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Abstract—The objective of this study was to examine an aspect of the thermal cycling of organic nitro-
gen in sediments and metasediments. The cycling of organic nitrogen is important because sedimentary 
organic matter is a shuttle of nitrogen from the atmosphere to the lower crust and thermal decompo-
sition of organic matter is a critical step in the recycling of nitrogen between the different nitrogen 
pools. Abundance and isotopic composition of organic nitrogen were determined in the particular case 
of two low sulfur Westphalian anthracites series from Pennsylvania and Bramsche Massif. They rep-
resent good examples of Euramerica coals spanning the whole range of anthracitization in single fields. 
Gold cell experimental simulation of the denitrogenation process was conducted at moderate pressure 
to show that both suites make ideal metamorphic profiles without any shift due to change of facies or 
to hydrothermal disturbance. During anthracitization, organic nitrogen content decreases rapidly while 
organic nitrogen isotopic composition does not change with rank increase. The preservation of the iso-
topic signature implies that organic nitrogen isotopes could be used as indicators for the paleoecological 
and paleodepositional history reconstruction of the basins. The striking contrast between the rapid and 
sharp decrease of nitrogen organic content and the invariance of its isotopic composition during the 
whole anthracitization suggests that ammonia is an important product of the denitrogenation process.  
Key words nitrogen, isotope, anthracite, Pennsylvania, North Germany, metamorphism, coal, kerogen, 
gold cell 

INTRODUCTION 

Thermal nitrogen cycling in sediments and metase-
diments has received little attention. Variations of 
organic nitrogen content and of its isotopic compo-
sition with maturation remain largely unknown. 
However, since highly metamorphosed organic mat-
ter is supposed to contain only trace amounts of 
nitrogen, one can predict that nitrogen is released 
by sedimentary organic matter during diagenesis 
and metamorphism. Improvements of our 
knowledge about the fate of organic nitrogen in 
natural and experimental maturation series should 
lead to a better understanding of the process of 
denitrogenation and may help in using organic 
nitrogen isotopes to establish the distribution 
of nitrogen among various reservoirs in earth (Javoy 
et al., 
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1986; Zhang and Zindler, 1993; Bebout, 1995; 
Javoy, 1997). 

The present study reports organic nitrogen abun-
dance and isotopic composition during anthracitiza-
t ion .  The  ob j e c t i v e  i s  t o  inve s t i g a t e  i de a l  
metamorphic profiles of organic nitrogen from low 
vascular plants in two Westphalian anthracite 
suites. 

MATERIAL AND METHODS 

The samples are listed in Table 1. The Western 
Middle anthracite field of Pennsylvania (U.S.A.) 
and the Bramsche Massif (Germany), paleobotani-
cally dated as Westphalian (Middle Pennsylvanian), 
were chosen because the coals represent a wide 
range of rank from anthracite to meta-anthracite. 
Hence, the whole anthracitization could be easily 
observed in the same field. A second reason was 
that there is an abundance of background material 
available for the region, including geological, petro-
graphical, geochemical syntheses and experimental 
simulation of coal anthracitization and graphitiza- 
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 Table I. Samples, rank, organic N abundance and isotopic composition   

Sample No Source* Field Stratigraphy R„,„,(%) 100 N/Ct ,515N (%)) 6130 ("X.) 

  Pennsylvania    
WM-GP-M8-CH JL Mammoth#8 Mid. Penn. 2.68 1.34 4.45 -24.30 
WM-ED-M9-CH JL Mammoth#9 Mid. Penn. 2.97 1.43 4.65 -23.50 
WM-SH-M8-GR JL Mammoth#8 Mid. Penn. 3.45 1.29 4.35 -24.30 
WM-RN-LO-CH JL Little Orch. Mid. Penn. 3.78 1.22 5.05 -25.80 
WM-CR-LY-CH JL Lykens Mid. Penn. 5.30 0.66 4.05 -24.20 
PSOC 1468 PSOC Buck Mtn Mid. Penn. 5.45 0.61 4.95 -24.15 
PSOC 870 PSOC Primrose Mid. Penn. 5.57 0.62 4.85 -23.95 
I6H ED Mammoth Mid. Penn. 5.66 0.67 4.75 -24.40 
17A ED Buck Mtn Mid. Penn. 5.74 0.69 5.35 -23.50 
2C ED Buck Mtn Mid. Penn. 6.30 0.66 4.15 -23.50 

   Bramsche     
U150-7723 AVR Ibbenburen Westfal. C 2.91 1.00 2.80 -24.10 
U150-7796 AVR Ibbenburen Westfal. B 3.51 1.01 3.72 -25.40 
IB-115229 BGR Ibbenburen Westfal. B 4.22 0.92 3.05 -23.70 
IBW1-13493 AVR Ibbenburen Westfal. B 4.27 0.92 2.70 -24.00 
IBW2-14488 AVR Ibbenburen Westfal. B 4.72 0.98 3.00 -23.30 
PIES-751 AVR Piesberg Westfal. D 6.00 0.50 3.70 -24.15 
PIES-693 BGR Piesberg Westfal. D 7.00 0.40 3.60 -24.05 
PIES-6770 AVR Piesberg Westfal. D 7.14 0.41 3.45 -24.92 
 
*JL: J. Levine, PSOC: Penn State Office of Coal Research, ED: E. Daniels, AVR: A. Vieth-Redemann (Geologishes Landesamt NRW), 

BGR: Bundesanstalt fur Geowissenschaften and Rohstoffe. 
*Organic NI/organic C, atomic ratio x 100. 

t ion  (Te ichmi i l l e r  and  Te i c hmt i l l e r ,  1950 ;  
Hryckowian et al., 1967; Mundry, 1971; Stadler and 
Teichmtiller, 1971; Bunterbarth and Teichmiiller, 
1979; Edmunds et al., 1979; Oleksyshyn, 1982; 
Levine and Davis, 1983, 1989; Philips et al., 1985; 
Daniels  and Altaner,  1990,  1993;  Levine and 
Eggleston, 1992; Wilks et al., 1993; Daniels et al., 
1994; Bustin et al., 1995). 

Pennsylvanian coal samples were collected from 
outcrops and strip mines. Bramsche Massif samples 
were collected from the coal mines of Ibbenburen 
and Piesberg. In order to avoid any change of 
paleodepositional facies along the anthracitization 
sequence, only samples with low sulfur content 
( < 1%) were selected for the study. Low-sulfur coal 
indicates particular paleogeographical-sedimentolo-
gical origin and non-marine post-depositional geo-
chemistry. Acid conditions during the peat stage of 
coal formation should result in leaching of acid-sol-
uble elements, as well as inhibiting sulfur fixation 
and microbia l  degradat ion of organic matter 
(Westgate and Anderson, 1984; Cecil et al., 1985). 

Vitrinite reflectance measurements and elemental 
analysis of crude samples were performed according 
to Stach et al. (1982), Levine and Davis (1983), 
Daniels and Altaner (1990, 1993) and Daniels 
(1992). Organic matter was isolated using HF/HC1 
digestion of the mineral matter in a Prolabo 
microwave digestor (Microdigest 301). Isotopic 
analyses of the organic matter were made using a 
Finnigan DeltaE mass spectrometer and were 
reported in the "delta" notation: per mil, relative to 
the Pee Dee Belemnite Standard (61 3C) and 
relative to the atmospheric nitrogen (615N). 
Nitrogen samples were 

prepared using combustion in quartz tubes with 
CuO, Cu and CaO in order to trap CO2 and H20 
(Kendall and Grim, 1990; Boyd et al., 1994; Boyd 
et al., 1995). Evacuation on a vacuum line pro-
ceeded as follows: CuO, Cu and CaO were degassed 
for 4 h at 600°C, then powdered sample was added 
and conditioned at 300°C for 2 h. The loaded and 
pretreated tube was then flame sealed, combusted at 
950°C for 4 h, cooled at 600°C for 3 h to allow (i) 
residual oxygen to recombine with cupric oxide, (ii) 
nitrous oxide to be reduced by copper and (iii) car-
bon dioxide to be trapped by CaO. Then the tubes 
were slowly cooled to ambient temperature allowing 
water to combine with CaO. The quartz tube was 
opened on a vacuum line with a tube cracker. The 
combustion gases were cooled to liquid nitrogen 
temperature. Using a Toepler pump, the purified 
nitrogen was concentrated in a calibrated volume 
allowing quantification. Possible contamination was 
checked by scanning of m/z 12, 15, 16, 30, 32 and 
40 (Ar). Samples for (513C determination were pre-
pared in a similar but simpler way: no CaO was 
added to the combustion tube and the CO2 was 
separated cryogenically using a liquid nitrogen trap. 
P r e c i s i o n  f o r  O ' N  w a s  + 0 . 1 5 % 0  a n d  f o r  
13C+0.05%o. 

RESULTS AND DISCUSSION 

Variation of organic nitrogen content with matu-
ration 

In Fig. 1, the atomic N/C ratio of organic matter 
is expressed with respect to vitrinite reflectance 
between -R,,„„ 2.5 and 7.5%. The organic N/C 
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(x100) for the Pennsylvanian coals decreases from 

—1.4 to 0.6 (at Rmax 6%) whereas for Bramsche 
coals N/C (x100) the range is lower and decreases 

from —1.0 to 0.4 (at Rmax7 %) . The decreasing 
organic N/C with rank for the 
Ibbenbiiren/Piesberg series is here reported for 
the first time. Similar rapid organic N/C 
decrease above -,,Rmax 4.5% was also reported, but 
not commented on, by Volkova and Bogdanova 
(1989) in the Donetz anthracite and meta-anthracite 
suite. A few authors, who claim that total 
nitrogen is an acceptable substitute for organic 
nitrogen, also reported a decreasing trend in the 
late stages of coalification: Suggate (1959) on New-
Zealand coals (who wrote that "further information is 
clearly required" to provide an adequate justification 
of the observed trends), Shapiro and Gray (1966) 
on Antarctic coals, Drechsler and Stiehl (1977) 
on German anthracites, Paxton (1983) on the 
Pennsylvanian anthracite field and Burchill and  
Welch (1989)  on the Brit i sh coals .  More  
recently, Littke et al. (1995) showed a very weak 
decrease of the total N content in a series of 3 
anthracites and 2 meta-anthracites from several 
origins. These repeated observations tend to 
support the validity of a general interpretative 
scheme where the main loss of organic nitrogen 
occurs in the very late stage of coalification 
(Boudou et al., 1984; Boudou and Espitalie, 1995). 

Organic nitrogen isotopic composition as a tracer of 
origin 

Previous works (Peters et al., 1978; Mariotti, 
1982; Rigby and Batts, 1986; Scholten, 1991) have 
assessed the potential of 15N/14N ratio as indicator 
of sedimentary environment. In the Pennsylvania 
and Bramsche Massif suites, (515N as well as (513C 
do not change systematically with rank (Table 1), 
but anthracites display two narrow ranges of (515N 
values: Pennsylvanian (515N values range from 4.1 
to 5.4%o and Bramsche values range from 2.7 to 
3.7%0 (Fig. 2). As expected, there is no 813C shift 
during maturation (Galimov, 1980; Lewan, 1986). 
The present paper shows, for the first time, that in 
the particular case of sedimentary organic matter 
from lower vascular plants, organic nitrogen isoto-
pic composition does not change during meta-

morphism (until —Rma, 7%), from anthracite (PP 
facies) to meta-anthracite rank (greenschist facies, 
Kish, 1987). In the case of Northern Germany, 
Gerling et al. (1997), studying the total nitrogen, 
presented similar results to ours for the anthracite 
stage (until •  Rmax 4%), it means for the less im-
portant stage of coal denitrogenation where inor-
ganic nitrogen content is still very low (Daniels and 
Altaner, 1990, 1993). Our results add substance to 
the argument of Haendel et al. (1986) who had 
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assumed that a leveling of the nitrogen isotope 
composition would take place during diagenesis up 
to the boundary of greenschist facies. 

Slight differences of organic N content and (515N 
in both anthrac i te  su i tes  (Pennsylvania  and 
Bramsche) are thought to reflect the similarities and 
slight differences of the paleophytogeography and 
the paleoclimate of the two basins, at a time of 
maximum assembly of Pangaea drifting northward 
(Scotese et a!., 1979). These facts would be in con-
formity with the paleobotanical results of Philips et 
al. (1985) who wrote that regional differences in tec-
tonic setting, historical aspects of the vegetation 
and local environmental differences may make the 
patterns of vegetational change somewhat different 
in each coal region. The drastic changes in coal-
swamp vegetation are transit ional across the 
Middle-Upper Pennsylvanian boundary and are 
very similar in each of the major coal regions of the 
United States and Europe. However, an important 
difference between the vegetation on either side of 
the Appalachians is the continued presence of some 
Lycospora-bearing Lycopods in Europe. This is 
possibly the result of a more asymmetric change in 
the drying of the climate there (Hedemann and 
Teichmiiller, 1971). The slight differenciation of the 
Pennsylvanian and of the Bramsche anthracite 
suites on the basis of organic nitrogen isotopes 

shows that nitrogen isotope data may be a signifi-
cant indicator of the precursor flora, the environ-
ment of deposition and the type and degree of 
alteration of the plant substances. This differen-
tiation should be explained by further studies on 
the paleoecology of both coal-bearing depositional 
systems following the approach of Altebdumer 
(1983), Wnuk (1985, 1989), Wnuk and Pfefferkorn 
(1987) and Diessel (1992). 

Experimental simulation 

Since there is no valid method to experimentally 
simulate the natural metamorphism starting with an 
immature coal (Wilks et a!., 1993), the simulation 
was done with an anthracite sample taken at the 
onset of the denitrogenation window (anthracitiza-
tion and further graphitization). The simulation was 
conducted under hydrostatic pressure because the 
role of tectonic shearing on anthracitization has not 
yet been put in evidence (Levine, 1993). Moderate 
hydrostatic pressure (0.2 GPa) was chosen because 
high pressure may have a suppressing effect on 
maturation (Goffe and Villey, 1984; Domine, 1987; 
Dalla Torre et al., 1997). The anthracite sample, the 
temperature and pressure conditions were chosen 
according to our previous work on open system py-
rolysis (Boudou and Espitalie, 1995), gold cell ex-
periments previously performed by Hryckowian et 
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Table 2. Analysis of anthracite sample WM-GP-M8-CH 

 % As received % Dry % Dry ash free 

H20 1.47   
Volatile matter  9.97  
Fixed carbon  74.82  
Ash  15.21  
BTU*  12869  
C   90.9 
H   3.74 
N   1.42 
   0.98 
0 (by difference)   2.94 
*British Thermal Unit per pound. 

a!. (1967) and some preliminary experiments using 
isostatic  pressure by means of an anvil  press 
(Boudou et al. ,  1997).  Being the least mature 
anthracite of the Pennsylvanian series, anthracite 
s a m p l e  W M - G P - M 8 - C H  f r o m  t h e  M i d d l e  
Mammoth seam (Hryckowian et a!., 1967; Levine 
and Davis, 1983) was chosen for the gold cell exper-
iment. Its main characteristics, given by Levine and 
Davis (1983), are presented in Table 2. The sample 
was heated at 600°C, 0.2 GPa for 15 days, in a 
sealed gold cell (Domine, 1987). Hryckowian et al. 
(1967), who performed gold cell experiments with 
an anthracite sample from the same coal seam as WM-
GP-M8-CH, had observed that 600°C is critical in 
reactions producing a rapid increase of reflectance 
and a fusion of the material to form a hard 
compact mass that we effectively observed in our 
experiments. The gold cell simulation, performed in 
our laboratory, showed that organic N content 
decreases while 6'3C and SI5N of the organic matter 
remain unchanged (Fig. 3 and Table 3).  These 
changes are similar to those observed in the natural 
series (Figs 1 and 2, Table 1). The constancy of the 

Table 3. Effect of the gold cell experimental simulation on the or- 
ganic atomic N/C ratio, 615N and 613C  of the WM-GP-M8-CH 

anthracite 

Experimental conditions N/C 6 I5N (%0)  6'3C (%o)  

Initial sample 1.34 4.45 -24.30 
Gold cell, 600°C, 0.2 GPa, 0.77 4.40 -24.35 
360 h 

6I5N suggests that denitrogenation, in confined sys-
tem, as well as in nature, involves other reactions 
than in open system pyrolysis, where 6I5N increases 
(Drechsler and Stiehl, 1977). The experimental 
work of Katritzky et al. (1995), Everlien (1997) and 
Gerling et al. (1997) suggests that pressured water, 
which, in our study, may result from anthracite 
degradation as well as from clay paragenesis, might 
play a denitrogenating role. Water, in a sealed cap-
sule, as well as in hydrous pyrolysis experiments, 
would have an hydrogenating role (Huang, 1996; 
Everlien, 1997; Lewan, 1997). Wintsch et a!. (1981) 
propose coal hydrogenation by pressured neo-
formed molecular hydrogen as an important step in 
the mechanism of graphitization, consequently of 
denitrogenation. 

Organic nitrogen isotopes as tracers of the 
mechanism of denitrogenation 

Because it takes less energy to break 14N-12C 
bonds than 15N-I2C bonds, thermocracking of N-
C bonds should produce a preferential release of 
14N (Bigeleisen, 1965; Melander and Saunders, 
1980). As a result, if denitrogenation involved ther-
mal breaking of a high energy bond, it should lead 
to a strong enrichment of the heavier nitrogen iso-
tope (Drechsler and Stiehl, 1977; Haendel et a!., 
1986; Bebout and Fogel, 1992). The present study 
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shows that 61 5N of organic nitrogen does not 
change with rank despite the N/C ratio falling to 
half of its original value. Assuming that ammonia 
has been produced by irreversible reactions without 
any isotopic fractionation (Williams et al., 1995; 
Shearer and Kohl, 1993) and that molecular nitro-
gen derived from organic matter has a low 815N 
(Boigk et al., 1976; Prasalov et al., 1990), it comes 
that molecular nitrogen would not be an important 
primary product of the anthracite denitrogenation. 
After Sohns et al. (1994), the Boigk et al. (1976) 
data show systematic deviation from the true 
values, as a result of air contamination for a sample 
with very low nitrogen concentration, of incomplete 
combustion of  hydrocarbons,  of  f luctuat ion 
amounts of oxygen in the ion source due to con-
tamination with air, etc. However, new stable nitro-
gen isotope ratio by GC/IRMS (Sohns et al., 1994; 
Gerling et al., 1997) still show that light nitrogen 
predominates (615N ranging from —9 to + 3%0) in 
the area adjacent to the intrusives of the Bramsche 
massif, where the rocks reach maturity above 12,,„, 
4%. Therefore, ammonia with higher 615N should 
be an important primary product of the denitro-
genation process. This interpretation does not pre-
clude a direct co-genesis of molecular nitrogen from 
coal (Krooss et al., 1995), a generation of molecular 
nitrogen from a secondary decomposition of ammo-
nia (Rohrback et al., 1983) or a mixing of N, from 
several sources (Muller et al., 1973; Gerling et al., 
1997). In deep sedimentary basins, where the redox 
potential is low, NH4+, which would find its way in 
the illite/muscovite interlayers, is the most stable 
form of aqueous nitrogen, unless an oxidizing cata-
lytic agent is encountered along the path that pro-
duces N2 (Getz, 1976, 1981; Hallam and Eugster, 
1976; Everlien and Hoffmann, 1991).  In fact,  
Daniels and Altaner (1990, 1993), showed, in the 
case of the Pennsylvanian anthracite field, that the 
organic matter dispersed in the shale and concen-
trated in nearby coal seams releases nitrogen in con-
nate brine in the form of aqueous ammonium. 
Authigenic NH4-rich illite forms by high tempera-
ture reaction of ammonia, derived from maturation 
of locally abundant organic matter, with kaolinite 
Cluster et al., 1987). The postulated hydrothermal 
fluids that flowed through some joints in the 
anthracite appear to have been enriched in Mg, Fe 
and other transition elements. They are responsible 
for forming some unusual ordered mixed-layer clay 
minerals, such as tosudite, sudoite and rectorite. 
These brines do not appear to have carried am-
monium into authigenic minerals, such as NH4—il-
lite and pyrophyllite. Rather, these minerals occur 
in closed, low permeability environments in the 
shale and coal matrix and sporadically in some 
joints sets. All elements in NH4—illite and pyrophyl-
lite are easily derived from the rock matrix itself. 

CONCLUSIONS 

The study of organic nitrogen abundance and iso-
topic composition in Upper Carboniferous anthra-
cite suites of Pennsylvania (U.S.A.) and of the 
Bramsche Massif (Germany) brings the following 
results: 

(1) The data presented confirm earlier reports 
that the organic nitrogen content decreases rapidly 
from anthracite to higher rank. 

(2) Contrarily to nitrogen content, the organic 
nitrogen isotopic composition does not change with 
rank and hence could not be used as indicator of 
metamorphism. 

(3) Slight differences of S'N in both anthracite 
suites may reveal differences of the paleophytogeo-
graphy and the paleoclimate of the two basins. 

(4) Sealed gold cell experimentation reproduces 
the behavior of organic nitrogen with rank increase: 
rapid decrease of N content and persistence of 
nitrogen isotope composition as well as carbon iso-
tope composition. 

(5) The rapid denitrogenation and the invariance 
of N isotope composition in both anthracite suites 
suggest that ammonia might be an important pro-
duct of the denitrogenation process in the late 
stages of coalification. 
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