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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47120694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00155293


An approach to innocent strategies as graphs

Pierre-Louis Curien Claudia Faggian

Abstract

This paper proposes an approach for extending to graphs the close relation be-
tween proofs and innocent strategies. We work in the setting of L-nets, introduced
by Faggian and Maurel as a game model of concurrent interaction. We show how
L-nets satisfying an additional condition, which we call LS-nets, can be sequen-
tialized into traditional tree-like strategies. Conversely, sequential strategies can
be relaxed into more asynchronous ones.

We develop an algebra of constructors and destructors that serve to build and
decompose graph strategies, and to describe a class of minimally sequential graph
strategies, which can be seen as an abstract kind of multiplicative-additive proof-
nets.

1 Introduction

In the context of game semantics several proposals have emerged - with different mo-
tivations - towards strategies where sequentiality is relaxed to capture a more asyn-
chronous form of interaction [AM99, Hyl01, Mel04, HS02, MW05, SPP05]. Such
strategies often appear as graphs, contrarily to more traditional (sequential) strategies,
as in particular Hyland-Ong innocent strategies [HO00], which appear as trees. Here
we will consider the setting of L-nets, recently introduced by Faggian and Maurel
[FM05] as a game model of concurrent interaction, based on Girard’s ludics.

A strategy describes in an abstract way the operational behaviour of a proof (or
program). An interaction between tree strategies produces a sequence of actions, which
describes the trace of the computation. The idea underlying L-nets (as well as other
closely related approaches) is to not completely specify the order in which the actions
should be performed, while still being able to express constraints. Certain tasks may
have to be performed before other tasks; other actions can be performed in parallel, or
scheduled in any order. A strategy is now a directed acyclic graph. The interaction
results into a partial order, allowing for parallelism.

In this paper we are interested in relating parallel strategies and sequential strate-
gies. Working in the setting of L-nets, we show how strategies represented by graphs,
with partial ordering information, can be sequentialized into tree-like strategies; con-
versely, sequential strategies can be relaxed into more asynchronous ones.

The tree strategies and the graph strategies that we will consider are Girard’s de-
signs [Gir01] and (a subset of) Faggian and Maurel’s L-nets, respectively. Syntac-
tically, designs are particular sorts of Curien’s abstract Böhm trees [Cur98, Cur06]).
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As a computational object, a design is a Hyland-Ong innocent strategy on a univer-
sal arena, as discussed in [FH02]. L-nets are (potentially infinite) graph strategies on
this arena. They subsume sequential strategies as a special case: a tree is, in partic-
ular, a graph. On the other hand, it is possible to define a class of L-nets of minimal
sequentiality, which we call parallel L-nets.

Hence we have a homogeneous space inside which we can move, adding or relax-
ing sequentiality (i.e., dependency between the actions). Between completely sequen-
tial and completely parallel strategies, we get a full range of intermediate strategies
with decreasing sequentiality level.

The present paper builds on a preliminary extended abstract [CF05], and on a sub-
sequent analysis of the basic constructors and destructors on (graph or tree) strategies
that are at work in our sequentialization an desequentialization procedures [Fag].

Two flavours of views. It is known that (innocent) tree strategies can be presented
as sets of views with certain properties. A view is a totally ordered sequence of moves
(again with certain properties), and the set of views forms a tree. Any interaction results
into a totally ordered set of moves.

An L-net is a set of partially ordered views, each of which is a partially ordered
set of moves, where the partial order expresses an enabling relation, or a scheduling
among moves. The set of such partially ordered views forms a directed acyclic graph.
Any interaction results into a partially ordered set of moves.

The proof-net experience. Tree strategies can be seen as abstract sequent calculus
derivations. Specifically, designs arise as abstract (untyped) versions of (focalized)
sequent calculus proofs of multiplicative-additive linear logic. By contrast, the class
of graph strategies of minimal sequentiality (the parallel L-nets) can be seen as ab-
stract multiplicative-additive proof-nets. Indeed, there are two standard ways to handle
proofs in linear logic: either as sequent calculus derivations, or as proof-nets, which
are graph-like structures satisfying a so-called correctness criterion. Sequent calculus
derivations can be mapped onto proof-nets, by forgetting some of the order between
the rules, and conversely proof-nets can be sequentialized into proofs.

While the origins of game semantics are closely connected to the analysis of correct
proof structures [AJ92], this paper is, to the best of our knowledge, the first attempt
to transfer – so to say in the other direction – the use of proof-net techniques to the
semantic setting of (innocent) games. In this respect, our contribution fits into a general
research direction aiming at bringing closer together syntax and semantics.

Relating sequential and parallel strategies. As we have anticipated, L-nets are a
conservative extension of innocent strategies (in the form used by ludics). This makes
it possible to relate the two approaches. We are able to associate a set of tree-strategies
to a parallel L-net (in fact, any “correct” L-net, see below) D, by saturating the order,
i.e., we add sequentiality to the point that all choices on scheduling of the moves during
an execution are determined. Conversely, given a tree strategy Π, we have a desequen-
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tialization procedure, which returns a parallel strategy, forgetting some “inessential”
information on the scheduling.

Sequentialization is not possible for an arbitrary L-net, as L-nets can be intrinsi-
cally parallel, in the sense that actions depend on each other in an essential way. It is
easy to build a counter-example to sequentialization by taking inspiration from Gustave
function (a well-known example of a non-sequential function, see e.g. [AC98]). For
this reason, we introduce LS-nets, which are L-nets satisfying a condition called Cy-
cles. This condition upgrades the Acyclicity condition of [FM05], which is sufficient
for computation purposes (i.e., to guarantee that strategies compose), but not for our
goals here. Condition Cycles can be considered as an abstract correctness criterion,
and as a matter of fact, it is the adaptation to our setting of Hughes and Van Glabbeek’s
toggling condition [HvG05].

A correctness criterion for proof-nets has two roles: it guarantees that (i) normal-
ization is possible (we are not stuck with cycles during normalization), and (ii) it is
possible to associate a sequent calculus derivation to the graph. The Acyclicity condi-
tion is a minimal criterion which takes care of (i); the new Cycles conditions guarantees
also (ii).

We present an algebra of constructors and destructors allowing us to build and de-
compose graph strategies. This in particular allows us to (co)inductively define the
classes of strategies of maximal and minimal sequentiality (i.e. of sequential and par-
allel strategies, respectively).

The destructors and constructors are also used to define the sequentialization proce-
dure. This procedure works as a stream-like, bottom-up process (coinductively) acting
on potentially infinite LS-nets. Dually, the same operations serve us to define a dese-
quentialization procedure that transforms L-forests into parallel L-nets. We shall show
that sequentialization and desequentialization can be performed so as to be inverse to
each other.

Plan of the paper. Section 2 and Appendix B provide some background on (focal-
ized) linear logic and designs, i.e., we introduce the ingredients of our universal arena
and the tree strategies on which we work. Section 3 introduces our graph strategies. We
recall the definition of L-net [FM05], and we define our subclass of sequentializable
L-nets, the LS-nets1.

The key technical result about LS-nets is the Splitting Lemma, which we prove in
Appendix C. The core of the paper lies in Sections 4 through 8: we present our basic
(co)algebra of elementary operations on L-nets (Sections 4 and 7), we describe our
sequentialization and desequentialization procedures (Sections 5 and 6, respectively),
and we relate them (Section 8). In Section 9, we impose connectedness restrictions
on both the source and target of the procedures, so as to adjust the picture to Girard’s
original designs. Section 10 is a concluding section.

1LS-nets were called logical L-nets in [CF05].
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2 Tree strategies and sequent calculus derivations

Designs, introduced in [Gir01], have a twofold nature: they are at the same time seman-
tic structures (an innocent strategy, presented as a set of views) and syntactic structures,
which can be understood as abstract sequent calculus derivations (in a focusing calcu-
lus, which we will introduce next).

In the following, we review in which (intuitive) sense a tree strategy can be asso-
ciated with a sequent calculus derivation, and vice versa. In Appendix B, we provide
formal procedures.

2.1 Focalization and synthetic connectives

Multiplicative and additive connectives of linear logic separate into two families: syn-
chronous (also called positive) connectives: ⊗,⊕, 1, 0, and asynchronous (or negative)
ones:

&

, &, ⊥, >. A formula is positive (negative) if its outermost connective is posi-
tive (negative).

A cluster of connectives with the same polarity can be seen as a single connec-
tive (called a synthetic connective), and a “cascade” of decompositions with the same
polarity as a single rule. This corresponds to a property known as focalization, discov-
ered by Andreoli (see [And01]), and which provides a (complete) so-called focusing
strategy in proof-search: (i) negative connectives, if any, are given priority for persis-
tent decomposition, (ii) when a subgoal containing only positive formulas is reached,
choose a positive focus, and persistently decompose it up to its negative sub-formulas.

The division of connectives into positive and negative ones is not only fundamental
to proof-search in linear logic, but also corresponds to the Opponent/Player alternation
in a strategy.

Shift. To these standard connectives, it is natural to add two new (dual) connectives,
called shift2: ↓ (positive) and ↑ (negative). The role of the shift operators is to change
the polarity of a formula: if N is negative, ↓ N is positive, and if P is positive, ↑ P

is negative. When decomposing a positive connective into its negative subformulas (or
viceversa), the shift marks the polarity change. As an example, the formula (A&B)⊕
(C ⊗D) should now be written (↓ (A′&B′))⊕ (C ′ ⊗D′), where, say, A′ is the result
of recursively decorating A with shift operators. The shift is the connective which
captures “time” (or sequentiality): it marks a step in computation.

Focusing calculus. Focalization is captured by the following sequent calculus, orig-
inally introduced by Girard in [Gir99], and closely related to Andreoli’s focusing cal-
culus (see [And01]). We refer to those papers for more details.

Axioms: ` x⊥, x

We assume by convention that all atoms x are positive (hence x⊥ is negative).

Any positive (resp. negative) cluster of connectives can be written as a ⊕ of ⊗ (resp.
a & of

&

), modulo distributivity and associativity. The rules for synthetic connectives

2The shift operators have been introduced by Girard as part of the decomposition of the exponentials.
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are as follows. Notice that each rule has labels; rather than more usual labels such as
⊗L,⊗R, etc., we use formulas in the labels, as described below.

Positive connectives: Let P (N1, . . . , Nn) = ⊕I∈N (⊗i∈I (↓ Ni)), whereN is a set of
sets I of indices. Each ⊗i∈I(↓ Ni) is called an additive component. In the calculus,
there is an introduction rule for each additive component:

. . . ` Ni, ∆i . . . ` Nj , ∆j . . .

` P, . . . , ∆i, . . . , ∆j , . . .
(P, NI )

A positive rule is labelled with a pair of (i) the active formula (or focus) P of the
conclusion, and (ii) the set NI = {Ni : i ∈ I} of the subformulas of the additive
component to which the rule corresponds.

Note that we should rather speak of a rule scheme, because even when P and NI

have been fixed, there remains freedom in the way of splitting the rest of the sequent
between the premises.

Negative connectives: Let N(P1, . . . , Pn) = &I∈N (

&

i∈I (↑ Pi)). It admits only one
introduction rule, which has a premise for each additive component

&

i∈I(↑ Pi):

. . . ` PI , ∆ ` PJ , ∆ . . .

` N, ∆
{. . . , (N, PI ), (N, PJ ), . . . }

where PI = {Pi : i ∈ I}. A negative rule is labelled by a set of pairs, each of the
form (focus, set of subformulas), for each premise.

We call each of the pairs we used in the labels an action. We call an action positive
(resp. negative) if it appears in the label of a positive (resp. negative) rule. In a negative
rule, there is an action for each additive component.

In the purely multiplicative case (no connectives ⊕, &), all negative rules have a
single premise, and hence are labelled by a single action, while only one rule can be
applied to each positive connective.

It is important to notice the duality between positive and negative rules: each
premise (encoded by the action) (N, PI ) of a negative rule corresponds to one posi-
tive rule (N⊥, P⊥

I ) (where P⊥
I = {N⊥

i : i ∈ I}).
Another observation is that, starting with a proof of a sequent ` P or ` N con-

sisting of one formula only, the rules maintain the invariant that all sequents contain
at most one negative formula, a fact that can be stressed by writing N⊥ ` ∆ (resp.
N⊥

i ` ∆i, N⊥
j ` ∆j ,...) instead of ` N, ∆ (resp. ` Ni, ∆i, ` Nj , ∆j ,. . . ).

Finally we note the following two special cases of the positive and negative rules
(whenN = {I} is a singleton and I is a singleton):

N⊥ ` ∆
`↓ N, ∆

(↓ N, N)
` P, ∆

(↑ P )⊥ ` ∆
(↑ P, P )

In the sequel, we shall keep the shift operators implicit, except in those special cases.
As a matter of fact, all the other shift operators can be (uniquely) reconstructed.
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Sequent derivation Tree

Typed

. . .
` a0, c

(c, MI)

a⊥ ` c
(a, {a0})

. . .
` b0, d

(d, NJ)

b⊥ ` d
(b, {b0})

` c, d, a⊗ b
(a⊗ b), {a, b})

(c

&

d)⊥ ` a⊗ b
(c

&

d, {c, d})

(c

&

d,{c,d})

(a⊗b,{a,b})

(a,{a0})

(c,MI)

. . .

(b,{b0})

(d,NJ)

. . .

Untyped

. . .
` ξ10, σ1

(σ1, I)

ξ1 ` σ1
(ξ1, {0})

. . .
` ξ20, σ2

(σ2, J)

ξ2 ` σ2
(ξ2, {0})

` σ1, σ2, ξ
(ξ, {1, 2})

σ ` ξ
(σ, {1, 2})

(σ,{1,2})

(ξ,{1,2})

(ξ1,{0})

(σ1,I)

. . .

(ξ2,{0})

(σ2,J)

. . .

Figure 1: From focalized proofs to designs

2.2 Designs as (untyped) focusing proofs

Designs are an abstract version of focusing proofs. They are obtained in two steps. One
transforms a sequent calculus proof into a tree whose nodes are labelled by actions, and
one replaces all the formula occurrences by addresses. Conversely, given a design, we
can build the “skeleton” of a sequent calculus derivation. Such a skeleton becomes a
concrete (typed) derivation as soon as we are able to decorate it with types. Let us
sketch this using an example.

First example. Consider the (purely multiplicative) derivation on the l.h.s. of Figure
1, where a =↑ a0 and b =↑ b0 are negative formulas and where c, d are positive
formulas.

By forgetting everything in the sequent derivation but the labels of the rules, we
obtain the tree depicted in the top right corner of Figure 1. This representation is more
concise than the original sequent proof, but it still carries all relevant information, i.e.,
the sequents can be reconstructed. For example, when we apply the ⊗ rule, we know
that the context of a ⊗ b is c, d, because they are used afterwards (above). After the
decomposition of a⊗ b, we know that c (resp. d) is in the context of a (resp. b) because
it is used after a (resp. b).

Addresses (loci). One of the essential features of ludics is that proofs do not manipu-
late formulas, but addresses. An address is a sequence of natural numbers, which could
be thought of as a name, a channel, or as the address of a memory cell where an occur-
rence of a formula is stored. If we give address ξ to an occurrence of a formula, its (im-
mediate) subformulas will receive addresses ξi, ξj, etc. Let a = ((p1

&

p2)⊗q⊥)⊕r⊥.
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If we locate a at the address ξ, we can locate p1

&

p2, q, r respectively at ξ1, ξ2, ξ3 (the
choice of addresses is arbitrary, as long as each occurrence receives a distinct immedi-
ate extension of ξ).

Let us consider an action, say, (P, NI ), where NI corresponds to ⊗i∈I(↓ Ni). Its
translation is (ξ, K), where ξ is the address of P , and K is the (finite) set of natural
numbers corresponding to the relative addresses i of the subformulas Ni.

First example, continued. Coming back to our example (Figure 1), let us abstract
from the type annotation (the formulas), and work with addresses. We locate a ⊗ b at
the address ξ; for its subformulas a and b we choose the subaddresses ξ1 and ξ2. In the
same way, we locate c

&

d, c, d, a0, b0 at the addresses σ, σ1, σ2, ξ10, ξ20, respectively.
The result is depicted in the bottom right corner of Figure 1.

The two successive transformations are in fact independent. One can first trans-
form formulas into addresses in the sequent calculus proof, yielding the bottom left
abstract sequent derivation, and then keep only the tree of abstract labels. In Girard’s
terminology, the bottom left derivation and the bottom right tree are called dessin and
dessein, respectively: they are the syntactic face and the semantic face of the same
objects, which are called designs.

To indicate the polarity, in our pictures of designs and L-nets, we circle positive
actions (to remind that they are clusters of ⊗ and ⊕).

Understanding the additives. A &-rule must be thought of as the superposition of
two unary rules on the same formula, corresponding to the two actions (a&b, a) and
(a&b, b). Given a sequent calculus derivation in Multiplicative Additive Linear Logic
(MALL), if for each &-rule we select one of the premises, we obtain a derivation where
all &-rules are unary. This is called a slice [Gir87]. For example, the derivation on the
l.h.s. below can be decomposed into the slices on the r.h.s.:

` a, c ` b, c

` a&b, c

` (a&b) ⊕ d, c  

` a, c

` a&b, c
(a&b, a)

` (a&b) ⊕ d, c and

` b, c

` a&b, c
(a&b, b)

` (a&b) ⊕ d, c

A more structured example. Let

a = (m⊗ n)⊕ c , m = (p1

&

p2)&(q1

&

q2)&r , n = b1

&

b2

&

b3 ,

with r, pi, qi, bi (i = 1, 2) positive formulas. Consider the following derivation:

. . .
` p1, p2

(p1, . . .)
. . .
` q1, q2

(q2, . . .)
. . .
` r

(r, . . .)

` m
R1

. . .
` b1, b2, b3

. . .

` n
R2

` (m⊗ n)⊕ c
a, {m, n}

where R1 = {(m, {p1, p2}), (m, {q1, q2}), (m, r)} and R2 = {(n, {b1, b2, b3})}. The
associated design is obtained as above in two steps:

7



a,{m,n}

(m,{p1,p2})

(p1,...)

. . .

(m,{q1,q2})

(q2,...)

. . .

(m,r)

(r,...)

. . .

(n,{b1,b2,b3})

...

. . .

ξ,{1,2}

(ξ1,{1,2})

ξ11,...

. . .

(ξ1,{3,4})

ξ14,...

. . .

(ξ1,{5})

ξ15,...

. . .

(ξ2,{1,2,3})

...

. . .

It has three slices:

ξ,{1,2}

(ξ1,{1,2})

ξ11,...

. . .

(ξ2,{1,2,3})

...

. . .

ξ,{1,2}

(ξ1,{3,4})

ξ14,...

. . .

(ξ2,{1,2,3})

...

. . .

ξ,{1,2}

(ξ1,{5})

ξ15,...

. . .

(ξ2,{1,2,3})

...

. . .

Bipoles. It is very natural to read a design (or an L-net) as built out of bipoles, which
are the groups formed by a positive action (say, on address ξ) – the root of the bipole
–, and all the negative actions which follow it (all being at immediate subaddresses ξi

of ξ). The positive action corresponds to a positive connective. The negative actions
are partitioned according to the addresses: each address corresponds to a formula oc-
currence, and each action on that address corresponds to an additive component. For
example,

ξ,{1,2}

(ξ1,{1,2}) (ξ1,{3,4}) (ξ1,{5}) (ξ2,{1,2,3})

is a bipole, and the partition of the negative actions consists of the two sets

{(ξ2, {1, 2, 3})} and {(ξ1, {1, 2}), (ξ1, {3, 4}), (ξ1, {5})} .

Relating two orders: towards proof-nets. Let us consider a multiplicative design
(or a slice). We are given two partial orders, which correspond to two kinds of infor-
mation on each action k = (σ, I): (i) a time relation (sequential order), specified by
the tree structure of the design; (ii) a space relation (prefix order), corresponding to the
relation of being subaddress (the arena dependency in game semantics).

Let us look again at our first example of design. We make explicit the relation of
being a subaddress with a dashed arrow, as follows:
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ξ

σ

σ2σ1

1, 2

1, 2

0

ξ1 0 ξ2 0

0

σ

ξ

ξ1 ξ2
σ1 σ2

If we emphasize the prefix order rather than the sequential order, we recognize some-
thing similar to a proof-net (see [Fag02]), with some additional information on sequen-
tialization. Taking forward this idea of proof-nets leads us to L-nets.

3 L-nets and LS-nets

In this section, we recall the notion of L-net of Faggian and Maurel [FM05]. We drop
the Acyclicity condition3, which we replace in Section 3.7 by a stronger condition. We
will call LS-nets the class of L-nets which satisfy the stronger condition.

L-nets have an internal structure, described by a directed acyclic graph (d.a.g.)
on polarized actions, and an interface, providing the names on which the L-net can
communicate with the rest of the world.

3.1 Actions (moves).

An action is either the special symbol † (called daimon) or (cf. above) a pair k = (ξ, I)
given by an address ξ and a finite set I of indices (which are natural numbers). We say
that k uses the address ξ.

The prefix relation induces a relation between the actions. We say that an action
(ξ, I) generates the addresses ξi, for all i ∈ I , and that a is parent of b, if the action a

generates the address of the action b (i.e., a = (ξ, I) is parent of b = (ξi, K)).
A polarized action is given by an action k together with a polarity, positive (k+)

or negative (k−). The parent relation extends to polarized actions, with the condition
that if a is parent of b, their polarity must be opposite. (Or, equivalently, all addresses
of the same length have the same polarity.)

The action † is defined to be positive. When clear from the context, or not relevant,
we omit the explicit indication of the polarity.

Arena. Actions together with the parent relation define what could be called a uni-
versal arena.

3.2 Interface

An interface (called base in [Gir01]) is a pair of finite sets Ξ, Λ of addresses, which we
write as a sequent Ξ ` Λ, and which we call the negative and the positive addresses
(or the inner and the outer names) of the interface, respectively. The addresses must be

3Thus L-nets stand here for the L-nets of [FM05] minus the Acyclicity condition.

9



pairwise disjoint, i.e., incomparable with respect to the prefix relation. We think of the
inner names as passive, or receiving, and of the outer names as active or sending.

We impose that Ξ is either empty or a singleton (cf. Section 2.1).

3.3 Directed graphs (d.a.g.) and terminology

We recall that a directed acyclic graph (d.a.g.) G is an oriented graph without (oriented)
cycles. In all our pictures, the edges are oriented downwards.

We consider any directed acyclic graphs G up to its transitive closure. In fact, we
will only be interested in the properties of non transitive edges. An edge is called
transitive if there exists another oriented path (of length > 1) from its source to its
target.

We write c ← b if there is a non transitive edge from b to c. We say that c is

the predecessor of b We use
+
← for the transitive closure of ←. Sometimes, when

describing operations on graphs, it is convenient to uniformly add to the graph an edge
with a certain property, without caring if this edge is transitive or not. In such a case,
we write c←− b.

A node n of G is called minimal (resp. maximal) if there is no node a such that
a← n (resp. n← a).

Downward closure. Given a node n ∈ G, we denote by n↓ (the downward closure

of n) the sub-graph induced by restriction of G on {n} ∪ {n′ : n′ +
← n}.

D.a.g.’s and partial orders. It is standard to represent a strict partial order as a d.a.g.,
where we have a ← b whenever a <1 b (i.e., there is no c such that a < c and c < b.)
Conversely, (the transitive closure of) a d.a.g. is a strict partial order on the nodes (or
equivalently on the labels, if the nodes are labelled and all the labels are distinct).

3.4 L-nets

Nodes labelled by actions. We are going to work with nodes labelled by polarized
actions. In the sequel, depending on the context, k = (ξ, I) will read as either “k is a
node labelled by (ξ, I)”, or “k is an action equal to (ξ, I)”. We shall let k, a, b, c, . . .

range over nodes and actions. We extend to nodes the terminology we have introduced
for the actions. We will say that a node is positive or negative, and that a node uses or
generates an address, if it is the case for the labelling action.

Definition 3.1 (L-nets) An L-net D is given by:

• An interface Ξ ` Λ. If Ξ is empty (resp. non-empty), D is called positive (resp.
negative).

• A possibly infinite set A of nodes which are labelled by polarized actions4.

4Hence nodes are occurrences of actions.
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• A structure on A of directed acyclic bipartite graph (if k ← k′, the two nodes
have opposite polarity) which satisfies conditions 1-4 and 5-6 below.

1. Views. For each node k, all the addresses used in k↓ are distinct .

2. Parents.

– For each node a, using address σ, either σ belongs to the interface
(and then the polarity of a is as indicated by the interface), or σ has

been generated by (the action of) a preceding node c
+
← a of opposite

polarity, called the parent of a (this node c is uniquely determined by
condtion Views).

– If a ← b and if a is positive, then b must use an address generated by
a.

– If a is negative, it has at most one predecessor.

(It follows that if a negative node is not minimal then its parent is its unique
predecessor.)

3. Negativity. If Ξ = {ξ} is not empty and D is not empty, then at least one
node uses ξ.

4. Positivity. If a is maximal w.r.t. ←, then it is positive.

The conditions so far are enough if all addresses are distinct (i.e., if the structure
is purely multiplicative). Conditions 5-6 below allow us to deal with the multiple
use of addresses induced by the additive structure.

Two distinct negative nodes are called sibling – and we say that they form an
additive pair – if they use the same address and if either they have the same
predecessor, or they are both minimal.

5. Sibling. Any two sibling nodes have distinct labels, i.e., of the form (σ, I1),
(σ, I2), with I1 6= I2.

6. Additives. Given two distinct positive nodes k1, k2 which use the same
address ξ (i.e., k1 = (ξ, K1), k2 = (ξ, K2)), there exists an additive pair

w1, w2 such that w1
+
← k1, and w2

+
← k2.

Remark 3.2 Note that by condition Parents every minimal node uses an address in
the basis. Conversely, the same condition also imposes an action using the negative
address of the base (if any) to be minimal, but actions using a positive address of the
base need not be minimal.

In order to obtain a good computational behaviour of L-nets as strategies, and to be
able to relate them to sequential innocent strategies, we still need a correctness criterion
on graphs, which we give in Section 3.7. If we have in mind the theory of proof-nets,
L-nets can be seen as “proof-structures.”

The key role of condition Additives is to ensure a one-to-one correspondence be-
tween the nodes of an L-net and the sets of actions in their downward closure, that
represent their history, or their preconditions.
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Lemma 3.3 For each pair of distinct nodes k, k′ of an L-net D, the sets of actions of
k↓ and k′↓ are different.

Proof. Suppose that the sets of actions of k↓ and k′↓ are the same. Then in particular
there exists some k1 ∈ k′↓ such that k and k1 have the same label. We distinguish two
cases:

• If k1 6= k′, then k
↓
1 is strictly contained in k′↓, and hence by our assumption k1

and k must be distinct.

• If k1 = k′, then k1 6= k by assumption.

Hence in both cases we have proved that k1 and k are distinct. By condition Additives,
there exists an additive pair w1, w2 such that w1 ∈ k↓ and w2 ∈ k

↓
1 (and hence w2 ∈

k′↓). Then, by our assumption, there is a node w ∈ k↓ that has the same label as w2:
this is impossible, as it would violate condition Views applied to k. �

3.5 Rules and conclusions.

A negative rule is a maximal set of (negative) sibling nodes. A positive rule consists of
a single positive node. The positive nodes induce a partition of the d.a.g. into bipoles
(cf. Section 2.2). Each bipole itself is partitioned into a positive rule (its root) and a
set of negative rules. For example, the following bipole has two negative rules (R1 =
{(σ1, J)} and R2 = {(σ2, J ′), (σ2, J ′′)}) and one positive rule (R = {(σ, {1, 2})}).

(σ,{1,2})

(σ1,J) (σ2,J′) (σ2,J′′)

We say that a rule is unary if it is a singleton (a positive rule is always unary).
When a rule is not unary, we call it an additive rule (think of each action as an additive
component, cf. Section 2.2). Note that an additive rule is necessarily a negative rule,
but negative rules can be unary (see Section 3.6). Note also that if w1, w2 form an
additive pair, then w1, w2 belong to the same negative rule.

By analogy with proof-nets, we call conclusion a rule whose nodes are all minimal.
We also observe that by condition Parents and Negativity, an L-net is positive if

and only it has only positive conclusions, and a (non-empty) L-net is negative if and
only if it has a negative conclusion. Note that an L-net can have at most one negative
conclusion, by definition of a rule, and by the assumption that a basis contains at most
one negative address.

3.6 Slices

We call purely multiplicative an L-net in which all used addresses are distinct, or,
equivalently by condition Additives, in which all negative rules are unary (there are
no additive pairs).
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A slice S of an L-net D is a (downward closed) subgraph of D which is a purely
multiplicative.

In this paper, by slice we always mean a maximal slice.

3.7 Correctness criterion: LS-nets

We recall that we are only interested in the properties of non transitive edges. All
conditions in this section are therefore on the skeleton of the graph.

Paths. The following notions are relative to some L-net D. An edge is an entering
edge of the node a if it has a as target. If R is a negative rule and e an entering edge of
an action a ∈ R, we call e a switching edge of R.

A rule path is a sequence of nodes k1, ...kn belonging to distinct rules, and such
that for each i < n either ki → ki+1 (the path is going down) or ki ← ki+1 (the path
is going up). A rule cycle is defined similarly as a sequence of nodes k1, ...kn, kn+1,
where the ki’s (i ≤ n) are distinct, where k1 = kn+1, and for each i < n + 1 either
ki → ki+1 or ki ← ki+1.

A switching path is a rule path which uses at most one switching edge for each
negative rule, i.e., the path does not contain three successive nodes ki−1, ki, ki+1 such
that ki is negative, ki ← ki−1, and ki ← ki+1.

A switching cycle is a rule cycle which uses at most one switching edge for each
negative rule.

Now we can complete the definition of LS-net. We want to be able to sequentialize
our graphs. The following condition (which can be seen as a correctness criterion)
guarantees that it is always possible to find a rule which does not depend on others.

Definition 3.4 (LS-nets) An LS-net is an L-net such that the following condition holds:

• Cycles. Given a non-empty union C of switching cycles, there is an additive
rule W not intersecting C, and a pair w1, w2 ∈ W such that for some nodes

c1, c2 ∈ C, w1
+
← c1, and w2

+
← c2.

L-nets and LS-nets. The condition Cycles strengthens the Acyclicity condition of
[FM05]. Acyclicity asserts that there are no switching cycles in a slice. It is immediate
that the condition Cycles implies the acyclicity condition, and reduces to it in a purely
mutliplicative framework (i.e., in the absence of any additive rule). Notice that while
acyclicity is a property of a slice, the new condition speaks of cycles which traverse
slices.

3.8 L-nets as sets of views / chronicles

Just as innocent strategies (and designs), an L-net can be presented as a set of views,
with some properties. In this setting, a view is not a sequence of moves, but a partial
order (with a top element).
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Views/chronicles.

Definition 3.5 (Chronicles) We call chronicle (or view) on Ξ ` Λ a set c of polar-
ized actions equipped with a partial order, such that: c has a top element, if a <1 b

(cf. Section 3.3), they have opposite polarity, and c satisfies (the analog of) condition
Parents.

A chronicle is positive or negative according to the polarity of its top element.
We define a partial order on chronicles as follows: c v c′ if c is the restriction of c′

to {x : x ≤ a}, for a certain a ∈ c′. A set S of chronicles is closed under restriction
if c′ ∈ S and c v c′ implies c ∈ S.

From L-nets to sets of chronicles. Any node k of an L-net D defines a chronicle:
indeed, k↓ induces a partial order on its nodes (cf. Section 3.3) and by the condition
Views, there is a one-to-one correspondence between the nodes and the actions in k↓.
Let n be the action labelling the node n. We set:

pkq = {n : n ∈ k↓}, with the order induced by← .

Hence we can associate to each L-net D a set Views(D) of chronicles, as follows:

Views(D) = {pnq : n is a node of D} .

The set Views(D) is closed under restriction.

From sets of chronicles to L-nets. Conversely, given a set ∆ of chronicles which is
closed under restriction, we define a directed graph Graph(∆) as follows: the nodes
are the elements of ∆, and c← c′ iff c @1 c′.

Lemma 3.6 Let ∆ be a (possibly infinite) set of chronicles closed under restriction.
Graph(∆) is an L-net iff it satisfies conditions Positivity and Additives.

Proof. The conditions Parents and Views hold obviously. Condition Sibling also
holds: two negative chronicles with the same parent c have the form c1 = c ∪ a and
c2 = c ∪ b. If c1 6= c2, necessarily a 6= b. �

It is rather easy to express both Positivity and Additives in terms of chronicles.
Hence we can also define an-L-net on a given interface as a set of chronicles closed
under restriction, which satisfies (the analogue of) Positivity and Additives.

Relating the presentations. It is immediate that Views(Graph(∆)) = ∆, if ∆ is a
set of chronicles closed under restriction. Conversely, given (the skeleton of) an L-net
D, we have that Graph(Views(D)) is isomorphic to D (easy consequence of Lemma
3.3).

Summarizing, we have shown that Views and Graph are inverse bijections.
We will use both presentations for L-nets. The presentation of L-nets as sets of

chronicles, on which we will largely rely, allows us to compare nodes in different
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graphs, by comparing the corresponding chronicles. (In particular, this makes it possi-
ble to treat easily the superposition of two L-nets, see Section 4.3 and Appendix A.2).
Sometimes, the graph presentation is more intuitive. However, it is obvious that all
notions and conditions can be expressed in either terms. Observe in particular that

k1
+
← k2 iff pk1q @ pk2q iff k1 < k2 in pk2q .

Conventions. We will often not distinguish between isomorphic notions. Moreover,
to keep notation simple, we will sometimes write k ∈ c (for example, k ∈ pkq) instead
of k ∈ c. We will also use the action for the node labelled by that action, when the
node is uniquely determined.

When we want to make clear or stress the polarity, we explicitly decorate actions,
nodes, chronicles and L-nets with their polarity (for example, k+, c+, D+).

3.9 Designs and L-forests

If the chronicles are totally ordered (that is, if they are sequences of actions), the above
definitions produce a forest, corresponding to a “standard” (sequential) innocent strat-
egy. In particular, the designs of [Gir01] can be regarded as a special case of L-nets:
they are those L-nets Π such that:

1. Π is a forest and branches only on positive nodes;

2. there is a unique conclusion.

(We speak here of L-nets rather than LS-nets, because condition Cycles is vacuous for
forests.)

If we do not impose conditions on the branching into nodes, we obtain a more
general notion.

Definition 3.7 An L-forest is an L-net Π such that:

1. Π is a forest;

2. all conclusions have the same polarity (hence, if Π is negative, then it has only
one conclusion, which is negative).

In Appendix B, we will show that L-forests arise from adding a form of MIX rule to
the sequent calculus underlying designs.

L-forests provide the natural target and source for our sequentialization and dese-
quentialization procedures. In Section 9, we will restrict our setting to the L-nets which
correspond to designs.

3.10 Sequential versus parallel strategies: an overview

Part of the process of abstraction leading from the syntax to strategies is that an action
(a move) can be seen as a cluster of operations that can be performed together (thanks
to focalization). However, in a tree strategy (L-forests, designs, innocent strategies...)
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there remains a lot of artificial sequentiality, in the same way as in sequent calculus
proofs for linear logic. In the case of proofs, the solution has been to develop proof-
nets, a theory which has revealed itself extremely fruitful. The advantage of proof-nets
is that information which is irrelevant to the “essence” of the proof is forgotten. More
precisely, proof-nets allow us to identify sequent calculus derivations which only differ
by some permutations of rules. Consider, for example, the two standard derivations

` a, a⊥ ` b, b⊥ ` c, c⊥
. . . (a⊥ ⊗ b)

` a⊥ ⊗ b, b⊥ ⊗ c, . . .
(b⊥ ⊗ c)

and

` a, a⊥ ` b, b⊥ ` c, c⊥
. . . (b⊥ ⊗ c)

` a⊥ ⊗ b, b⊥ ⊗ c, . . .
(a⊥ ⊗ b)

and compare them with the (unique) corresponding proof-net, which has the following
shape:

⊗ ⊗

The different permutations of the rules correspond to different sequentializations of
the proof-net, that is, in our view, to different schedulings of the rules.

Similarly, sequential strategies (hence designs, in particular) distinguish proofs (or
programs) which only differ by the order in which the operations are performed. The
situation is in fact the same as for the sequent calculus, and we want to apply similar
techniques.

We will define two procedures which we call desequentialization and sequential-
ization, that associate

• an LS-net deseq Π to an L-forest Π (Section 6), and

• a set of L-forests {seq D} to an LS-net D (Section 5), respectively.

All dependency which is taken away by desequentialization can be (non-deterministically)
restored through sequentialization (Theorem 8.2). The non-determinism corresponds
to the fact that several L-forests Πi can be associated to the same LS-net D, each of
which can be recovered by sequentialization of D. In Section 7, we make precise in
which sense deseq Π has less sequentiality than Π, and give a description of the LS-
nets of “minimal sequentiality” (which we call parallel L-nets), based on the operations
presented in Section 4.

Why targetting L-forests. An L-net does not need to be connected (in the ordinary
graph-theoretic sense). Non-connectedness is a natural and desirable feature if we
want both parallelism and partial proofs, that is, proofs which can be completed into
a proper proof. Actually, non-connectedness is an ingredient of Andreoli’s concurrent
proof construction [And02]. On the logical side, non-connectedness corresponds to the
MIX rule (which is refused in [Gir01]).

We first prove a sequentialization (and desequentialization) result that holds for all
LS-nets, and that has L-forests as target. In Section 9, we shall restrict this procedure
so as to have designs as target.
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4 Operations on LS-nets

In this section, we introduce operations that allow us to decompose and recompose
L-nets and LS-nets. We shall make an intense use of these operations in Sections 4.2
through 4.6 where we shall describe sequentialization and desequentialization of LS-
nets.

4.1 Preliminary properties

A convenient notion is that of partial strategy. We say that an L-net is partial if it does
not satisfy condition Positivity.

We will make a repeated use of the following result.

Lemma 4.1 (Downward closure) Let D be an L-net. Assume G ⊆ D, and that G is
downward closed (for any k ∈ G, if a ∈ D and a

+
← k in D, then a ∈ G). G is a

(possibly partial) L-net. If D satisfies condition Cycles, so does G.

Proof. All properties are inherited from D. Any chronicle of G is also a chronicle of
D. Let us check the preservation of conditions Additives and Cycles. If k1, k2 are two
distinct nodes in G on the same address, then condition Additives for D provides a pair

of negative nodes w1, w2 such that wi
+
← ki, which (by downwards closure) belong to

G.
Observe that any cycle in G is also a cycle in D. If we have a collection of switching

cycles inside G, the condition Cycles for D gives us an additive rule W that is not
traversed by any of the cycles, and a pair w1, w2 ∈ W ∩ G. Then, taking W ∩G, w1,
and w2, the condition holds in G. �

Corollary 4.2 If D is an LS-net and K is a set of positive nodes of D, then the sub-
graph induced on

⋃
{k↓ : k ∈ K} is an LS-net.

4.2 Rooting and boxing

The following constructions add a new unary conclusion.

Definition 4.3 (Rooting) Let D be a positive or negative L-net (of interface ` ξi, ξj,
. . . , ∆ or ξi ` ∆). Let (ξ, I) be a negative or positive action, respectively. We indicate
by x ◦D the graph obtained as follows:

1. add a node x = (ξ, I) to D;

2. add an edge x←− k for each node k which uses an address ξi (for some i ∈ I).

If (ξ, I) is positive, the result is always an L-net (on the interface ` ξ, ∆). If (ξ, I)
is negative, the result is a possibly partial L-net (on the interface ξ ` ∆). The condition
Positivity is satisfied only if at least one of the addresses ξi is used in D.

Definition 4.4 (Boxing) Let D be a positive L-net (of interface ` ξi, ξj, . . . , ∆) and
let (ξ, I) be a negative action, with i, j, . . . ∈ I . We indicate by x � D the graph
obtained as follows:
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1. add a node x = (ξ, I) to D;

2. add an edge x← k for each node k which belongs to a conclusion of D.

The result is clearly an L-net of interface ξ ` ∆.

Remark 4.5 Note that we have used←− and← in the definitions of rooting and box-
ing, respectively. This accounts for the fact that in the case of rooting an added edge
(ξ, I) ←− k might be non transitive if k uses an address ξi and is situated above a
node using an address ξj.

On positive L-nets, rooting or boxing give us two choices for adding a new negative
node:

• Rooting is a parallel operation, in the sense that it only adds the minimum
amount of sequentiality which is necessary for the satisfaction of condition Par-
ents.

• Boxing instead is a serial (sequential) operation, which adds a maximal amount
of sequentiality. If we think in terms of proof-nets, boxing corresponds to en-
closing D in a box, which has x as principal port.

As we shall see in Section 7, repetitive and consistent use of rooting and boxing will
lead to (abstract versions of) proof-nets and sequent calculus derivations, respectively.

Remark 4.6 Rooting and Boxing are two extremes. In between, we can define inter-
mediate operators which add, on top of rooting, as much sequentiality as we wish:
after rooting, we add any number of edges from positive nodes to x. Let us indicate
this (generically) by x / D. Hence, with respect to the order on the nodes, we have:

Order(x ◦D) ⊆ Order(x / D) ⊆ Order(x � D) .

The differences between the three L-nets is only the amount of order between x and the
nodes of D.

4.3 Superposition of L-nets.

The union of a collection of L-nets is their union as sets of chronicles. The union is not
disjoint in general; we also call this operation superposition. Under which conditions is
a union of L-nets an L-net? By Lemma 3.6, if D1, D2 are L-nets (resp. LS-nets), D1 ∪
D2 is an L-net (resp. an LS-net) iff it satisfies condition Additives (resp. conditions
Additives and Cycles).

An especially relevant case is the following one, which we single out.

Proposition 4.7 If two positive LS-nets are of the form k+ ◦D1, k
+ ◦D2 and are such

that the sets of addresses used by D1 and D2 are disjoint, then (k+ ◦D1)∪ (k+ ◦D2)
is an LS-net.
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Proof. Condition Additives is obviously inherited by the disjointness assumption.
We show that this also true of condition Cycles. Suppose that there is a switching cycle
traversing both D1 and D2, and consider two minimal portions of the cycle going from
D1 to D2 and from D2 to D1, respectively. At most one of these portions can go
through k. Thus, the other portion consists of two consecutive nodes c1 and c2, with,
say, c1 ∈ D1, c2 ∈ D2, and c1 @1 c2, contradicting the disjointness assumption. �

Remark 4.8 In defining the superposition of graphs it is crucial that we work not just
with nodes, but with their view. This allows us to compare nodes belonging to different
graphs. This fact plays a key role when defining additive union (below).

4.4 Splitting

The following key lemma allows us to decompose a positive LS-net which satisfies the
condition Cycles into disjoint components, where each component is itself an LS-net.

Definition 4.9 (Splitting rules) 1. A negative rule W = {. . . , wI , . . .} of an L-
net D is called splitting if either it is conclusion of D (each wI is a root), or if
deleting the edges w ← wI to the root of W ’s bipole (for all wI ∈ W ), there is
no more connection (i.e., no sequence of consecutive edges) between any of the
wI ’s and w.

2. A positive rule of D is called splitting if it is a conclusion and all negative rules
just above it are splitting.

Lemma 4.10 (Splitting Lemma) Every LS-net D has a splitting conclusion. In par-
ticular, if all the conclusions are positive (i.e., if D is positive), there is at least one
positive splitting rule.

The proof is given in Appendix C.

Splitting. As a consequence of the Splitting Lemma, we have the following property.

Proposition 4.11 (Splitting) Let D be an LS-net. If D is positive, then there exists a
positive conclusion k = (ξ, I), which we call a splitting conclusion of D, such that

D = (
⋃

i∈I

(k ◦Dξi))
⊎

C .

Moreover,

1. all Dξi’s and C are LS-nets, and

2. they do not share addresses.
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Proof. Let k = (ξ, I) be a splitting positive conclusion. By deleting k, the graph
splits into several connected components. Let us indicate by Dξi the part of the graph
which is connected to some nodes of address ξi, and let us indicate by C the rest of the
graph.

1. It is immediate that each C and all Gi’s are downward closed, and hence are
LS-nets by Lemma 4.1. It follows readily that Dξi = Gi \ k is an LS-net, for all i.

2. Suppose for a contradiction that there are two nodes k1, k2, say in Dξi and in Dξj

using the same address. By condition Additives applied to D, there exists an additive
pair w1, w2, with w1, w2 below k1, k2, respectively, which by downward closedness
implies w1 ∈ Dξi and w2 ∈ Dξj . This is impossible because all the nodes in any
negative rule W of D belong to the same connected component. �

4.5 Root removal

The following operation allows us to decompose a negative L-net, whose negative con-
clusion is unary (this is the only negative destructor we need in the case of a purely
multiplicative L-net).

Definition 4.12 (Root removal) Given an L-net D (of interface ξ ` ∆) with a negative
unary conclusion {x} with x = (ξ, I), we indicate by D \ x the graph obtained from
D by removing x.

It is immediate that the result is an L-net on the interface ` . . . , ξi, . . . , ∆ (i ∈ I).

4.6 Additive structure

In a setting in which all negative rules are unary (as for slices or in multiplicative linear
logic), root removal is all we need to decompose a negative L-net. In a general setting,
the following constructions allow us to decompose, and to reconstruct, a negative L-net.

Definition 4.13 (Scoping) Let D be an L-net of negative conclusion X = {xI : I ∈
N}. For all I ∈ N , we define the scope of xI in D as follows:

Scope(xI , D) = {c : c v c′, c′ ∈ D, c′ positive and xJ 6∈ c′ for all J ∈ N \ {I}} .

or equivalently:

Scope(xI , D) =
⋃
{k↓ : k positive and xJ 6

+
← k for all J ∈ N \ {I}} .

By Lemma 4.1, if D is an L-net (resp. an LS-net), Scope(xI , D) ⊆ D is an L-net (resp.
an LS-net).

Definition 4.14 (Additive union) Let DI , DJ , . . . be a set of L-nets which all have
negative unary conclusions xI = (ξ, I), xJ = (ξ, J), . . . on the same address ξ (with
distinct I, J, . . .). Their additive union ↓

⋃
I

DI is defined as

↓
⋃

I

DI =
⋃

I

Φ(DI) ,
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where each Φ(DI) is obtained from DI by minimally adding edges in such a way that

xI
+
← k (in Φ(DI ) for each positive node k ∈ DI such that pkq 6∈ DJ (for some

J 6= I).

Intuitively, Φ is a function on chronicles which marks with an edge towards xI the
chronicles of DI which are specific to it, or more precisely those chronicles which are
not shared by all DJ ’s.

Remark 4.15 Notice that if the set of DI ’s is a singleton, then Φ(DI ) = DI . This
remark will allow us to treat both unary and non unary conclusions as a single case.

The following two lemmas will play a crucial role in the decomposition of L-nets.
Their statement refers to the notations in Definition 4.14.

Lemma 4.16 1. The chronicles of Φ(DI ) can be partitioned into two disjoint sets:

Φ(DI) = C ] BI ,

where

C =
⋂

J DJ = {c : c ∈ DJ , for all J}

BI = {pkq ∈ Φ(DI ) : xI
+
← k} = {c ∈ Φ(DI) : xI ∈ c}

2. If D = ↓
⋃
I

DI then

D = C ] (
⋃

I

BI) .

Proof.

1. If a chronicle c of Φ(DI) does not belong to BI , then, by construction, no edge
has been added, which implies both that c is a chronicle of DI and that it belongs
to all DJ ’s (J 6= I). Thus Φ(DI) = C ∪BI . Moreover, if xI ∈ c, then c cannot
belong to any DJ (J 6= I), as this would entail xI ∈ DJ , contradicting the
assumption that DJ has a unary conclusion. Hence the union is disjoint.

2. If D = ↓
⋃
I

DI =
⋃

I Φ(DI), we can write D =
⋃

I (C ]BI) = C ] (
⋃

I BI).

�

Proposition 4.17 ↓
⋃
I

DI is an L-net. Moreover the construction preserves condition

Cycles.

Proof. It is immediate that each Φ(DI) is an L-net. All properties are inherited from
D. As for condition Cycles, notice that all the newly added edges enter xI , and no
switching path which uses the new edges to xI can continue to form a cycle. Hence all
Φ(DI)’s are LS-nets.
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We are left to show (cf. Section 4.3) that ↓
⋃
I

DI =
⋃

J Φ(DJ ) satisfies conditions

Additives and Cycles. We just check condition Cycles. It is convenient to partition the
nodes of ↓

⋃
I

DI as in Lemma 4.16.

Given a collection of switching cycles, assume it is contained inside one of the
Φ(DJ)’s: in such a case the additive pair is given by the condition applied to Φ(DJ ).

Otherwise, we have at least a node k1 ∈ BI and a node k2 ∈ BJ (with I 6= J)

traversed by the cycles. By construction, xI
+
← k1 and xJ

+
← k2, and condition Cycles

is satisfied. �

Remark 4.18 Notice that
⋂

DJ is not an L-net in general , because its maximal chron-
icles do not need to be positive.

Lemma 4.19 If D = ↓
⋃
J

DJ , then:

1. Scope(xI , D) = Φ(DI ).

2. Assume DI = xI ◦ CI , or DI = xI � CI . Then:

Scope(xI , D) \ xI = CI .

Proof.

1. By Lemma 4.16, we can write D = C ] (
⋃

J BJ). We compute Scope(xI , D):

• by definition of scoping, the BJ ’s (J 6= I) are left out;

• no chronicle of C contains an xJ , since C is disjoint from each BI ;

• every chronicle of BI contains xI , and hence no chronicle of BI contains
any xJ (J 6= I), by condition Views.

It follows that Scope(xI , D) = C ]BI = Φ(DI).

2. This follows immediately from 1, since all what Φ does to DI is undone when
xI is removed.

�

4.7 Constructors and destructors

Summing up the content of this section, the operators we have presented can be grouped
into two families:

• Rooting, boxing, union and additive union are constructors.

• Splitting, root removal, and scoping are destructors. The decomposition of an
LS-net goes as follows:
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D is positive. All conclusions are positive. If there are no negative rules, we
are finished: our L-net is reduced to its conclusions.
Otherwise, by splitting, D = (

⋃
i (x ◦Di))

⊎
C. Hence

D . . . , Di , . . . , C .

D is negative (and non empty). Let X be the unique negative conclusion of D.

i. If X is unary, we decompose D by root removal.
ii. Otherwise, we reduce D to the previous case by scoping.

In general terms, assuming X = {. . . , xI , . . . } we have:

D . . . , Scope(xI , D) \ xI , . . . .

These constructors and destructors are put to use in the following sections.

5 Sequentializing a graph strategy

An edge of an L-net states a dependency, an enabling relation, or a precedence among
actions. The aim of this section is to provide a procedure, which takes an LS-net
and adds sequentiality in such a way that the constraints specified by the L-net are
respected.

Let us consider a very simple example: a chronicle c, i.e., a partially ordered view.
A sequentialization of c is a linear extension of the partial order. That is, we add
sequentiality (edges) to obtain a total order. A total order which extends c will define a
complete scheduling of the tasks, respecting the constraint that each action is performed
only after all of its constraints are satisfied.

Dependency between the actions of a slice, and of sets of slices (L-nets) is more
subtle, as there are also global constraints. The key point in the sequentialization is to
select a rule which does not depend on others. This is exactly the role of the Splitting
Lemma, and the reason for the condition Cycles.

The process of sequentialization is non-deterministic, as one can expect, i.e., there
are several tree strategies which can be associated to the same LS-net.

As we have both multiplicative and additive structure, when sequentializing we will
perform two tasks:

1. add sequentiality (sequential links) until the order in each chronicle is completely
determined;

2. separate slices which are shared through additive superposition.

Sequentialization procedure. The following procedure progressively transforms an
LS-net D into an L-forest on the same interface as D. It works bottom-up and follows
the paradigm of lazy, stream-like computation.

The procedure is non-deterministic. In what follows, D′ = seq D should be read
as: “D′ is a possible sequentialization of D”.

23



D is negative. Let X = {. . . , xI , . . . } be the unique negative conclusion of D. Let
DI = Scope(xI , D) \ xI , for all I . Then:

• seq D =
⋃

I (xI � seq DI ).

D is positive.

1. Assume D is connected (in the ordinary graph-theoretic sense).

If D consists of a single positive node, we are finished.

Otherwise we select a positive splitting rule x = (ξ, I) and proceed as follows.
By Proposition 4.11, each of the components Di obtained by splitting is an LS-
net whith a negative conclusion on an address ξi. Then:

• seq D =
⋃

i (x ◦ seq Di).

2. Assume D =
⊎

i Ci, where the Ci’s are the connected components of D. Then:

• seq D =
⊎

i (seq Ci).

Proposition 5.1 If D is an LS-net on the interface Ξ ` ∆, seq D is an L-forest on the
same interface.

Proof. We have already established all partial results needed to prove this. �

This procedure applies to infinite L-nets, by coinduction. Indeed, one can formally
show that L-forests form a final coalgebra and the LS-nets form a coalgebra for a func-
tor F on sets, and that seq is the associated unique coalgebra morphism. We only
sketch the construction below. The reader unfamiliar with final coalgebra semantics
can get the necessary background from [JR97].

• One considers the functor F in the category of sets and functions that takes a
set X to the disjoint union of the set of all finite sets whose elements are of the
form ((ξ, I), {. . . , ai, . . .}), where the ai’s form a collection of elements of X

indexed by a subset of I , and of the set of all {. . . , ((ζ, J), aJ ), . . .}, where the
aJ ’s form a collection of elements of X indexed by someN ⊆ Pf (ω).

• One proves that the collection of all L-forests forms a final coalgebra for this
functor. The situation is similar to that of, say, Böhm trees. The coalgebra
structure takes a positive (respectively negative) L-forest and decomposes it into
its root(s) and its immediate subforests.

• Thanks to the Splitting Lemma, one can choose a decomposition for each posi-
tive LS-net, and codify this “oracle” in the form of a coalgebra structure on the
collection of all LS-nets.

• Then seq is the unique coalgebra morphism from this coalgebra to the final
coalgebra. That it is a coalgebra morphism amounts to the equations given above
to define seq D.
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6 Desequentializing a tree strategy

We are now looking for a desequentialization transformation in the opposite direction,
from L-forests to LS-nets. This transformation should take as input the output of the
sequentialization procedure. We have already seen that the output of seq is only of a
potential (or coinductive) nature. More precisely, its progressive construction yields at
any step an actual finite part Π – the part of the forest that has been already recognized
–, and a collection of LS-nets to sequentialize, each associated with a leaf of Π.

Dually, we shall desequentialize truncations of L-forests (up to an arbitrary finite
level). The output of the procedure will be a finite LS-net D, on which one could
graft appropriately the (possibly infinite) subforests that have been taken away by the
truncation.

In order to define the desequentialization procedure, we need to introduce a new
notion, that of decoration.

Making the axioms explicit: decorations. In Section 3.10, we have illustrated the
purpose of desequentialization by taking as example the relation between proof-nets
and sequent calculus derivations. Our aim is to remove some artificial sequentializa-
tion, while preserving essential information:

1. axioms (multiplicative proof-net = formula tree + axioms [Gir87]);

2. dependency due to additive rules: some nodes must not be shared.

The second issue is addressed by our definition of additive union (cf. Section 4.6). As
for axioms, such information is present in the source L-forest (or design), but is implicit
(and not univoque). To make the information on the axioms explicit (and univoque),
we introduce an auxiliary notion, that of decorated node. Essentially, we decorate each
leaf k with a set of addresses, which we denote by link(k); this information codes the
axioms. For example, a leaf k = (ξ, {0}) which is decorated with the address σ will
correspond to the axiom ` ξ0, σ. The decoration is closely related to the sequent cal-
culus presentation of an L-forest, and we describe it in detail in Appendix B.

In Section 2.2, we already exemplified how to move from an L-forest to an explicit
sequent calculus style presentation. Essentially, given an L-forest Π, we associate to
each node k a sequent of addresses. Each leaf k = (ξ, I) in the forest will correspond
to a generalized axiom in the sequent calculus derivation, of either (see Section B) of
the two forms

` ξ, Γ
k = (ξ, I)+

` Γ
k = †

The decoration we will use captures this information: we decorate each leaf k of
the L-forest with the set Γ of addresses which appear in the sequent associated to k.

Decorated leaves as boxes. The two ideas of truncation of an L-forest and of deco-
rating the leaves of an L-forest are related, and complement each other. Suppose that
we truncate the tree Π after the node k, leaving out the subtrees Πi, above k. The
sequent associated to the node k, which is now a leaf, is the interface of the subtree
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⋃
(k ◦ Πi). Hence, the addresses in link(k) are meant as the addresses which are

used in the Πi’s. In this sense, a decorated leaf acts as a sort of (black) box: we hide
the content of the box (i.e.,

⋃
(k ◦ Πi)) and only keep memory of the interface (the

conclusion of the box).

Link sets versus infinitary expansions. In ludics, identity axioms are interpreted
by infinitary strategies, called faxes in [Gir01]. These strategies are an instance of the
copy-cat strategies of game semantics. In such infinitary strategies, every generated
action is eventually used. Faxes are the typical example of what we want to enclose in
a box. Actually, even if we are establishing general results, the kind of strategies we
are really interested in are those corresponding to proofs. Morally, the (real) use of link
sets is to deal with finite truncations of these strategies. In other words, link sets are a
way to express (in a finitary way) the axioms.

Definition 6.1 A decorated LS-net is an LS-net D in which all leaves k are equipped
with a finite set link(k) of addresses (called the link set of k), in such a way that the
conditions on LS-nets hold with respect to all addresses (thus, including those in the
link sets).

We still use D to denote a decorated LS-net.

Observe that if D is an L-net, and given an assignment of link sets to the leaves of
D, all what we have to check for it to yield a decorated LS-net are conditions Parents
and Additives.

From now on, we upgrade the definition of “a node uses an address” as follows:

Definition 6.2 (used addresses) Let k be a node labelled by an action and possibly a
link set. We say that the node k uses an address ξ if either

• ξ is the address of the action, or

• ξ appears in the link set.

The extension of the operators we have introduced for L-nets to decorated L-nets
is immediate. The upgraded definition plays a role only when rooting an L-net on a
negative action: now (with the notation of Definition 4.3), we add an edge (ξ, I)←− k

for each node k such that k is generated by (ξ, I), or k is a leaf such that ξi ∈ link (k).
We maintain the same notations as in Section 4.

Remark 6.3 The new edges (ξ, I) ←− k where k is a leaf such that ξi ∈ link (k) are
close in spirit to the µ-pointers recently introduced by Laurent in his investigations on
game semantics for first-order (classical) logic [Lau].

Observe that a label of a node is now a a decorated action, i.e., an action possibly
together with a link set . Actions which are decorated in a different way are different,
and we do not identify them. This is natural if we consider that they correspond to
different axioms.

In the following, we define a desequentialization procedure, which takes as input
finite decorated L-forests. More precisely we choose a special decoration discipline,
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which corresponds to the idea of making the axioms explicit. In Appendix B, we prove
that it is always possible to choose a decoration which satisfies the following property.

Definition 6.4 (well-decorated) A well decorated L-net is a decorated L-net D such
that all addresses of the interface, and all addresses generated by a negative action of
D are used in D (in the sense of Definition 6.2).

Lemma 6.5 Every L-forest can be well decorated.

Proof. See Corollary B.5. �

Desequentialization procedure.

Π is negative. Let X = {xI , xJ , . . .} be the conclusion of Π. Let us call ΠI the
subforest above xI (i.e., Π =

⋃
I (xI � ΠI)). Then:

• deseq Π = ↓
⋃
I

(xI ◦ deseq ΠI).

Π is positive.

1. Assume Π is a tree of conclusion x, using address ξ. If the tree is reduced to a single
node, then we are done (base case). Otherwise, it has the form Π =

⋃
i (x◦Πi),

where each Πi is the subforest of all the trees on the address ξi (i ∈ I). Then:

• deseq Π =
⋃

i (x ◦ deseq Πi).

2. Assume Π =
⊎

i Πi. Then:

• deseq Π =
⊎

i (deseq Πi).

Proposition 6.6 If Π is a well decorated L-forest on the interface Ξ ` ∆, then deseq Π
is an LS-net on the same interface.

Proof. All steps needed to show that deseq Π is a partial LS-net are immediate.
Notice that in the positive case,

⋃
i (x ◦ deseq Πi) is an LS-net by Proposition 4.7

(since all the addresses used in different Πi’s are disjoint, so are the addresses of the
deseq Πi’s).

Condition Positivity follows from Lemma 6.7 below, and by (the upgraded) defini-
tion of rooting. �

Notice that decorations play a role only to prove that deseq D satisfies condition
Positivity.

Lemma 6.7 Let Π be a well decorated L-forest on the interface Ξ ` ∆. All the ad-
dresses of the interface are used in deseq Π.

Proof. Similar to the proof of Lemma 9.6. �

Remark 6.8 At any step of the desequentialization:

• the sets of labels of Π and deseq Π are the same (intuitively, no node is deleted);

• if l is the label of a leaf in Π, it also labels a leaf in deseq Π.
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7 An algebraic presentation

In this section, we focus on the LS-nets generated by the constructors (rooting, boxing,
union and additive union), and we single out two important classes of LS-nets, obtained
by consistently using rooting, or consistently using boxing, respectively (cf. Section
4.2). In the first case, we speak of parallel L-nets, which we regard as abstract proof-
nets. In the second case, we get the L-forests, which correspond to abstract sequent
calculus derivations (see Appendix B).

In the following, we denote with D+ a positive L-net, and with D−
σ a negative L-

net whose negative conclusion has address σ. We denote by k+ a (possibly decorated)
positive action.

Abstract proof-nets. A parallel L-net is an LS-net generated by the following gram-
mar:

D := D+ | D−
σ

D+ := E+
⊎

. . .
⊎

E+

E+ := k+ |
⋃

i∈I ((ξ, I)+ ◦D
−
ξi

)

D−
σ := ↓

⋃
J

(σ, J)− ◦D+

Such an LS-net has minimal sequentiality, in the sense that the we use constructors of
minimal sequentiality.

Abstract sequent calculus derivations. The sequential L-nets are the L-nets gener-
ated by the following grammar:

D := D+ | D−
σ

D+ := E+
⊎

. . .
⊎

E+

E+ := k+ |
⋃

i∈I ((ξ, I)+ ◦D
−
ξi

)

D−
σ :=

⋃
J ((σ, J)− � D+)

It is clear that sequential L-nets and L-forests are one and the same thing. Notice that,
by construction, both classes of L-nets hereditarily admit splitting.

Remark 7.1 1. We write
⋃

i∈I ((ξ, I) ◦ Dξi) instead of (ξ, I) ◦ (
⋃

i∈I Dξi), be-
cause (

⋃
i∈I Dξi) is not an L-net, according to our definition.

2. The production D+ := E+
⊎

. . .
⊎

E+ takes care of graphs which are not
connected (i.e., that a re built using the MIX rule).

Remark 7.2 If DI , DJ , . . . are L-forests, then

• ↓
⋃
I

DI =
⋃

I DI , and

• positive rooting behaves in a “boxing-like” fashion in x+ ◦D
−
i .
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8 Relating sequential and parallel strategies

In this section, we study the relation between L-forests (sequential strategies) and paral-
lel L-nets (parallel strategies). We have already proved (Proposition 5.1) that for every
LS-net, seq D is an L-forest. Conversely, the following is an immediate consequence
of the definition of parallel L-nets.

Proposition 8.1 For every L-forest Π, deseq Π is a parallel L-net.

Every time we desequentialize an L-forest Π, there is a sequentialization procedure
seq such that seq (deseq Π) = Π.

Theorem 8.2 Given an L-forest Π, there exists a strategy of sequentialization such that
Π = seq (deseq Π).

Proof. We only consider the interesting cases.

D is negative. Let us denote by {xI , . . . } the conclusion of the tree. Since Π =⋃
I (xI �Πi), its desequentialization is deseq Π = ↓

⋃
I

(xI◦deseq ΠI). To sequentialize,

we use scoping. By Lemma 4.19 (ii), Scope(xI , (deseq Π)) \ xI = deseq ΠI . Hence

seq (deseq Π) =
⋃

I

(xI � seq (deseq ΠI )) .

D is positive. If the root is x, Π =
⋃

i (x.Πi). Since deseq Π =
⋃

i (x ◦ deseq Πi),
to sequentialize it we select x as splitting rule. Removing x gets us back to the set of
all deseq Πi’s. Hence:

seq (deseq Π) =
⋃

i

(x ◦ seq (deseq Πi)) .

�

Theorem 8.2 says that in the desequentialization there is no essential loss of infor-
mation. All dependency (sequentialization) which is taken away can be restored.

Establishing a result in the opposite direction (i.e., deseq (seq D) = D) only makes
sense starting from a parallel L-net, because as deseq Π reduces sequentiality to a “min-
imal” amount, if D is not parallel there is no hope that deseq (seq D) = D.

Theorem 8.3 If R is a parallel L-net, it admits a sequentialization procedure such that
deseq (seq R) = R.

Proof. Following the destructors, we are guaranteed (i) to have splitting, and (ii) that
when we use scoping, we are in the situation described by Lemma 4.19. We just spell
out the definitions.
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• If R is negative, we have R− = ↓
⋃
I

(xI ◦RI). By definition of sequentialization,

we have
seq R =

⋃

I

(xI � (Scope(xI , R) \ xI )) .

But by Lemma, 4.19, we have Scope(xI , R) \ xI = RI . Hence we have in fact

seq R =
⋃

I

(xI � (seq RI) ,

from which

deseq (seq R−) = ↓
⋃

I

(xI ◦ (deseq (seq RI)))

follows

• If R is positive, assume R+ =
⋃

i (x ◦ Ri) (all others cases are immediate).
By construction, x is a splitting positive rule, and we select it. We have that
seq R =

⋃
i (x ◦ seq Ri). Hence we have:

deseq (seq R+) =
⋃

i

(x ◦ (deseq (seq Ri))) .

�

Corollary 8.4 (Completeness) An LS-net D is a parallel L-net if and only if there is
an L-forest Π such that D = deseq Π. In particular, parallel L-nets are LS-nets.

Remark 8.5 The crucial point in the proof of Theorem 8.3 is that the following holds
for a parallel L-net:

R− = ↓
⋃

I

(xI ◦ (Scope(xI , R) \ xI )) ,

i.e. we can decompose (or destruct) a negative parallel L-net (scoping) and then re-
construct it (rooting and additive union). This does not hold in general for an LS-net
D.

Remark 8.6 We have omited decorations in this section for simplicity. To be perfectly
rigorous, one should maintain decorations through all the sequentialization and dese-
quentialization process. For example, the sequentialization of a well decorated LS-net
is defined just as the sequentialization of an LS-net (the only difference concerns the
base case, where the decorations are kept).
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9 Restricting the picture to designs

As mentioned earlier (and as proved in Appendix B), L-forests correspond to designs
with MIX. In this section, we show that we can get rid of this rule by (unsurprisingly)
imposing an additional connectedness assumption on LS-nets.

Given an L-net D and a slice S ⊆ D, a switching graph of S is a subgraph obtained
from S by choosing a single entering edge for each negative node, and deleting all the
other ones. A slice is S-connected if all its switching graphs are connected. Finally, we
call an L-net S-connected if all its maximal slices are.

An S-connected L-forest is obviously a tree, and in fact it is a design.

Lemma 9.1 An L-forest Π is S-connected iff it is a design (in the sense of [Gir01]).

Sequentialization and desequentialization preserve S-connectedness, and hence by
restriction to S-connected LS-nets our results specialize to designs, rather than arbitrary
L-forests. We shall give details only for the desequentialization. The proofs concerning
the sequentialization are similar and simpler.

Lemma 9.2 (Slices) Let D+ =
⋃

i (x+ ◦ Di). All slices of D have the form S =⋃
i (x+ ◦Si), where each Si is a slice of Di.

Let D− = ↓
⋃
I

(xI ◦DI) =
⋃

I Φ(xI ◦DI). If S is a slice of D, then S is a slice

of Φ(xI ◦DI) (for some I , and conversely. Moreover, SI = S \ xI is a slice of DI .
On can recover S from xI ◦SI by adding appropriate edges from some nodes of SI

to xI .

Proposition 9.3 If the L-net D is S-connected, seq Π is S-connected, and hence it is a
design.

In order to restrict the converse transformation, we need a strengthening of Lemma
6.7.

Definition 9.4 A uniformly decorated L-forest is an L-forest that is well decorated
slicewise, i.e., each slice S uses all the addresses of the interface, and all the addresses
generated by a negative action of S.

Lemma 9.5 Every L-forest can be uniformly decorated.

Proof. See Corollary B.5. �

There is a bijective correspondence between uniformly decorated L-forests, and
their sequent calculus representation (Proposition B.4).

Lemma 9.6 (Used addresses) Let Π be a uniformly decorated L-forest on the inter-
face Ξ ` ∆. If S is a maximal slice of the decorated L-net deseq Π, all the addresses
of the interface are used in S.

31



Proof. The claim is true if Π consists of a single decorated action on ` Γ (Π is
essentially reduced to an axiom).

Assume Π =
⋃

i ((ξ, I)+ ◦ Πi) is positive and has interface ` ξ, ∆. Each Πi is an
L-forest of interface ξi ` ∆. For each i, any slice Si ⊆ deseq Πi uses all the addresses
in ξi ` ∆. Hence

⋃
i ((ξi)◦deseq Si) is a slice which uses all the addresses in ` ξ, ∆.

Assume Π =
⋃

I ((ξ, I)− � ΠI) is negative and has interface ξ ` ∆. By Lemma 9.2,
T is a slice in ↓

⋃
I

((ξ, I)− ◦ deseq ΠI) iff T is a slice of Φ((ξ, I) ◦ deseq ΠI ), for some

I . Moreover, TI = T \ xI is a slice of deseq ΠI .
Each ΠI is an L-forest of interface ` ξ∗I, ∆ (where ξ∗I = {ξi, i ∈ I}). Hence TI

uses all the addresses in such a interface, and we can obtain the slice T′ = (ξ, I)− ◦SI

which uses all the addresses in ξ ` ∆. Finally, since T is obtained from T′ by adding
some edges, this operation does not change the nodes, and hence does not change the
set of used addresses. �

Proposition 9.7 If Π is a design, and if we choose a uniform decoration for Π, then
deseq Π is S-connected.

Proof. By assumption, Π is an S-connected L-forest.

Π is negative. By Lemma 9.2, S is a slice of deseq Π =
⋃

I Φ(xI ◦ deseq ΠI ) iff S

is a slice of Φ(xI ◦DI), for some I . We have that SI = S \ xI is a slice of deseq ΠI .
By hypothesis, SI is S-connected. Let xI = (ξ, I). By Lemma 9.6, in xI ◦SI there
are some edges connecting xI to the nodes of SI , those using some ξi. We obtain S

by adding some more edges.
We conclude by observing that (i) any choice of an edge entering xI leaves xI

connected to a node of SI , (ii) any switching S of S restricted to SI is a switching of
SI , and (iii) by hypothesis, any two nodes of SI are connected in S.

Π is positive. By Lemma 9.2, S is a slice of deseq Π =
⋃

i (x ◦ deseq Πi) iff S =⋃
i (x ◦ Si), and Si is a slice of deseq Πi, for all i. By induction, all the Si’s are

S-connected, and hence S is S-connected. �

10 Discussion and further work

Graduating sequentiality. In our setting, if we have minimal sequentiality, we have
“parallel” strategies. At the other extreme, if we have maximal sequentiality, we have
designs. The tools we have defined allow us to vary between these extremes, and hence
provide us with a framework in which we can graduate sequentiality.

We are currently investigating this gradient of sequentiality, in particular along the
following two directions. (i) In this paper we saturate L-nets to maximal sequential-
ity. We are studying how to perform sequentialization gradually, by adding sequential
edges progressively. (ii) We would like to have a more precise understanding of what
it means to have maximal or minimal sequentiality, and to investigate the extent of our
desequentialization.
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Actually, we already have answers to both questions in the multiplicative case, but
the extension to the additive case needs further investigation.

Proof-nets. If tree strategies can be seen as abstract sequent calculus derivations, L-
nets correspond to abstract proof-nets. We are currently investigating a typed setting,
which also means to define a new syntax for proof-nets.

The typed counter-part of LS-nets should be an extension of focusing proof-nets
[And02]. While previous work on focusing proof-nets was limited to multiplicative
linear logic, our framework extends to additive connectives.

We expect also to study the gradient of sequentiality in a typed setting, and then,
mirroring the treatment of strategies, we expect to be able to move from MALL proof-
nets to sequent calculus derivations in a continuum. More precisely, using the semanti-
cal experience, we treat the graphs as orders. Then, we vary the amount of sequential-
ity (order) on the graphs (proof-nets) from most parallel to most sequential, where the
most-sequential proof-nets can be seen as sequent calculus derivations.

This setting would realize a goal which was first proposed by Girard. Preliminary
steps in this direction have already produced an extremely simple new proof of sequen-
tialization for multiplicative proof-nets [DGF06].

Further questions. We have singled out two classes of L-nets, those of maximal se-
quentiality (which are idempotent with respect to seq ) and those of minimal sequen-
tiality. Notice that while seq applies to arbitrary L-nets, here we have defined deseq
only on trees. We expect to be able to define the desequentialization of arbitrary L-nets,
by using the Splitting Lemma.

Moreover, we are able to give a direct characterization of L-forests, while we only
have an inductive definition of parallel L-nets. Beside the problem of expressing mini-
mal sequentiality, we also need to capture the fact that an L-net admits decomposition.
The condition Acyclicity captures the L-nets which hereditarily admit splitting (i.e.,
positive decomposition). To describe the L-nets which hereditarily admit negative de-
composition (scoping with good properties), we need some weak form of typing, such
as the typing provided by an arena. We postpone the definition of such a setting to
future work.

Equational theory, canonicity. An underlying idea, which needs further study, is that a
parallel strategy has not only an interest as an “asynchronous” model of computation,
but also could play the same role that proof-nets have in providing an equational theory
for proofs.

We expect to be able to use the parallel L-nets as an equivalence class on L-forests,
i.e.,

Π1
∼= Π2 ⇐⇒ deseq Π1 = deseq Π2 .

If we restrict to purely multiplicative L-nets, it is easy to show that given two par-
allel L-nets R1, R2 (seq R1 = seq R2) =⇒ (R1 = R2) (canonicity). We do not
know if this is true also in the additive case.

Acknowledgments. We would like to thank Olivier Laurent for numerous discus-
sions on MALL proof-nets, and also Dominic Hughes and Rob van Glabbeek for fruit-
ful exchanges on the technique of domination.
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A Examples

A.1 Sequentialization

Let us consider the following L-net R:

ξ, {0} α, {0}

α0, {0}ξ0, I ξ0, J

α00, {1} α00, {2}

We have two negative rules ({(ξ0, I), (ξ0, J)} and {(α0, {0})}), and two positive
conclusions, both splitting. To sequentialize, we choose one of them. If we choose
(ξ, {0}), we obtain the two trees on the left-hand side of Figure 2, and then the design
X. Instead, by choosing (α, {0}) we obtain the design A (on the r.h.s.).

A.2 Superposition

The superposition of two L-nets is their union as sets of chronicles. Let us see an
example. Consider the two L-nets D1, D2 in Figure 3. The superposition of D1 and
D2 produces the L-net D = D1

⋃
D2.

In fact, the set of chronicles of D1 is the set of chronicles defined by each of its nodes
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k, that is:

{ α,0 , α,0

α0,0

, (ξ0, I), p(α00, {1})q = D1}.

The set of chronicles of D2 is:

{ α,0 , α,0

α0,0

, (ξ0, J), p(α00, {2})q = D2}.

The resulting union is:

{ α,0 , α,0

α0,0

, (ξ0, I), (ξ0, J), D1, D2},

which corresponds to D.

A.3 Desequentialization

Example 1. Desequentializing either of the designs A or X in our previous example
A.1, equipped with the only possible uniform decoration, yields the original L-net R.
The only uniform decoration is, for both designs:

• link(α00, 1) = {ξ0 ∗ I},

• link(α00, 2) = {ξ0 ∗ J}.

Example 2. Let us consider the design in Figure 4, where we just omit an obvious
negative action at the place of . . . . The only uniform decoration is:

• link(b) = {α001, ξ0 ∗ I},

• link(c) = {α002, ξ0 ∗ J}.

Following the desequentialization procedure, a few easy steps produce the two L-nets
D1, D2, represented in Figure 5. Observe that we have a chronicle for each node;
D1

⋂
D2 is equal to {p(α, {0})q, p(α0, {0})q}. We obtain D′

1 by adding the relation
(ξ0, I) ← (α00, {1}), and D′

2 in a similar way. Remember that we do not explicitly
write the (non transitive) edge ξ0 ←− b. The union D′

1

⋃
D′

2 produces the L-net on
the right-hand side of Figure 5.
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A.4 A typed example: additives

The following (typical) example with additives illustrates the relation between tree
strategies and (parallel) L-nets.

Assume we have derivations Π1, Π2, Π3, Π4 of (respectively) ` A, C, ` A, D,
` B, C, ` B, D. In the sequent calculus (and in proof-nets with boxes [Gir87]) there
are two distinct ways to derive ` A&B, C&D, and the two derivations differ only by
commutations of the rules.

Π1

` A, C

Π2

` A, D

` A, C&D
C&D

Π3

` B, C

Π4

` B, D

` B, C&D
C&D

` A&B, C&D
A&B

Π1

` A, C

Π2

` A, D

` A&B, C
A&B

Π3

` B, C

Π4

` B, D

` A&B, D
A&B

` A&B, C&D
C&D

The same phenomenon can be reproduced in the setting of designs, or in the setting
of polarized linear logic [Lau02]. Very similar to the above derivations are the two
following (typed) designs, where we introduce some ↓’s in order to fit into our polarized
setting. We write formulas instead of addresses, to make the example easier to grasp.

↓A&B

A&B,A

↓C&D

C&D,C

Π1

C&D,D

Π2

A&B,B

↓C&D

C&D,C

Π3

C&D,D

Π4

↓C&D

C&D,C

↓A&B

A&B,A

Π1

A&B,B

Π3

C&D,D

↓A&B

A&B,A

Π2

A&B,B

Π4

The desequentialization of either of the trees above is the following LS-net R:

↓ A&B ↓ C&D

A&B,A A&B,BC&D,C C&D,D

AC AD BC BD
Π∗

1
Π∗

2
Π∗

3
Π∗

4

Conversely, when sequentializing R, we get either one or the other tree back, depend-
ing on whether we choose to start from A&B or from C&D. Notice that both A&B

and C&D are splitting.

B Sequent calculus presentation of L-forests and deco-
ration

In this section, we recall the sequent calculus for designs [Gir01] (see also [Cur06]).
We add a rule which corresponds to the MIX rule, and we examine the correspondence
between such extended designs and L-forests. In this section, Π will range over sequent
calculus proofs. This does not conflict with our use of Π to denote L-forests, since we
show here in some detail that they are essentially one and the same thing.
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Girard’s original sequent calculus for designs is the following (an interface is called
well-formed if it consists of pairwise disjoint addresses with respect to the prefix or-
dering):

Daimon: (` Λ well formed)

` Λ
†

Positive rule (I ⊆ ω finite, one premise for each i ∈ I , all Λi’s pairwise disjoint and
included in Λ, ` ξ, Λ well formed):

· · · ξi ` Λi · · ·

` ξ, Λ
(ξ, I)+

Negative rule (N ⊆ Pf (ω) possibly infinite, one premise for each J ∈ N , all ΛJ ’s
included in Λ, ξ ` Λ well formed):

· · · ` ξ ∗ J, ΛJ · · ·

ξ ` Λ
{(ξ, J)− : J ∈ N}

xhere ξ ∗ J stands for the set of the ξj’s (j ∈ J).

We add the following rule (which is a type-free counterpart of the MIX rule from
linear logic [Gir87]):

MIX (` Λ1, . . . , Λn well formed, all Λm’s pairwise disjoint)

` Λ1 . . . ` Λn

` Λ1, . . . , Λn
MIX

Remark B.1 The negative rule conveys some inherent weakening. Each action (ξ, J)−

creates simultaneously all the addresses ξj (j ∈ J), which are recorded in the sequent,
regardless of whether they will be used or not.

Applications of the rule Daimon yield positive leaves in a proof tree. We shall also
consider as a positive leaf any proof tree of the following form:

. . . ξi ` Λi
∅

. . .

` ξ, Λ
(ξ, I)+

where all negative rules are applied withN empty. We shall write simply:

` ξ, Λ
(ξ, I)+

We now briefly review how we can translate (in this extended setting) a sequent
calculus proof Π into an L-forest Π. The translation satisfies the following invariant.
A proof of a sequent ` Λ translates to a forest whose roots (or conclusions) are on
distinct addresses of Λ, and a proof of a sequent ξ ` Λ translates to a forest all of
whose conclusions are of address ξ. The definition is by induction, according to the
last rule of the proof. We use the syntax introduced in Section 7. We omit the (easy)
proof that Π is an L-forest.
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• Daimon. Then Π = †.

• (ξ, I)+. Then Π =
⋃

i∈I ((ξ, I)+ ◦ Πi), where the Πi’s are the proofs of the
sequents ξi ` Λi (i ∈ I). Note that Π is a tree.

• {(ξ, J)− : J ∈ N}. Then Π =
⋃

J ((ξ, J)− � ΠJ ), where the ΠJ ’s are the
proofs of the sequents ` ξ ∗ J, ΛJ .

• MIX. Then Π =
⊎

m Πm, where the Πm’s are the proofs of the sequents ` Λm’s.

It should be clear that the rules of Π (as defined in Section 3) correspond univoquely
to the occurrences of rules in Π. By going from Π to Π, we have just forgotten all
sequent informations except at the root. We now examine the converse direction, from
L-forests to sequent calculus proofs.

Proposition B.2 The mapping Π 7→ Π is onto. More precisely, for every L-forest D

there exists a uniform sequent calculus proof Π such that D = Π, where a uniform
proof is a proof in which the positive and negative rules are constrained as follows:

· · · ξi ` Λi · · ·

` ξ,
⋃

i Λi

(ξ, I)+

· · · ` ξ ∗ J, Λ · · ·

ξ ` Λ
{(ξ, J)− : J ∈ N}

i.e., we require that in the positive rule, no address is lost (Λ =
⋃

i Λi), and, in the
negative rule, all ΛJ ’s are chosen maximal (and equal to Λ).

Proof. We have to extend the setting of [Gir01] (see also [Cur06]) from designs
to L-forests, and to make sure that the target is restricted to uniform proofs. Let D

be an L-forest. There are four cases. In each case, we sketch how to (coinductively)
generate the final rule of the proof (we give more details for the quite similar proof of
Proposition B.4 (2) below).

1. If D is a leaf, then the associated proof is its interface.

2. If D is a positive L-forest with more than one root, then we transform each of
the trees Ej of D into a proof of ` Λ′

j , where each Λ′
j consists of the minimal

addresses used in Ej , and then we accommodate the constraint Λ =
⋃

j Λj by
dispatching arbitrarily any ξ ∈ Λ \ (

⋃
i Λ′

i) to exactly one of the Λ′
j’s, yielding

suitable Λj’s.

3. If D is positive and is a tree, then we proceed essentially as in the previous case.

4. If D is negative on interface ξ ` Λ, then it is easily seen that each ` ξ ∗ J, Λ
is an interface for the corresponding subtree of D, so that we can carry on the
construction.

�
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Remark B.3 The uniform proof discipline described in the statement of Proposition
B.2 corresponds to pushing weakening maximally to the leaves.

The assignment of a sequent calculus proof to an L-forest is non-deterministic, i.e.,
the map Π → Π is not injective. With decorations (cf. Section 6), we get a bijective
correspondence. We recall (cf. Definitions 6.1, 6.4, and 9.4) that

• a decorated L-forest is an L-forest D in which all leaves k are equipped with a
finite set link (k) of addresses (called the link set of k), in such a way that the
conditions on L-nets hold with respect to all addresses (including those in the
link sets);

• a well decorated L-net is a decorated L-net D such that all addresses of the
interface, and all addresses generated by a negative action of D are used in D,
i.e., appear as a label of the underlying L-net or in a link set;

• a uniformly decorated L-forest is a decorated L-forest D such that every (maxi-
mal) slice of D is well decorated.

Proposition B.4 1. Well decorated L-forests are in one-to-one correspondence with
sequent calculus proofs subject to the restriction that in all applications of the
positive rule (resp. negative rule) we have

⋃
i∈I Λi = Λ (resp.

⋃
J∈N ΛJ = Λ).

2. Uniformly decorated L-forests are in one-to-one correspondence with the proofs
subject to the further restriction of uniformity (cf. Proposition B.2).

Proof. 1. The correspondence in one direction is obtained by adapting Π, as fol-
lows: for each leaf with conclusion ` Λ (resp. ` ξ, Λ) obtained by an application
of † (resp. (ξ, I)+), the translation is now † (resp. (ξ, I)+) with link (†) = Λ (resp.
link((ξ, I)+) = Λ). It is easily checked that the respective restrictions on the construc-
tion of proofs ensure that Π is a well decorated or a uniformly decorated L-forest.

Conversely, given a well decorated L-forest D, we associate (deterministically) a
proof, as follows. An invariant of the construction is that the minimal addresses (in the
prefix ordering) used in D form the final sequent of the associated proof D .

• D =
⊎

i Ci has several positive conclusions. Then we translate each of the trees
C1, . . . , Cn of D, yielding proofs of sequents ` Λ1, . . . ,` Λn. By the invariant,
we know that all addresses in Λm are used in Ci, and then by condition Additives
we are sure that the Λm’s are distinct. Therefore we can apply the MIX rule, and
we define D as

C1 . . . Cn

` Λ1, . . . , Λn
MIX

• D has conclusion k = † with link(k) = Λ. Then D is

` Λ
†
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• D has only one positive conclusion (ξ, I)+. If D is reduced to a leaf, then we
proceed as in the previous case. If D =

⋃
{j∈J} ((ξ, I)+ ◦Dj), for some J ⊆ I ,

by the same reasoning as in the first case, we have that the Dj ’s are proofs of
sequents ` Λj , for paiwise disjoint Λj’s. Then we define D as

. . . Dj . . . ξk `
∅

. . .

` Λ
(ξ, I)+

where j (resp. k) ranges over J (resp. I \ J), and where Λ is the union of the
Λi’s.

• D =
⋃

J ((ξ, J) � DJ). By construction of the decoration, all addresses ξj

(j ∈ J) are minimal in DJ . By this remark, and applying induction, we get that
DJ is a proof of a sequent of the form ` ξ ∗ J, ΛJ . Then we define D as

. . . DJ . . .

ξ ` Λ
{(ξ, J)− : J ∈ N}

whereN = {J : (ξ, J)− is a root of D} and Λ is the union of the ΛJ ’s.

The final sequent of D is its interface, by the invariant of the translation, and by the
initial construction of the decoration, that takes the basis of D into account.

It is straightforward to prove that this transformation is inverse to the transformation
Π 7→ Π.

2. This correspondence is simply obtained by restricting the correspondence to uni-
formly decorated L-nets and to uniform proofs. �

Corollary B.5 Every L-forest can be uniformly decorated, and hence a fortiori well
decorated.

Proof. To an L-forest D, we can associate a uniform proof by Proposition B.2, and
then a uniform decoration, by Proposition B.4. �

Remark B.6 Note that the bijective correspondences of Proposition B.4 induce a bi-
jective correspondence between the link sets used in the decoration of an L-forest and
the generalized axioms used in the corresponding sequent calculus proof.

C Proof of the Splitting Lemma

In this section, we prove Lemma 4.11, namely that every LS-net D has a splitting
conclusion.

We recall from section 4.4 that a negative rule W = {. . . , wI , . . .} of an L-net D is
called splitting if either it is conclusion of the LS-net (each wI is a root), or if deleting
all the edges wI → w there is no more connection (i.e., no sequence of consecutive
edges) between any of the wI ’s and w, and that a positive conclusion of D is called
splitting if all negative rules just above it are splitting.

If D is negative, then the Splitting Lemma holds vacuously. For positive D’s, we
first establish the following Negative Splitting Lemma.
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Lemma C.1 (Negative Splitting Lemma) Every positive LS-net D which has a neg-
ative rule has a splitting negative rule among all the negative rules of level 1 (i.e.,
located just above a conclusion).

Our proof is an adaptation to our setting of the proof of the similar lemma in
[HvG05]. A switching path x0 . . . xn is called strong (and denoted x0 ⇐ xn) if ei-
ther its last node is positive or if it ends upwards in the last node. Strong switching
paths satisfy the following concatenation property: if γ1 is a strong switching path and
γ2 is a switching path such that their concatenation γ1γ2 is a rule path (cf. section 3.7),
then γ1γ2 is switching, and if moreover γ2 is strong, then γ1γ2 is strong.

Definition C.2 (Domination) Given an LS-net D, a negative rule X and a finite set
of nodes G, we say that G is an X-zone if for every z ∈ G there are nodes x ∈ X and
x′ such that x ← x′ ⇐ z, where the path x′ ⇐ z is included in G. Given a node z of
D, we say that X dominates z, denoted X ED z (or simply X E z), if there exists an
X-zone G in D such that z ∈ G. We say that the zone G and the sequence x← x′ ⇐ z

witness X E z.

The following statement lists some simple consequences of the definition of domi-
nation.

Lemma C.3 1. X-zones are closed under unions.

2. If X E z is witnessed by a sequence x← x′ ⇐ z, then X dominates every node
of the path x′ ⇐ z.

3. If x← y for some x ∈ X , then X E y.

4. Given a negative rule W , if X dominates a node w ∈ W then X dominates all
w′ ∈ W .

5. If X E y, and if y ← z, or if z ← y and z is not negative, then X E z.

Proof. The first three parts of the statement are obvious. Let X E w be witnessed
by G and x ← x′ ⇐ w. By definition of strong, the path x′ ⇐ w terminates with
k ← w. Then we obtain a strong path to any w′ ∈ W by just replacing the last edge
with k ← w′. It follows that G∪W is an X-zone, and therefore (∀w′ ∈ W X E w′).

We now prove the last assertion of the statement. Let G and x ← a ⇐ y be a
witness of X E y. If z does not belong to a rule that intersects the sequence a . . . y, then
the sequence a . . . yz is a path, that is switching by the assumptions. Hence G ∪ {z}
and x ← a ⇐ z are a witness for X E z. If z intersects the sequence a . . . y, then we
conclude using the second and fourth parts of the statement. �

Thanks to Lemma C.3, we shall henceforth safely assume that X-zones are rule-
saturated, i.e. are unions of rules.

The notion of domination extends to rules. Let W be a rule. We write W1 E W2

if there exists w2 ∈ W2 such that W1 E w2 (or, equivalently, if W1 E w2 for all
w2 ∈ W2, by Lemma C.3). If X is not dominated, we say that it is free.
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Lemma C.4 Domination is transitive.

Proof. Assume X E Y and Y E Z, witnessed by (rule-saturated) G and x← a⇐
y, and by G′ and y′ ← b ⇐ z (z ∈ Z, y, y′ ∈ Y , x ∈ X). By Lemma C.3, we
can assume y = y′. It is enough to show that G′ ∪ G is an X-zone, and for this we
only have to consider z′ ∈ G′ \ G, if any, witnessed by y′′ ← b′ ⇐ z′. Let z′′ be
the last node in the sequence y′′b′ . . . z′ which is in G, witnessed by x′ ← a′ ⇐ z′′.
Then, concatenating with the rest of the sequence from (the successor of) z ′′ to z′, we
obtain a path (by construction, and because G is rule-saturated). This path is strong
and switching because its constituents are. �

Lemma C.5 Let W be a negative rule. If w ∈W is below a node of a switching cycle

C, then W dominates all nodes of the cycle. If w1, w2 ∈W are such that wi
+
← z0 and

wj
+
← zn, then W dominates every node in a switching path from z0 to zn.

Proof. We prove the second part of the statement (the reasoning is the same for the
first part). Let G1 (resp. G2) be the set of nodes on a path going up from w1 to z0 (resp.
from w2 to zn). We shall show that G1 ∪ G2 ∪ C is a W -zone. That G1 and G2 are
W -zones follows readily from Lemma C.3. Let z ∈ C. Because C is switching, we
have either z0 ⇐ z or zn ⇐ z. Suppose that we have, say, z0 ⇐ z. Let z′

1 be the first
node on the way up from w0 to z0 that belongs to a rule intersecting z0 ⇐ z at some
z′2. Then the sequence obtained by going up from w1 to z′2 and then to z is witnessing
W E z. �

Lemma C.6 Let D be a finite LS-net. If a rule X intersects a switching cycle, then X

is dominated by an additive rule W which intersects no switching cycle.

Proof. We construct a sequence of negative rules Wi as follows. We set X = W0.
If Wi intersects a switching cycle, then applying the condition Cycles gives us a rule
Wi+1. We have Wi+1 EWi, by Lemma C.5. At each iteration the union of the cycles
increases strictly, and hence by finiteness of D we eventually reach some negative rule
Wn = W which intersects no switching cycle. Moreover, we have W E X by Lemma
C.4. �

Due to the finiteness condition in the previous lemma, we shall first establish the
Splitting Lemma in the finite case, and then show how to lift the result also to infinite
LS-nets.

Lemma C.7 If X E X , then X is in a switching cycle.

Proof. If X E X , we have x ← a ⇐ x for some x ∈ X . Then we can close the
path from a to x with the edge x← a. Because the path from a to x is strong, the cycle
is switching. �

Proposition C.8 Let D be a finite LS-net. Every negative rule is either free or domi-
nated by a free negative rule. As a consequence, if there are negative rules, there exists
a free negative rule.
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Proof. The proof is by contradiction. Let X be a negative rule that is neither free
nor dominated by a free negative rule. We shall build an infinite sequence of rules Xi

which are all distinct, are all not free, and are such that

. . .Xi+1 E Xi E . . .X1 E X0 E X ,

contradicting the finiteness of D. We take X0 = X . By assumption, X0 is not free.
Suppose that we have constructed the sequence up to Xi. We distinguish two cases:

1. If Xi is not in a switching cycle, we choose any Xi+1 such that Xi+1 E Xi (this
is possible since Xi is not free by induction hypothesis). This Xi+1 is fresh as
otherwise we would have by transitivity Xi E Xi, contradicting our assumption
on Xi, by Lemma C.7.

2. If Xi is in a switching cycle, then by Lemma C.6 we can choose a rule Xi+1

such that Xi+1 intersects no switching cycle. This Xi+1 is fresh as otherwise we
would have by transitivity Xi+1 E Xi+1, and this contradicts our assumption
about the choice of Xi+1, by Lemma C.7.

In both cases, we have constructed a fresh Xi+1 such that Xi+1 E Xi. Moreover, by
transitivity, Xi+1 E X , from which it follows that Xi+1 is not free. �

Let X, Y be distinct negative rules.

• We write X ←→ Y if there is a switching path z0 . . . zn (called witnessing path)
such that x← z0 and zn → y, for some x ∈ X and y ∈ Y .

• We write X →← Y if X, Y belong to the same bipole, hence x→ k and y → k,
for some k and all x ∈ X and y ∈ Y .

Lemma C.9 If X , Y and Z are negative rules such that X 6= Y , X E Z and Y E Z,
then X ←→ Y .

Proof. Consider x ← a E z (for some x ∈ X and z ∈ Z). Let z ′ be the first node
on the path from a to z such that Y E z′ (and hence y ← b ⇐ z′ for some y ∈ Y ).
Then we get a path witnessing X ←→ Y by going from a to z ′ and then from z′ to
b. This sequence of nodes is a rule path since if it were not, there would be z1 in the
first portion and z2 in the second portion belonging to the same rule, but we have that
Y E z′ implies Y E z2 which in turn implies Y E z1, contradicting the minimality of
z′. It is switching since the path from b to z′ is strong. �

Lemma C.10 If X is a free negative rule of D and does not split, then there exist free
negative rules Y, Z of D such that X →← Y and X ←→ Z.

Proof. Let c be the node just below X . Since X does not split, for some x ∈ X we
can form a cycle (in the ordinary sense of graph theory, i.e. without the disjoint rules
assumption) xc . . . ax, without using any edge between c and X other than c ← x.
Since X is free, c is a conclusion of the net, and the next node on the cycle must be

44



some y such that c ← y. By construction, y belongs to a rule Y distinct from X , and
thus we have X →← Y .

Next we observe that we cannot have X E x, because X is free, and that X E a

because x ← a (since the only edge of D out of x is already used). Let b be the first
node, following the cycle in the direction xc . . ., such that X E b. The node z ′ before
b must be negative and we must have z′ ← b as otherwise we would have X E z′ by
Lemma C.3. Let Z ′ be the rule to which z′ belongs. Then we have X ←→ Z ′. If Z ′

is free, we can set Z = Z ′. If Z ′ is not free, it dominates some free Z, by Proposition
C.8, and we conclude by Lemma C.9 (since X E {b}, and Z E {b} by transitivity). �

We are now able to prove the Negative Splitting Lemma for finite LS-nets, i.e. for
LS-nets having finitely many nodes.

Proof (Negative Splitting Lemma, finite case). If the LS-net D has no splitting neg-
ative rules, then all its conclusions must be positive, and starting from a free negative
rule X0 (whose existence is guaranteed by Proposition C.8), and using again and again
Lemma C.10, we can build an infinite sequence X0 →← X1 ←→ X2 →← . . .

where Xi+1 is a free negative rule and Xi+1 6= Xi, for all i. Since there are only
finitely many free negative rules, we have Xi = Xj = X for some i < j. By the
definition of the→← and←→ relations, we can form a switching sequence of nodes
starting in Xi = X and ending in Xj = X which is nondegenerate (i.e. of length at
least 2) since Xi 6= Xi+1. But this sequence is not guaranteed to be a rule path. To
build a rule path, we take two nodes z1 and z2 at minimal distance in the sequence
such that z1 and z2 belong to the same rule. Again, this distance is non-degenerate,
as z1 and z2 cannot belong to the same path witnessing some X2k+1 ←→ X2k+2

(i ≤ 2k + 1 < j), and moreover, by the same reason, the path z1z
′
1 . . . z′2z2 from z1 to

z2 must cross some Xn. We distinguish two cases:

1. If z′1 ← z1 or z′2 ← z2, say, z′
1 ← z1, then we also have z′

1 ← z2, and adding
this (reversed) edge to the path from z′

1 to z2 yields a switching cycle. Then, by
a (weakened form of) Lemma C.6, we obtain that Xn is dominated.

2. If z1 ← z′1 and z2 ← z′2, then we are in the situation of the (second part of the
statement of) Lemma C.5, and we also obtain that Xn is dominated.

We have reached a contradiction, since Xn is free by construction.

The Negative Splitting Lemma holds actually for arbitrary LS-nets. The following
definition and lemma ensure a finiteness condition, even if our LS-net D is infinite.

Definition C.11 Let D be an LS-net whose conclusions are all positive. We denote by
Neg1(D) the set of negative rules that are just above a conclusion (i.e., the set of rules
of level 1).

Lemma C.12 1. The set Neg1(D) is finite.

2. Every free (negative) rule is in Neg1(D).
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Proof. By the finiteness of the interface, there are finitely many conclusions, and
since there are are only finitely many rules just above a positive rule, it follows that
Neg1(D) is finite. Suppose that W is a rule of level > 1, then, going down from
W , we reach a rule W ′ that dominates W (that W ′ E W follows by repeated use of
Lemma C.3). The second part of the statement follows. �

Proof (Negative Splitting Lemma, infinite case). Let D be an infinite LS-net. We
concentrate on Neg1(D). For each pair X, X ′ ∈ Neg1(D) such that X E X ′, we take
an X-zone witnessing this domination. Let F be a minimal (finite) LS-net containing
these zones, obtained by possibly adding in a minimal way positive chronicles to the
set F′ of all chronicles pkq, where k ranges over the union of the zones (note that
F′ is already a partial L-net by Lemma 4.1). By construction, Neg1(F) consists of
all sets X ∩ F such that X ∈ Neg1(D) and X ∩ F 6= ∅. Moreover, for any two
X, X ′ ∈ Neg1(D), we have, by construction of F:

X ED X ′ ⇔ (X ∩ F 6= ∅ , X ′ ∩ F 6= ∅ , and (X ∩ F) EF (X ′ ∩ F)) .

It follows that if (X ∩F) ∈ Neg1(F) is free (in F), then X is free (in D), using the fact
that whenever a rule is dominated, it is dominated by a rule in Neg1(D).

Now, suppose that there exists a negative rule X of D that is neither free nor dom-
inated by a free rule. We can assume X ∈ Neg1(D) since this property is a fortiori
true of any negative rule below. Then, as we noted above, X ∩ F is not free. Neither
can X ∩ F be dominated by a free rule X ′ ∩ F, because then we would have that X ′ is
free and X ′ ED X . Therefore X ∩ F is neither free nor dominated by a free rule in F,
contradicting the Negative Splitting Lemma (finite case).

We now prove the Splitting Lemma, as a consequence of the Negative Splitting
Lemma.

Proof (Splitting Lemma). Let D be an LS-net that has only positive conclusions.
We define size(D) as:

• 0 if at least one of the positive conclusions of D is a leaf, and otherwise as

• the cardinal of the set of level 1 negative rules of D.

Since D has finitely many positive conclusions, the size of D is finite, even if D is not
finite.

We apply the Negative Splitting Lemma to D. We select a splitting negative rule
X . Since D has no negative conclusion, X is just above a conclusion k of D. We
delete the edges from x to k, for all x ∈ X .

Let us call DX the union of the connected components (in the ordinary unoriented
graph-theoretic sense) of the elements of X , and Dk the rest of the graph, which con-
tains k. We prove that DX and Dk are LS-nets. Let D′ stand for either DX or Dk.
We note that if c ∈ D′, then D′ contains every path of D starting from c that does not
go through one of the deleted edges. It follows that pcqD′ possibly differs from pcqD
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only by not containing k. We are thus almost in the situation of Lemma 4.2, modulo
straightforward adaptations. Let us look for example at the condition Additives: the
path leading down from k1 to w1 (resp. from k2 to w2) does not go through k, and
hence belongs to pk1qD′ (resp. pk2qD′), so condition Additives in D′ is inherited from
condition Additives in D.

We have that size(Dk) < size(D), because every conclusion k′ of Dk is a conclu-
sion of D, and every negative rule of Dk is a negative rule of D. Moreover, every free
splitting negative rule of Dk is a splitting negative rule of D: indeed, if Dk splits into
Dk′ and DX′ , then D splits into (Dk′ ∪DX) and DX′ . We are now ready to prove that
D has a positive splitting conclusion, by induction on size(D):

• Base case. Obvious. Since one positive conlusion is a leaf, it is splitting vacu-
ously.

• Induction case. Let k′ be a splitting positive conclusion of Dk. If k′ 6= k, then it
is also a splitting positive conclusion of D, since every negative rule just above
k′ is splitting in Dk, hence in D. If k′ = k, let Y be a negative rule just above
k. If Y = X , it is splitting by construction; if Y 6= X , Y belongs to Dk by
construction, and hence Y is splitting in Dk, and hence also in D, so that k is a
positive splitting conclusion. This completes the proof.
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[JR97] B. Jacobs and J.J.M.M. Rutten. A tutorial on (co)algebras and (co)induction.
Bulletin of EATCS, 62:222–259, 1997.

[Lau] O. Laurent. Game semantics for first-order logic. draft.

[Lau02] O. Laurent. Etude de la polarisation en logique. PhD thesis, Université
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