 s) CaseDai 2 s
CaseLam 2 s ^ LamApp 2 s) CaseApp 2 s
CaseLam 2 s ^ LamDai 2 s) CaseDai 2 s

Intuitively, a subset that ful�ls the 6 closure conditions de�nes a system in
which all critical pairs can be closed, and thus constitutes a good candidate for
Church-Rosser. The aim of this section is to turn this intuition into the
Theorem 1 (Church-Rosser). | For each of the 512 subsystems s of �BC
the following propositions are equivalent:
1. s ful�ls the closure conditions (CC1){(CC6);
2. s is weakly conuent;
3. s is conuent.

7

(1) AppLam=LamApp (2) AppLam=LamDai
(�x :Mx)N [x=2FV (M)]

AppLam
�����

��� LamApp
��??

???
?

MN MN

(�x :z)N
AppLam
������

��� LamDai
��???

????

z
????
???? zN

AppDai��z
(3) LamApp=AppLam (4) LamApp=AppDai

�x : (�y :M)x [x=2FV (M)]
LamApp

������
�� AppLam

��???
???

�y :M �x :Mfy := xg

�x : (zx)
LamApp
�����

��� AppDai
��??

???
?

z
??

??
??

?? �x :z
LamDai��z

(5) CaseApp=AppLam (6) CaseApp=AppDai

fj�jg: ((�x :M)N) [x=2FV (�)]
CaseApp

������
�� AppLam

��???
???

(fj�jg: �x :M)N
CaseLam ��

fj�jg: (Mfx := Ng)

� �
� �

� �

� �
� �

� �
(�x : fj�jg:M)N

AppLam ��(fj�jg:M)fx := Ng

fj�jg: (zN)
CaseApp

������
�� AppDai

��???
???

(fj�jg:z)N
CaseDai ��

fj�jg:z

CaseDai
��

zN
AppDai ��z

(7) CaseLam=LamApp (8) CaseLam=LamDai

fj�jg: �x : (Mx) [x=2FV (M;�)]
CaseLam

������
�� LamApp

��???
???

�x : fj�jg: (Mx)
CaseApp ��

fj�jg:M

� �
� �

� �

� �
� �

� �
�x : (fj�jg:M)x

LamApp ��fj�jg:M

fj�jg: �x :z
CaseLam

������
�� LamDai

��???
???

�x : fj�jg:z
CaseDai ��

fj�jg:z

CaseDai
��

�x :z
LamDai ��z

Fig. 2. Critical pairs 1{8 (/13)

8

(9) CaseCase=CaseCons (10) CaseCase=CaseDai
fj�jg: fj�jg: c [(c 7!M)2�]

CaseCase
������

�� CaseCons
��???

???

fj� � �jg: c
CaseCons ��

fj�jg:M

� � �
� � �

fj�jg:M

fj�jg: fj�jg:z
CaseCase

������
�� CaseDai

��???
???

fj� � �jg:z
CaseDai ��

fj�jg:z
CaseDai��z

(11) CaseCase=CaseApp (12) CaseCase=CaseLam
fj�jg: fj�jg: (MN)

CaseCase
������

�� CaseApp
��???

???

fj� � �jg: (MN)

CaseApp
��

fj�jg: (fj�jg:M)N
CaseApp��(fj�jg: fj�jg:M)N

CaseCase��(fj� � �jg:M)N

fj�jg: fj�jg: �x :M
CaseCase

������
�� CaseLam

��???
???

fj� � �jg: �x :M

CaseLam
��

fj�jg: �x : fj�jg:M
CaseLam���x : fj�jg: fj�jg:M

CaseCase���x : fj� � �jg:M

(13) CaseCase=CaseCase
fj�jg: fj�jg: fj�jg:M

CaseCase
�����

��� CaseCase
��??

???
?

fj� � �jg: fj�jg:M

CaseCase
��

fj�jg: fj� � �jg: t
CaseCase��fj� � (� � �)jg:M

CaseCase���fj(� � �) � �jg:M

Fig. 3. Critical pairs 9{13 (/13)

9

Since the full system (i.e. �BC) obviously ful�ls all closure conditions, we will
get as an immediate corollary:
Corollary 1 (Church-Rosser). | �BC is conuent.

The proof of theorem 1 relies on a systematic analysis of the commutation
properties of all pairs of subsystems (s1; s2) of �BC . For that, we �rst have to
generalise the notion of closure condition to any pair (s1; s2) of subsystems. This
leads us to adopt the following de�nition:
De�nition 5 (Binary closure conditions). | We say that a pair (s1; s2) of
subsystems ful�ls the binary closure conditions and write (s1; s2) j= BCC if
(BCC1)
(BCC2)
(BCC3)
(BCC4)
(BCC5)
(BCC6)
(BCC7)
(BCC8)
(BCC9)

AppLam 2 s1 ^ LamDai 2 s2) AppDai 2 s1
LamApp 2 s1 ^ AppDai 2 s2) LamDai 2 s1
CaseApp 2 s1 ^ AppLam 2 s2) CaseLam 2 s2
CaseApp 2 s1 ^ AppDai 2 s2) CaseDai 2 (s1 \ s2)
CaseLam 2 s1 ^ LamApp 2 s2) CaseApp 2 s2
CaseLam 2 s1 ^ LamDai 2 s2) CaseDai 2 (s1 \ s2)
CaseCase 2 s1 ^ CaseDai 2 s2) CaseDai 2 s1
CaseCase 2 s1 ^ CaseApp 2 s2) CaseApp 2 s1
CaseCase 2 s1 ^ CaseLam 2 s2) CaseLam 2 s1

as well as the 9 symmetric conditions (obtained by exchanging s1 with s2).
Again, the 9 binary closure conditions come from an analysis of critical pairs.

For example (BCC1) comes from the observation that critical pair (2) of Fig. 2
can be formed as soon as s1 contains AppLam and s2 contains LamDai, and that
it can be closed only if s1 contains AppDai.

We can also remark that when we take s1 = s2 = s, the binary closure con-
ditions (BCC1){(BCC6) degenerate to the (simple) closure conditions (CC1){
(CC6) whereas (BBC7){(BCC9) become tautologies, so that:

Fact 1 | For all subsystems s of �BC: s j= CC i� (s; s) j= BCC.
We �rst show that:

Proposition 1. | For all pairs (s1; s2) of subsystems of �BC the following
propositions are equivalent:
1. (s1; s2) j= BCC (binary closure conditions);
2. s1 ==w s2 (weak commutation).
Proof: (1) 2) By structural induction on the reduced term, closing critical
pairs using BCCs. (2) 1) By contraposition, exhibiting a suitable counter-
example for each BCC that does not hold. 2

Now it remains to be shown that all weakly commuting pairs commute.

10

3.3 Strong normalisation of the BC-calculus
The �rst step is to check that the subsystem BC = (�BC n AppLam) is SN.
Proposition 2 (SN of BC-calculus). | The BC-calculus is SN.
Proof: Consider the function h : �C + B ! N recursively de�ned by
h(x) = h(c) = h(z) = 1 h(fj�jg:M) = h(�) + (j�j+ 2)h(M)

h(�x :M) = h(M) + 1
h(MN) = h(M) + h(N) h((ci 7!Mi)i=1::n) = Pni=1 h(Mi)

It is routine to check that h decreases at each BC-reduction step. 2
From Lemma 1 and Prop. 1 we get:

Proposition 3. | If (s1; s2) j= BCC and AppLam =2 (s1 + s2), then s1 == s2.

3.4 Propagation of commutation lemmas
Let us now consider the 512 � 512 matrix formed by all 131; 328 (unordered)
pairs of subsystems of �BC2. With the help of a small computer program3, we
easily check that 13; 396 of the 131; 328 pairs of systems ful�l BCCs|and thus
weakly commute. Moreover, 5; 612 of these 13; 396 weakly commuting pairs do
not involve AppLam|and thus we know that they commute.

The situation is summarised in the following table:
Pairs (s1; s2) s1 = s2

SN + commuting (=:AppLam+BCC) 5,612 160
Weakly commuting (=BCC) 13,396 248
Total 131,328 512

The problem is now to check that the 13; 396 � 5; 612 = 7; 784 remaining
weakly commuting pairs commute too. For that, we notice that:
Fact 2 | If the 12 pairs of subsystems of Table 1 commute, then all 13; 396
weakly commuting pairs of systems commute.

Again, this fact can be mechanically checked by considering the set formed
by all 5; 612 SN-commuting pairs extended with the 12 pairs of Table 1, and by
checking that the closure of this set of 5; 624 pairs under Lemma 2 yields the set
of all 13; 396 pairs that ful�l BCCs. To conclude, it su�ces to prove:
Proposition 4. | The 12 pairs of Table 1 commute.

The details of the 12 commutation proofs can be found in [1].
From that we deduce that all pairs of subsystems that ful�l BCCs commute,

and the proof of Theorem 1 is now complete.
2 In what follows, we count (s1; s2) and (s2; s1) as a single pair of systems.3 This program can be downloaded from the web pages of the authors.

11

(1) AppLam == AppLam
(2) AppLam == AppDai
(3) AppLam == LamApp
(4) AppLam == CaseCons
(5) AppLam == CaseDai
(6) AppLam == CaseLam
(7) AppLam == CaseCase
(8) AppLam+AppDai == LamDai
(9) AppLam+AppDai == LamApp+ LamDai
(10) AppLam+CaseLam == CaseApp
(11) AppLam+CaseLam == LamApp+CaseApp
(12) AppLam+AppDai+CaseDai+CaseLam ==

LamApp+ LamDai+CaseDai+CaseApp
Table 1. The 12 initial commutation lemmas

Corollary 2. | �BC is conservative over ��-calculus, in the sense that:
8M1;M2 2 � (�BC j=M1 =M2) �� j=M1 =M2) :

Proof: Follows from Cor. 1 using the concluding remark of subsection 2.2. 2

4 Separation
The aim of this section is to establish the theorem of (weak) separation, ex-
pressing that observationally equivalent normal terms are syntactically equal.
For that, we will show that for all normal terms4 M1 6�M2 of �BC there exists a
context C[] such that C[M1] converges whereas C[M2] diverges|or vice-versa|
using notions of convergence and divergence that will be precised.

Separation [4] can be understood as some kind of completeness of the for-
malism. Intuitively, it expresses that the calculus provides su�ciently many re-
duction rules to identify observationally equivalent terms, or|which is the same
dually|that it provides su�ciently many syntactic constructs (i.e. observers) to
discriminate di�erent normal forms.

4.1 Quasi-normal forms
Let us �rst analyse the shape of normal forms in the calculus.
De�nition 6 (Head term). | We call a head term (and write H, H1, H 0,
etc.) any term that has one of the following four forms:
Head term H ::= x j c j fj�jg: x j fj�jg: c (c =2 dom(�))
4 Actually, we will prove our separation theorem only for completely de�ned normal
terms (cf subsection 4.2).

12

When a head term H is of one of the �rst three forms (variable, constructor,
case binding on a variable), we say that H is de�ned. When H is of the last
form (case binding on an unbound constructor), we say that H is unde�ned.
De�nition 7 (Quasi-head normal form). | A term M is said to be in
quasi-head normal form (quasi-hnf) if it has one of the following two forms
Quasi-hnf M ::= z j �x1 � � �xn : HN1 � � �Nk (n; k � 0)
where H is an arbitrary head term, called the head of M , and where N1; : : : ; Nk
are arbitrary terms.

Here, the pre�x `quasi-' expresses that such terms are in head normal form
w.r.t. all reduction rules, but (possibly) the rule LamApp (= �). In what follows,
`quasi-' systematically refers to `all reduction rules but LamApp'.

As for head terms, we distinguish de�ned quasi-hnfs from unde�ned ones.
We say that a quasi-hnf M is de�ned when either M � �x1 � � �xn : HN1 � � �Nk
with H de�ned, or when M � z; and we say that M is unde�ned when M �
�x1 � � �xn : (fj�jg: c)N1 � � �Nk with c =2 dom(�).

More generally, we call a de�ned term (resp. an unde�ned term) any term
that reduces to a de�ned (resp. unde�ned) quasi-hnf. The class of de�ned terms
is closed under arbitrary reduction, as for the class of unde�ned terms. Moreover,
the class of unde�ned terms is closed under arbitrary substitution.
De�nition 8 (Quasi-normal form). | A term (resp. a case binding) is said
to be in quasi-normal form when it is in normal form w.r.t. all the reduction
rules but LamApp (= �).

Terms (resp. case bindings) that are in quasi-normal form are simply called
quasi-normal terms (resp. quasi-normal case bindings). In particular, we call a
quasi-normal head term any head term H which is in quasi-normal form. These
notions have the following syntactic characterisation:
Proposition 5. | Quasi-normal terms, quasi-normal head terms, and quasi-
normal case bindings are (mutually) characterised by the following BNF:
Q.n.-terms

Q.n.-head-terms

Q.n.-case bind.

N ::= z j �x1 � � �xn : HN1 � � �Nk
H ::= x j c j fj�jg: x j fj�jg: c (c =2 dom(�))
� ::= c1 7! N1; : : : ; cp 7! Np

4.2 Separation contexts
The notion of context with one hole is de�ned in �BC as expected. The term
obtained by �lling the hole of a context C[] with a term M is written C[M], and
the composition of two contexts C[] and C 0[] is written C 0[C[]]. In what follows,
we will use contexts of a particular form, namely, evaluation contexts:
Evaluation contexts E[] ::= []N1 � � �Nn j (fj�jg: [])N1 � � �Nn

13

Notice that the composition E0[E[]] of two evaluation contexts E[] and E0[]
is not always an evaluation context, but that it always reduces to an evaluation
context using zero, one or several steps of the CaseApp rule, possibly followed
by a single step of the CaseCase rule.

The daimon z which represents immediate termination naturally absorbs all
evaluation contexts:
Lemma 3. | In any evaluation context E[] one has E[z]!� z.

Symmetrically, each sub-term of the form fj�jg: c (with c =2 dom(�)) blocks
the computation process at head position so that unde�ned terms \absorb" all
evaluation contexts as well:
Lemma 4. | Given an unde�ned term U , the term E[U] is unde�ned for all
evaluation contexts E[].

The daimon z and unde�ned terms are thus natural candidates to de�ne the
notion of separability:
De�nition 9 (Separability). | We say that two terms M1 and M2 are:
{ weakly separable if there exists a context with one hole C[] such that either:

� C[M1]!� z and C[M2] is unde�ned, or
� C[M2]!� z and C[M1] is unde�ned;

{ strongly separable if there exists two contexts C1[] and C2[] such that
� C1[M1]!� z and C1[M2] is unde�ned, and
� C2[M2]!� z and C2[M1] is unde�ned.

Since unde�ned terms cannot be separated from each other (because unde-
�ned heads block all computations), we have to exclude them5 from our study:
De�nition 10 (Completely de�ned quasi-normal term). | A term M in
quasi-normal form is said to be completely de�ned if it contains no sub-term of
the form fj�jg: c, where c =2 dom(�).

4.3 Disagreement
The separation theorem is proved in two steps:
1. First we de�ne a syntactic relation between terms, called disagreement at

depth d 2 N, and we show that any pair of distinct normal forms have �-
expansions that disagree at some depth (this subsection).

2. Then we show (by induction on the depth of disagreement) that any pair of
disagreeing quasi-normal terms are weakly separable (subsection 4.5).

De�nition 11 (Skeleton equivalence). | We say that two de�ned head
terms H1 and H2 have the same skeleton and write H1 � H2 if either:
5 Semantically, this means that we identify unde�ned terms with non weakly normal-
isable terms, and thus interpret them as
 (Scott's bottom).

14

{ H1 � H2 � x for some variable x; or
{ H1 � H2 � c for some constructor c; or
{ H1 � fj�1jg: x and H2 � fj�2jg: x for some variable x and for some �1; �2 such

that dom(�1) = dom(�2).
De�nition 12 (Disagreement at depth d). | For each d 2 N, we de�ne
a binary relation on the class of completely de�ned quasi-normal terms, called
the disagreement relation at depth d. This relation, written disd(M1;M2) (`M1
and M2 disagree at depth d'), is de�ned by induction on d 2 N as follows:
{ (Base case) We write dis0(M1;M2) if either:� M1 = z and M2 = �x1 � � �xn : HN1 � � �Nk; or

� M1 = �x1 � � �xn : HN1 � � �Nk and M2 = z; or
� M1 = �x1 � � �xn : H1N1;1 � � �N1;k1 and
M2 = �x1 � � �xn : H2N2;1 � � �N2;k2 and
H1 6� H2.{ (Inductive case) For all d 2 N, we write disd+1(M1;M2) if

M1 = �x1 � � �xn : H1N1;1 � � �N1;k1 and
M2 = �x1 � � �xn : H2N2;1 � � �N2;k2 and
H1 � H2, and if either
� H1 = fj�1jg: y and H2 = fj�2jg: y for some case bindings �1; �2 and for
some variable y, and there is a constructor c 2 dom(�1) = dom(�2) such
that disd(�1(c); �2(c)); or

� There is a position 1 � k � min(k1; k2) such that disd(N1;k; N2;k).
Lemma 5 (Cooking lemma).| If M1 and M2 are completely de�ned normal
terms (w.r.t. all reduction rules including LamApp = �) such thatM1 6�M2, then
one can �nd two completely de�ned quasi-normal terms M 01 and M 02 such that
M 01 !�� M1, M 02 !�� M2, and disd(M 01;M 02) for some d 2 N.

4.4 Ingredients for separation
Separating disagreeing quasi-normal terms relies on de�nitions and techniques
that are fully described in [1]. Here we briey present some of them.
Tuples In order to retrieve arbitrary sub-terms of a given normal form (the
so called `B�ohm-out' technique), we need tuples that are encoded as in the pure
�-calculus as hM1; : : : ;Mni � �e : eM1 � � �Mn. In what follows, we use a more
general notation to represent partial application of the n-uple constructor to its
�rst k arguments and waiting the remaining n� k arguments:

hM1; : : : ;Mk; �n�ki � �xk+1 � � �xne : eM1 � � �Mkxk+1 � � �xn (0 � k � n)
With these notations, the n-uple constructor is written h�ni.
Encoding names Separation of distinct free variables is achieved by substi-
tuting them by easily separable closed terms. For that, we associate to each
variable name x a unique Church numeral written x (using the same name writ-
ten in typewriter face), which we call the symbol of x.

15

Substitutions A substitution is a �nite association list which maps pairwise
distinct variables to terms. A substitution � can be applied to a term M , and
the result (which is de�ned as expected) is written M [�].

Separation is achieved (Prop. 6) using a particular substitution �KX parame-
terised by an integer K � 0 and a �nite set of variables X, namely, the substitu-
tion that maps each variable x 2 X to the term hx; �Ki representing the partial
application of the (K + 1)-uple constructor to the symbol of x.

4.5 The separation theorem
Let M be a term in quasi-normal form. We call the application strength of M
the largest integer k � 0 such that M has a sub-term of the form HN1 � � �Nk.
Proposition 6 (Separation of disagreeing terms). | Let K � 0 be a nat-
ural number, and M1 and M2 two completely de�ned quasi-normal terms whose
application strength is less than or equal to K and such that M1 and M2 disagree
at some depth d 2 N. Then there exists an evaluation context E[] such that either
{ E�M1[�KX]�!� z and E�M2[�KX]� is unde�ned, or
{ E�M2[�KX]�!� z and E�M1[�KX]� is unde�ned;

where X is any �nite set of variables that contains at least the free variables
of M1 and M2, and where �KX is the substitution de�ned in subsection 4.4.

From this proposition and lemma 5 we easily conclude:
Theorem 2 (Separation). | Let M1 and M2 be completely de�ned terms in
normal form. If M1 6�M2, then M1 and M2 are weakly separable.

5 Conclusion
We have introduced an extension of �-calculus, �BC , in which pattern matching
is implemented via a mechanism of case analysis that behaves like a head linear
substitution over constructors. We have shown that the reduction relation of �BC
is conuent and conservative over the ��-calculus, but also that it is complete
in the sense that it provides su�ciently many reduction rules to identify all
observationally equivalent normalisable terms.
Using the divide-and-conquer method for other proofs of conuence An original
aspect of this work is the way we proved conuence by systematically studying
the commutation properties of all pairs of subsystems of �BC . Surprisingly, the
mechanical propagation rule \if A == B and A == C then A == (B+C)" (combined
with the primitive knowledge of all commutation properties between subsystems
that do not involve AppLam) is su�cient to reduce the proof of the expected
7,784 non-trivial commutation lemmas to only 12 primitive lemmas, that are
established by hand. It would be interesting to investigate further to see whether
the same method can be used to prove the conuence of other rewrite systems
with many reduction rules|typically, systems with explicit substitutions.

16

A notion of B�ohm tree for �BC The separation theorem we proved suggests
that head normal forms of �BC could be the adequate brick to de�ne a notion
of B�ohm-tree [4, 3] for �BC|and more generally, for ML-style pattern-matching.
However, the fact that it is a weak separation theorem also suggests that the
observational ordering is non-trivial on the set of normal forms. Characterising
observational ordering on normal forms could be the next step to deepen our
understanding of both operational and denotational semantics of �BC .
Which type system for �BC? The reduction rules CaseApp and CaseLam which
are the starting point of this work deeply challenge the traditional intuition of
the notion of type, for which functions and constructed values live in di�erent
worlds. However, the good operational semantics of the calculus naturally raises
the exciting question of �nding a suitable type system for �BC .

References
1. A. Arbiser, A. Miquel, and A. R��os. A �-calculus with constructors. Manuscript,

available from the web pages of the authors, 2006.
2. F. Baader and T. Nipkow. Rewriting and All That. Addison-Wesley, 1999.
3. H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of

Studies in Logic and The Foundations of Mathematics. North-Holland, 1984.
4. C. B�ohm, M. Dezani-Ciancaglini, P. Peretti, and S. Ronchi Della Rocha. A dis-

crimination algorithm inside lambda-beta-calculus. Theoretical Computer Science,
8(3):265{291, 1979.

5. S. Cerrito and D. Kesner. Pattern matching as cut elimination. In Logics In
Computer Science (LICS'99), pages 98{108, 1999.

6. A. Church. The calculi of lambda-conversion, volume 6 of Annals of Mathematical
Studies. Princeton, 1941.

7. H. Cirstea and C. Kirchner. Rho-calculus, the rewriting calculus. In 5th Interna-
tional Workshop on Constraints in Computational Logics, 1998.

8. J.-Y. Girard. Locus solum: From the rules of logic to the logic of rules. Mathemat-
ical Structures in Computer Science, 11(3):301{506, 2001.

9. P. Hudak, S. Peyton-Jones, and P. Wadler. Report on the programming language
Haskell, a non-strict, purely functional language (Version 1.2). Sigplan Notices,
1992.

10. C. Barry Jay. The pattern calculus. ACM Transactions on Programming Languages
and Systems, 26(6):911{937, 2004.

11. W. Kahl. Basic pattern matching calculi: Syntax, reduction, conuence, and nor-
malisation. Technical Report 16, Software Quality Research Laboratory, McMaster
Univ., 2003.

12. R. Milner, M. Tofte, and R. Harper. The de�nition of Standard ML. MIT Press,
1990.

13. The Objective Caml language. http://caml.inria.fr/.
14. V. van Oostrom. Lambda calculus with patterns. Technical Report IR-228, Vrije

Universiteit, Amsterdam, 1990.

17

A 12 initial commutation properties

In this appendix we show the 12 commutation properties of Table 1.

The �rst commutation property of Table 1 expresses the conuence of the
reduction rule AppLam. As usual, we prove it (following Tait and Martin-L�of)
by introducing the corresponding notion of parallel reduction:
De�nition 13. | The relations of parallel AppLam-reduction on terms and
on case bindings (both written)) are de�ned as follows:

M)M (pRef) M)M 0 N) N 0
(�x :M)N)M 0fx := N 0g (pAppLam)

M)M 0
�x :M) �x :M 0 (pLam) M)M 0 N) N 0

MN)M 0N 0 (pApp)

M)M 0 �) �0
fj�jg:M) fj�0jg:M 0 (pCase)

M1)M 01 � � � Mn)M 0n
(ci 7!Mi)i=1::n) (ci 7!M 0i)i=1::n (pCBind)

As usual, we check that:
Proposition 7 (Properties of)).
1. If M !� M 0, then M)M 0 (i.e. !� �))
2. If M)M 0, then M !�� M 0 (i.e.) �!��)3. If M)M 0 and N) N 0, then Mfx := Ng)M 0fx := N 0g
4. If M)M1 and M)M2, then

there exists M3 s.t. M1)M3 and M2)M3 (diamond property)
Proof: Item 1: by induction on the derivation ofM !� M 0. Item 2: by induction
on the derivation ofM)M 0. Item 3: by induction on the derivation ofM)M 0.
Item 4: by induction on the derivation of M)M1. 2

From this we deduce that)� =!�� , and thus:
Proposition 8 (1/12). | AppLam == AppLam, i.e. AppLam is conuent.

The next 5 commutations properties (2{6) are of the form `AppLam == r',
where the reduction rule r is linear, that is, a rule that cannot duplicate sub-
terms during contraction. (But it may erase sub-terms.)

To treat this case, we use the following de�nition:
De�nition 14. | Let (S;!A) and (S;!B) be two ARSs de�ned on the same
carrier set. We say that A strongly commutes with B if for all M;M1;M2 such

18

that M !A M1 and M !B M2 there exists M3 such that M1 !=B M3 and
M2 !�A M3. In other words, the following diagram holds:

�A
������

�� B
��??

????
� =
B ��

��
A���

Lemma 6. | If A strongly commutes with B, then A == B.
Proof: See [2]. 2
Lemma 7. | For each reduction rule

r 2 fAppDai;LamApp;CaseCons;CaseDai;CaseLamg ;
the rule r strongly commutes with AppLam.
Proof: This is proved by a straightforward induction. Notice that the reduc-
tion rules AppDai, CaseCons, CaseDai and CaseLam induce no critical pair
with AppLam. Only the rule LamApp induces critical pairs with AppLam, but
these pairs are trivially closed. 2
Proposition 9 (2{6/12). | For each reduction rule

r 2 fAppDai;LamApp;CaseCons;CaseDai;CaseLamg ;
we have AppLam == r.

The commutation between AppLam and CaseCase is more delicate to handle
since both rules may duplicate redexes of the other kind during contraction.
However, the problem is greatly simpli�ed if we replace AppLam by) (parallel
AppLam-reduction), since:
Lemma 8. | CaseCase strongly commutes with).
Proof: By induction on the derivation of). 2
Proposition 10 (7/12). | AppLam == CaseCase.
Proof: By lemma 6, we know that CaseCase commutes with). But since we
know that)� =!�� , we are done. 2

The following lemma describes the interaction between the reduction rules
AppLam and LamDai, generalising critical pair (2) of Fig. 2:
Lemma 9 (AppLam=LamDai). | The following diagram holds:

�AL
������

�� LD
��??

????
�
LD

�
��

�
AL+AD���

19

Proof: By structural induction on the initial term (top of the diagram). In
all con�gurations where the initial AppLam- and LamDai-redexes are disjoint,
contracting the AppLam-redex may duplicate the LamDai-redex (hence !�LD to
close on the lhs) whereas contracting the LamDai-redex leaves the AppLam-redex
una�ected (hence !AL to close on the rhs). In the con�guration of the critical
pair AppLam=LamDai, we need no LamDai-reduction step to close on the lhs,
but a single AppDai-reduction step to close on the rhs (hence the use of AD). 2

Lemma 10 (AppDai=LamDai). | The following diagram holds:
�AD

������
�� LD

��??
????

�
LD

=
��

�
AD���

Proof: Obvious since both rules are linear and induce no critical pair. Notice
that contracting the AppDai-redex may erase the LamDai-redex, hence the `='
to close on the lhs. 2

By merging the diagrams of lemmas 9 and 10 we deduce:
Lemma 11. | LamDai strongly commutes with AppLam+ AppDai.

Proposition 11 (8/12). | AppLam+ AppDai == LamDai.
Again, the following lemma describes the interaction between the reduction

rules LamApp and AppDai, generalising critical pair (4) of Fig. 2:

Lemma 12 (LamApp=AppDai). | The following diagram holds:
�LA

������
�� AD

��??
????

�
AD

=
��

�
LA+LD

=
���

(The proof follows the same idea as for lemma 9.)

Lemma 13. | LamApp+ LamDai strongly commutes with AppLam+AppDai:
�LA+LD

������
�� AL+AD

��??
????

� =
AL+AD ��

��
LA+LD���

20

Proof: The proof proceeds by merging the following diagrams, that cover all
the possible cases when M !LA+LD M1 and M !AL+AD M2:

�LA
������

�� AL
��??

????
� =
AL ��

��
LA���

�LA
������

�� AD
��??

????
� =
AD ��

�=
LA+LD���

�LD
������

�� AL+AD
��??

????
� =

AL+AD ��
��

LD���
First diagram is lemma 7 with r = LamApp, second diagram is lemma 12, and
third diagram is lemma 11. 2
Proposition 12 (9/12). | AppLam+ AppDai == LamApp+ LamDai.
Lemma 14 (CaseApp=CaseLam). | The following diagrams hold:

�CA
������

�� CL
��??

????
�
CL ��

�
CA���

�CA
������

�� CL� ��??
????

�
CL

�
��

�
CA���

�CA �������
�� CL

��??
????

�
CL ��

�
CA

�
���

Lemma 15 (CaseApp=AppLam). | The following diagrams hold:
�CA

������
�� AL

��??
????

�
CL

=�� �
CA

�
���

AL ���

�CA �������
�� AL

��??
????

�
CL

��� �
CA

�
���

AL ���
Proof: The �rst diagram is obtained by generalising critical pair (5) of Fig. 2,
following the spirit of lemmas 9 and 12. The second diagram is deduced from the
�rst, by induction on the number of CaseApp-reduction steps (top left), using
the second diagram of lemma 14 to close. 2
Proposition 13 (10/12). | AppLam+ CaseLam == CaseApp.
Proof: By induction on the number of (AppLam + CaseLam)-reduction steps,
using the third diagram of lemma 14 and the second diagram of lemma 15. 2
Lemma 16 (CaseApp=AppDai). | The following diagram holds:

�CA
������

�� AD
��??

????
�

CD
=�� �

CD+CA
=
���

AD ���
Proof: This diagram is obtained by generalising critical pair (6) of Fig. 2,
following the spirit of lemmas 9 and 12. 2

21

Lemma 17 (CaseLam=LamApp). | The following diagram holds:
�CL

������
�� LA

��??
????

�
CA

=�� �
CL

=
���

LA ���
Proof: This diagram is obtained by generalising critical pair (7) of Fig. 2. 2
Lemma 18 (CaseLam=LamDai). | The following diagram holds:

�CL
������

�� LD
��??

????
�

CD
=�� �

CL+CD���
LD ���

Proof: This diagram is obtained by generalising critical pair (8) of Fig. 2. 2
Lemma 19. | The following diagrams hold:

�LA+CA
������

�� AL+CL
��??

????
�

CL
=�� �

LA+CA
�
���

AL
=���

�LA+CA
�������
�� AL+CL

��??
????

�
CL

��� �
LA+CA

�
���

AL
=���

Proof: The �rst diagram is obtained by merging the following diagrams that
cover all the possible cases:

�LA
������

�� AL
��??

????
�
AL

=
��

�
LA

�
���

�LA
������

�� CL
��??

????
�
CL

=
��

�
CA

=���
LA���

�CA
������

�� AL
��??

????
�

CL
=�� �

CA
�
���

AL ���

�CA
������

�� CL
��??

????
�
CL ��

�
CA���

(The diagrams above come from lemmas 7, 17, 15 and 14, respectively.) The
second diagram is deduced from the �rst diagram, by induction on the number
of (LamApp+ CaseApp)-reduction steps (see [1] for the details). 2
Proposition 14 (11/12). | AppLam+ CaseLam == LamApp+ CaseApp.
Proof: From the second diagram of lemma 19, by induction on the number of
(AppLam+ CaseLam)-reduction steps. 2
Lemma 20. | Let s1 = AppLam + AppDai + CaseDai + CaseLam and s2 =
LamApp+ LamDai+ CaseDai+ CaseApp. The following diagram holds:

�s1
������

�� s2
��??

????
�
s2

�
��

�
CL+CD

=���s1
=���

22

Proof: The proof proceeds by merging the following diagrams, that cover all
the possible cases:

�AL
������

�� LA
��??

????
�
LA

�
��

�
AL

=
���

�AL
������

�� LD
��??

????
�
LD

�
��

�
AL+AD���

�AL
������

�� CA
��??

????
�
CA

�
��

�
CL

=���
AL���

�AL
������

�� CD
��??

????
�
CD

�
��

�
AL

=
���

(Lemma 7) (Lemma 9) (Lemma 15) (Lemma 7)
�AD

������
�� LA

��??
????

�
LA+LD

=
��

�
AD

=
���

�AD
������

�� LD
��??

????
�
LD

=
��

�
AD���

�AD
������

�� CA
��??

????
�

CD+CA
=
��

�
CD

=���
AD���

�AD
������

�� CD
��??

????
�
CD

=
��

�
AD

=
���

(Lemma 12) (Lemma 10) (Lemma 16)
�CL

������
�� LA

��??
????

�
CA

=�� �
CL

=
���

LA ���

�CL
������

�� LD
��??

????
�

CD
=�� �

CL+CD���
LD ���

�CL
������

�� CA
��??

????
�
CA ��

�
CL���

�CL
������

�� CD
��??

????
�
CD ��

�
CL

=
���

(Lemma 17) (Lemma 18) (Lemma 14)
�CD

������
�� LA

��??
????

�
LA

=
��

�
CD

=
���

�CD
������

�� LD
��??

????
�
LD

=
��

�
CD���

�CD
������

�� CA
��??

????
�
CA

=
��

�
CD���

�CD
������

�� CD
��??

????
�
CD

=
��

�
CD

=
���

(Non annotated diagrams describe the interaction between two linear rules that
have no critical pair.) 2
Proposition 15 (12/12). | AppLam + AppDai + CaseDai + CaseLam com-
mutes with LamApp+ LamDai+ CaseDai+ CaseApp.
Proof: Again, let s1 = AppLam + AppDai + CaseDai + CaseLam and s2 =
LamApp + LamDai + CaseDai + CaseApp. The proof of conuence is done by
induction on the (s2 + CL+ CD)-depth of the top term, using lemma 20 to close
the diagram (see [1] for the details). 2

23

B Conuence of the whole system �BC

Each item of the following (mechanically constructed) proof states a commuta-
tion property (s1 == s2) which is either:
{ an item of Table 1;
{ a consequence of (s1; s2) j= BCC and (s1 + s2) j= SN;
{ a consequence of two former items using the rule of inference:

if A == B and A == C, then A == (B + C) .
1. (AL j= CR) [Table 1:1]
2. (AL == AD) [Table 1:2]
3. (AL == CO) [Table 1:4]
4. (AL == CD) [Table 1:5]
5. (AL == CL) [Table 1:6]
6. (AL == CD+ CL) since (CD == AL) [4.] and (CL == AL) [5.]
7. (AL == AD+CD+CL) since (AD == AL) [2.] and (CD + CL == AL) [6.]
8. (AL == AL+AD+CD+CL) since (AL j= CR) [1.] and (AD+CD+CL == AL) [7.]
9. (AL == CC) [Table 1:7]
10. (LA + LD+ CD+CA == AL + AD+CD+CL) [Table 1:12]
11. (AL == CL + CC) since (CL == AL) [5.] and (CC == AL) [9.]
12. (AL == CD+ CL + CC) since (CD == AL) [4.] and (CL + CC == AL) [11.]
13. (AL == CO+CD+CL + CC) since (CO == AL) [3.] and

(CD + CL + CC == AL) [12.]
14. (AL == AD+CO+CD+CL + CC) since (AD == AL) [2.] and

(CO + CD+ CL + CC == AL) [13.]
15. (AD + CD+CL == AD+CO+CD+CL + CC) since BCC + SN
16. (AL + AD+CD+CL == AD+CO+CD+CL + CC) since

(AL == AD+CO+CD+CL + CC) [14.] and
(AD + CD+ CL == AD+CO+CD+CL + CC) [15.]

17. (AL + AD+CD+CL == AD+ LA+ LD+ CO+CD+CA+ CL + CC) since
(LA + LD+ CD+CA == AL + AD+CD+CL) [10.] and
(AD + CO+CD+CL + CC == AL + AD+CD+CL) [16.]

18. (AL + AD+CD+CL == AL + AD+ LA+ LD+ CO+CD+CA+ CL + CC)
since (AL == AL +AD+CD+CL) [8.] and
(AD + LA+ LD+ CO+CD+CA+CL + CC == AL + AD+CD+CL) [17.]

19. (LA+LD+CO+CD+CA+CL+CC == AD+LA+LD+CO+CD+CA+CL+CC)
since BCC + SN

20. (AD + LA+ LD+ CO+CD+CA+CL + CC ==
AL + AD+ LA+ LD+ CO+CD+CA+ CL + CC) since
(AL + AD+CD+CL == AD+ LA+ LD+CO+CD+CA+CL + CC) [17.] and
(LA + LD+ CO+CD+CA+CL + CC ==
AD+ LA+ LD+ CO+CD+CA+ CL + CC) [19.]

21. (AL + AD+ LA+ LD+ CO+CD+CA+CL + CC j= CR) since
(AL+AD+CD+CL == AL+AD+LA+LD+CO+CD+CA+CL+CC) [18.]
and (AD + LA+ LD+ CO+CD+CA+CL + CC ==
AL + AD+ LA+ LD+ CO+CD+CA+ CL + CC) [20.]

