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SUMMARY

Hedgehog (HH) is a major secreted morphogen involved in development, stem cell 

maintenance and oncogenesis [1, 2]. In Drosophila wing imaginal discs, HH produced in the 

posterior compartment diffuses into the anterior compartment to control target gene 

transcription via the transcription factor Cubitus interruptus (CI). The first steps in reception 

and transduction of the HH signal are mediated by its receptor Patched (PTC) [3] and the 

seven-transmembrane domain protein Smoothened (SMO) [4, 5]. PTC and HH control SMO

by regulating its stability, trafficking and phosphorylation (for review see [6]). SMO interacts 

directly with the Ser-Thr protein kinase Fused (FU) and the kinesin-related protein Costal2 

(COS2), which interact with each other and with CI in an intracellular “Hedgehog transducing 

complex” [7-9].

We show here that HH induces FU targeting to the plasma membrane in a SMO-dependent 

fashion and that, reciprocally, FU controls SMO stability and phosphorylation. FU anchorage 

to the membrane is sufficient to make it a potent SMO-dependent, PTC-resistant, activator of 

the pathway. These findings reveal a novel positive-feedback loop in HH transduction and are 

consistent with a model in which FU and SMO, by mutually enhancing each other's activities, 

sustain high levels of signaling and render the pathway robust to PTC level fluctuations. 

RESULTS

SMO promotes the relocalization of FU from vesicles to the plasma membrane in 

response to HH 

We produced FU tagged with RFP (RFP-FU) and SMO tagged with GFP (SMO-GFP) 

alone or together in Clone 8 cells (Cl-8) — Drosophila wing imaginal disc cultured cells 

responsive to HH. In these conditions, pairs of proteins were overproduced, so other

components were probably present at much lower levels. In the absence of HH, SMO-GFP
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colocalized with RFP-FU (but not with RFP-COS2) in vesicles (Figure 1G-G”, see also [9]). 

HH induced the accumulation of SMO-GFP at the cell surface, but had little effect on RFP-

FU alone (Figure 1B, D). When both proteins were overproduced in the presence of HH, most 

of the RFP-FU colocalized with SMO-GFP at the plasma membrane (Figure 1H-H”). COS2 

has been reported to bind the N-terminal part of the cytoplasmic tail of SMO directly, but 

SMO-GFP colocalized with RFP-COS2 only when HH was present (see the Supplementary 

Data Figure S3 of [9]). 

SMOFU-GFP is a mutant of SMO-GFP unable to interact with FU or to colocalize with 

RFP-FU in the absence of HH, due to deletion of the last 59 amino acids of SMO, which 

include the SMO/FU interaction domain [9]. In the presence of HH, SMOFU-GFP 

accumulated at the plasma membrane (Figure 1E-F) and colocalized with RFP-COS2 in the 

presence of HH (Supplementary Data Figure S3 of [9]), but did not recruit RFP-FU (Figure 

1J-J”).

Thus, upon HH stimulation, SMO-GFP induces the relocalization of RFP-FU to the plasma 

membrane. This effect is directly dependent on the region of SMO-GFP that binds FU and is 

unlikely to involve COS2. 

The production of a form of FU tethered at the plasma membrane disrupts normal 

Drosophila development and constitutively activates the HH pathway 

In imaginal wing discs, FU is required to upregulate genes responsive to high levels of HH 

[10-12]. We investigated the consequences of FU relocalization to the membrane, by 

producing a fusion between the N-terminal end of CFP-FU and GAP43 (GAP-CFP-FU) - a 

palmitoylated domain thought to anchor proteins in raft domains [13, 14] - in wing imaginal 

discs. As wild-type FU [15], GFP-FU accumulated throughout the wing imaginal disc 

(Supplemental Data Figure S1) and its overproduction of had no visible effect on wing 
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development (Figure 2B). By contrast, GAP-CFP-FU gave a very strong wing phenotype 

characteristic of strong ectopic HH pathway activation (Figure 2C, D and data not shown).

In the wing disc, HH emanating from the posterior cells stabilizes full-length CI (CI-FL) 

[16] and induces the differential transcription of target genes in anterior cells near the antero-

posterior boundary [10, 12, 17]. Consistent with its phenotypic effects, GAP-CFP-FU (but not 

GFP-FU) overproduction in the wing disc led to ectopic anterior (i) accumulation of CI-FL

(Figure 2E and H) and (ii) expression of all the HH-responsive genes tested, including those 

known to respond to the highest levels of HH, including ptc itself, collier (col) and engrailed

(en) (Figure 2F-L’).

In fu- mutants, the production of GAP-CFP-FU rescued the (fu-) phenotype and even led to 

overactivation of the pathway at the antero-posterior border (Figure 2M-N and Supplemental 

Data Figure S2), thus excluding the possibility that GAP-CFP-FU acted by sequestering a 

negative regulator of the endogenous FU protein. In contrast, the overproduction of COS2 or 

SU(FU), two known antagonists that interact physically with FU [18, 19], strongly decreased 

the activating effects of GAP-CFP-FU (Supplemental Data Figure S3). Accordingly, the loss 

of SU(FU) function led to an aggravation of the phenotypes induced by GAP-CFP-FU. The 

loss of one copy of cos2 had no effect (data not shown).

In conclusion, the overproduction of a form of FU anchored to the membrane is sufficient 

to induce medium- to high-level activation of the HH pathway in the wing disc, raising the 

possibility that the subcellular distribution of FU plays a key role in controlling its activity. 

The wild-type and membrane-tethered forms of FU control the subcellular 

distribution, stability and phosphorylation of SMO
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Surprisingly, the loss of one dose of the smo gene (flies heterozygous for the amorphic 

smoD16 allele), [4, 20] had an epistatic effect on the activating effects of GAP-CFP-FU, 

restoring an almost wild-type wing phenotype and normal levels of PTC accumulation 

(Figure 2O-O’ and P-P’). This is the first report of a dominant effect of a loss-of-function 

allele of smo and argues for of a dose-dependent effect of smo.  

SMO is stabilized in response to HH in the posterior compartment and in the anterior cells 

close to the antero-posterior boundary [21]. In GAP-CFP-FU-producing discs (but not in 

GFP-FU-producing discs), SMO accumulated throughout the disc, even in the anterior region, 

which contains no HH (Figure 3A, B and D). We also induced clones of cells homozygous for 

fuZ4, a deficiency including the fu gene [22]. In the posterior compartment, where high levels 

of HH normally stabilize SMO, fuZ4/fuZ4 clones displayed low levels of endogenous SMO 

protein accumulation (Figure 3C and C’). These results suggest that FU is required in the 

wing imaginal disc for full SMO stabilization in cells receiving the HH signal and that, in the 

absence of HH, the anchorage of FU to the membrane is sufficient to increase SMO 

accumulation. 

In Cl-8 cells without HH, GAP-CFP-FU (alone or with SMO-RFP) was present at the 

plasma membrane and in large vesicular structures beneath the plasma membrane (Figure 1K-

K” and data not shown). In cotransfected cells, SMO-RFP, which is normally vesicular in the 

absence of HH, was present at the plasma membrane where it almost completely colocalized

with GAP-CFP-FU (Figure1K-K”). In contrast, the distribution of SMOFU-RFP was not 

affected by GAP-CFP-FU (Figure 1L-L”), indicating that GAP-CFP-FU recruited SMO-RFP 

by interacting with it. In similar conditions (without HH), RFP-COS did not colocalize with 

SMO-GFP (Supplementary Data Figure S3 in [9]), and GAP-CFP-COS2 neither interacted 

with SMO-RFP nor relocalized it, despite being present at the plasma membrane
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(Supplemental Data Figure S4). Both these data argue against a potential bridging effect of 

endogenous COS2.

In conclusion, (i) the constitutive activation of the HH pathway induced by GAP-CFP-FU 

expression requires endogenous SMO, (ii) GAP-CFP-FU can recruit SMO (but not SMOFU-

RFP) to the membrane of Cl-8 cells (iii) GAP-CFP-FU and FU stabilize SMO in vivo. Thus,

FU acts, directly or indirectly, on SMO.

The activating effects of FU anchored to the membrane cannot be inhibited by ptc 

overexpression 

PTC has a negative effect on SMO and its overproduction inhibits the HH pathway [21, 23]

(Figure 2Q). However, PTC overproduction was unable to attenuate the effects of GAP-CFP-

FU (Figure 2 R). In contrast, PTC overproduction was able to counter the activating effects of

GFP-SMO-GAP or SMOFU, which activate the HH pathway at low and high levels,

respectively (Supplemental Data Figure S5).  

When ptc was expressed alone with the MS1096 driver, which gives strong expression in 

the dorsal compartment of the wing pouch [24] (Supplemental Data Figure S6), much lower 

levels of posterior SMO accumulation were observed in the dorsal compartment (Figure 3E). 

Coexpression of the GAP-CFP-FU construct, but not of GFP-FU, (Figure 3F and G) 

abolished this effect of PTC, as it resulted in uniform SMO accumulation. This result is 

consistent with a previous report [25] showing that the increase in SMO accumulation in 

response to HH observed when PTC levels are reduced (by RNA interference) is abolished by

a decrease in FU levels.

Thus, our data demonstrate that the activation and stabilization of SMO by GAP-CFP-FU 

cannot be downregulated by PTC. 



7

Wild-type FU and FU anchored to the membrane modulate the phosphorylation of 

SU(FU) and SMO

FU is required for the phosphorylation of SU(FU) [25]. We investigated the effects of 

GAP-CFP-FU on SU(FU) phosphorylation, by western blot analysis of imaginal wing disc 

extracts (Figure 3H). In wild-type discs and in discs expressing GFP-FU, a small fraction of 

SU(FU) was phosphorylated, probably due to the presence of endogenous HH. The 

phosphorylated SU(FU) fraction was more abundant in discs producing GAP-CFP-FU (driven 

with MS1096). Thus, anchoring FU to the membrane can promote the phosphorylation of 

SU(FU).

SMO is hyperphosphorylated in response to HH. This phosphorylation involves the cAMP-

dependent protein kinase (PKA) and casein kinase I (CKI) and is necessary for the activation 

of SMO [26-28]. We monitored the phosphorylation of SMO tagged with HA (SMO-HA) in 

extracts of Drosophila S2 cells (Figure 3I). In the absence of HH, GFP-FU led to the 

appearance of slowly migrating forms of SMO-HA (green arrowhead), at intermediate 

positions between the unphosphorylated form of SMO-HA (black arrowhead) and the 

hyperphosphorylated forms induced by HH (red arrowhead). These intermediate forms 

corresponded to phosphorylated isoforms of SMO-HA, as they disappeared after incubation 

of the extracts with alkaline phosphatase (Figure 3J). GAP-CFP-FU had a similar effect on 

SMO-HA phosphorylation (Figure 3I). GAP-CFP-FU also reproducibly stabilized SMO-HA 

(see Figure 3 and for supplemental controls the Supplemental Data Figure S7), resulting in 

larger amounts of phosphorylated SMO-HA than obtained with GFP-FU. 

Thus, both GFP-FU and GAP-CFP-FU can induce the phosphorylation of SMO, and our 

data suggest that FU may activate the pathway by increasing the amount of phosphorylated 

SMO accumulated. 
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The kinase activity of FU is involved both in the phosphorylation of SMO and the 

activating effects of GAP-CFP-FU

We investigated whether the phosphorylation of SMO-HA induced by FU was dependent 

on the kinase activity of FU, by testing two mutants of FU (Figure 2A): GFP-FU-DANA, 

mutated for two amino acids crucial for the phospho-transfer reaction, and GFP-FU-AS, in 

which a conserved residue (Thr 158) potentially involved in activating the auto-

phosphorylation of FU was modified. Both mutants were shown to have lost their ability to 

enhance the transcriptional response of an HH-sensitive reporter gene in S2 cells [29]. We 

found that GFP-FU-DANA induced no phosphorylation of SMO-HA (Figure 3I), whereas 

FU-AS induced only very low levels of phosphorylation (data not shown). Similar results 

were obtained with GAP-CFP-FU-DANA (Figure 3K) and GAP-CFP-FU-AS (data not 

shown). However, these two proteins were present at the plasma membrane, where they 

recruited SMO-RFP (Supplemental Data Figure S8). Thus, neither its kinase activity nor its 

Thr 158 are required for the interaction of GAP-CFP-FU with SMO or the recruitment of

SMO at the plasma membrane but they are required to promote SMO phosphorylation. 

FU-GFP-DANA expression unexpectedly induced a [fu–]-like phenotype and FU-GFP-AS 

induced mild downregulation of the HH pathway (Supplemental Data Figure S8). GAP-CFP-

FU-AS and GAP-CFP-FU-DANA gave similar phenotypes, indicating that the negative 

effects of FU-DANA/AS could not be overcome by tethering these molecules to the 

membrane. As these mutants of CFP-FU, (with or without their GAP anchor) recruit FU-GFP 

to the plasma membrane (Supplemental Data Figure S9), they may exert their dominant 

negative effects by dimerizing with endogenous FU. 

We detected no effect of GFP-FU or GAP-CFP-FU on the phosphorylation of SMO-HA 

induced by HH. Nevertheless, GAP-CFP-FU-DANA (and to a lesser extent, GFP-FU-DANA) 
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significantly decreased the fraction of SMO-HA phosphorylated in response to HH (Figure 

3K and data not shown). Moreover, SMOFU-GFP, which cannot interact with FU, displayed a 

lower fraction of phosphorylated isoforms in response to HH than SMO (Figure 3L and 

Supplemental Data Figure S10). Thus, both the kinase activity of FU and the interaction 

between FU and SMO are required for full SMO phosphorylation in response to HH. 

DISCUSSION

This work provides new information about (i) the mechanisms by which the activation of 

SMO is transduced to its cytoplasmic effector FU, (ii) the mechanisms of FU activation, and 

(iii) a novel positive feedback loop between FU and SMO. 

Here and in a previous study [9], we provide evidence that SMO controls the subcellular 

distribution of two of its physical partners, FU and COS2, recruiting them to the plasma 

membrane in response to HH. Our data also suggest that FU may link COS2 to SMO in a 

vesicle-associated complex in the absence of HH, whereas FU and COS2 may independently 

bind SMO at the plasma membrane in the presence of HH.  Thus, HH may not only promote, 

via SMO, the recruitment of FU and COS2 to the plasma membrane, it may also modulate the 

nature of interactions between these three proteins.

Several non exclusive mechanisms seem to be involved in controlling FU activity. First, the 

forced localisation of FU at the membrane induces strong SMO-dependent activation of the

pathway in the wing. This study is the first to report a dominant active form of this type of 

kinase. Second, we show here that the presence of a conserved Thr in the activating loop is 

important for the promotion of full SMO phosphorylation and for the activating effects of 

GAP-FU. Thus, as FU is known to be phosphorylated in response to HH [30], the 

phosphorylation of this loop — by auto-phosphorylation or by other kinases — may be a key 
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element in FU regulation. Third, HH may regulate FU by controlling its dimerization or its 

interaction with potential regulatory proteins. Possible FU dimerization is consistent with (i) 

the reported interaction between the regulatory domain of FU and its kinase domain [31], (ii) 

the recruitment to the plasma membrane of wild-type FU by the wild-type and mutant forms 

of GAP-FU (Supplemental Data, Figure S8), and (iii) the dominant negative effects of FU 

mutants with modified kinase domains (see Supplemental Data Figure S2 and 8).

We present here evidence for of a novel, positive feedback loop in which SMO and 

FU enhance each other's activities. Indeed, SMO promotes the relocalization of FU to the 

plasma membrane and is required for the activating effects of GAP-FU, whereas both GAP-

FU and FU control SMO stability and phosphorylation. FU kinase activity is required for 

SMO phosphorylation and for the activating effects of GAP-FU, but not for its association 

with SMO. FU may phosphorylate SMO directly or may act on other substrates, indirectly 

facilitating SMO phosphorylation, inhibiting phosphatases or stabilizing phosphorylated 

SMO. Both FU activity and its interaction with SMO seem to be required for full 

hyperphosphorylation of SMO in response to HH. 

In the wing disc, FU is required principally for responses to the highest levels of HH 

present at the antero-posterior border [10-12], where SMO is active despite the strong 

upregulation of ptc. The effects of GAP-FU and FU on SMO reported here provide the first 

clues to a putative mechanism (FU-dependent phosphorylation and stabilization of SMO), 

potentially accounting for the resistance of SMO to the high level of PTC induced by HH in 

responding cells.

We propose the following model: (i) The HH-induced relocalization of SMO to the plasma 

membrane leads to the recruitment of FU and COS2 at this membrane. (ii) FU, in turn, acts on 

SMO, probably by further enhancing its phosphorylation, to stabilize it further and prevent its 

inhibition by PTC. It is not yet possible to determine whether FU regulates SMO directly or 
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indirectly. The kinesin COS2 may be also part of this regulatory loop. (iii) The stabilized, 

activated SMO/FU/COS2 complex at the plasma membrane then promotes the accumulation 

and activation of CI-FL, leading to the activation of HH target genes, including ptc. 

We previously reported that SMOFU, which does not bind FU, is constitutively active, 

suggesting that FU may also act as a negative regulator of SMO in the absence of the HH 

signal [9]. Thus, FU may act as a switch, sensing the level of HH, inhibiting SMO in the 

absence of HH or activating the pathway in response to high levels of HH. Interestingly, the 

existence of such regulatory loops may account for the bistability properties of signaling 

pathways and explain how graded levels of signal may act as morphogens, leading to

differential cell responses (for review see [32]).

In conclusion, we found that FU was recruited by SMO at the plasma membrane in 

response to HH and that this recruitment was directly dependent on the physical interaction of 

FU with SMO. We also found that the expression of a membrane-anchored form of FU (GAP-

FU) constitutively activated the HH pathway, indicating that FU activity may be regulated by 

its subcellular location. Surprisingly, the activating effects of GAP-FU require a wild-type 

dose of endogenous SMO. We also report evidence that (i) FU and GAP-FU induce the 

phosphorylation of SMO, (ii) GAP-FU recruits SMO to the plasma membrane, (iii) GAP-FU 

renders SMO resistant to the destabilizing effects of PTC and (iv) FU controls the level of 

accumulation of SMO in the wing imaginal disc. Thus, our data demonstrate that FU, which is 

generally considered to be an effector of SMO, can also act on SMO. 

EXPERIMENTAL PROCEDURES 

Plasmids
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All expression vectors were constructed by the Gateway recombination method 

(Invitrogen). The constructs used here are presented in the supplemental data. 

Cell culture and transfection 

Cl-8 cells were cultured as previously described [33].  Cells were plated on concanavalin

A-coated coverslips and incubated for 24 h. Transient transfections were then carried out 

using FlyFectin (OZ bioscience). S2 cells were cultured in Schneider medium and transfected 

using Effectene reagent (Qiagen). Before observation, cells were fixed by incubation for 30 

minutes with 4% paraformaldehyde. 

Imaginal disc immunostaining and imaging (see also supplemental data).

The primary antibodies used were: mouse anti-PTC, 1/100 [24], mouse anti-EN, 1/1000 

(4D9, from DSHB [34]), mouse anti-SMO, 1/1000 (20C6, from DSHB, [25]), rat anti-CI , 1/5 

(2A1, [35]), rabbit anti-COL, 1/250 [11] and rabbit polyclonal anti--galactosidase, 1/1000 

(from ICN/Cappel). Secondary antibodies were obtained from Jackson ImmunoResearch 

Laboratory and were all used at a dilution of 1/200.

All the images of wing imaginal discs presented were acquired with a Leica-SP2-AOBS 

microscope except when indicated otherwise.

Western blotting 

Proteins were extracted from wing discs by the NaOH/TCA method [36] and from 

transfected S2 cells, using RIPA buffer. Protein extracts corresponding to 20 wing discs or to 

30 g of S2 cells extracts were fractionated by SDS-PAGE and transferred to a nitrocellulose 

membrane (Schleicher & Schuell). Blots were probed with a polyclonal rabbit antibody 

specific for SU(FU) [19], a mouse monoclonal antibody specific for TUB (Sigma) or a rat 

monoclonal antibody against HA (Roche). Bound antibody was detected with secondary 

antibody conjugated with horseradish peroxidase (Biovalley Vector Lab.). The 



13

immunolabeled bands were detected with the enhanced chemiluminescence detection system 

(Supersignal West Pico Chemiluminescent Substrate, Pierce).
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LEGENDS 

Figure 1: Subcellular distribution of SMO and FU with and without HH.

Confocal images of transfected Cl-8 cells expressing fluorescent tagged versions of FU 

and/or SMO without HH (A, C, E, G-G”, I-I”, K-K”and L-L”) or with HH (B, D, F, H-H” and

J-J”). 
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(A-B) Transfected cells producing GFP-FU (noted FU, in red), (C-D) SMO-GFP (SMO, in 

green) or (E-F) SMOFU-GFP (SMOFU, in green).

(G-J) Cotransfected cells producing RFP-FU (FU, in  red) with SMO-GFP (green) (-HH in 

G-G” and +HH in H-H”), or SMOFU-GFP (SMOFU , in green) (-HH in G-G” and +HH in J-

J”); 

(K-L) Cotransfected cells producing GAP-CFP-FU (GAP-FU, in green) with SMO-RFP

(SMO, in red) (K-K”)  or  SMOFU-RFP (red)  (L-L”) in the absence of HH.

Merged pictures are shown in G”-L”. Arrow in G”: vesicular structures. Arrowhead in H”: 

plasma membrane.

Figure 2: Activation of the HH pathway by a form of FU anchored at the plasma 

membrane.

(A) Schematic representation of the FU constructs used in this study. FU kinase domain 

(Kin, aa 1-255, in pale gray), FU regulatory domain (Reg, aa 256-805, in dark gray). FU-

DANA has two point mutations affecting the phosphor-transfer reaction. In FU-AS, Thr158 is 

replaced by Ala (green triangle). GAP43 domain (yellow box), fluorescent protein : GFP in 

green or CFP in blue. 

(B-D) Wing phenotypes of flies (or imago in C) overexpressing (B) MS1096; UAS-GFP-fu

(indicated as gfu); (C) MS1096; UAS-GAP-CFP-fu (indicated as GAP-cfu); (D) UAS-GAP-

CFP -fu; 71B. 71B is a weaker driver than MS1096, both are expressed in the wing pouch, to

similar levels, in the anterior and posterior compartments (See also in the Supplemental data

the experimental procedures section and the Figure S6).

A more detailed legend to this figure is also given in the Supplemental data. 

 (E-L) Effects of GFP-FU alone (E-G) or fused to a GAP- anchor (GAP-CFP-FU in H, I, J-

L) overproduction in wing discs under control of MS1096 (E-J) or in clones (K, L). (E, H) CI-
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FL immunolabeling, (F, I) dpp expression, as reported by a dpp-lacZ construct (nuclear -

galactosidase immunostaining, in blue, with EN immunostaining to visualize the posterior 

compartment, in red); (G, J) PTC immunodetection. (See also supplemental legend); (K-L) 

anterior clones (labeled with GFP, in green) of GAP-CFP-FU-expressing cells with en (red 

immunostaining in K) and col (red immunostaining in L) expression. In (K), the normal 

anterior expression of en along the A/P border is indicated by (*). The effects of GAP-CFP-

FU could be seen in all anterior clones, even away from the boundary, indicating that they 

occurred independently of HH. 

(M-N) fuM1 /Y; 71B (M) and fuM1/Y; UAS-GAP-CFP-fu; 71B (N) wings. The  fusion of the 

longitudinal veins (LV) 3 and 4 and narrowing of the LV3-4 intervein region are 

characteristic of fu mutants. The effect on GAP-cFU varies with the fu allele used (see 

Supplemental Data, Figure S2). 

(O-P) Wing phenotype (O and P) and immunodetection of PTC (O’and P’) in smo+/smo+

(O and O’) or smoD16/smo+ (P and P’) flies expressing UAS-GAP-CFP-fu under control of the

MS1096 driver. 

(Q-R) Wings of flies overexpressing UAS-ptc (Q); UAS-ptc and UAS-GAP- CFP-fu (R)

under MS1096 driver; Wings in B were obtained from dissected imagos as the adults were 

unable to emerge.

All wing discs in this study are oriented with the anterior to the left and the dorsal part to 

the bottom and the wings are shown with the anterior to the top and the proximal end to the 

left. 1 to 4: LV1 to LV4. All pictures are confocal sections, except for (E, G, H and J), which 

are epifluorescence images. 



16

Figure 3: GAP-CFP-FU and FU modulate the levels of SMO accumulation and 

phosphorylation

 (A-D) Immunostaining of endogenous SMO (red).Wing imaginal discs expressing the 

GFP-FU (A) or GAP-CFP-FU (B) construct. The asterisk in B indicates the ectopic 

accumulation of SMO in the anterior region. Wing disc with a posterior fuZ4/fuZ4 clone 

(labeled with GFP in C’, green) (C). In the anterior region, the GFP-cells are fuZ4/fu+ and the 

already low level of SMO would make it difficult to see any further reduction. Nuclei are 

shown in gray (C’). Note that only a few (8 to 10) rows of anterior cells are shown here and 

that in this region, HH emanating from the P cells is still present, leading to a gradual 

decrease in SMO accumulation. The difference between A and P cells is therefore more 

visible when comparing the P cells (outside the clone) with the most anterior cells.

(D) Schematic representation of a wing imaginal disc showing both the stronger 

accumulation of SMO (red) in the P compartment and in A near the A/P boundary (dotted 

line) and the pattern of MS1096-driven expression, which is stronger in the dorsal 

compartment (dark gray stripes) than in the ventral compartment (light gray stripes) [24]. A/P: 

antero-posterior axis; D/V: dorso-ventral axis. See also the pattern of GFP MS1096-driven 

expression in Supplemental Data, Figure S6.

(E-G) Immunostaining of endogenous SMO in wing imaginal discs expressing UAS-ptc

(E); UAS-ptc and UAS-GFP-fu (F) or UAS-ptc and UAS-GAP- CFP-fu (G). 

In this figure, the expression of all transgenes was driven by MS1096 at 25°C. 

(H) Immunodetection of endogenous SU(FU) in extracts of MS1096 (wt), MS1096; UAS-

GFP-fu (gfu) or MS1096; UAS-GAP-CFP-fu (GAP-cfu) wing imaginal discs. Tubulin (TUB). 

The black arrowheads indicate the different SU(FU) isoforms.

(I) Immunodetection of SMO-HA in extracts of S2 cells transiently expressing SMO-HA 

with GFP as a control (1-2) or along with GFP-FU (3-4) GFP-FU-DANA (5-6) or GAP-CFP-
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FU (7-8) without (-) (odd-numbered lanes) or with (+) (even-numbered lanes) HH. See also 

Figure S7 for the transfection and loading controls.

(J) Immunodetection of SMO-HA in the extracts analyzed in lanes 2 and 3 of panel B. 

Samples in lanes 1 and 3 of this panel were treated with alkaline phosphatase, but not samples 

in lanes 2 and 4. Here, the gel was run for a longer period than in panel (B).

(K) Immunodetection of SMO-HA in extracts of S2 cells transiently expressing SMO-HA 

with GAP-CFP-FU (1-2) or with GAP-CFP-FU-DANA (3-4).

(L) Immunodetection of SMO-HA in extracts of S2 cells transiently expressing SMO (1-2) 

or SMOFU-HA (3-4) without (1, 3) or with (2, 4) HH. For quantification of the 

phosphorylation levels see Supplemental Figure S10. Note the increased levels of SMOFU-

HA accumulation which can be correlated with its reported increased activity [9].
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SUPPLEMENTAL DATA

Supplemental legends to Figure 2:

(B-D): The MS1096; UAS-GAP-cfu flies were unable to emerge from pupae, probably due to their enlarged 

and inflated wings. Imago from MS1096; UAS-GAP-cfu dissected pupae (C) present wings with the A 

compartment invaded by ectopic vein tissue associated with supernumerary campaniform sensillae, which are 

specific to regions controlled by high levels of HH (Figure 2C and data not shown).

d1 and d2 are the distances measured with ImageJ software. The average ratio d2/d1 of flies over-

expressing or not over-expressing the gFU and GAP-cFU constructs under control of the 71B driver shows an 

increase in LV3/LV4 intervein tissue: d2/d1 = 0.22 ± 0.01 for WT wings, 0.22 ±0.01 for UAS-gfu wings and 

0.25 ± 0.04 for UAS-GAP-cfu wings. Note that GAP-cFU had no effect on the innervated double-row bristles. 

(K-L): These effects were observed in all anterior clones in the wing pouch, even away from the boundary, 

indicating that they occurred independently of HH. These effects are only observed within the clone limits. 

Posterior clones have no effect (data not shown).

Supplemental Figures:

Figure S1: Accumulation and subcellular localization of GAP-CFP-FU in the wing imaginal disc

As reported for endogenous FU, overexpressed GFP-FU (A) and GAP-CFP-FU (B) are more abundant in the 

A compartment (where there is little or no HH) than in the P compartment. Although we cannot conclude that 

GAP-cFU is also destabilized by the HH signal, it does appear to be sensitive. 

(C and D) are magnified views of apical and basolateral confocal sections, respectively, of a wing imaginal 

disc expressing GAP-cFU. (E) A Xz view reconstruction of the wing pouch across the A/P axis. GAP-FU is 

localized principally at the plasma membrane on the apical side of the disc, and is also present in the vesicular 

structure below. The expression of GFP-FU and GAP- CFP-FU was driven by MS1096 at 25°C, a driver 

equally expressed in the anterior and posterior compartments (See Figure S6). The A/P axis is indicated by two 

arrowheads, in A to D, with A on the left. In E, the apical side is up. In (A) and (B), scale bars correspond to 50 

m, and in (C-E), scale bars correspond to 10 m. Xz view reconstructions were obtained using ImageJ 

Supplemental Data text



software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 

 1997-2005).

Figure S2: Effects of fu- mutations on the activating effects of GAP-CFP-FU

(A) Wild-type wing. (B) Wing overexpressing the GAP-CFP-FU construct, showing widening of the 

LV3/LV4 intervein and a thickening of LV3. fu1 /Y (C), fuRX2 /Y (E) and fuM1 /Y (G) wings. Overexpression of 

the GAP-CFP-fu construct in fu1 /Y (D), fuRX2 /Y (F) and fuM1 /Y (H). Overexpression was driven by 71B and 

wings from male insects were observed. 

In all cases tested, expression of the GAP-CFP-FU construct (driven by 71B, [1]) in the wing pouch, 

rescued the fu- phenotype. GAP-CFP-FU even overactivated the pathway at the antero-posterior border, as 

shown by the widening of the LV3/LV4 intervein region and the expansion of LV3 tissue. The effects of GAP-

CFP-FU were not affected in the fuRX2 mutant, but they were attenuated, although not abolished in fu1 and fuM1 

mutants. Thus, in the presence of high levels of HH (near the antero-posterior border) the activating effects of 

GAP-cFU did not require the kinase activity of endogenous FU.  This indicates that the activating effects of 

GAP-FU do not simply result from the activation of endogenous FU. However, in the presence of only small 

amounts of HH and in the absence of HH, the activation by GAP-CFP-FU was reduced by the presence of an 

endogenous FU protein with an altered kinase domain. There are several possible explanations for this, 

including a dominant negative effect of endogenous FU with a mutant kinase domain.

When modeling the structure of the kinase domain of FU (data not shown), the first 80 aa of FU, which are 

present in fuMI) correspond to most of its N-terminal domain, called the “small lobe”. The equivalent domain in 

other kinases has been shown to bind different partners. A striking example is provided by SNF1 kinase, a 

protein kinase closely related to FU: this kinase can form homodimers via interactions involving its small lobe 

[2]. The kinase domain of FU has been reported to bind to its regulatory domain [3, 4] and to its putative target 

SU(FU) [5]. Thus, the first 80 aa of FUM1 may be sufficient to induce a dominant-negative effect.



Figure S3: GAP-cFU-dependent activation of the HH pathway is regulated by the inhibitory regulators 

SU(FU) and COS2 

The overexpression of various UAS transgenes was driven by MS1096 at 25°C (A-C) or at 18°C (D-G) (as 

indicated). The wing overexpressing SU(FU) (A) had only a very weak phenotype, if at all (e.g. distal extra 

vein near LV3). The overexpression of SU(FU) almost abolished the phenotype induced by GAP-cFU 

overexpression (compare C with B). This decrease is not due to the dosage of GAL4 protein controlled by a

second UAS (data not shown). The loss of Su(fu) function (in flies homozygous for the amorphic mutation, 

Su(fu)LP) was associated with no visible phenotype itself (data not shown), but it exacerbated the phenotype of 

GAP-CFP-FU-overexpressing wings (visible at 18°C, compare E with D). The overexpression of COS2 (F) 

strongly inhibited the HH pathway (F) and strongly decreased the GAP-CFP-FU-dependent phenotype 

(compare G with D).

Su(fu)LP was described in[6], UAS-cos2 was kindly provided by M. Scott [7], and UAS-Su(fu) was described 

in [8].

Figure S4: GAP-CFP-COS2 (in green) does not colocalize with SMO-RFP (in red) 

Transfected S2 cells without HH.

Figure S5: The effects of PTC overproduction are not suppressed by SMO or SMO-GAP 

(A-H) Wings of flies overexpressing UAS-ptc (A); UAS-ptc and UAS-GAP-cfu (B); UAS-GFP-smo-GAP

(C); UAS-ptc and UAS-GFP-smo-GAP (D); UAS-GFP-smo (E); UAS-ptc and UAS- GFP-smo (F); UAS-GFP-

smoFU(G); UAS-ptc and UAS-GFP-smoFU (H).  The overproduction of GFP-SMO and GFP-SMO-GAP 

induced low and medium levels of HH pathway activation, respectively [9, 10]. GFP-SMO-GAP had a stronger 

effect than GFP-SMO, but a much weaker effect than GAP-CFP-FU. Coexpression of the PTC construct with 

those encoding GFP-SMO-GAP or GFP-SMO led to a strong decrease in wing size and a loss of wing 

patterning. By contrast, coexpression of the PTC construct did not attenuate the effects of GAP-cFU. Thus, the 

activating effects of GAP-CFP-FU act epistatically on the inhibitory effects of PTC overproduction, whereas 

neither GFP-SMO-GAP nor GFP-SMO has such an effect.  The lack of effect of PTC on GAP-CFP-FU-



induced activation may be due to GAP-cFU inducing a very high level of activation. We do not favor this

hypothesis because PTC has been reported to inhibit SMO substoichiometrically [11] and the overproduction of

PTC led to downregulation of the effects of another very strong inducer of the HH pathway, SMOFU.

Our data suggest that FU anchored to the plasma membrane does more to SMO than just recruiting it at the 

plasma membrane. The comparison between SMO-GAP and GAP-FU is validated by the fact that the same 

GAP moiety was used to anchor SMO and FU at the membrane, and therefore should act similarly on these two 

proteins. The GAP domain is known to be target for palmitoylation which is supposed to anchor proteins in raft 

domains. Noteworthy, HH has been found in lipid rafts in Drosophila, and human PTC and SMO were found in 

raft microdomains (Rietvel et al, J Biol Chem., 1999 and  Karpen et al, J Biol Chem, 2001). Note also that 

several receptors of the GPCR family have been shown to be regulated by palmitoylation in response to 

agonists (Ross, Curr Biol, 1995, Stevens et al, J Biol Chem, 2001). However, without understanding why GFP-

SMO-GAP is really activated, it is difficult to speculate. 

Wings in (B and G) were obtained from dissected imagos as the adults were unable to emerge.

Figure S6: Pattern of MS1096 activity. 

MS1096, UAS-GFP imaginal disc. CI immunolabelling in red, GFP in green. Orientation is as in Figure 2. 

Figure S7: GFP-FU, GAP-CFP-FU and GFP-FU-DANA accumulate at comparable level. 

Immunodetection of FU on the blot presented in Figure 3 I.  

The effects of GAP-FU on the accumulation of SMO seen in the western blot presented in Figure 3I were 

seen in 5 independent experiments. In each experiments the same amount of proteins were loaded in all lanes. 

However, to ensure that the differences of effects between Gap-FU and FU or FU-DANA were not due to 

differences in transfection efficiency or in the stability of the different forms of FU, we checked the levels of 

accumulation of the various forms of FU.  

Figure S8: Effects of GAP-CFP-FU-DANA and GAP-CFP-FU-AS on SMO-RFP subcellular

distribution and wing phenotype



(A-B) Cells expressing SMO-RFP (in red, A’, A”, B’ and B”) with either GAP-CFP-FU-DANA (in green, A, 

A”) or GAP-CFP-FU-AS (in green, B, B”).

(C-F) Wings of flies overexpressing forms of FU with mutations affecting their kinase domain with or 

without the GAP domain (MS1096 driver at 25°C). 

Figure S9: Cotargeting of wild-type FU to the plasma membrane by GAP-FU

Transfected Cl8 cells coexpressing different forms (WT, DANA or AS) of GAP-cFU (in green) and rFU (in 

red) in the absence of HH.

(A-A”) Cells cotransfected with GAP-CFP-FU and RFP-FU; (B-B”) Cells cotransfected with GAP-CFP-FU-

DANA and RFP-FU; (C-C”) Cells cotransfected with GAP-CFP-FU-AS and RFP-FU.

In these three contexts, RFP-FU is recruited to the plasma membrane by the GAP-FU forms. These data 

indicate that FU can interact with itself. This cotargeting of FU forms is independent of AS and DANA 

mutation.

Figure S10: The efficiency of SMO phosphorylation in response to HH in reduced in SMOFU. 

The immunoblot presented in Figure 3L was plotted using ImageJ. With SMO the HH-dependent 

hyperphosphorylated isoforms are always more abundant than the non phosphorylated isoform, while with 

SMOFU the both isoforms are equally abundant. 

Supplemental experimental procedures:

Vectors: The full coding sequences (without the termination codon) of smo and fu cDNAs were amplified 

by PCR, and inserted into pENTR/D-TOPO by directional TOPO cloning. The RFP-FU, SMO-GFP and 

SMOFU-GFP expression vectors have been described elsewhere [9]. Rescue experiments demonstrated the 

functionality of the rFU and SMOg fusion proteins in Drosophila [9]. AS and DANA FU mutants were 

amplified by PCR from pDA-Flag-fu-AS or pDA-Flag-fu-DANA [12]. The DANA mutant has two alanine 

residues replacing Asp-125 and Asn-130, both of which are invariantly conserved among members of the 

protein kinase family and are involved in the phospho-transfer reaction. The AS mutant has an alanine residue 



replacing the conserved Thr-158. The destination vectors pAWR (pAct5C-GW-mRFP) (where GW is the 

recombination cassette) were obtained from T. Murphy. The pUAST-nterm-m6GFP and pUAST-CFP-GW 

vectors were a gift from A. Brand. A sequence encoding the GAP peptide 

(MLCCMRRTKQVEKNDEDEDQKI) was inserted in frame with the CFP into the BglII site located just 

upstream from the CFP in pUAST-CFP-GW. The HH expression vector, pDA-FL Hh, was a gift from D.J. 

Robbins. All cloning steps were performed according to the manufacturer's instructions (Invitrogen). 

Fly strains and genetics

Flies were raised at 25°C unless otherwise specified. Mutants and transgenic strains are described in the 

Supplemental data. Transgenic, UAS-GFP-fu and UAS-GAP-CFP-fu strains, with or without DANA and AS 

mutations, were obtained by a standard P-element-mediated procedure. For clonal overexpression, hsp-flp;+/+; 

tub1>CD2>GAL4, UAS-GFP/UAS-GFP-fu or pUAS-GAP-CFP-fu first instar larvae were subjected to heat 

shock for one hour at 38°C.  Mosaic analysis with a repressible cell marker (MARCM) [13]) was carried out in 

larvae from crosses between FRT19A, Tub-Gal80, hsp-flp; UAS-LacZ, UAS-CD8-GFP; TubGal4/TM6b

females (a gift from S. Bray) and FRT19A fuZ4/Y males.

MS1096 (chr. X, [14]), 71B (chr. III, [15]), hsp-flp; +/+;  tub1>CD2>GAL4, UAS-GFP /TM3 [16]. fu1, 

fuM1 and fuRX2 were described by [17]. UAS-ptc/CyO and UAS-GFP-smoGAP/TM3 flies were provided by M. 

Scott; the smoD16 allele was provided by Van den Heuvel and is thought to be a probable null allele [18].

Analysis of wings

Wings were dissected in 70% ethanol, mounted in Hoyers medium and examined for their vein and wing 

margin bristle phenotypes. Using ImageJ software, we measured both the width of the LV3-LV4 intervein (d1) 

and that of the entire wing (d2), and then calculated the d1/d2 ratio. At least 30 adults were examined in each 

experiment.

Imaginal disc immunostaining



Imaginal discs from third instar wandering larvae were dissected in PBS, fixed by incubation for 30 min at 

room temperature (RT) in 4% paraformaldehyde, washed and permeabilized by three incubations for 10 

minutes each in PBS + 0.1% Tween (PBST). They were blocked by incubation for one hour in PBST + 2% 

BSA, then overnight at 4°C with the primary antibody. They were washed three times, for 10 minutes each with 

PBST, blocked by incubation for 1 hour in PBST + 2% BSA and incubated for 3 hours at RT with the 

secondary antibody (in PBST + 2% BSA). Finally, they were rinsed three times, for 10 minutes each, in PBST 

and mounted in Citifluor. 

Confocal imaging

Cell culture images were acquired with a Yokogawa spinning disk confocal head coupled to a Leica 

inverted microscope (Leica, DMIRB). Excitation was achieved with an Argon-Krypton 75 mw laser (Melles 

Griot). Images were acquired with a CoolSnap HQ camera (Princeton Instruments). The whole set-up was 

driven by Metamorph 6.3 (Universal Imaging). The integration and wavelength switch module was designed by 

the firm “Errol” and the Institut Jacques Monod imaging facility. 
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