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IS CHF TRIGGERED BY THE VAPOR RECOIL EFFECT?
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ABSTRACT
This paper deals with the triggering mechanism of the boiling crisis, a transition from nucleate to film boiling. We observe the
boiling crisis in pool saturated boiling experimentally atnearly critical pressure to take advantage of the slowness of the bubble
growth and of the smallness of the Critical Heat Flux (CHF) that defines the transition point. Such experiments require the
reduced gravity conditions. Close to the CHF, the slow growth of the individual dry spots and their subsequent fusion on the
transparent heater are observed through the latter. As discussed in the paper, these observations are consistent with numerical
results obtained with the vapor recoil model of the boiling crisis.

INTRODUCTION

The boiling crisis, called also the “Departure from Nucleate
Boiling” (DNB), is a transition from nucleate to film boiling.
It is highly important for industrial applications of high heat
flux boiling because of the rapid heat transfer decline at themo-
ment of transition. A severe damage of the heater can result
because of its overheating. DNB occurs at a threshold value
of the heat flux, the Critical Heat Flux (CHF). Because of its
importance, a large number of the CHF studies is being pub-
lished each year since the first model suggested by Zuber [1].
While Zuber’s CHF expression describes relatively well a num-
ber of experimental CHF data, the underlying physical model
(vapor stems) does not correspond to most modern observations
of DNB. Multiple semi-empirical correlations were proposed
since that. However, the validity range for each corresponds
basically to the range where the empirical constants were fit-
ted. The predictive power of such correlations remains thusvery
limited.

All existing modern ideas (see e.g. [10] for their review) con-
cerning the DNB triggering can be placed into two large classes.
The first considers the heater drying is initiated by the growth of
a single bubble as the primary mechanism. The second argues
that the bubble crowding close to the heater leads to the fusion
of multiple small dry spots. This paper develops an approachof
the first type based on the vapor recoil concept proposed origi-
nally in [3]. The numerical simulations are performed. We dis-
cuss also recent experimental observations which corroborate
this idea.

For the reasons of industrial importance, boiling is mostly
studied at low pressures comparing to the critical pressurepc

(the pressure of the gas-liquid critical point) of the fluid under
study, e.g. for water or freon at atmospheric pressure. CHF is
then large (of the order of several MW/m2 for water) and the
boiling close to it is indeed extremely violent. However, itis
well known that CHF decreases at high pressures where DNB
can thus be observed at a smaller heat flux. In addition, the
thermal diffusivity is smaller in this regime, the bubble growth
slows down, and the optical distortions disappear due to the
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slowness of the fluid motion. From the point of view of the
modelling, this slowness permits to simplify the problem byne-
glecting the hydrodynamic stresses at the bubble interface, the
shape of which can then be calculated in the quasi-static approx-
imation.

VAPOR RECOIL EFFECT ON THE BUBBLE SPREAD-
ING

Every fluid molecule evaporated from the liquid interface
causes a recoil force analogous to that created by the gas emit-
ted by a rocket engine. It pushes the interface towards the liquid
side in the normal direction. The vapor recoil force appears
because the fluid necessarily expands while transforming from
liquid to gas phase. Obviously, the stronger the evaporation
rateη (mass per time and interface area), the larger the vapor
recoil force. The vapor recoil force per unit interface areais
Pr = η2(ρ−1

V −ρ−1
L ), whereρL(ρV) signifies liquid (vapor) den-

sity.

heater

recoil
force

vapor
bubble
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Figure 1. Sketch illustrating the vapor recoil effect. The amplitude and

direction of the vapor recoil force are shown by arrows. The thickness

lr of the belt on the bubble surface, in which the vapor recoil force is

important, is exaggerated with respect to the bubble size.

Let us now consider a growing vapor bubble attached to the
heater surface (Fig. 1). While the temperature of the vapor-
liquid interface is constant and equal to the saturation tempera-
ture for the given system pressurep for the pure fluid case (see



the discussion in [4–6] and references therein), a strong temper-
ature gradient forms in the liquid near the heating surface.The
liquid is overheated in a thermal boundary layer, and the heat
flux qL at the bubble surface is thus elevated in a “belt” of the
bubble surface adjacent to the bubble foot. As a matter of fact,
most of the evaporation into the vapor bubble is produced in this
belt, whose thicknesslr is much smaller than the bubble radius.
Sinceη = qL/H, whereH is the latent heat, the vapor recoil
near the contact line is much larger than at the other part of the
bubble surface and the contact line is pulled apart from the bub-
ble center as if the contact angle increased. However the actual
contact angleθeq depends only on the molecular forces and re-
mains constant. The bubble curvature should thus increase near
the contact line, see Fig. 2.
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Figure 2. Apparent (θap) and actual (θeq) contact angles. The vicinity

of the contact line (zero for the curvilinear coordinate l measured along

the bubble contour) is zoomed in. The arrows show the directions of the

vapor recoil force and its vertical component responsible for an additional

adhesion of the bubble to the heater.

In other words, the vapor recoil tends to extend the dry spot
under the vapor bubble so that the bubble tends to cover the
heater surface. However other forces acting on the bubble sur-
face can counterbalance the vapor recoil. E. g. for the usual
evaporation conditions, the vapor recoil is negligibly small with
respect to the surface tensionσ. Their relative magnitude is
characterized by the ratio

N =

∫
Pr(l)dl/σ, (1)

where the integration is performed along the bubble contour,
see Fig. 2 for thel definition. The spreading occurs whenN
becomes comparable with unity which corresponds to the heat
flux from the heater of the order 1 MW/m2 [3] for water at high
pressure, i.e. to the flux comparable to the actual CHF. The
spreading of a bubble is followed by the coalescence with its
neighbors.

The effect of the vapor recoil is not limited to the bubble
spreading. The vapor recoil creates an additional bubble adhe-
sion to the heater that prevents the bubble departure as soonas
the bubble spreading begins, i.e. when the vapor recoil becomes
important [8]. This adhesion force can be obtained by integrat-
ing the vertical componentPv

r of ~Pr (Fig. 2) over the bubble
interface. This point is extremely important because the CHF
should be determined as a threshold between the bubble depar-
ture and spreading regimes. If the time of bubble residence on
the heater is small, the bubble might simply do not have enough
time to spread.

These considerations would not allow a CHF correlation to
be obtained analytically. Thus the numerical simulations are
necessary.

NUMERICAL MODELLING

The account of the vapor recoil effect requires the simulation
of the bubble growth with a truly free surface. This complicates
the simulation a lot. However, there is a one more problem as-
sociated with a singular (or quasi-singular) behavior of the local
heat fluxes in the vicinity of the contact line. Indeed, sincethe
thermal conductivity of the heater is usually much larger than
that of the liquid, the heater is assumed isothermal at a tempera-
ture higher than the saturation temperatureTsat for the given sys-
tem pressure. If the bubble surface is assumed isothermal atTsat

in agreement with the experimental and theoretical considera-
tions [4–6], the resulting temperature ambiguity at the contact
line leads to the non-integrable divergence,qL(l) ∼ l−1. This
shows importance of the thermal properties of the heater that
need to be taken into account by solving the conjugate problem
at least in liquid and solid domains.

Problem statement and its solution

At high pressures we can assume that the bubble growth is
slow and than the viscous stresses at the bubble interface and
the inertial expansion forces are much smaller than the surface
tension. In this case the bubble shape is independent of hydro-
dynamics any more and only heat conduction problem can be
solved in the first approximation to describe the bubble growth.
The bubble shape is then determined out of the quasi-static ap-
proach that consists to assume that at each time moment bubble
has a shape as if it were in equilibrium for the given instan-
taneous force distribution along its surface. The bubble shape
comes from the value of the bubble local curvatureK(l) satis-
fying the modified Laplace equation

Kσ = λ +(ρL−ρV)gy+Pr, (2)

whereg is the gravity acceleration directed as shown in Fig. 2,
y is the ordinate, andλ is the constant along the bubble sur-
face pressure difference between the pressures inside and out-
side of the bubble. The imposed contact angleθeq gives a re-
quired boundary condition for the shape determination.λ plays
a role of the Lagrange multiplier determined knowing the bub-
ble volumeV which is defined by the total amount of the latent
heat consumed by the growing bubble

HρV
dV
dt

=

∫
qL(l) dl . (3)

The 2D case is assumed hereafter. The only yet undefined quan-
tity in the described problem isqL(l) is found from the coupled
at the heater-liquid interface heat conduction problems inthe
heater and the liquid (that with moving boundary), both semi-
infinite. The vapor is assumed non-conductive and zero heat
flux condition is imposed at the dry spot, i.e. at the heater-
vapor contact area. The heat is assumed to be generated ho-
mogeneously (as by electric current) in the heater volume. The
time variation of this volume source is chosen in such a way that
the heat fluxq0 at the heater-liquid boundary far from the bub-
ble remains constant in time. Theq0 value will be used as the
main control parameter. The constant temperatureTsat is given
as the boundary condition at the moving bubble interface and
also as the initial condition. A small vapor bubble of the radius
R0 is assumed to exist prior to the calculation beginning.



This free boundary problem is solved with the Boundary El-
ement Method (BEM). More details on the solution and on the
method can be found in [7].

The evaporation heat fluxqL(l) remains singular at smalll in
this case, however its divergence is integrable since the expo-
nentα of qL(l) ∼ lα always falls between−0.5 and−0.8. At
the same timePr ∝ q2

l is non-integrable which leads to a diffi-
culty of the shape determination1. To overcome this problem,
a cut-off in the flux is needed. From the physics point of view,
ql is bounded byqmax [7] due to the limitation on the heat trans-
fer imposed by the maximum molecular speed that introduces a
thermal resistance at the bubble interface. Since this cut-off is
much larger than the values encountered at the node points used
in the numerical calculation, no modification of the isothermal
boundary condition is necessary. The same sensitivity of the
shape on thePr integral implies a requirement of the high accu-
racy of theα determination and thus very fine meshing (of the
order of 10−4 of the bubble shape) in the contact line vicinity
which influences the calculation time. This reason determined
our choice of BEM where the node points’ number is much less
than in any other numerical method: only boundaries between
the liquid, vapor and solid domains need to be meshed, not the
domains themselves. As a matter of fact, even such fine mesh-
ing is not sufficient. To achieve the satisfactory accuratePr in-
tegral calculation, thelα extrapolation ofql must be used till
qmax is reached. The correspondingPr contribution is integrated
analytically and added to the numerically integrated part.

The numerical algorithm has been improved with respect to
that used in [7] to get rid of the numerical instabilities which
gave rise to temporal oscillations visible e.g. in figure 6 of[7],
to be compared with Fig. 3 below. In particular, a new algorithm
[11] was used to solve Eq. 2.

Results

The bubble spreading has already been shown in [7] where
θeq = 0 was assumed and no forces tending to remove the bub-
ble from the heater were taken into account. In this paper we
introduce the gravity that appears in Eq. 2. To understand the
gravity influence, let us first assume thatPr = 0 in Eq. 2. The
latter has then no solution (i.e. the equilibrium bubble shape)
for largeV when the contact angle is fixed. A solution of such a
truncated problem exist only whenV is smaller than some max-
imum valueVmax= Vmax(θeq) [12], when the capillary adhesion
is larger than the Archimedes force. At smallθeq, whenV ap-
proachesVmax during the bubble growth, the dry area size tends
to zero and atVmax no adhesion to the heater exists any more
which means that the bubble departs as a whole.

The account ofPr adds another option due to thePv
r influ-

ence discussed above (Fig. 3). Either the dry spot collapsesand
the bubble departs as in thePr = 0 case, or its spreading begins.
The vapor recoil adhesion then exceeds at once the Archimedes
force and keeps increasing with time [8] so that the bubble con-
tinues to spread without departing from the heater. This second
scenario corresponds to that of the boiling crisis. The lowest
value ofq0 at which it occurs (i.e. the transition between the
two scenarios) gives the model CHF.

Fig. 3 shows the behavior of the dry spot at a fixed heat
flux and a different gravity levels given by the Bond number
Bo= (ρL − ρV)gR2

0/σ. The spreading occurs at Bo= 9 · 10−5

1This is easy to understand by recalling the strong dependence of the bubble
shape onN given by (1) that involves thePr integral
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Figure 3. The dry spot evolution with respect to the bubble radius R
for fixed heat flux and different gravity levels calculated for the same

parameters as in [7] (water at 10 MPa).

(which corresponds to about 0.1g) while at Bo= 10−4 the bub-
ble departs. It means that the CHF is 50 KW/m2 for the chosen
system parameters.

Note that the insensitivity of the CHF to gravity [4] at low
pressures can be explained in the framework of the present
model by the influence of the inertial hydrodynamic forces that
cause the bubble departure even in the absence of gravity. Ac-
cording to the present model, when the gravity contributionis
smaller than that of the inertia, the CHF should be rather defined
by the latter than by the former. We will see in the next section
that for high pressures, when the bubble growth is slow and the
inertial forces are negligible, the CHF is indeed sensitiveto the
gravity.

EXPERIMENTS AT EXTREMELY HIGH PRESSURE

To overcome the experimental difficulties encountered dur-
ing the observations of DNB at low pressures, we carry out our
experiments at very high pressures, in the vicinity of the crit-
ical point defined by the critical pressurepc and temperature
Tc. We take advantage of the so-called “critical slowing down”
observed near the critical point. In fact, due to the smallness
of the thermal diffusivity, the growing process of a single va-
por bubble could be observed during minutes thus allowing for
a very detailed analysis. The CHF value is also vanishing at
the critical point [9] so that DNB can be examined at a small
heat flux that does not necessarily induce a strong fluid motion
and high temperature gradients which hinder the optical obser-
vations. However, near-critical bubble growth experiments have
an important drawback. Since the surface tension becomes very
low near the critical point, gravity completely flattens theliq-
uid interface. Reduced gravity conditions are thus necessary to
preserve the bubble shape.

In our already performed experiments, the cells are closed
and only pure fluid is present in them so that its total mass and
volume remains constant. Unlike the conventional boiling ex-
periments, the gas bubble is not nucleated but exists already
before the cell heating begins. The bubble growth is then ob-
served.

A particularity of a near-critical fluid consists in the symme-
try of its co-existence curve (temperature dependence ofρL and



ρV) with respect to the critical densityρc: (ρL + ρV)/2 = ρc.
When the average density is equal toρc, the vapor volume re-
mains nearly constant and equal to one half of the cell vol-
ume throughout the heating. This makes the optical observa-
tions even more convenient. The vapor mass however increases
(and the liquid mass decreases) during the heating because of
the density change.

Two kinds of experiments were carried out up to now. The
first studies [5] used SF6 fluid on board of the Mir space sta-
tion in the ALICE-2 apparatus designed by the French CNES
agency. The choice of SF6 is made for practical reasons: the
critical point of this fluid isTc = 45.6◦C, pc = 3.8 MPa and re-
quires much less severe conditions for the experiment than for
example water (374◦C, 22 MPa). The sequential photos of the
growing vapor bubble showed its spreading over the heater. The
increase of the apparent contact angle was clearly seen while the
actual contact angle was exactly zero (which is a common fea-
ture of near-critical fluids).

However, the cells in ALICE-2 were not suitable to con-
trol the heat supply or to measure it to obtain the quantitative
data. This limitation has been overcome in the experimentalH2

setup that makes use of the magnetic levitation facility [13] at
CEA-Grenoble. All further description will concern this data.
A cylindrical cell (Fig. 4) of 8 mm diameter and 5 mm height is

8 mm 

Sapphire window 

Heated 
base 

Temperature  
regulated  

base  
 

Figure 4. H2 cell situated inside an ”anti-cryostat” under vacuum which

is in its turn situated inside another cryostat filled by liquid He to cool the

system.

filled with H2 at critical density. The sapphire windows (cylin-
der bases) are good heat conductors in the cryogenic temper-
ature range (Tc = 33K for H2). The lateral cell wall is made
of stainless steel which is on the contrary the thermal insula-
tor, its heat conductivity being about 1000 times less than that
of the sapphire. The copper rings serve to transfer the heat to
the windows and to keep the parts of the cell together. The
fluid is heated by one of the windows while the temperature of
the other is maintained by the temperature regulation system
that also permits us to measure the heat flux removed from the
cell. The cell can be observed optically through the transparent
heater with a light source and a camera. Both are situated out-
side the cryostat. The optical links are made with the help of
light guides.

The gravity is compensated by magnetic forces within 2%

in the cell volume. The position of the cell with respect to the
magnetic field is chosen so that the residual force positionsthe
bubble against the heating window. In the window plane, the
residual force provides the effective gravity directed from the
periphery of the window to its center. This force field leads to
a curious phase distribution close to the critical point when the
surface tension decreases. Most of the more dense liquid phase
then masses in the center while the wetting film remains at the
cell walls and the windows. As a consequence, the bubble forms
a torus (we call this topology annular because of the observed
bubble contour). Farther from the critical point, the bubble re-
mains circular as usually.

The heater temperature evolution at DNB is shown in Fig. 5.
Before the observation, the heating power is adjusted to com-
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Figure 5. Heater temperature evolution at CHF (crosses). The thick

horizontal lines correspond to the averaged values at tree stationary

states: at equilibrium, just before and after the DNB. The dotted line

reflects the system pressure evolution given by Tsat.

pensate for the heat losses and maintained sufficiently longto
achieve the thermal equilibration in the isothermal state.When
the heat injection starts, small bubbles are nucleated and depart
from the heater under the action of residual gravity before co-
alescing with the large bubble. When the flux approaches the
CHF, the dry spot under bubbles nucleates and attains a finite
value. At CHF the dry spots under virtually each of the bubbles
begin to grow. The larger the dry spot, the faster the growth.
At the last stage, the dry spots coalesce and the dryout occurs
rapidly. At CHF the complete heater drying (DNB) occurs af-
ter a waiting time during which the heater temperature exhibits
fluctuations. DNB occurs after the largest of them. The heater is
completely dried out and a new stationary conductive state (no
convection) is quickly established. In this state, the mainpart of
the heat passes from one base to another by the cell walls. This
heat transfer was accounted for by measuring the heat transfer
in the empty cell and subtracting the wall flux from the total
measured heat flux. The resulting boiling curves are presented
in Fig. 6. It shows the dependence of the CHF on very slight
changes of the bubble position with respect to the heater. These
changes can be induced by slightly displacing the cell with re-
spect to the field so that the wetting film existing at equilibrium
between the bubble and the heater, changes its thickness. This
sensitivity manifests itself even stronger when the geometry of
the large bubble changes from circular to annular. During this
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Figure 6. Boiling curves for the same pressure but different effective

gravity levels.

change the wetting layer becomes much thicker and occupies
smaller portion of the window. The thickness can be judged
from the size of the small bubbles that grow inside the layer.
After the geometry change occurs, the CHF varies strongly.

This change of bubble position is analogous to the change in
the force balance acting on the drop in the usual boiling set-up
where there is always a dry spot, at least in a nucleation sitearea.
This dependence can be summarized as follows: the smaller
adhesion, the larger is the CHF. This observation is coherent
with our vapor recoil model.

Optical observations of the dry spot growth are very inter-
esting. They are especially informative for the annular bubble
geometry because the small bubbles are nucleated in the central
region of the window, their dynamics can thus be compared to
that of the large bubble. For the circular bubble case (farther
from the critical point), the small bubbles nucleate and grow
only at the periphery of the cell where the liquid layer is thicker.
Far from the CHF, the small bubbles first depart from the heater
and then coalesce with the large bubble. Their immediate ab-
sorption by the large bubble follows. Closer to the CHF, the dry
spot under the large bubble forms. The small bubbles also de-
velop a dry spot comparable with their size. Once the dry spot
begins to grow, the bubble would not depart as quickly. It would
rather continue to grow (in the agreement with our model) un-
til it touches the large bubble and quickly absorbed by it. The
growing bubbles in the center slide towards the periphery ofthe
window (probably, because of the larger radial gravity compo-
nent in the center). The large bubble exhibits the largest rate of
the dry spot growth at CHF (Fig. 7).

First, the single dry spot under the large bubble spreads
(Fig. 7a), then it coalesces with small bubbles so that theirdry
spots fuses (Fig. 7b). Ultimately, the whole heater surfacedries
out during rapid coalescence motions and the fluid becomes
very turbid. After the slow relaxation to the transparent state,
a stationary conductive state in which the vapor phase covers
the heater and the interface forms the hat-like shape (Fig. 7c)
where the fluid layer in the center of the window is thicker than
at the periphery.

The similar mechanism of the dry spot spreading works also
relatively far from the critical point where the bubble is circular.
Indeed, the experiments were performed for up to 3% devia-

� � � �
Figure 7. Gas spreading at 32.95K (at annular geometry, the large bub-

ble has a toroidal shape as described in the text) as visualized through

the transparent heater in magnetic levitation experiment. (a) Beginning

of the dry spot growth. (b) Bubble partially spread. (c) Complete drying

of the heater. Nucleated small bubbles are visible in (a-b).

tion from pc (which is well beyond the critical region where the
anomalous fluctuations define completely the behavior of the
fluid).

CONCLUSIONS

Basing on the vapor recoil model, the individual bubble
spreading is obtained in the simulations. To capture the vapor
recoil effect, an extremely delicate analysis of the heat flux max-
imum in the vicinity of the critical point need to be performed.
A threshold exists between the spreading and the bubble depar-
ture regimes. This threshold heat flux can be associated withthe
CHF. This kind of simulation allows to predict the dependence
of the threshold on various parameters of the system like contact
angle, thermal properties of the heater and the liquid, etc.

The experiments at nearly critical pressure can give very de-
tailed information about the DNB because of the small CHF
value and the slowness of the bubble growth. The reduced grav-
ity conditions are however required to observe the bubbles.Dur-
ing the DNB, we observed clearly the growth of individual dry
spots under the bubbles prior to their coalescence. This allows
us to suggest spreading of individual bubbles as the triggering
mechanism for the DNB. This picture agrees with the vapor re-
coil model suggested earlier.
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NOMENCLATURE

Bo Bond number
g gravity acceleration [m2/s]
H latent heat [J/kg]
K curvature [m−1]
l coordinate varying along the bubble contour
N vapor recoil strength
p pressure [N/m2]
Pr vapor recoil pressure [N/m2]
q heat flux [W/m2]
R bubble radius [m]
t time [s]
T temperature [K]
V 2D-bubble volume [m2]
y ordinate
α qL exponent
η rate of evaporation [kg/(s·m2)]



θ liquid contact angle
λ vapor/liquid pressure difference [N/m2]
ρ mass density [kg/m3]
σ surface tension [N/m]
sat saturation
c critical
v vertical
eq equilibrium
ap apparent
0 initial
max maximum
V vapor
L liquid
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