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Games where you can play optimally without
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Université Paris 7 and CNRS, LIAFA, case 7014
2, place Jussieu

75251 Paris Cedex 05, France
{hugo,zielonka}@liafa.jussieu.fr

Abstract. Reactive systems are often modelled as two person antago-
nistic games where one player represents the system while his adversary
represents the environment. Undoubtedly, the most popular games in this
context are parity games and their cousins (Rabin, Streett and Muller
games). Recently however also games with other types of payments, like
discounted or mean-payoff [5,6], previously used only in economic con-
text, entered into the area of system modelling and verification. The
most outstanding property of parity, mean-payoff and discounted games
is the existence of optimal positional (memoryless) strategies for both
players. This observation raises two questions: (1) can we characterise
the family of payoff mappings for which there always exist optimal posi-
tional strategies for both players and (2) are there other payoff mappings
with practical or theoretical interest and admitting optimal positional
strategies. This paper provides a complete answer to the first question
by presenting a simple necessary and sufficient condition on payoff map-
ping guaranteeing the existence of optimal positional strategies. As a
corollary to this result we show the following remarkable property of
payoff mappings: if both players have optimal positional strategies when
playing solitary one-player games then also they have optimal positional
strategies for two-player games.

Introduction

We investigate deterministic games of infinite duration played on finite graphs.
We suppose that there are only two players, called Max and Min, with exactly
opposite interests. The games are played in the following way. Let G be a finite
graph such that each vertex is controlled either by player Max or by player Min.
Initially, a pebble is put on some vertex of G. At each step of the play, the player
controlling the vertex with the pebble chooses an outgoing edge and moves the
pebble along it to the next vertex. Players interact in this way an infinite number
of times and a play of the game is simply an infinite path traversed by the pebble.

? This research was supported by European Research Training Network: Games and
Automata for Synthesis and Validation and ACI Sécurité Informatique 2003-22 VER-
SYDIS.



We assume that the edges of G are coloured by elements of a set C of colours.
Thus a play yields an infinite sequence of visited colours and it is this sequence
that is used to determine the amount of money paid by player Min to player
Max; namely we assume that there is a payoff mapping that maps each infinite
sequence of colours to the set R ∪ {±∞} of extended reals. The objective of
player Max is to maximise the outcome of the game while player Min will seek
to minimise it. Players plan their actions and such plans are called strategies.
Thus a strategy indicates which move to choose in a given situation and this
decision may depend on the whole history of previous moves.

For several well-known games: parity, mean-payoff, discounted games, both
players can play optimally using particularly simple positional (or memoryless)
strategies; their moves depend then only on the current vertex and all previous
history is irrelevant [8,12,7,14]. (In fact, for all three payoffs cited above, if the
state and action spaces are finite then even more general perfect information
stochastic games have optimal deterministic positional strategies). In computer
science, the most popular of these games is the parity game used in model-
checking and µ-calculus while discounted and mean-payoff games were studied
mainly in economics, see however [5,6].

Games with optimal positional strategies are of much interest in computer
science since to implement such strategies no memory is needed, which saves
computational resources and there is an ongoing quest for new positionally op-
timal games, especially on push-down graphs [2,1,11,9].

Recently, Colcombet and Niwiński [4] have shown that for infinite graphs if
the payoff takes only values 0 and 1 and is prefix independent (the finite prefix
of a play has not influence on the payoff value) then only parity games have
positional optimal strategies.

While in our paper we consider only games over finite graphs, contrary to
[4] we allow general real valued payoff and do not impose any supplementary
restriction (like prefix independence). In the previous paper [10] we provided
necessary conditions for a payoff mapping guaranteeing the existence of optimal
positional strategies. These conditions were robust enough to hold for all popular
positional payoffs as well as for several new ones. Nevertheless, there are some
trivial positional payoff mappings that do not satisfy the criteria of [10]. In the
present paper we improve on the result of [10] by giving a complete character-
isation of positional payoff mappings, i.e. we provide conditions that are both
sufficient and necessary.

As an application, we describe how to construct, by means of priorities,
new positional payoff mappings. As a particular case, we obtain a positional
payoff mapping for which both the parity and mean-payoff games are just special
cases. This example may be of interest by itself combining qualitative criteria
expressed by parity condition with quantitative measures expressed by mean-
payoff. Note that recently another combination of parity and mean-payoff games
was proposed in [3], however the payoff of [3] happens to be very different from
ours, in particular it is not positional.
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1 Games, Arenas, Preferences and Optimal Strategies

For any set C, we write C∗, C+, Cω to denote respectively the sets of finite, finite
non-empty and infinite words over C. In general, for X ⊂ C∗, X∗ =

∑

∞

i=0 X i is
the usual Kleene iteration operation.

We begin by defining arenas where our players meet to confront each other.
Let us fix a set C of colours. An arena coloured by C is a triple

G = (SMax, SMin, E),

where SMax and SMin are two disjoint sets of states and E is the set of coloured
transitions. More specifically, if S = SMax ∪ SMin is the set of all states then
E ⊂ S × C × S. For a transition e = (s, c, t) ∈ E, the states s, t and the
colour c are respectively called the source, the target and the colour of e and
we note source(e) = s, target(e) = t and colour(e) = c. For a state s ∈ S,
sE = {e ∈ E | source(e) = s} is the set of transitions outgoing from s.

Throughout this paper, we always assume that arenas have finitely many
states and transitions and that each state has at least one outgoing transition.

A path in G is a finite or infinite sequence of transitions p = e0e1e2 . . . such
that, for all i ≥ 0, target(ei) = source(ei+1). The source source(p) of p is the
source of the first transition e0. If p is finite then target(p) is the target of the
last transition in p. It is convenient to assume that for each state s there exists
an empty path λs with no transitions and such that source(λs) = target(λs) = s.
The set of finite paths in G, including the empty paths, is denoted P ∗

G.
Two players Max and Min play on the arena G in the following way: if the

current game position is a state s ∈ SP controlled by player P ∈ {Max, Min}
then player P chooses an outgoing transition e ∈ sE and the state target(e)
becomes the new game position. If the initial position is s then in this way the
players traverse an infinite path p = e0e1e2 . . . in G such that source(p) = s.
In the sequel, finite and infinite paths in G are called often (finite and infinite)
plays.

Every play p = e0e1e2 . . . generates a sequence

colour(p) = colour(e0) colour(e1) colour(e2) . . .

of visited colours; we call colour(p) the colour of p (i.e. a colour of a play is a
sequence of colours rather than a colour).

Players express their preferences for the game outcomes by means of prefer-
ence relations.

A preference relation over a set C of colours is a binary complete, reflexive
and transitive relation over the set Cω of infinite colour sequences (complete
means here that for all x, y ∈ Cω either x v y or y v x). Thus v is in fact a
complete preorder relation over infinite colour sequences.

Intuitively, if x v y then the player whose preference relation is v appreciates
the sequence y at least as much as the sequence x. On the other hand, if x v y

and y v x then the outcomes x and y have the same value for our player, we
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shall say that x and y are equivalent for v. By v−1 by denote the inverse of v,
x v−1 y iff y v x.

We shall write x @ y to denote that x v y but not y v x.
A two-person game is a triple (G,vMax,vMin), where G is a finite arena and

vMax,vMin are preference relations for players Max and Min. The obvious aim
of each player is to obtain the most favourable for him infinite colour sequence.

We will investigate only antagonistic games where the preference relation for
player Min is just the inverse of the preference relation of player Max. One of the
preference relations being redundant in this case, antagonistic games (or simply
games in the sequel) are just pairs (G,v), where v is the preference relation of
player Max and G a finite arena.

Most often preference relations are introduced by means of payoff or utility
mappings. Such a mapping u : Cω → R ∪ {−∞, +∞} maps infinite colour
sequences to extended real numbers. If u is the payoff mapping of player Max
for example and the game outcome is an infinite colour sequence x ∈ Cω then
player Max receives the payoff u(x). A payoff mapping u induces a natural
preference relation vu compatible with u and defined by x vu y iff u(x) ≤ u(y).

Although in game theory preference relations are slightly less employed than
payoff mappings they are still standard, for example preference relations are
largely used in the popular textbook of Osborne and Rubinstein [13]. We have
chosen here to base our exposition on preference relations rather than on payoffs
for several reasons: first of all the proofs are more comprehensive when written
in the language of preference relations, secondly, one really does not need precise
payoff values unless the so-called ε-optimal strategies are considered which is not
the case in this paper, finally, for some preference relations it would be artifi-
cial, cumbersome and counterintuitive to define a corresponding payoff mapping
(while, as noted before, the converse is always true, a payoff defines immediately
a preference relation).

Intuitively, a strategy of a player is a method he uses to choose his moves
during the play. Thus for each finite play p that arrives at a state controlled
by player P , target(p) ∈ SP , the strategy indicates a transition with the source
in the state target(p) to be taken by player P after p. Therefore in general a
strategy for player P is a mapping

σP : {p ∈ P ∗

G | target(p) ∈ SP } → E,

such that σP (p) ∈ sE if s = target(p).
A finite or infinite play p = e0e1e2 . . . is said to be consistent with the

strategy σP if whenever target(ei) ∈ SP then ei+1 = σP (e0...ei) and moreover
e0 = σP (λs) if s = source(p) ∈ σP .

A positional (or memoryless) strategy for player P is a mapping σP : SP → E

such that for all s ∈ SP , σP (s) ∈ sE. Using such a strategy σP , after a finite
play p with target(p) ∈ VP player P chooses the transition σP (target(p)), i.e.
the chosen transition depends only on the current game position. Our interest
in positional strategies is motivated by the fact that they are especially easy to
implement, no memory of the past history is needed.
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In the sequel σ and τ , possibly with subscripts or superscripts, will always
denote strategies for players Max and Min respectively.

Given a state t and strategies σ and τ for players Max and Min, there exists
a unique play in G, denoted by pG(t, σ, τ), with source t consistent with both σ

and τ .
Strategies σ# and τ# are called optimal if for all states s ∈ S and all strate-

gies σ and τ of both players

colour(pG(s, σ, τ#)) v colour(pG(s, σ#, τ#)) v colour(pG(s, σ#, τ)) . (1)

Inequalities above mean that players Max and Min have no incentive to deviate
unilaterally from their optimal strategies.

It is easy to see that if (σ#
1 , τ

#
1 ) and (σ#

2 , τ
#
2 ) are pairs of optimal strategies

then (σ#
1 , τ

#
2 ) and (σ#

2 , τ
#
1 ) are optimal and in fact colour(pG(s, σ#

1 , τ
#
1 ))) and

colour(pG(s, σ#
2 , τ

#
2 ))) are equivalent for v.

2 Preferences Relations with Optimal Positional

Strategies.

The main aim of this section it to provide a complete characterisation of pref-
erence relations for which both players have optimal positional strategies for all
games on finite arenas.

Let Rec(C) be the family of recognizable subsets of C∗ (C can be infinite
and then L ∈ Rec(C) means that there exists a finite subset B of C such that L

a recognizable subset of B∗). For any language of finite words L ⊂ C∗, Pref(L)
will stand for the set of all prefixes of the words in L. We define an operator
[·] that associates with each language L ⊂ C∗ of finite words a set [L] ⊂ Cω of
infinite words:

[L] = {x ∈ Cω | every finite prefix of x is in Pref(L)} .

We extend the preference relation v to subsets of Cω : for X, Y ⊂ Cω,

X v Y iff ∀x ∈ X, ∃y ∈ Y, x v y .

Obviously, for x ∈ Cω and Y ⊂ Cω, x v Y and Y v x stand for {x} v Y and
Y v {x} respectively. We write also

X @ Y iff ∃y ∈ Y, ∀x ∈ X, x @ y .

Definition 1. A preference relation v is said to be monotone if for all recog-

nizable sets M, N ∈ Rec(C),

∃x ∈ C∗, [xM ] @ [xN ] =⇒ ∀y ∈ C∗, [yM ] v [yN ] .

A preference relation v is said to be selective if for each finite word x ∈ C∗ and

all recognizable languages M, N, K ∈ Rec(C),

[x(M ∪ N)∗K] v [xM∗] ∪ [xN∗] ∪ [xK] .
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Now we are ready to state the main result of this paper.

Theorem 2. Given a preference relation v, both players have optimal positional

strategies for all games (G,v) over finite arenas G if and only if the relations

v and its inverse v−1 are monotone and selective.

Before proceeding to the proof of Theorem 2 it can be useful to convey some
intuitions behind the definitions of monotone and selective properties.

Roughly speaking, a preference relation of Max is monotone if at each mo-
ment during the play the optimal choice of player Max between two possible
futures does not depend on the preceding finite play. For example, consider the
payoff function u defined on the set C = R of colours by the formula

u(x1x2 . . .) = sup
n∈N

1

n

n
∑

k=1

xk, (2)

where x1x2 . . . is an infinite sequence of real numbers. Consider the finite se-
quences x = 0000 and y = 1111 and the infinite sequences v = 2000 . . . = 20ω

and w = 1111 . . . = 1ω. Then u(xv) < u(xw) while u(yw) < u(yv), hence the
preference relation vu associated with u is not monotone. This means that player
Max has no optimal positional strategy in the one-player arena depicted on the
left of Fig 1, if Max plays optimally the transition to take at state z depends on
whether he arrives from s or from t. It is worth to note that the payoff (2) is
selective.

s

z

t

r

1 1 1
1

0 0 0
0

2

1
0

1

10

Fig. 1. When playing on the left arena using the non-monotone payoff (2), or playing
on the right arena using the non-selective payoff “wins 1 if the colours 0 and 1 appear
infinitely often and 0 otherwise” player Max has no optimal positional strategies.

The selective property expresses the fact that player Max cannot improve his
payoff by switching between different behaviors. Typical non selective payoff is
provided by the Muller condition. Let u be the payoff function for C = {0, 1}
defined by u(x0x1 . . .) = 1 if the colours 0 and 1 occur infinitely often, otherwise
the payoff is 0. This payoff mapping is monotone (as are all payoffs that do not
depend on finite prefixes) but is not selective. It is clear that when Max plays
with this payoff on the one-player arena depicted on the right of Fig 1 then
he should alternate infinitely often between the two transitions to maximize his
payoff.
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We begin the proof of Theorem 2 by noting the following trivial property of
the operator [·]:

Lemma 3. For all L, M ⊂ C∗, [L ∪ M ] = [L] ∪ [M ].

A finite (non-deterministic) automaton over C is a tuple A = (Q, i, F, ∆),
where Q is a finite set of states, i ∈ Q the initial state, F ⊂ Q the set of
final states and ∆ ⊂ Q × C × Q is the transition relation. A path in A is a
path in the one-player arena (Q, ∅, ∆) that we can construct from A and the
notions of source, target and colour of a path are defined as for arenas. So, in
this terminology, the language recognized by A is simply the set
{colour(p) | p is a finite path in A such that source(p) = i and target(p) ∈ F}.
The automaton A is said to be co-accessible if from any state there is a (possibly
empty) path to a final state.

Lemma 4. Let A = (Q, i, F, ∆) be a co-accessible finite automaton recognizing

a language L ⊂ C∗. Then

[L] = {colour(p) | p is an infinite path in A with source(p) = i}.

Proof. Let p = e0e1e2 . . . be an infinite path in A, where ∀j, ej ∈ ∆ and
source(e0) = i. Since A is co-accessible, for every n there is a path from the
state target(en) to a final state. Therefore the finite word colour(e0 . . . en) is a
prefix of some word recognized by A. Hence colour(p) ∈ [L].

Conversely, let x = c0c1c2 · · · ∈ [L]. Let T be the directed tree defined as
follows. The vertices of T are finite paths q in A such that colour(q) is a prefix
of x and source(q) = i. There is an edge from a vertex q of T to a vertex q′ iff
there is a transition e ∈ ∆ such that q′ = qe. The root of T is the empty path
λi with the source and target i. Clearly, T is infinite since x is infinite and the
degree of vertices of T is bounded by the cardinality of ∆. Hence, by the Koenig
Lemma, there exists an infinite path in T starting from the root λi. This infinite
path corresponds to an infinite path in A coloured by x. ut

It turns out that already for one-player games controlled by player Max to
guarantee that Max has an optimal positional strategy it is necessary for his
preference relation v to be monotone and selective:

Lemma 5. Suppose that player Max has optimal positional strategies for all

games (G,v) over finite one-player arenas G = (SMax, ∅, E), where he controls

all states. Then v is monotone and selective.

Proof. We want to use finite automata as one-player arenas with all states con-
trolled by player Max. Technically however, this raises a problem since we require
that arenas have always at least one outgoing transition for each state s and this
condition may fail for automata. For this reason we introduce the following no-
tion.

For any finite automaton A = (Q, i, F, ∆), a state s ∈ Q is said to be essential

if there exists an infinite path in A with source s. A transition is essential if its
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target is essential. Note that for any essential state s there is at least one essential
transition with source s and any infinite path in A traverses uniquely essential
states and transitions. Moreover, by Lemma 4, if A is co-accessible and recognizes
L then [L] 6= ∅ iff the initial state is essential. By arena(A) we shall denote the
arena (Q′, ∅, ∆′), where Q′ and ∆′ are respectively the sets of essential states
and essential transitions of A.

Suppose that v satisfies the hypothesis of our lemma. We show first that v
is monotone. Let x, y ∈ C∗ and M, N ∈ Rec(C) and

[xM ] @ [xN ] . (3)

We shall prove that this implies

[yM ] v [yN ] . (4)

Let Ax and Ay be the usual deterministic co-accessible automata recogniz-
ing the one-word languages {x} and {y}. Let AM ,AN be finite co-accessible
automata recognizing respectively M , N . Without loss of generality we can as-
sume that neither AM nor AN has a transition with the initial state as the
target.

If [M ] is empty then (4) holds trivially. Thus we can assume that [M ] and
[N ] are non-empty and the initial states of AM and AN are essential.

A

Qx\t Qy\t

QM\t QN\t

t

B

Qx\t

QM\t QN\t

QK\t

t

BM

t

Qx\t

QM\t

BK

t

Qx\t

QK\t

BN

Qx\t

QN\t

t

Fig. 2. Automaton A used to prove that v is monotone is obtained by “gluing” together
the final states of Ax and Ay with initial states of AM and AN . Qx, Qy, QM , QN are the
states of the corresponding automata. Automaton B used to prove that v is selective
is obtained by “gluing” together the final state of Ax, the initial and the final states
of AM and AN and the initial state of AK .

From automata Ax,Ay,AM ,AN we obtain a new automaton A by identifying
the following four states: the final state of Ax, the final state of Ay, the initial
state of AM and the initial state of AN . We note t the state obtained in this way.
The transitions of Ax and Ay with target in the final state have target t in A
while the transitions of AM ,AN with the source in the initial state have source
t in A. All the other states and transitions remain unchanged in A, see Fig 2.
The final states of AM and AN are final in A while the initial state of Ax is
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initial in A. Note that since AM and AN are co-accessible A is also co-accessible.
Moreover, A recognizes the language x(M ∪N) (since we have assumed that no
transition of AM and AN returns to the initial state).

Let σ# be an optimal positional strategy of player Max in the game
(arena(A), u). Then, by Lemma 4 applied to A, the set of plays in arena(A)
starting from the initial state of A is [x(M ∪N)], which is equal to [xM ]∪ [xN ]
by Lemma 3. Let p be the unique infinite play in arena(A) with source in the
initial state of A and consistent with the strategy σ#. Then by optimality of
σ#, [xM ] ∪ [xN ] v colour(p) implying, by (3), colour(p) 6∈ [xM ].

Therefore, play p reaching the state t takes a transition leading to the states
of AN (Fig. 2) and stays forever in AN in the sequel. In other words, we can
conclude that σ#(t) is a transition of AN .

Now let us examine the unique infinite play q in arena(A) consistent with σ#

and starting at the initial state of Ay. Since q is consistent with σ# and σ#(t)
is a transition of AN , play q traverses first the states of automaton Ay and next
the states of AN .

Since from all the states traversed by q we can reach in A the final states of
AN , we have

colour(q) ∈ [yN ] . (5)

On the other hand, for the same reasons as for A but now with the initial state
of Ay, the optimality of σ# yields [yM ] ∪ [yN ] v colour(q). This and (5) imply
immediately (4).

It remains to prove that v is selective. Let x ∈ C∗, M, N, K ∈ Rec(C).
Without loss of generality we can assume that M and N do not contain the
empty word and choose the automata AM and AN recognizing M and N to
be co-accessible, with one initial and one final state and with no transition
returning to the initial state and no transition leaving the final state. Let AK

be a co-accessible automaton recognizing K with no transition returning to its
initial state. We glue together the final states of automata Ax,AM ,AN and the
initial states of AM ,AN ,AK . The resulting state is called t. Taking the initial
state from Ax and the final states from AK we obtain an automaton B.

Let σ# be an optimal positional strategy of player Max in the game
(arena(B),v). Let p be the infinite play consistent with σ# and with the ini-
tial state of B as the source. Automaton B is co-accessible and recognizes the
language x(M ∪ N)∗K, therefore, by Lemma 4 and optimality of σ#,

[x(M ∪ N)∗K] v colour(p) . (6)

Since σ# is positional, each time p traverses the state t, σ# chooses the same
outgoing transition. This means that p is an infinite path in one of the three co-
accessible automata BM ,BN , BK depicted on Fig. 2. By Lemma 4, colour(p) v
[xM∗] ∪ [xN∗] ∪ [xK]. This and (6) imply that u is selective. ut

With each arena G with a state set S and a transition set E we associate the
index nG of G defined as nG = |E| − |S|. Note that since in arenas each state
has at least one outgoing transition the index is always non-negative. The proof
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of Theorem 2 will be carried on by induction on the value of nG and the decisive
inductive step is provided by the following lemma.

Lemma 6. Let G be an arena and v a monotone and selective preference rela-

tion. Suppose that players Max and Min have optimal positional strategies in all

games (H,v) over the arenas H such that nH < nG. Then Max has an optimal

positional strategy in the game (G,v).

Proof. Let G = (SMax, SMin, E) and let v be monotone and selective. If for every
t ∈ SMax there is only one transition with the source t then Max has never any
choice and he has therefore a unique strategy which is positional and optimal.

Suppose now that there exists a state t ∈ SMax such that |tE| > 1. Fix
a partition of tE into two disjoint non-empty sets A0, A1. We define two new
arenas Gi = (SMax, SMin, Ei), i = 0, 1, where Ei = E \A1−i. In other words, Gi

is obtained by removing from G the transitions with the source t not belonging
to Ai. Since nGi

< nG we can apply the hypothesis of our lemma to the games
Gi = (Gi,v) to conclude that in both games Gi players Max and Min have

optimal positional strategies σ
#
i , τ

#
i respectively. Let us note G = (G,v) the

initial game over G.

Let Mi ⊂ C∗ be the set of finite colour sequences colour(p) of all finite plays

p in Gi that are consistent with strategy τ
#
i and have source and target t.

To see that Mi ∈ Rec(C), we can build a finite automaton with the same
state space as for the arena Gi, we keep also all transitions of Gi that have the
source in the set SMax, however for each state s ∈ SMin controlled by player
Min we keep only one outgoing transition, namely the transition τ

#
i (s) ∈ sEi

chosen by the strategy τ
#
i . Then Mi is the set of words recognized by such an

automaton if we take t as the initial and the final state.

Now we define the sets Ki ⊂ C∗, i = 0, 1 consisting of colours colour(p) of

all finite plays p in the arena Gi that have source t and are consistent with τ
#
i

(but can end in any state of Gi). Again it should be obvious that Ki ∈ Rec(C).

The monotonicity of v implies that either ∀x ∈ C∗, [xK0] v [xK1] or ∀x ∈
C∗, [xK1] v [xK0] Since the former condition is symmetric to the latter, without
loss of generality, we can assume that

∀x ∈ C∗, [xK1] v [xK0] . (7)

Let us set

σ# = σ
#
0 . (8)

We shall show that, if (7) holds then strategy σ# is not only optimal for player
Max in the game G0 but it is also optimal for him in G. It is clear that σ# is
a well-defined positional strategy for Max in the game G. To finish the proof of
Lemma 6 we should construct a strategy τ# for player Min such that (σ#, τ#)
is a couple of optimal strategies. However, contrary to σ#, to implement the
strategy τ# player Min will need some finite memory.
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We define first a mapping h : P ∗

G → {0, 1} that assigns to each finite play
p ∈ P ∗

G in G a one bit value h(p):

h(p) =











0 if either p does not contain any transition with the source t or

the last transition of p with the source t belongs to A0,

1 if the last transition of p with the source t belongs to A1.

Then the strategy τ# of Min in G is defined by

τ#(p) =

{

τ
#
0 (target(p)) if h(p) = 0,

τ
#
1 (target(p)) if h(p) = 1,

for finite plays p with target(p) ∈ SMin. In other words, playing in G player Min

applies either his optimal strategy τ
#
0 from the game G0 or his optimal strategy

τ
#
1 from the game G1 depending on the value h(p). Initially, before the first visit

to t, player Min uses the strategy τ
#
0 . After the first visit to t the choice between

τ
#
0 and τ

#
1 depends on the transition chosen by his adversary Max at the last

visit to t, if the chosen transition was in A0 then player Min uses the strategy
τ

#
0 , otherwise, if Max took a transition of A1 then player Min plays according

to τ
#
1 . The intuition behind the definition of τ# is the following: If at the last

visit to t player Max has chosen a outgoing transition from A0 then this means
that the play from this moment onward is like a play in G0 and therefore player
Min tries to respond using his optimal strategy from G0. Symmetrically, if at
the last visit to t player Max has chosen an outgoing transition from A1 then
from this moment onward the play is like a play in G1 and player Min tries to
counter with his optimal strategy from G1.

It should be clear that the strategy τ# needs in fact just two valued memory
{0, 1} for player Min to remember if during the last visit to t a transition of A0

or a transition of A1 was chosen by his adversary. This memory is initialised to
0 and updated only when the state t is visited.

We shall prove that (σ#, τ#) is a couple of optimal strategies in G, i.e. (1)
holds for any strategies σ, τ of players Max and Min and any initial state s.

In the sequel we shall write frequently p v q for infinite plays p and q as an
abbreviation of colour(p) v colour(q).

Let τ be any strategy for player Min in the game G and let τ0 be its restriction
to the set P ∗

G0
of finite plays in the arena G0. Clearly τ0 is a valid strategy of

Min over the arena G0. Then for any state s of G

pG(s, σ#, τ#) = pG0
(s, σ#

0 , τ
#
0 ) by definition of σ# and τ#,

v pG0
(s, σ#

0 , τ0) by optimality of (σ#
0 , τ

#
0 ) in G0,

= pG(s, σ#, τ) by definition of σ# and τ0,

which concludes the proof of the right hand side inequality in (1).

Now let σ be any strategy for player Max in G and s any state of G. There
are two cases to examine depending on whether the play pG(s, σ, τ#) traverses
t or not.
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Case 1: pG(s, σ, τ#) does not traverse the state t.

In this case, according to the definition of τ#, player Min uses in fact all the
time during this play the strategy τ

#
0 , never switching to τ

#
1 .

Let us take any strategy σ0 for player Max which is defined exactly as σ

for all finite plays with the target different from t while for plays with target
t the strategy σ0 chooses always a transition of A0. The last condition implies
that σ0 is also a valid strategy over the arena G0. Moreover, since pG(s, σ, τ#)
never traverses t the strategies σ and σ0 choose the same transitions for all finite
prefixes of pG(s, σ, τ#) with the target the state controlled by player Max, there-

fore pG(s, σ, τ#) = pG0
(s, σ0, τ

#
0 ). However, pG0

(s, σ0, τ
#
0 ) v pG0

(s, σ#
0 , τ

#
0 ) =

pG(s, σ#, τ#), where the first inequality follows from optimality of σ
#
0 , τ

#
0 in G0

while the last equality is just the consequence of (8) and definition τ#. Therefore,
pG(s, σ, τ#) v pG(s, σ#, τ#), i.e. the left-hand side of (1) holds in this case.

Case 2: pG(s, σ, τ#) traverses the state t.

Let p′ be the shortest finite play such that p′ is a prefix of pG(s, σ, τ#) and
target(p′) = t. Note that by the definition of τ# it follows that p′ is in fact

consistent with τ
#
0 . Let colour(p′) = x.

Then by definition of x, M0, M1, K0 and K1, any prefix of colour(pG(s, σ, τ#))
longer than x belongs to the set x(M0 ∪ M1)∗(K0 ∪ K1), hence

colour(pG(s, σ, τ#)) ∈ [x(M0 ∪ M1)∗(K0 ∪ K1)]

v [x(M0)∗] ∪ [x(M1)∗] ∪ [x(K0 ∪ K1)] since v is selective,

v [x(M0)∗] ∪ [x(M1)∗] ∪ [xK0] ∪ [xK1] by Lemma 3,

v [xK0] ∪ [xK1] since (Mi)
∗ ⊂ Ki,

v [xK0] by (7).
(9)

Let us define a new transition set δ ⊂ E, where E is the the set of transitions
of the arena G: for any state r of G the set of transitions with source r under δ

is defined by:

rδ =











A0 if r = t,

rE if r ∈ SMax \ {t},

τ
#
0 (r) if r ∈ SMin.

(10)

Let Q be the set of states of G that are accessible from t under δ. Take a finite
automaton D with the initial state t, the set of states Q all of which are final
and the transition relation δ restricted to Q.

Automaton D is co-accessible, recognizes the language K0 and therefore, by
Lemma 4, [K0] is precisely the set of colour sequences colour(q) of infinite plays

q with source t that are consistent with τ
#
0 .

Let U be the set of all colour sequences colour(q′) of infinite plays q′ in G0

with source s that are consistent with τ
#
0 . Then x[K0] ⊂ U implying that

x[K0] v U v colour(pG0
(s, σ#

0 , τ
#
0 )), (11)

where the last inequality follows from optimality of σ
#
0 in the game G0. But, by

definition of σ# and τ#, we get pG0
(s, σ#

0 , τ
#
0 ) = pG(s, σ#, τ#), which together
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with (9) and (11) yield pG(s, σ, τ#) v pG(s, σ#, τ#) terminating the proof of
the left hand-side of (1) in this case.

ut

Proof. of Theorem 2. Note that, due to symmetry, we can permute players Max
and Min and replace the preference relation v by v−1 in Lemmas 5 and 6. Since,
clearly, players have optimal positional strategies for the preference relation v
iff they have optimal positional strategies with the preference v−1 under the
permutation (in fact these are the same strategies), Lemma 5 shows that to be
monotone and selective for v and v−1 is necessary for the existence of optimal
positional strategies.

Now Lemma 6 allows us to apply a trivial induction over the arena index to
conclude immediately that these conditions are also sufficient. ut

The following corollary turns out to be much more useful in practice than
Theorem 2 itself.

Corollary 7. Suppose that v is such that for each finite arena G = (SMax, SMin, E)
controlled by one player, i.e. such that either SMax = ∅ or SMin = ∅, the player

controlling all states of G has an optimal positional strategy in the game (G,v).
Then for all finite two-player arenas G both players have optimal positional

strategies in the games (G,v).

Proof. By Lemma 5 if both players have optimal positional strategies on one-
player games then v and v−1 are monotone and selective and then, by Theo-
rem 2, they have optimal positional strategies on all two-person games on finite
arenas. ut

3 An example: Priority Mean-payoff Games.

The interest in Corollary 7 stems from the fact that often it is quite trivial to ver-
ify if a given preference relation is positional for one-player games. To illustrate
this point let us consider mean-payoff games [7]. Here colours are real numbers
and for an infinite sequence r1r2 . . . of elements of R the payoff is calculated by
lim supn→∞

1
n

∑n

i=1 ri. Suppose that G is an arena controlled by player Max.
Take in G a simple cycle (in the sense of graph theory) with the maximal mean
value. It is easy to see that any other infinite play in G cannot supply a payoff
greater than the mean-payoff over this cycle. Thus the optimal positional strat-
egy for player Max is to go as quickly as possible to this maximum payoff cycle
and next go round this cycle forever. Clearly, player Min has also optimal posi-
tional strategies for all arenas where he controls all states and Corollary 7 allows
us to conclude that in mean-payoff games both players have optimal positional
strategies.

As a more sophisticated example illustrating Corollary 7 we introduce here
priority mean-payoff games. Let C = {0, . . . , k} × R be the set of colours,
where for each couple (m, r) ∈ {0, . . . , k} × R the non-negative integer m is
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called the priority and r is a real-valued reward. The payoff for an infinite se-
quence x = (m1, r1), (m2, r2), . . . of colours is calculated in the following way:
let k = lim supi→∞

mi be the maximal priority appearing infinitely often in x

and let i1 < i2 < . . . be the infinite sequence of all positions in x with the pri-
ority k, i.e. k = mi1 = mi2 = . . .. Then the priority mean-payoff is calculated
as the mean payoff of the corresponding subsequence ri1ri2 . . . of real rewards,
lim supt→∞

1
t

∑t

n=1 rin
. In other words priorities are used here to select an ap-

propriate subsequence of real rewards for which the mean-payoff mapping is
applied subsequently.

This payoff, rather contrived at first sight, is in fact a common natural gener-
alization of mean-payoff and parity payoffs. On the one hand, we recover simple
mean-payoff games if there is only one priority. On the other hand, if we allow
only a subset of colours consisting of couples (m, r) such that r is 1 if m is odd
and r is 0 for m even then the rewards associated with the maximal priority are
constant and we just obtain the parity game coded in an unusual manner.

Instead of proving immediately that the priority mean-payoff mapping admits
optimal positional strategies let us generalize it slightly before.

Let u0, . . . , uk be payoff mappings on the set C of colours. We define a payoff
mapping u on the set B = {0, . . . , k} × C of colours which we shall call priority

product of u0, . . . , uk. In the sequel we call the elements of {0, . . . , k} priorities.
Let x = (p1, c1), (p2, c2), . . . ∈ Bω be an infinite colour sequence of elements of
B. Define priority(x) to be the highest priority appearing infinitely often in x:
priority(x) = lim supi→∞

pi.
Let (jm)∞m=0 be the sequence of positions in x with priority priority(x),

priority(x) = pj1 = pj2 = pj3 = . . .. Then the priority product gives us the
payoff

u(x) = um(cj1cj2cj3 . . .), where m = priority(x) .

A payoff mapping u is said to be prefix-independent if ∀x ∈ C∗, ∀y ∈ Cω,
u(xy) = u(y).

Lemma 8. If ui, i = 0, . . . , k, are prefix-independent and admit all optimal

positional strategies for both players for all games on finite arenas then their

priority product u admits optimal positional strategies for both players on all

finite arenas.

Note first that the priority product of several mean-payoff mappings is just the
priority mean-payoff mapping. Thus Lemma 8 implies that on finite arenas pri-
ority mean-payoff mapping admits optimal positional strategies for both players.

Proof. We prove that, under the conditions of Lemma 8, player Max has optimal
positional strategies on one-player arenas. Let G be such an arena. For each
simple cycle in G we can calculate the value of the payoff u for the play that
turns round the cycle forever. Let a be the maximal payoff calculated in this
way and c the cycle giving this value. We prove that for any infinite play p on G,
u(colour(p)) ≤ a, which means that an optimal strategy for player Max is to go
to as quickly as possible to the cycle c and turn round c forever. This strategy
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is positional. Thus let p be any infinite path in G and let m be the maximal
priority appearing infinitely often in p. This implies that in G there exists at
least one simple cycle with the maximal priority m. Let b be the maximum
payoff of u over all simple cycles with the maximal priority m, this quantity is
well-defined since we noted that such cycles exist. It is not difficult to observe
that u(colour(p)) ≤ b, but b ≤ a just by the definition of a.

The proof for arenas controlled by player Min is symmetrical and Corollary 7
applies. ut
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