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Abstract

We address the question of designing isotropic analysis functions on the sphere which
are perfectly limited in the spectral domain and optimally localized in the spatial
domain. This work is motivated by the need of localized analysis tools in domains
where the data is lying on the sphere, e.g. the science of the Cosmic Microwave
Background. Our construction is derived from the localized frames introduced by
Narcowich et al. (2006). The analysis frames are optimized for given applications
and compared numerically using various criteria.

Introduction

Localized analysis for spherical data has motivated many researches during
the past decade. Data defined on the sphere are studied in domains as various
as cosmology (Hinshaw et al., 2006; Hivon et al., 2002; McEwen et al., 2007),
geophysics (Holschneider et al., 2003; Wieczorek and Simons, 2005), medicine,
computer vision. When dealing with data on the whole sphere, spectral analy-
sis can be achieved by Spherical Harmonics Transform (SHT) – the equivalent
of the Fourier Series on the circle. But in many practical situations, data are
defined or available on a subset of the sphere only. For example, cosmologists
try to give sharp estimates of the cosmic microwave background (CMB) or
its power spectrum but strong foreground emissions superimpose to the CMB
making the observations unreliable for CMB studies. Moreover, fully observed
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clean non stationary fields or stationary fields with additive non-stationary
noise still require spatially localized tools. In such situations, the SHT is not
adequate, because of the poor spatial localization of the basis functions. In the
case of Euclidean spaces, in which the Fourier Transform suffer from the same
lack of localization, multiscale and wavelets theory provide a mathematically
elegant solution of proven practical efficiency.

Adaptation to the sphere of the “wavelet” transform (in the broad sense of fil-
tering by spatially and spectrally localized functions) was introduced a dozen
years ago (Schröder and Sweldens, 1995; Torresani, 1995; Dahlke et al., 1995;
Narcowich and Ward, 1996; Potts and Tasche, 1995; Freeden and Windheuser,
1997). Since then, Antoine & Vandergheynst (1999) showed that any Continu-
ous Wavelet Transform (CWT) on the sphere can be viewed locally as a regular
CWT on the Euclidean tangent planes, thanks to the stereographic correspon-
dence between the sphere and the plane (Antoine and Vandergheynst, 1999;
Wiaux et al., 2005). One can then “forget” the sphere by projecting it on tan-
gent planes, realizing the analysis in these planes, and then apply the inverse
projection to get back eventually to the sphere. A discretized version of this
approach of CWT has been presented by Bogdanova et al. (2005), leading to
wavelet frames. This approach has already been followed in astrophysics for
the analysis of the Cosmic Microwave Background (CMB) (Vielva et al., 2004;
McEwen et al., 2007). However these wavelets are usually defined in the spa-
tial domain and have infinite support in the frequency domain (which must
be truncated in practice).

In the present work, we follow and extend the approach of Narcowich et al.
(2006) and their construction of “needlets”. A similar construction can be
found in Starck et al. (2006). The needlet transform has important charac-
teristics. Firstly it is intrinsically spherical. No intermediate tangent plane is
needed to define it. Secondly, it does not depend on the particular spherical
pixelization chosen to describe the data. Thirdly, although the needlets still
have an excellent spatial localization, they have a finite spectral support ad-
justable at will . They are axisymmetric (which is convenient when dealing
with statistically isotropic random fields) and thus the needlet coefficients are
easily computed in the Spherical Harmonics (Fourier) domain. Data filtering is
defined by multiplication of the Spherical Harmonics coefficients by well cho-
sen window functions (which is equivalent to convolution in spatial domain).
Needlets are well defined in theory and the statistical properties of their coef-
ficients have already been established for isotropic Gaussian fields (Baldi et al.
(2006)). However, the performance of a needlet-based analysis depends on the
particular shape of the needlet.

This paper considers spherical filters which are generalizations of needlets in
the spirit of dual (non-tight) analysis and reconstruction frames. We focus
on the design issue, namely the optimization of the window functions (that

2



define the isotropic filtering operations) for some given tasks. We consider
only band-limited needlets. This choice is motivated by applications in high-
precision cosmology. Indeed, the CMB power spectrum is highly dynamic (few
peaks and power-law decay) and good subsequent cosmological parameters
estimation requires high accuracy in some critically delimited spectral ranges.
Once the range is fixed, we optimize the shape of window functions in two
directions: 1) By requesting the best spatial localization of associated needlets,
in an energy-sense (L2) which is easily solved. This is an application of the
work of Simons et al. (2006) which adapted to the sphere the problem solved by
Slepian (1978) on the real line, giving rise to the well known prolate spheroidal
wave functions (PSWF). 2) By following statistical considerations: given some
region (“mask”) in which the data is missing or thrown away and assuming
that the full data is the realization of some Gaussian isotropic random field
(this is the usual assumption made on the CMB), we minimize the mean
integrated square error due to the mask in the needlet analysis outside the
mask. More criteria and applications to cosmological science will be given in
a future work.

The paper is organised as follows. In Section 1, we expose the general con-
struction of needlets. In Section 2, we define and optimize the two criteria
(geometrical and statistical) which provide localized analysis filters. Their ef-
ficiency is illustrated in Section 3 with numerical simulations following the
model of a masked observation of the CMB. The proofs are postponed to
Appendix A.

1 Needlets frames

1.1 Background and notations

Denote S the unit sphere in R
3 with generic element ξ = (θ, ϕ) in spherical

polar coordinates: θ ∈ [0, π] is the colatitude and ϕ ∈ [0, 2π[ the longitude.
Let H = L2(S) be the space of complex-valued square integrable functions
on S under the Lebesgue measure dξ = sin θdθdϕ. Endowed with the inner
product 〈f, g〉 :=

∫
S
f(ξ)g∗(ξ)dξ, H is a Hilbert space. Let ‖ · ‖ denote the

associated norm on H. The usual complex spherical harmonics on S (which
definition is recalled in Appendix B) are denoted (Yℓm)ℓ≥0,−ℓ≤m≤ℓ. They form
an orthonormal basis of H.

In the following, we consider a field X ∈ H. Its random spherical harmon-
ics coefficients or multipole moments are denoted aℓm = 〈X, Yℓm〉. H can be

decomposed in harmonic subspaces: H =
⊥⊕

ℓ≥0
Hℓ, where Hℓ is the linear span
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of Yℓm, m = −ℓ, · · · , ℓ. The number ℓ is referred to as the multipole number
or frequency (understood as a spatial frequency). Let Πℓ be the orthogonal
projection on Hℓ. It has an expression involving Legendre polynomials Lℓ (see
Appendix B)

ΠℓX(ξ) =
ℓ∑

m=−ℓ

〈X, Yℓm〉Yℓm(ξ) =
∫

S

X(ξ′)Lℓ(ξ · ξ′)dξ′. (1)

where ξ · ξ′ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′) is the usual dot product on
S.

A mapping on S which depends on the colatitude θ only is said to be axisym-
metric. The convolution of a bounded axisymmetric function H(ξ) = h(cos θ)
with an arbitrary spherical function X is well defined through

H ∗X(ξ) =
∫

S

h(ξ · ξ′)X(ξ′)dξ′ (2)

The convolution theorem holds:

H ∗X =
∑

ℓm

hℓaℓmYℓm. (3)

where aℓm = 〈X, Yℓm〉 are the multipole moments ofX and hℓ are the Legendre
series coefficients of h, i.e.h =

∑
ℓ∈N hℓLℓ. Then, an isotropic wavelet analysis

can be implemented either in the spatial (i.e. direct) domain using (2) or in the
harmonic domain using (3). We choose the latter, which accounts to multiply
the harmonic coefficients of the field of interest X by a spectral window (hℓ).
For a countable index set J , let (h(j))j∈J be a family of window functions
in harmonic domain : h(j) ∈ ℓ∞(N). The corresponding harmonic smoothing
operators on H are

Ψ(j) =
∑

ℓ∈N

h
(j)
ℓ Πℓ. (4)

We call exact reconstruction condition the one ensuring that
∑

j∈J
Ψ(j) = Id. It

also writes ∑

j∈J

h(j) ≡ 1 (5)

In the following, j is referred to as the scale, in analogy with the multiresolu-
tion analysis terminology. Important examples of windows families having the
property (5) may be obtained thanks to the B-adic mechanism: let B > 1,

J = {−1} ∪ N, h
(−1)
ℓ = δ0(ℓ) and the spectral windows be all related to a

continuous function h by

∀j ∈ N, h
(j)
ℓ = h

(
ℓ

Bj

)
. (6)
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If h is compactly supported on [ 1
B
, B], then each window h(j) may overlap with

adjacent windows h(j−1) and h(j+1) only. The exact reconstruction condition
in this case is satisfied as soon as

∀x ∈ [1, B], h(x) + h(B−1x) = 1 (7)

This example is illustrated in Figures 1 and 2.

0 50 100 150 200 250 300 350

0.
0

0.
4

0.
8

Multipole

h_
l

Fig. 1. First 10 windows satisfying conditions (5) and (6), h being a spline of order
7 compactly supported on [ 1

B , B] with B = 1.7.

1.2 Needlet tight frames

Recall that a countable family of functions {fn} in a Hilbert space H is a
frame with frame bounds C1, C2 if

∀g ∈ H , C1‖g‖2
H ≤

∑

n

|〈g, fn〉H|2 ≤ C2‖g‖2
H .

It is a tight frame if we can choose C1 = C2. Frames can be thought of redun-
dant “bases”, and this redundancy can be exploited for robustness issues. The
tightness property is valuable in terms of numerical stability (see Daubechies,
1992, Chap.3 and the references therein).

The construction that follows is from Narcowich et al. (2006). The term needlet
was coined by Baldi et al. (2006). Let K be a finite index set and {ξk}k∈K ∈
S|K| a set of quadrature points on the sphere, associated with a set {λk}k∈K ∈
R

|K| of quadrature weights.

Definition 1.1 (Quadrature) {(ξk, λk)}k∈K is said to provide an exact Gauss
quadrature formula at degree ℓmax if

∀X ∈
ℓmax⊕

ℓ=0

Hℓ,
∫

S

X(ξ)dξ =
∑

k∈K

λkX(ξk).
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(a) Original map

(b) Smoothed maps, scales j = 2, ..., 5

(c) Smoothed maps, scales j = 6, ..., 9

Fig. 2. Input map of a CMB sky (from WMAP), and corresponding smoothed maps
(with the spline filters of Figure 1).

This quadrature formula is said positive-weight if λk > 0, k ∈ K.

Remark 1.2 We refer to Doroshkevich et al. (2005) for an example of a
proper choice of quadrature points and weights that fulfils this property (called
GLESP). Other pixelization schemes such as HEALPix (Górski et al., 2005)
fulfil approximately this property with a number of points of order Cℓ2max and
quadrature weights of order 1

Cℓ2max
for some positive constant C.

Suppose that the window functions h(j) are non-negative and with finite spec-
tral support. Define

∀ℓ ∈ N, b
(j)
ℓ :=

√
h

(j)
ℓ (8)

and d(j) := max{ℓ : h
(j)
ℓ 6= 0} (in the B-adic case, d(j) = Bj+1). For each scale

j, we have a pixellization {ξ(j)
k , λ

(j)
k }k∈K(j).

Definition 1.3 (Needlets and Needlet coefficients) For every j ∈ J and
every index k ∈ K(j) the function

ψ
(j)
k (ξ) =

√
λ

(j)
k

d(j)∑

ℓ=0

b
(j)
ℓ Lℓ(ξ · ξ(j)

k ), (9)
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is called a needlet. For X ∈ H, the inner products 〈X,ψ(j)
k 〉 are called needlet

coefficients and are denoted β
(j)
k .

Up to a rotation of the sphere putting ξ
(j)
k on the North pole and to the

multiplicative term
√
λ

(j)
k , all the needlets of a given scale j have exactly the

same shape. In particular, they are axisymmetric. When ℓ 7→ b
(j)
ℓ is sufficiently

smooth, one gets the intuition from (9) that the needlet ψ
(j)
k is localized around

ξ
(j)
k .

The following Proposition state that the harmonic smoothing operation de-
fined by (4) can be seen as the decomposition of H on the needlets family
built with (8), and that this family is a tight frame. It is a straightforward
adaptation of Baldi et al. (2006, Proposition 2.3).

Proposition 1.4 Let j ∈ J . Assume that {(ξ(j)
k , λ

(j)
k )}k∈K(j) provides an ex-

act and positive-weight quadrature formula at degree 2d(j). Then

Ψ(j)X =
∑

k∈K(j)

β
(j)
k ψ

(j)
k .

Assume that for any j ∈ J , {(ξ(j)
k , λ

(j)
k )}k∈K(j) provides an exact and positive-

weight quadrature formula at degree 2d(j). Under the exact reconstruction con-
dition (5),

∀X ∈ H, X =
∑

j∈J

∑

k∈K(j)

β
(j)
k ψ

(j)
k and ‖X‖2 =

∑

j∈J

∑

k∈K(j)

|β(j)
k |2 .

Remark on Terminology The analysis of an input field X in the way
described above is called filtering. This filtering has two equivalent expressions,
in the spatial and in the spectral domains; see the convolution formula (3).
These expressions involves two “dual” mathematical objects : the functions
h(j) and b(j) of the frequency ℓ, called window functions or spectral windows,
and the spherical functions ψ

(j)
k called needlets, which are nothing else but

the rotated axisymmetric functions built from the Legendre transform of b(j)

(see Definition 1.3). We call filter either of the two above objects, when the
domain (spatial or spectral) is not specified.

1.3 Generalized needlet frames

We are concerned with the development of a flexible spectral analysis on the
sphere which remains practical at high resolution. The forecoming CMB ex-
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periment Planck 1 will provide 50 mega-pixel maps with accuracy such that
multipole moments will be reliable up to ℓ ≃ 4000.

For maximum flexibility, we shall consider constructions which are not neces-
sarily dyadic nor B-adic. This is motivated by applications, as described in the
Introduction. Moreover, we will design analysis frames which will not be neces-
sarily tight. Their dual frames will be the corresponding reconstruction frames.
This allows fine tuning of the localization properties of the decomposition func-
tions but it is also well known that it does not ensure similar properties for
the reconstruction functions. Nevertheless, for the application goals discussed
in the introduction, we will design strictly band-limited needlets with support
L(j) := [ℓ

(j)
min, ℓ

(j)
max], ℓ

(j)
min > 0 if j ≥ 0. Then the subsequent “wavelet design”

operations will be performed in the harmonic domain.

Since the needlet coefficients β
(j)
k and β

(j′)
k′ of a Gaussian stationary (i.e.

isotropic) field are independent if L(j) ∩ L(j′) = ∅, the bands L(j) are cho-
sen to overlap as little as possible. Other choices are possible; for instance
Starck et al. (2006) take overlapping spectral windows supported on [0, 2j].

The three ingredients for our spherical “multi-resolution” approach are harmonic-
space implementation, dual wavelet frames and spectral window design. In this
subsection, we briefly describe the first two elements. In Section 2, we go into
the theory and practice of window design.

1.3.1 Dual frames

Proposition 1.4 shows that the needlets of Definition 1.3 with (8) can be used
in both analysis (or decomposition) and synthesis (or reconstruction). This
accounts to say that the needlet frame is its own dual frame. We choose to
keep the Definition 1.3 of the needlets and associated coefficients but to relax
condition (8). By sacrificing the tightness of the frame, we gain much freedom
in the design of the spectral windows. Also, the precise space-frequency picture
provided by the needlet construction is preserved.

From any windows family (b(j))j∈J such that ∀ℓ ∈ N,
∑

j∈J

(
b
(j)
ℓ

)2
> 0, define

the synthesis windows b̃(j) by

∀j ∈ J , ∀ℓ ∈ N, b̃
(j)
ℓ =

b
(j)
ℓ

∑
j′∈J

(
b
(j′)
ℓ

)2 (10)

and put h(j) := b̃(j)b(j) so that (5) easily follows. We retain Definition 1.3
for the decomposition needlets and needlets coefficients and further define the

1 see www.rssd.esa.int/Planck/.
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reconstruction needlets as

ψ̃
(j)
k (ξ) =

√
λ

(j)
k

d(j)∑

ℓ=0

b̃
(j)
ℓ Lℓ(ξ · ξ(j)

k ) . (11)

Proposition 1.5 Assume that there exists positive constants C1, C2 such that

∀ℓ ∈ N, C1 ≤
∑

j∈J

|b(j)ℓ |2 ≤ C2 . (12)

Assume that for any j ∈ J , the set {(ξ(j)
k , λ

(j)
k )}k∈K(j) provides an exact and

positive-weight quadrature formula at degree 2d(j). Then, under the exact re-
construction condition (5), the family {ψ(j)

k } is a frame with frame bounds

constant C1 and C2. Its dual frame is the family {ψ̃(j)
k }. In particular

∀X ∈ H, X
H
=
∑

j∈J

∑

k∈K(j)

β
(j)
k ψ̃

(j)
k and ‖X‖2 =

∑

j∈J

∑

k∈K(j)

β̃
(j)
k β

(j)
k , (13)

with β̃
(j)
k := 〈X, ψ̃(j)

k 〉.

Define the analysis, synthesis and smoothing operators at scale j ∈ J by
Φ(j) =

∑
ℓ b

(j)
ℓ Πℓ, Φ̃(j) =

∑
ℓ
b̃
(j)
ℓ Πℓ and Ψ(j) = Φ̃(j)Φ(j), respectively. Then, the

exact reconstruction formula
∑

Ψ(j) = Id holds true.

An example of an analysis/synthesis windows family following this scheme is
displayed in Figure 3, in which we took optimally concentrated PSWF (see
Section 2) functions for analysis. It illustrates the fact that this choice does
not lead to well localized synthesis needlets (as their spectral shapes are non
smooth). However, this may not be a shortcoming if one is interested in the

needlet coefficients β
(j)
k = 〈X,ψ(j)

k 〉 per se, which reflect the local properties of
the field X.

1.3.2 Practical computation of needlet coefficients

Evaluation of inner products 〈X,ψ(j)
k 〉 in the direct space is practically unfeasi-

ble from a pixelized sphere at high resolutions. The needlet coefficients β
(j)
k are

thus computed via direct and inverse harmonic transforms as a consequence
of the following Proposition.

Proposition 1.6 The needlet coefficients verify β
(j)
k =

√
λ

(j)
k Φ(j)X(ξ

(j)
k ).

The computation of the smoothed field Φ(j)X is performed in the harmonic
domain by multiplying the multipole coefficients aℓm of X by the factors b

(j)
ℓ .

Finally, the needlet coefficients β
(j)
k are retrieved as the values of Φ(j)X at the

9



0 50 100 150 200 250 300 350

0.
0

0.
4

0.
8

0 50 100 150 200 250 300 350

0.
0

0.
4

0.
8

Multipole

Fig. 3. B-adic analysis (top) and corresponding synthesis (bottom) window func-
tions (j = 6, . . . , 11 ; B = 1.7).

points ξ
(j)
k up to a multiplicative term. Starting from the field X sampled at

some quadrature points, this operation is summed up by the diagram

{X(ξk)}k∈K
SHT−→ {aℓm}ℓm

×−→ {b(j)ℓ aℓm}ℓm
SHT−1

−→
{
(λ

(j)
k )−1/2β

(j)
k

}
k∈K(j)

(14)

whereas the synthesis operation is summed up by

{
(λ

(j)
k )−1/2β

(j)
k

}
k∈K(j)

SHT−→ {b(j)ℓ aℓm}ℓm
×−→ {b̃(j)ℓ b

(j)
ℓ aℓm}ℓm

SHT−1

−→ {Ψ(j)X(ξ
(j)
k )}k∈K(j)

Standard pixelization packages, such as HEALPix, GLESP or SHTOOLS 2

come with optimized implementations of the direct and inverse Spherical Har-
monic Transforms. For example, in the HEALPix scheme, pixels are located on
rings of constant latitude, allowing for fast SHT. This makes the computation
easy and tractable even at high resolution. The needlet coefficients at a given
scale j can be visualized as a pixelized map. If the quadrature weights {λ(j)

k }
are equal, the smoothed maps of Fig. 2, which are the outputs of the processing
(14), provide a precise and easily interpretable picture of the space-frequency
analysis.

Remark 1.7 The quadrature points and weights {(ξ(j)
k , λ

(j)
k )}k∈K(j) use to de-

fine the needlet coefficients β
(j)
k and to sample the smoothed field Ψ(j)X may be

2 available at http://www.ipgp.jussieu.fr/∼wieczor/SHTOOLS/SHTOOLS.html
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chosen identical to {(ξk, λk)}k∈K used to sample the input field X. However,
for data compression and computational efficiency, one can consider alterna-
tively to take the minimal K(j) providing an exact positive-weight quadrature
formula at a proper degree.

2 Design of optimally localized wavelets

In this section, we define some criteria to compare the window profiles. Some
of them are easily optimized, others are only investigated numerically. We
first give some examples of generic needlet profiles we can think of (Sec-
tion 2.1). Then, we restrict ourselves to a single scale j and an associated
band L := [ℓmin, ℓmax]. The superscript (j) will be omitted in the notations
when no confusion is possible. We present the L2 (Section 2.2) and statistical
(Section 2.3) criteria, with practical implementation details on their optimiza-
tions.

2.1 Examples.

Narcowich et al. (2006) have derived the following theoretical bound that
controls the decay of the needlets. In the B-adic case, if the function b :=

√
h

defining the analysis spectral window is M-times continuously differentiable,

|ψ(j)
k (ξ)| ≤ C Bj−1

1 +
(
Bj−1 arccos(ξ · ξ(j)

k )
)M

for some constant C = C(b). This condition still allows a wide range of possi-
bilities for designing the function b. Without restricting ourselves to the B-adic
case, we implemented solutions to optimize in practice, non asymptotically,
the shape of windows b(j) regarding some applications.

To illustrate the kind of aspects we are concerned with, we compare in Figure 4
the azimuthal profiles (in the spatial domain) of various axisymmetric needlets.
The needlets are built from window functions b(j) via relation (9) and ξk =
(0, 0), i.e. they are centered on the North pole, and then are considered as
functions of θ only. This illustration is restricted to the 9th dyadic scale, i.e.
frequencies in the band L := [256, 1024]. We shall compare heuristically five
families of window functions. Note that the last two are not limited to band
L.

(1) Square roots of splines of various orders. For any odd integer M , there
exists a spline function h of order M , non-negative, compactly supported

11



on [1
2
, 2] and such that the h

(j)
ℓ ’s defined by (6) verify (5). It remains to

define b
(j)
ℓ =

√
h

(j)
ℓ .

(2) Best concentrated Slepian functions in caps of various radii (cf Sec-

tion 2.2). The window function b
(j)
ℓ is the minimizer of the criterion (20).

It is band-limited on L and optimally concentrated in a polar cap Ωθ0 =
{ξ : θ ≤ θ0}), θ0 being a free parameter.

(3) Denote G a primitive of the C∞ function g : x 7→ e
− 1

1−x2 1(−1,1)(x) and
put

b(x) = G(−8x+ 3) −G(−4x+ 3) (15)

and b
(j)
ℓ = b

(
ℓ
2j

)
. This window function is used in Pietrobon et al. (2006).

(4) From the B-spline function of order 3

B3(x) =
1

12
(|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x+ 1|3 + |x+ 2|3), (16)

form b(x) = 3
2
(B3(2x) − B3(x)) and define b

(j)
ℓ = b

(
ℓ
2j

)
. This window

function is used by Starck et al. (2006).
(5) The Mexican hat wavelet on the sphere is the function the stereographic

projection of which on the Euclidean plane is the usual Mexican hat
wavelet. It has the following close expression depending on some positive
scale parameter R

ψR(θ) ∝ (1 − 2R2 tan2(θ/2)) exp{−2R2 tan2(θ/2)}. (17)

This wavelet is popular in the astrophysics community (see e.g. González-
Nuevo et al., 2006). We have chosen R = 6.10−3 such that the spectral
window is almost zero for ℓ > 1024.

2.2 L2-concentration and variations

Our first attempt to achieve a good spatial localization of a needlet is to
optimize a L2-norm based criterion, adapting to the sphere a problem that
is well-known on the real line. In their seminal work in the 1960s and 1970s,
Slepian and his collaborators studied the properties of prolate spheroidal wave
functions (PSWFs) in the 1D case of real functions (see Slepian, 1983, and
the references therein). PSWFs may be defined as functions with optimal
energy concentration in the time domain, under some band-limitation con-
straint. Equivalently, they are the eigenfunctions of a time-frequency concen-
tration kernel or the solutions of a Sturm-Liouville differential equation. The
time-frequency concentration of PSWFs is understood in terms of continuous
Fourier transform on R. A discrete version of this theory, based on Fourier
series coefficients, is derived in Slepian (1978).

12
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(a) Splines of order resp. 7, 15, 31 and 43.
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(b) PSWFs localized in polar caps of 0.5, 1, 1.5 and 5 degree opening
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(c) (red curve) Exponential function described in Eq. (15), (green curve)
B-spline function of Eq. (16) and (blue curve) Mexican hat described in
Eq. (17).

Fig. 4. In left column, the shape of the spectral windows as a function of ℓ. In
middle and right columns, the profile of the filters is plotted in the spatial domain
as a function of θ (θ in degrees) with logarithmic and linear scales respectively, to
illustrate both the decrease of the tail of the needlets far from the North pole and
the shape of their first bounces.

In the last few years, Walter and coauthors exploited these 1D PSWFs to
derive Slepian series (in Walter and Shen, 2003; see also Moore and Cada,
2004), and wavelets based on the best concentrated PSWF (Walter and Shen,
2004; Walter and Soleski, 2005).

On the sphere, we shall only consider the equivalent of Discrete PSWFs, fol-
lowing Simons et al. (2006). From a window function {bℓ} with support L,
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define the axisymmetric function ψ by

ψ(ξ) =
∑

ℓ∈L

bℓLℓ(cos θ). (18)

The set of functions ψ of the form (18) is denoted BL ⊂ H. Given a spherical
domain Ω, consider the minimization, among non-zero functions in BL, of the
criterion

CΩ(ψ) =

∫
S\Ω ψ

2(ξ)dξ
∫
S
ψ2(ξ)dξ

= 1 −
∫
Ω ψ

2(ξ)dξ
∫
S
ψ2(ξ)dξ

. (19)

This extension to the sphere of Slepian’s concentration problem is studied in
details by Simons et al. (2006) in the case ℓmin = 0. We call PSWF (by abuse
of language) and denote ψ⋆

Ω a normalized minimizer for CΩ(ψ).

The criterion (19) has a simplified expression when Ω is axisymmetric. Con-
sider the polar cap Ωθ0 = {ξ : θ ≤ θ0} and define the coupling matrix
D = (Dℓ,ℓ′)ℓ,ℓ′∈L by

Dℓ,ℓ′ =
8π2

√
(2ℓ+ 1)(2ℓ′ + 1)

∫ 1

cos θ0

Lℓ(z)Lℓ′(z)dz ,

and

b̄(ψ) = (

√
2ℓmin + 1

8π2
bℓmin

, . . . ,

√
2ℓmax + 1

8π2
bℓmax).

Then

CΩ(ψ) = 1 − b̄tDb̄

‖b̄‖2
(20)

and the minimization of (19) becomes an eigenvalue problem. The solution of
this minimization depends on the opening θ0. In Figure 5 we plot the value
of CΩθ0

against θ0 for ψ⋆
Ω1◦
, ψ⋆

Ω5◦
, ψ⋆

Ω10◦
. The lowest curve is the minimum of

the criterion for all openings θ0. It is clear that there is no optimal function
uniformly in θ0: the concentration criterion CΩ0 of each PSWF ψ⋆

Ωθ1
reaches

the best possible value for θ0 = θ1 only.

As in the 1-dimensional case, the spectrum of D exhibits a “step function”
behaviour: denoting N = tr D (the “Shannon number”), the matrix D has
about N eigenvalues very close to 1, and most of the others close to zero (see
Fig.6, and Simons et al. 2006 for details).

When several eigenvalues of D are extremely close to 1, it is computation-
ally difficult to find the largest one and the associated eigenvector. In the
case of Ω a polar cap and ℓmin = 0, one can advantageously solve the less
degenerated eigenvalue problem associated with the Grünbaum differential
equation (Grünbaum et al., 1982) which has the same solutions as (19). We
are not aware of an equivalent theory in the case ℓmin > 0.

14
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Fig. 6. Eigenvalues of matrix D with θ0 = 50◦ and L = [17, 64]. In this case,
Shannon number N = 13.3.

With ǫ being of the order the machine precision, all vectors in Vǫ =
⊕

λ≥1−ǫ
Ker(D−

λId) have well spatially localized counterparts, but they are not necessarily
positive (in harmonic domain). This is not acceptable for instance if we were
to use them as windows associated to smoothing operator (denoted h in the
first Section), and implement this operator using a needlet analysis-synthesis
scheme, the window of which has to be defined as the square-root of the
PSWF’s window. To circumvent this, we therefore introduce a modified cou-
pling matrix D̃ = D + aHtH where a > 0 is a tuning parameter and H is the
tridiagonal second-order finite difference matrix. Window functions are now

obtained as minimizers of C̃Ω(ψ) = 1− b̄
t
D̃b̄

‖b̄‖2 instead of CΩ. The additional term

favors non-oscillating functions among the vectors of Vǫ which are undistin-
guishable from their eigenvalues λ. Adding the “smoothing” term is expected
not to alter the spatial localization of the filter. In practice, parameter a is
selected to ensure ‘computational uniqueness’ of the smallest eigenvalue of
D̃. Solutions obtained by the numerical implementation of the minimization
of C̃Ω are displayed in Figure 7, with various values for the smoothing pa-
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Fig. 7. Effect of the smoothing on the spectral and spatial shapes of PSWFs.

rameter a. Dashed lines correspond to the vector returned numerically as the
“best” eigenvector of D (associated to the greatest eigenvalue), and the best
eigenvector of D̃ with parameter a chosen deliberately too small to ensure
computationally uniqueness. Oscillating functions are indeed obtained. As a
grows, the criterion selects non oscillating windows, two of which are shown
by the plain lines. The loss measured by the increase of CΩ is displayed in
the legend of the lower panel and appears extremely small. In our example,
the energy outside Ω for the needlet built from C̃ takes the value 2.78.10−15,
whereas its minimal possible value is 1.78.10−15.

A generalization of the Slepian concentration problem can be to consider other
measures of concentration, such as Lp, p = 1, ...,∞ instead of L2. The criterion
defined in Eq. (19) becomes then

C(p)
Ω (ψ) = 1 − ‖ψ1Ω‖p

p

‖ψ‖p
p

(21)

where ‖f‖p
p =

∫
S
|f(ξ)|pdξ if p ∈ [1,∞) and ‖f‖∞∞ = ess sup

ξ∈S

|f(ξ)| for a spher-

ical function f . Unlike Slepian criterion CΩ = C(2)
Ω , these alternate criteria do

not lead to simple eigenvalue problems. They could be numerically optimized
but this is beyond the scope of this paper. However we compare in Section 3.1
this criterion to the original one CΩ.
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2.3 Statistical criterion for optimal analysis with missing data

Instead of focusing on the “geometrical” shape of the needlet, one may also
optimize directly some alternate criterion of practical interest.

In this section, we consider the following framework: given an underlying ran-
dom field X on S to be analysed, a window function W on S multiplying the
field (for example a mask putting the field to zero in some regions) and a
region D ⊂ S of interest in which the analysis is to be done, the aim is to
get, in D, needlet coefficients of WX as close as possible to the coefficients
computed from the uncorrupted field X.

We shall assume statistical properties on the fields X,W,D and look for opti-
mality of the filters on average.

Assumption 2.1 (1) X is a real-valued Gaussian zero mean isotropic square
integrable random field on S, with power spectrum (Cℓ).

(2) W and D are deterministic elements of H.

Implicitly, X is a measurable mapping from some (X ,X,P) into (H,H), H

being the Borel σ-filed of H. Let E denote the expectation operator under P.
Recall that under Assumption 2.1, the covariance function on the field X is
well defined and is given by

E[X(ξ)X(ξ′)] = (4π)−1
∑

ℓ∈N

CℓLℓ(ξ · ξ′) .

It follows that E[X(ξ)2] = (4π)−1∑
ℓ∈N(2ℓ + 1)Cℓ. Moreover, the multipole

moments (aℓm) of X are complex Gaussian random variables. They are cen-
tered, independent up to the relation aℓm = a∗ℓ,−m and satisfy E(|aℓ0|2) =
1
2
E(|aℓm|2) = Cℓ, m 6= 0.

Note that W and D can be indicator functions (binary masks) or any smooth
functions on the sphere.

A first attempt in this direction is the derivation of an unbiased estimate of
the spectrum from the multipole moments and the empirical power spectrum
of the weighted sky XW defined by âℓm =

∫
S
X(ξ)W (ξ)Y ∗

ℓm(ξ)dξ and Ĉℓ =
1

2ℓ+1

∑
m
â2

ℓm respectively. It is well-known (see Peebles, 1973; Hivon et al., 2002,

see also the compact proof in Appendix A) that

E(Ĉℓ) =
∑

ℓ′∈N

Mℓℓ′Cℓ′ with Mℓℓ′ =
∑

0≤ℓ′′≤ℓ+ℓ′
αℓℓ′ℓ′′

2ℓ′′ + 1

2ℓ+ 1
CW

ℓ′′ , (22)

where the coefficients αℓℓ′ℓ′′ are defined by (B.5). Note that the coupling matrix
M depends on W only through its ‘power spectrum’ CW

ℓ . If M is invertible,
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then (M−1(Ĉℓ′)) provides an unbiased estimate of (Cℓ).

Let now derive a criterion to design a window function b which minimises the
effect of missing data in a needlet analysis procedure. We focus on a single band
smoothed field (i.e. we fix one scale j) and the dependence on j is implicit
in the notations. For a collection of couple of indices, say (ℓi, mi)i=1,...,I , we
use

∑∗
(ℓi,mi)i=1,··· ,I

as a shorthand notation for the summation on ℓi ∈ N, mi ∈
{−ℓi, · · · , ℓi}, i = 1, . . . , I.

Given an analysis spectral window b = (bℓmin
, · · · , bℓmax) and its associated

smoothing operator Φ =
∑

ℓmin≤ℓ≤ℓmax
bℓΠℓ, the smoothed masked field is

ΦXW (ξ) =
∑

ℓ∈L

bℓ

∫

S

X(ξ′)W (ξ′)Lℓ(ξ · ξ′)dξ′.

Write E[ΦX(ξ)2] = (4π)−1∑
ℓ σ

2
ℓ b

2
ℓ with σ2

ℓ = (2ℓ + 1)Cℓ. Let ǫ denote the
normalized difference field

ǫ(ξ) =
ΦX(ξ) − Φ(XW )(ξ)

E1/2[ΦX(ξ)2]

=
(∑

σ2
ℓ b

2
ℓ

)−1/2∑∗

(l,m)
bℓāℓmYℓm(ξ) (23)

where we have defined W̄ = 1 −W , āℓm = 〈XW̄, Yℓm〉.

Suppose that ({(ξk}k∈K , {λk)}k∈K) provides an exact Gauss quadrature for-
mula at a degree 2ℓmax. Define βk and β ′

k the needlet coefficients of X and
XW , respectively and define

ǫk =
βk − β ′

k√
E(β2

k)
.

Those random variables are normalized errors on the needlet coefficients in-
duced by the application of the weight function W . If both X and XW are in
Hℓmax , we easily check that E(β2

k) =
√
λk(4π)−1∑

ℓ b
2
ℓσ

2
ℓ and

∀k ∈ K, ǫk = ǫ(ξk) .

The dispersion of either the continuous field ǫ(ξ) or the finite set {ǫk}k∈K

is taken as a measure of quality for an analysis Φ. This dispersion is not
measured on the whole sphere, since the difference ǫ must be important in the
regions where W is far from 1. In order to select the regions where ǫ is to be
minimized we introduce a function D =

∑
dℓmYℓm which provides a positive

weight function in H. In the simplest case D can be 1D for a region D of
interest. More generally, D can be designed to give more or less importance to
various regions of S according, for instance, to the need for reliability in the
needlet coefficients.
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The coefficients ǫk or their continuous version ǫ are used in two ways. The first
one introduces a “tolerance” threshold α and counts the number of coefficients
which are on average below this threshold. This measure of the efficiency of
a filter in the presence of a mask is presented in Baldi et al. 2006; Pietrobon
et al. 2006 but its optimization was not considered. The second one considers
the integrated square error of ǫ, weighted by the function D. It leads to a
quadratic quadratic which is readily optimized.

The first criterion, writes, for a binary function D,

Eb(α) =

∑
k:D(ξk)=1 P(|ǫk| < α)

♯{k : D(ξk) = 1} , (24)

that is, the mean fraction of needlet coefficients corrupted by less than a
normalized error α ≥ 0. For an arbitrary function D, a possible generalization
of (24) is

Eb(α) =

∑
k∈K D(ξk)P(|ǫk| ≤ α)

∑
k∈K D(ξk)

.

In Subsection 3.2, we compare different windows using this criterion and a
real mask.

Alternately, consider now the mean integrated square error (MISE)

R(b) = E

∫

S

D(ξ)‖ǫ(ξ)‖2dξ (25)

and define the optimal shape for the window b as

b⋆ = arg min
‖b‖=1

R(b). (26)

Straightforward algebra leads to a close form expression of R(b) depending
on b, on the weight functions W and D, and on the power spectrum (Cℓ)ℓ∈N.
Let w̄ℓm, dℓm denote the multipole coefficients of the weight functions W̄ ,D,
respectively and



ℓ ℓ′ ℓ′′

m m′ m′′


 :=

∫

S

Yℓm(ξ)Yℓ′m′(ξ)Y ∗
ℓ′′m′′(ξ)dξ

(see (B.2) for an expression as a function of the Wigner-3j coefficients).

Proposition 2.2 Under Assumption 2.1

R(b) =
b′Qb

b′
σb
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where σ = diag((σ2
ℓ )) and Q is the matrix with entries

Qℓℓ′ =
∑

m,m′

∑∗

(ℓ1,m1)
Cℓ1

∑∗

(ℓi,mi)i=2,3,4
w̄ℓ2m2w̄

∗
ℓ3m3

dℓ4m4



ℓ1 ℓ2 ℓ

m1 m2 m






ℓ1 ℓ3 ℓ′

m1 m3 m
′




∗

ℓ ℓ4 ℓ′

m m4 m
′


 . (27)

If both W and D are axisymmetric the ten-tuple summations above reduce to
a five-tuple one

Qℓℓ′ =
∑

m

∑

ℓ1,ℓ2,ℓ3,ℓ4

Cℓ1w̄ℓ20w̄ℓ30dℓ4,0



ℓ1 ℓ2 ℓ

m 0 m






ℓ1 ℓ3 ℓ

′

m 0 m






ℓ ℓ4 ℓ

′

m 0 m




=
∑

m

Aℓℓ′mDℓℓ′m .

In the next section we shall give some illustrative examples of optimal spectral
windows h⋆ in the particular axisymmetric case.

Remark 2.3 As in the Slepian’s problem, the design of an optimal filter re-
duces to an eigenvalue problem. In particular, if σℓ > 0 for any ℓ ∈ L, write
b†ℓ = σℓbℓ. Let b†⋆ be an eigenvector associated with the lowest eigenvalue of
Q†, Q†

ℓℓ′ = (σℓσℓ′)
−1Qℓℓ′. Then b⋆ := σb̃†⋆/‖σb̃†⋆‖ is a solution of (26).

Remark 2.4 For those sums to be tractable, one has to assume that D, W ,
Cℓ have finite support in the frequency domain, i.e. that the windows D and
W are smooth (or apodized) and Cℓ = 0 for large enough ℓ.

Remark 2.5 The matrix Q being a second-order moment for the random
field X, it can also be approximated by a moment estimator using Monte-
Carlo experiments. This remark is of important practical interest as we are
mostly concerned with non zonal masks.

3 Examples, numerical results

3.1 Comparison of filters for various criteria

In Section 2, we considered several criteria measuring the localization prop-
erties of filters, and derived explicit or computational optimization for some
of them. In Table 1, we compare the scores reached by the filters displayed
in Figure 4. The columns indexed by L2-θ list the values CΩθ

(ψ) defined in
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Eq. (19). More generally, the columns indexed by Lp-θ correspond to the val-
ues Cp

Ωθ
(ψ) defined in Eq. (21). A column lists the values of 1 −E(α) defined

in Eq. (24), applied with the mask Kp0 of Fig. 8 and a tolerance parameter
α = 10% (see next subsection for more details). A last column gives, by way
of illustration only, the value of the “uncertainty product” ∆ξ(ψ) × ∆L(ψ),
where

∆ξ(ψ) =

√
1 − ‖ ∫

S
ξψ(ξ)2dξ‖2

∫
S
ξψ(ξ)2dξ

and ∆L(ψ) =
∑

ℓ≥0

ℓ(ℓ+ 1)b2ℓ . (28)

Narcowich and Ward (1996) proved that ∆ξ(ψ) × ∆L(ψ) ≥ 1.

The PSWFs perform the best not only for the L
2 criterion which they optimize,

but also in most cases for the criteria where the L2 norm is replaced by Lp ones,
p = 1 and p = ∞, with the same opening angles θ0. Although the Kp0 mask
has many small cut areas all over the sphere, most of the 11 filters presented
here allow to retain more than 60% of the outside-mask coefficients βk if a
10% error due to the presence of the mask is accepted. The performance w.r.t.
this criterion goes up to 85% for the PSWF optimally concentrated in a cap
of 1◦. However, the choice of arbitrary value of α has a major impact on the
ranking of the filters. This point is investigated in the next subsection.

3.2 Robustness of needlets coefficients

In this Subsection, we illustrate the performances of various window functions
using the criterion (24). We have run N = 30 Monte-Carlo experiments to
estimate the numerator of Eb(α). The random fields X are drawn using the
(Cℓ)-spectrum of the best-fitting model for the CMB estimated by the WMAP
team (Hinshaw et al., 2006). The mask W was chosen as Kp0, displayed in
Figure 8, which masks the galactic plane and many point sources. The band
is L = [256, 1024].

Fig. 8. Kp0 mask.

Figure 9 compares the increasing functions Eb(·) corresponding to various
filters b. There is no “uniformly best” (i.e. highest in the figure) needlet:
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L2-0.5◦ L2-1◦ L2-1.5◦ L2-5◦ L1-0.5◦ L1-1◦ L1-1.5◦ L1-5◦ L∞-0.5◦ L∞-1◦ L∞-1.5◦ L∞-5◦ 1-E(0.1) ∆ξ∆L

Spline, order 3 2.2e-02 5.2e-03 7.4e-04 9.8e-07 4.2e-01 2.2e-01 1.0e-01 1.5e-02 5.0e-02 1.9e-02 5.1e-03 6.4e-05 2.6e-01 2.7

Spline, order 7 4.0e-02 1.3e-02 2.0e-03 4.8e-08 5.0e-01 2.9e-01 1.3e-01 1.7e-03 6.0e-02 2.7e-02 7.1e-03 1.2e-05 3.3e-01 3.1

Spline, order 15 6.1e-02 2.5e-02 4.9e-03 4.0e-07 5.9e-01 4.0e-01 2.2e-01 2.3e-03 6.9e-02 3.3e-02 9.8e-03 7.0e-05 4.1e-01 3.7

Spline, order 21 7.2e-02 3.1e-02 7.1e-03 7.7e-06 6.2e-01 4.5e-01 2.7e-01 1.0e-02 7.3e-02 3.7e-02 1.1e-02 2.7e-04 4.6e-01 4.1

Prolate, cap 0.5◦ 1.2e-02 6.0e-03 3.4e-03 9.5e-04 8.5e-01 8.2e-01 8.0e-01 7.2e-01 5.1e-02 1.0e-02 5.6e-03 1.0e-03 6.5e-01 9.8

Prolate, cap 1◦ 6.7e-02 4.3e-05 5.8e-06 1.7e-06 3.8e-01 1.3e-01 1.2e-01 1.1e-01 1.1e-01 2.0e-03 2.0e-04 5.0e-05 1.5e-01 3.1

Prolate, cap 1.5◦ 1.2e-01 1.5e-03 3.4e-07 1.2e-08 4.3e-01 5.3e-02 1.0e-02 8.8e-03 1.3e-01 1.7e-02 1.4e-04 4.5e-06 1.7e-01 3.6

Prolate, cap 5◦ 1.1e-01 6.7e-03 6.5e-04 5.7e-14 5.0e-01 1.8e-01 6.8e-02 1.1e-06 1.2e-01 2.2e-02 5.9e-03 2.6e-08 2.4e-01 3.6

Exponential 1.8e-02 3.2e-03 1.0e-03 1.0e-05 4.4e-01 2.6e-01 1.9e-01 4.8e-02 4.4e-02 1.4e-02 5.7e-03 1.9e-04 2.7e-01 2.7

B-Spline 1.1e-02 1.3e-03 3.9e-04 1.3e-05 4.8e-01 3.3e-01 2.7e-01 1.5e-01 3.1e-02 6.8e-03 2.5e-03 1.5e-04 2.1e-01 1.2

Mexican hat 6.4e-01 1.1e-02 8.5e-07 7.3e-12 7.9e-01 8.8e-02 7.1e-04 1.6e-04 4.7e-01 7.9e-02 4.5e-04 1.4e-07 4.9e-01 3.0

Table 1. Comparison of the eleven filters of Fig. 4, the nine first of which are band-limited in L=[256,1024].
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some allow to retain more coefficients when the constraint imposed on the
error is loose enough, but their efficiency decreases faster as α goes to zero.
Inspect e.g. the PSWF family.
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Fig. 9. Proportion Eb(α) of coefficients uncontaminated at tolerance level α.

3.3 Some MISE-optimal filters for axisymmetric weight functions

We present here the results of the optimization (26) in the case of axisymmetric
weight functions W . For simplicity, the reconstruction weight function D is
taken equal to W . We stick to the CMB spectrum of previous subsection.

Figure 10 displays some of the masks W used in the experiments. The apodiza-
tion in simply a cosine-arch junction between 0 and 1, on a 2-degrees angular
range. This means that the data is available on the dark regions, and that its
L = [ℓmin, ℓmax]-band-limited part has to be recovered in this area too.

On Figure 11 we have plotted the optimal filter in the R(b)-sense for the
masks of Figure 10 together with different PSWFs. The criterion captures the
symmetry of the mask (a) (the shape of the matrix Q is a “checkerboard”),
and the optimal filter is thus zero on all even (here) or all odd multipoles. The
associated axisymmetric needlet ψ is symmetric w.r.t. the equatorial plane,
and thus is well concentrated around both the North and the South poles.
Such solutions are very sensitive to the modifications of the masks.
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(a) (b)

(c) (d)

Fig. 10. Four different apodized masks. The degree of apodization, measured as the
width of the cosine-arch 0-1 junction is, 2 degrees.
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Fig. 11. Shape of optimal window functions (plain lines) and PSWF (coloured and
dashed lines) with various openings.
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Fig. 12. Mean square error in analysis. Stars are potted at the estimated values for
R(h). For Figure 12(a), the mask is Figure 10(a) and L = [5, 15]. For Figure 12(b),
the mask is Figure 10 and L = [20, 30]

We conducted a small Monte-Carlo study to confirm the benefit of our ap-
proach. We have compared our best filters b⋆ to PSWFs with different opening.
On Figure 12, we show the box-plots of the distribution of the statistic R(h)
for all those filters. Stars are plotted at the position of the estimated value of
ER(b) and the horizontal line is this value for b⋆. The right vertical scale is
for the relative error (in percent) with respect to ER(b⋆).

Fig. 12(a) illustrates the strong benefit of a filter that captures the geometry of
the mask. The relative improvement with respect to the best PSWF is of order
20%. It should be noted however that the shape of this optimal filter (described
above) may lead to a misleading space-frequency picture. In some other cases,
as shown in Figure 12(b), the relative improvement from the best PSWF to
the best filter at all is very slight (a few percents). Here, the most favorable
feature of our approach is that there is no tuning parameters (opening of the
PSWF for instance, or the order of the splines window functions if they are
taken as alternatives) to be found before the analysis.

4 Conclusion

A flexible way of analysing a field on the sphere in a space-frequency manner
has been presented. It is based on the needlet construction of Narcowich et al.
(2006). The proposed analysis functions form a frame in the space a square-
integrable functions on the sphere. Decompositions are essentially operating
in the Spherical Harmonics domain, leading to fast implementations. Various
criteria are used to design good spectral windows. This optimization can lead
to decisive improvement in high precision applications such as modern cosmol-
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ogy (CMB spectral estimation, component separation, etc.), where localized
analysis is crucial.
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A Proofs

Proof of Propositions 1.4 and 1.5 Propositions 1.4 is a particular case
of Proposition 1.5. Indeed (5)-(8) imply (12) with C1 = C2 = 1. Together

with (10) we get β̃
(j)
k = β

(j)
k and ψ̃

(j)
k = ψ

(j)
k . Prove now Proposition 1.5.

Firstly, using successively (1) and the quadrature assumption (remind that
for any ℓ, ℓ′ ≤ d, (ΠℓX)(ΠℓX) ∈⊕2d
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Using (12) and ‖X‖2 =
∑

ℓ ‖ΠℓX‖2, we get C1‖X‖2 ≤ ∑
j,k |β(j)

k |2 ≤ C2‖X‖2.

Prove now that (ψ̃
(j)
k ) is the dual frame of (ψ
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k ). Write
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The assertions (13) are a consequence of the dual frame property (see e.g.
Daubechies, 1992).

Proof of Proposition 1.6 From Definition 1.3 of ψk and Eq (1)

βk = 〈X,ψk〉 =
√
λk

∑

ℓ

bℓ

∫

S

X(ξ)Lℓ(ξ, ξk)dξ =
√
λkΦX(ξk). 2
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Proof of Eq. (22)

(2ℓ+ 1)E(Ĉℓ)=
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m=−ℓ
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Proof of Proposition 2.2 AsXW̄ =
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Combining (23) and (A.1) we get
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If W is axisymmetric,
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where we used the fact that
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. 2

B Legendre polynomials, spherical harmonics and related useful
formulae

Usually, Pℓ(z) denotes the Legendre polynomial of order ℓ, normalized by
Pℓ(1) = 1. For our purposes, it is more convenient to use a different normal-
ization

Lℓ(z) =
2ℓ+ 1

4π
Pℓ(z)

because we get coefficient-free properties like

Lℓ(ξ
′ · ξ) =

ℓ∑

m=−ℓ

Y ∗
ℓm(ξ)Yℓm(ξ′)

and ∫

S

Lℓ(η · ξ)Lℓ′(η
′ · ξ)dξ = δℓℓ′Lℓ(η · η′). (B.1)

In other words, Lℓ is the polynomial kernel of the harmonic projection on Hℓ.
We have

∫+1
−1 Pℓ(z)

2dz = 2
2ℓ+1

and
∫+1
−1 Lℓ(z)

2dz = 2ℓ+1
8π2 .

The spherical harmonics are explicitly given in a factorized form in terms of
the associated Legendre polynomials and the complex exponentials as

Yℓm(θ, ϕ) =

√√√√(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pℓm(cos θ)eimϕ

where Pℓm(x) = (−1)m(1 − x2)m/2 d
m

dxmPℓ(x).

The following equations relate the integral of the product of three complex
spherical harmonics over the total solid angle or three Legendre polynomials
with the Wigner-3j coefficients (for a definition in terms of Clebsh-Gordan
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coefficients, see Varshalovich et al. (1988), pp235–).



ℓ1 ℓ2 ℓ3

m1 m2 m3


 =

∫

S

Yℓ1m1(ξ)Yℓ2m2(ξ)Y
∗
ℓ3m3

(ξ)dξ

= (−1)m3

∫

S

Yℓ1m1(ξ)Yℓ2m2(ξ)Yℓ3−m3(ξ)dξ

= (−1)m3

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π



ℓ1 ℓ2 ℓ3

0 0 0






ℓ1 ℓ2 ℓ3

m1 m2 −m3




(B.2)

1

2

∫
Lℓ(z)Lℓ′(z

′)Lℓ′′(z
′′)dzdz′dz′′ =

(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

(4π)3



ℓ ℓ′ ℓ′′

0 0 0




2

(B.3)

= (4π)−2
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From (B.3) and
∫
LℓLℓ′ = δℓ,ℓ′

2ℓ+1
8π2 we get:

LℓLℓ′ =
∑
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with
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. (B.5)
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Grünbaum, F. A., Longhi, L., Perlstadt, M., 1982. Differential operators com-
muting with finite convolution integral operators: some nonabelian exam-
ples. SIAM J. Appl. Math. 42 (5), 941–955.

Hinshaw, G., Nolta, M., Bennett, C., Bean, R., Dore, O., Greason, M.,
Halpern, M., Hill, R., Jarosik, N., Kogut, A., Komatsu, E., Limon, M.,
Odegard, N., Meyer, S., Page, L., Peiris, H., Spergel, D., Tucker, G., Verde,
L., Weiland, J., Wollack, E., Wright, E., 2006. Three-Year Wilkinson Mi-
crowave Anisotropy Probe (WMAP) Observations: Temperature Analysis.
On arXiv.org: astro-ph/0603451.
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