
Tree inclusions in windows and slices

Patrick Cegielski, Irene Guessarian

To cite this version:

Patrick Cegielski, Irene Guessarian. Tree inclusions in windows and slices. 2007. <hal-
00159127>

HAL Id: hal-00159127

https://hal.archives-ouvertes.fr/hal-00159127

Submitted on 3 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47120511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00159127

,

Zapiski Nauchnykh Seminarov POMI Will be set by the publisher

Notes of Mathematical Seminars of St.Petersburg Department of V.A.Steklov Institute of Mathematics

TREE INCLUSIONS IN WINDOWS AND SLICES

Patrick Cégielski1 and Irène Guessarian2

Abstract. P is an embedded subtree of T if P can be obtained by
deleting some nodes from T : if a node v is deleted, all edges adjacent
to v are also deleted, and outgoing edges are replaced by edges going
from the parent of v (if it exists) to the children of v. Deciding whether
P is an embedded subtree of T is known to be NP-complete.

Given two trees (a target T and a pattern P) and a natural number
w, we address two problems: 1. counting the number of windows of
T having height exactly w and containing pattern P as an embedded
subtree, and 2. counting the number of slices of T having height exactly
w and containing pattern P as an embedded subtree.

1991 Mathematics Subject Classification. 68Q25, 68W05.

For 60th birthday of Yuri Matiyasevich

1. Introduction

Given two trees, we study the following problems: can P be obtained from T

by deleting nodes? Is P contained in a reasonably small “window” of T ? If P is
contained in a subtree of height w (a “window”) of T , how many times can this
occur? What is a w-window is clear for a text: it is a factor of length w. There
are at least two possibilities for trees: a w-window is either a tree (of height w) or
a forest (a slice of the target consisting of the nodes of height from d up to and
including d + w), see Figure 1. We attack both possibilities in this paper.

Given two trees (a target T and a pattern P) and a natural number w, we
address two problems: 1. counting the number of w-windows of T which contain
pattern P as an embedded subtree, and 2. counting the number of w-slices of T

which contain pattern P as an embedded subtree. These problems generalize in a
natural way the subsequence problems for words: we proved in [BCGM01], that
the problem of counting the number of w-windows of a text t containing a pattern

Keywords and phrases: Subtree inclusion, algorithm.

1 LACL, Université Paris 12, Route forestière Hurtault, F-77300 Fontainebleau, France, e-
mail: cegielski@univ-paris12.fr

2 LIAFA, UMR 7089 and Université Paris 6, 2 Place Jussieu, 75254 Paris Cedex 5, France;
send correspondence to e-mail: ig@liafa.jussieu.fr

c© EDP Sciences 1999

2 TREE INCLUSIONS

p as a subsequence (i.e. letters of p appear in the window in the same order as in
p but are not necessarily consecutive and may be interleaved with other letters)
can be solved in time O(n) where n is the size of t.

In [CGM08] we solved related problems: deciding whether a pattern is an em-
bedded subtree of a target within a w-window, counting the number of windows of
height at most w of the target containing the pattern as an embedded subtree, and
counting the number of occurrences of the pattern as an embedded subtree of the
target within a window of height at most w. The algorithms in the present paper
are of course inspired by the algorithms in [CGM08], to which Yu. Matiyasevich
contributed in a fundamental way; the present paper is thus a natural complement
to [CGM08].

The problem of finding embedded occurrences of a pattern in a window (or
a slice) of a tree is important in two areas: 1. retrieving information from
structured documents [KM95], and 2. discovering frequent substructures in semi-
structured data such as XML documents; indeed counting the number of occur-
rences of substructures is a mandatory first step in discovering frequent substruc-
tures [CMNK05]. Unfortunately, even deciding whether P is an embedded subtree
of T is known to be NP-complete [KM95]; however, our algorithms are linear in the
size of the target and exponential in the size of the pattern, hence their complexity
is fixed-parameter linear for fixed patterns.

The present paper consists of three more sections: after the definitions, one
section will present the algorithm counting the number of w-windows of height
exactly w where the pattern can be embedded, and the next one will present the
algorithm counting the number of w-slices of height exactly w where the pattern
can be embedded.

2. Definitions

Let A be an alphabet.

Definition 2.1. (i) A tree T on A is a finite connected acyclic graph T =
〈V, E, color〉, where V is the set of nodes, E is the set of edges, and color : V 7→ A

is a coloring function: each node (or vertex) is colored by a letter of A.
(ii) A rooted tree T = 〈V, E, color, r〉 is a tree where a node r has been

distinguished and is called the root of the tree.

In a rooted tree, edges are naturally directed (from the root to the leaves): all
nodes have in-degree one except for the root which has in-degree zero; if (u, v) is
an edge oriented from u to v, u is said to be the parent of v and v is is said to
be a child of u; each node has exactly one parent, except for the root which has
none; a node can have any finite number of children and childless nodes are called
leaves. Nodes have a depth: the depth of the root is 0, and if the depth of node v

is n, then all its children have depth n+1. Two nodes having the same parent are
called siblings. The transitive closure of the parent (resp. child) relation is called
the ancestor (resp. descendent) relation. The height of a tree is the maximum of
the depths of its nodes.

TREE INCLUSIONS 3

In the case of trees, the notions similar to subword and subsequence for words
exist and are called subtree and embedded subtree. Formally:

Definition 2.2. Let T = 〈V, E, color, r〉 and T ′ = 〈V ′, E′, color′, r′〉 be rooted
trees, such that:

1. V ′ ⊆ V and E′ ⊆ E,
2. the restriction to V ′ of the ancestor relation of V coincides with the ancestor

relation of V ′

3. the coloring of V ′ is preserved in T ′, i.e. ∀v′ ∈ V ′ color′(v′) = color(v′)
Then T ′ is said to be a subtree of T .

Moreover, if for each node v′ from T ′ all its descendents in T are also its
descendents in T ′, then T ′ is said to be a bottom-up subtree of T .

Intuitively, a bottom-up subtree of T can be obtained by taking a node v of T

together with all of v’s descendents and corresponding edges; a subtree of T can
be obtained by taking a bottom-up subtree of T and pruning some edges together
with the subtree below the pruned edge. The bottom-up subtree of T rooted at
node v will be denoted by T [v].

Definition 2.3. Let T = 〈V, E, color, r〉 and T ′ = 〈V ′, E′, color′, r′〉 be rooted
trees; an embedding from T ′ into T is an injective mapping τ : V ′ ↪→ V , such
that:

1. for every v′ ∈ V ′, color(τ(v′)) = color′(v′), i.e. τ preserves colors.
2. v′1 is an ancestor of v′

2 in T ′ iff τ(v′1) is an ancestor of τ(v′
2) in T , i.e. τ

preserves the ancestor-descendent relationship.
T ′ is said to be an embedded subtree of T if there exists an embedding from

T ′ into T .

Intuitively, an embedded subtree of T is obtained by deleting some nodes from
T and gluing together the remaining edges in a way preserving the ancestor-
descendent relationship of T .

Definition 2.4. A w-window of T = 〈V, E, color, r〉 is a subtree W = 〈V ′, E′,

color′, r′〉 of T such that V ′ contains all the descendants of r′ from depth depth(r′)
down to depth w + depth(r′).

P is an embedded subtree of T within a w-window if there is an embedding
from P into T and moreover the image of P is contained in a w-window of T .

For w ∈ N
∗, a w-window of T has height exactly w.

Definition 2.5. Let T be a tree and w an positive integer. A w-slice of T is the
forest consisting of all w′-windows, for w′ ≤ w, whose roots are at the same depth
in T .

The slice of heigth w at depth k contains all the nodes from depth k to depth
k + w included.

Example 1. In Figure 1, T ′, T ′′, T ′′′ are respectively a bottom-up subtree, a sub-

tree, and an embedded subtree of T . T ′′′ is an embedded subtree of T within a

2-window. S is a 1-slice of T and W is a 1-window of T .

4 TREE INCLUSIONS

d

e fh

b c d

a

b c d

g

T’ T’’ T’’’

a

c b c

fe

a

d

e f

a

T

a

WS

h

b c

f

d

e
{ }, ,

Figure 1. A tree T with bottom-up subtree T
′, subtree T

′′, embed-
ded subtree T

′′′, 1-slice S and 1-window W .

3. Counting w-windows

The problem: Given a (big) tree T (called the target) and a (small) tree P (called
the pattern), we want to count the number of w-windows of T where P can be
embedded.

We will consider only the case of pattern trees of height at least one: because

patterns of height 0 consist of a single node, their search is trivial.

In a first step we will preprocess the pattern, then in a second step we will
process the target.

First step: preprocessing the pattern Without loss of generality we may
assume that the nodes of P are labelled: each node has a unique label from
{1, . . . , p}, where p is the number of nodes of P , see Figure 2. This yields a
labelling of the bottom-up subtrees of P : bottom-up subtree rooted at node v

has the same label as node v. A bottom-up subtree of P rooted at node v is
represented either by the label of v or in the form P [v]: the bottom-up subtree
rooted at node v having label j, will thus be denoted by j or P [v] according to
the context.

Second step: processing the target To solve our problem, we will adorn the
nodes of T with s-configurations which will be sets of forests of stamped bottom-up
subtrees of P . The intuitive meaning of stamp n ∈ N in stamped subtree (t, n)
will be that subtree t of P can be embedded in a subtree of T of height n located
below the current position. Intuitively, each forest of the configuration at node v

represents a set of subtrees of P which can be embedded in T [v] simultaneously,
i.e. in such a way that the images of different trees wouldn’t intersect.

TREE INCLUSIONS 5

a

e

c c d

b

1

2

3 4

5

6

Figure 2. A pattern P and a postorder labelling of its bottom-up subtrees.

Definition 3.1. A stamped subtree is an ordered pair (t, n) where t is a bottom-
up subtree of P , and n is a positive integer in N, called the depth-stamp.

A set F of stamped trees is called an s-forest, and it is said to be a min-s-

forest if the following two conditions hold

• there are no (t, n) and (t, n′) ∈ F such that n′ < n, i.e. all its subtrees
occur at the least possible depth in T ,

• there are no (t, n) and (t′, n′) ∈ F such that n′ ≥ n and t′ is a proper1

bottom-up subtree of t.

An s-forest F is said to dominate s-forest F ′ if for every (t′, n′) from F ′ there
is a (t, n) from F such that

• t′ is a bottom-up subtree of t, and
• n′ ≥ n.

An s-configuration is a set C = {F1, F2, . . . , Fk}, where each Fi is a min-s-
forest, and if i 6= j then Fi does not dominate Fj .

In a min-s-forest, only minimal stamped subtrees appear: for instance, con-
sidering the pattern of Figure 3 and identifying a subtree of P with the label of
its root, {(1,1),(3,0),(4,1)} is a min-s-forest, while neither {(1,1),(4,1),(4,2)} nor
{(1,1),(4,1),(3,1)} are min-s-forests. Forest F dominates forest F ′ if, intuitively, all
the possibilities of embeddings contained in F ′ are subsumed by those contained
in F . For example, considering again the pattern of Figure 3, forest {(2,1),(4,1)}
dominates forests {(2,1),(3,1)} and {(2,1),(4,2)}, but forest {(2,1),(4,1)} does not
dominate forest {(2,0),(4,2)}.

Definition 3.2. If an s-forest F is not a min-s-forest, we can associate with F a
reduced forest, the min-s-forest D = red(F) obtained by the following algorithm:

(1) remove all stamped subtrees (t, n) ∈ F such that there is a (t, n′) ∈ F

with n′ < n: then all subtrees of P belonging to F are affected with the
minimal possible depth-stamp.

(2) remove all stamped subtrees (t′, n′) ∈ F such that there is (t, n) ∈ F such
that n′ ≥ n and t′ is a proper bottom-up subtree of t.

1
t
′ is said to be a proper (bottom-up) subtree of t if (i) t

′ is a (bottom-up) subtree of t, and
(ii) t

′ 6= t.

6 TREE INCLUSIONS

Notice that we remove stamped subtrees having the larger stamp n because
only the subtrees having the minimal possible n will give us the best possible
embeddings.

Definition 3.3. A subtree T ′ of T is said to be a minimal subtree of T con-
taining P iff P is an embedded subtree of T ′, but there is no proper subtree T ′′

of T ′ such that P is an embedded subtree of T ′′.

For instance, considering Figure 3 again, the subtree of T rooted at b is a
minimal subtree containing subtree 2 of the pattern, but is not a minimal subtree
containing subtree 1 of the pattern.

Definition 3.4. The union of two s-configurations C = {F1, F2, . . . , Fk} and
C ′ = {F ′

1, F
′
2, . . . , F

′
k′} is s-configuration D = C ⊗s C ′ obtained as follows:

(1) let D =
{

red(Fi ∪F ′
i′) | i ∈ {1, ..., k}, i′ ∈ {1, ..., k′}

}

=
{

F ′′
1 , F ′′

2 , . . . , F ′′
k′′

}

(2) if F ′′
i is dominated by F ′′

j remove F ′′
i from D.

Intuitively, (1) ensures that each forest of C ⊗s C ′ is a min-s-forest, namely we
keep only of the “best” (i.e. minimal) possible stamped subtrees, and (2) ensures
that we keep only non redundant min-s-forests, i.e. if all information from forest
F ′ is already present in forest F , we discard forest F ′.

Idea of the algorithm It is easy to see [BCGM01, K92] that a window of
height w of T contains P as an embedded subtree iff it contains a minimal subtree
of T containing P ; therefore, it is enough to count the number of w-windows of T

containing a minimal subtree containing P .
For each node v of T we will compute an s-configuration, which will be a set of

min-s-forests of stamped bottom-up subtrees of P . The idea of the algorithm is to
increment the number of w-windows each time a stamped tree (P, d) with d ≤ w

is found in one of the forests of the configuration. However we must be careful not
to count windows of height less than w which might occur near the leaves of T :
to this end, we will first tag each node v of T with an integer indicating whether
the height T (v) is at least w. To this end it suffices to let, for each node v of T ,
tag(v) := min(w, height(T [v])).

Algorithm1

INPUT.- Two trees, T and P , and an integer w.
OUTPUT.- The number N of w-windows of T containing P as embedded subtree.

Let r := the label of the root of P ; N := 0; //initializations

FORALL nodes of T visited bottom-up DO

(1) IF node v is leaf of T , THEN the configuration of v is the set of singletons
{(i, 0)} where i is the label of a leaf v′ of P such that color(v′) = color(v),
//if no leaf of P has the same color as v the configuration of v is the empty

set.

(2) IF node v is an internal node colored a, with children v1, . . . , vn, whose
respective configurations are Cvi

, i = 1, . . . , n, THEN DO

(a) FOR i = 1, . . . , n, DO

TREE INCLUSIONS 7

C ′
vi

:=
{

{(l, d + 1)|(l, d) ∈ Fj and h + d + 1 ≤ w where h is the depth

of l in P } | Fj ∈ Cvi

}

//subtree (l, d + 1) cannot contribute to any

embedding in a w-window if h + d + 1 > w ENDDO

(b) ∆ := D := C ′
v1

⊗s C ′
v2

⊗s · · · ⊗s C ′
vn

;
(c) FORALL nodes w of P colored a and with label j DO //w has same

color as v

• IF node w is not a leaf of P ,
//w is an internal node of P labelled j

• THEN Let j1, ..., jp be the children of j in P ,
FOR {(j1, d1), ..., (jp, dp)} ⊆ Fi ∈ D

∆ := ∆ ∪ {{(j, max{d1, ..., dp})}} ;
• ELSE //w is a leaf labelled j and colored a

∆ := ∆ ∪
{

{(j, 0)}
}

;
ENDIF

ENDDO

(d) Reduce the forests in ∆ and remove from ∆ all dominated forests
(e) Take the resulting configuration ∆ for Cv

(f) IF tag(v) = w AND there is F ∈ Cv such that (r, d) ∈ F

THEN DO N := N + 1 ;
output “P is an embedded subtree of T within a window of size
exactly w at node v”.
ENDDO

ENDIF

ENDDO

ENDIF

ENDDO

Notice that in step (c) of our algorithm, the loop
FOR {(j1, d1), ..., (jp, dp)} ⊆ Fi ∈ D

∆ := ∆ ∪ {{(j, max{d1, ..., dp})}} ;
ensures that, for each “good” subset of each Fi, we add in the configuration a
forest consisting of a single subtree P ′ of P : the choice of subtree P ′ excludes
all other subtrees of P possible at that stage (because node v of T can be used to
match only one subtree of P with root having the same label as v). Consider P, T

as in Figure 3: the FOR loop in step (c) rightly prevents us from saying that P is
embedded in T (by excluding the simultaneous embedding of subtrees 2 and 4 of
P in the subtree with root colored b of T).

See Figures 3 and 4 for illustrations of algorithm1 with w = 2. The tags are
omitted for clarity in the Figures.

It is easy to extend Algorithm1 for searching simultaneously a set P1, . . . , Pf of
patterns: to each node v of T we attach an f -tuple of configurations C1

v , . . . , Cf
v ,

one configuration for each pattern (the space complexity will be multiplied by
f). At each step of Algorithm1, the f configurations are treated in parallel. Let
r1, . . . , rf be the labels of the roots of P1, . . . , Pf ; it then suffices to change step

8 TREE INCLUSIONS

Target TPattern P

b

}

{

}{

}{

{

}a
a

b

c d

2

1 3

4

5

b

c d

d

{(1,0)} {(3,0)}

{(3,0)}

}(1,1)}{ {(3,1),{(4,1)}{(2,1)}

{(3,1)}

Figure 3. Pattern P is not embedded in a 2-window of target T .

a

b

a

a

b

1

2

Pattern

Target

P

T

}{

}

}

{

x

x

b

{(1,0)}

{ }{(1,0)}}{

}{

{(2,1)}{ {(1,0)}b

{{(2,2) , (1,1)}

x

a {(2,1)}

{(2,2)} }

O

O

Figure 4. Pattern P occurs in three 2-windows and two 2-slices in
target T .

(f) of Algorithm1 by substituting “for i = 1, . . . , f , there is F i ∈ Ci
v such that

(ri, di) ∈ F i” for “there is F ∈ Cv such that (r, d) ∈ F”.

Complexity: the number of bottom-up subtrees of P is bounded by p where p

is the size (number of nodes) of P ; the number of subtrees in a min-s-forest is
bounded by p (because of the condition that there are no (t, n) and (t, n′) ∈ F

such that n′ < n, each bottom-up subtree of P can occur at most once in a
forest). Let h(P) be the height of P . The number of min-s-forests is bounded by
K = (w − h(P) + 2)p: indeed if n is the depth-stamp of subtree P [v] whose root
is at depth h(P) − j in P , then j ≤ n ≤ w − (h(P) − j), hence n can take at
most w − h(P) + 1 values (this is a coarse bound because the depth-stamps are
submitted to additional restrictions); if we add an additional stamp-value -1, with

TREE INCLUSIONS 9

(t,−1) meaning that subtree t is not embeddable hence is not in the forest, we
obtain the bound K = (w − h(P) + 2)p for the number of min-s-forests. Assume
that the maximum out-degree of the nodes of T is M , then the complexity of the
various stages in step 2. of algorithm1 can be decomposed as follows:

(a) MK

(b) M(K2 + Kp2) + K2p2 (we perform M times a ⊗ between two configura-
tions, each one consisting of at most K forests, which takes MK2 steps,
we reduce each time the forests, which takes MKp2 steps, and we can
remove only once at the end dominated forests in K2p2 steps)

(c) p2K

(d) K4 (∆ consists of at most K forests, and for each pair of forests, we can
check in time K2 whether one of them dominates the other)

(f) Kp

Hence, assuming that M ≤ K2, the execution time of step (d) will dominate the
execution time of algorithm1, whose complexity will be O(|T |(2(w−h(P)+1))4p).
The bound is thus linear in the size of T and exponential in the size of P . Hence
our counting problem is fixed-parameter tractable [FG06], and even better, fixed-
parameter linear.

A drastic reduction of this complexity is unlikely because the simpler problem
of deciding whether P can be embedded in T has been proved to be NP-complete
[K92,KM95]. However, Algorithm1 itself can be improved in practice by reducing
the number of configurations. The idea (due to Y. Matiyasevich) is as follows:
node v from the target and node v′ from the pattern are upward compatible, if
the path from v′ to the root of P can be embedded into the path from v to the root
of T . We can preprocess target T in order to precompute for each node v in T the
set c(v) of all nodes of P which are upward compatible with it and then demand
in step 1. that v′ should be upward compatible with v. This could considerably
reduce the number of configurations to deal with.

4. Counting w-slices

The problem: Given a target tree T and a pattern tree P , to count the number
of w-slices of T where P can be embedded. We will again consider only the case
of pattern trees of height at least one (the seach for patterns of height 0 being
trivial).
Idea.- The idea of the algorithm is a variant of the previous algorithm but we now
traverse the target bottom–up and level-wise: first the nodes (necessarily leaves)
of depth n (the height of the target), then the nodes of depth n−1 and so on. We
use two integer variables: a counter N and a potentiometer po, both initialized to
zero. Intuitively, the value of the potentiometer gives the number of w-slices above
the current one where we are sure that the pattern will be embedded. When we
meet an occurrence of the pattern (r, d) (as in the previous algorithm), we update
the potentiometer to max(po, w− d) because we are sure the w− d following slices
will contain an occurrence of the pattern. After treatment of every node of a given

10 TREE INCLUSIONS

depth h, if n−h > w (to be sure the height of the slice is w) and the potentiometer
is not zero, we increment the counter and decrement the potentiometer. When we
arrive to the root, N contains the number of w-slices in which an occurrence of
the pattern occurs.

Algorithm2

INPUT.- Two trees, T and P , and an integer w.
OUTPUT.- The number N of w-slices of T containing P as embedded subtree.
//initializations

Let r := the label of the root of P ;
Let n := the height of T ;
Let N := 0;
Let po := 0;
// Treatment

FOR h := n TO 0
DO

FORALL nodes of T of depth h in T

DO

1. IF node v is a leaf of T THEN

the configuration of v is the set of singletons {(i, 0)}
where i is the label of a leaf v′ of P such that
a is the color of both v and v′

//if no leaf of P has the same color as v

//the configuration of v is the empty set.

2. IF node v is an internal node colored a,
with children v1, . . . , vn

whose respective configurations are Cvi
, i = 1, . . . , n THEN

DO

(a) FOR i = 1, . . . , n

DO

C ′
vi

:=
{

{(l, d + 1) | (l, d) ∈ Fj and h + d + 1 ≤ w

where h is the depth of l in P } | Fj ∈ Cvi

}

ENDDO

// subtree (l, d + 1) cannot contribute to any

// embedding in a w-window if h + d + 1 > w

(b) ∆ := D := C ′
v1

⊗s C ′
v2

⊗s · · · ⊗s C ′
vn

;
(c) FORALL nodes w of P colored a and with label j

DO // w has same color as v

IF node w is not a leaf of P

//w is an internal node of P labelled j

THEN Let j1, ..., jp be the children of j in P

FOR {(j1, d1), ..., (jp, dp)} ⊆ Fi ∈ D

∆ := ∆ ∪ {{(j, max{d1, ..., dp})}} ;
ELSE //w is a leaf labelled j and colored a

TREE INCLUSIONS 11

∆ := ∆ ∪
{

{(j, 0)}
}

;
ENDIF

ENDDO

(d) Reduce the forests in ∆
and remove from ∆ all dominated forests

(e) Take the resulting configuration ∆ for Cv

(f) FORALL F ∈ Cv such that (r, d) ∈ F

DO

po := max(po, w − d) ;
output “P is an embedded subtree of T

within a slice of size exactly w at node v”.
F := F \ {(r, d)}
ENDDO

ENDDO

ENDIF

ENDDO

IF n − h > w AND po 6= 0 THEN

DO

N := N + 1;
po := po − 1;
ENDDO

ENDIF

ENDDO

See Figure 4 for an illustration of algorithm2 with w = 2. The potentiome-
ters are omitted for clarity in Figure 4. As in Algorithm1, it is easy to extend
algorithm2 to the simultaneous search of several patterns.

The complexity of algorithm2 is similar to the complexity of algorithm1.

5. Conclusion

Given two trees (a target T and a pattern P) and a natural number w, we gave
algorithms solving the following two problems: 1. counting the number of height
exactly w windows of T which contain pattern P as an embedded subtree, and 2.
counting the number of height exactly w slices of T which contain pattern P as
an embedded subtree.

For target tress with bounded branching width, our algorithms are linear in the
size of the target and exponential in the size of the pattern, i.e. their complex-
ity is both fixed-parameter linear [FG06], and CONSTANT-DELAYlin [DG06].
Of course, our algorithms also apply in the case of target trees with unbounded
branching width, but in that latter case we conjecture they are not in CONSTANT-
DELAYlin.

Acknowledgment: We are grateful to Arnaud Durand for his reading, discussions
and helpful comments.

12 TREE INCLUSIONS

References

[BCGM01] L. Boasson, P. Cegielski, I. Guessarian, Yu. Matiyasevich, Window Accumu-
lated Subsequence Matching is linear, Annals of Pure and Applied Logic Vol.
113 (2001), pp. 59-80.

[CGM08] P. Cegielski, I. Guessarian, Yu. Matiyasevich, Tree inclusion problems, sub-
mitted (2007).

[CMNK05] Y. Chi, R. Muntz, S. Nijssen, J. Kok, Frequent subtree mining – an overview,
Fundamenta Informaticae, Volume 66 (2005), pp. 161–198.

[DG06] A. Durand, E.Grandjean, First-order queries on structures of bounded degree
are computable with constant delay, To appear in ACM Transactions on
Computational Logic, 2006.

[FG06] J. Flum, M. Grohe, Parameterized Complexity Theory, Springer-Verlag,
Berlin (2006).

[K92] P. Kilpelainen, Tree matching problems with applications to structured
text databases, PhD Thesis, Helsinki (1992), http://thesis.helsinki.fi/
julkaisut/mat/tieto/vk/kilpelainen/

[KM95] P. Kilpelainen, H. Mannila, Ordered and Unordered Tree Inclusion, SIAM
Journal on Computing , Volume 24 ,B Issue 2 B (April 1995), pp. 340 - 356.

Communicated by (The editor will be set by the publisher).
today.

