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LARGE, GLOBAL SOLUTIONS TO THE NAVIER-STOKES EQUATIONS,
SLOWLY VARYING IN ONE DIRECTION

JEAN-YVES CHEMIN AND ISABELLE GALLAGHER

ABSTRACT. In [E] and [E] classes of initial data to the three dimensional, incompressible
Navier-Stokes equations were presented, generating a global smooth solution although the
norm of the initial data may be chosen arbitrarily large. The aim of this article is to provide
new examples of arbitrarily large initial data giving rise to global solutions, in the whole space.
Contrary to the previous examples, the initial data has no particular oscillatory properties,
but varies slowly in one direction. The proof uses the special structure of the nonlinear term
of the equation.

1. INTRODUCTION

The purpose of this paper is to use the special structure of the tridimensional Navier-Stokes
equations to prove the global existence of smooth solutions for a class of (large) initial data
which are slowly varying in one direction. Before entering further in the details, let us recall
briefly some classical facts on the global wellposedness of the incompressible Navier-Stokes
equations in the whole space R3. The equation itself writes

Ou+u-Vu—Au=—-Vp
(NS) divu =0
Ujt=0 = U0

where u = (u!,u?,u?) = (v, u3) is a time dependent vector field on R3. The divergence free

condition determines p through the relation
—Ap = Z Gjak(u]uk)
1<5,k<3
This relation allows to put the system (IN.S) under the more general form
Ay =
(GNS){ Oru u=Q(u,u)
Ut=0 = U0

where Q (v, w) def Z Q;x(D)(vw") and Q; (D) are smooth homogeneous Fourier multi-
1<j,k<3
pliers of order 1.

Moreover, this system has the following scaling invariance: if (u,p) is a solution on the time
interval [0,7T), then (uy,py) defined by

def def

un(t,z) = MMt z) and  pa(t,z) = NEp(\%t, \x)

Key words and phrases. Navier-Stokes equations, global wellposedness.
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2 J.-Y. CHEMIN AND I. GALLAGHER

is a solution on the time interval [0, \=2T"). Of course, any smallness condition on the initial
data that ensures global solutions, must be invariant under the above scaling transformation.
The search of the “best” smallness condition is a long story initiated in the seminal paper of
J. Leray (see [[J]), continuated in particular by H. Fujita and T. Kato in [ff], Y. Giga and
T. Miyakawa in [f], and M. Cannone, Y. Meyer and F. Planchon in [l]. This leads to the
following theorem proved by H. Koch and D. Tataru in [[[]]. In the statement of the theorem,
P(z, R) stands for the parabolic set [0, R?] x B(z, R) where B(x, R) is the ball centered at x,
of radius R.

Theorem 1 ([[LT])). If the initial data ug is such that

def 1
(1.1) ||UOHQBM0—1 = suptHetAuoH%oo + sup ﬁ/ |(6tAu0)(t,y)|2dy
t>0 z€R3 P(x,R)
R>0

is small enough, then there exists a global smooth solution to (GNS).

A typical example of application of this theorem is the initial data
(1.2) ug(z) & cos<?) (Do(ar1,a2), —O1d(x1,70),0) with ¢ € S(R?),

as soon as ¢ is small enough (see for example [ff] for a proof). The above theorem is probably
the end point for the following reason, as observed for instance in [f]. If B is a Banach
space continuously included in the space S’ of tempered distributions on R?, such that, for

any (\,a) € Rf xR3, | f(A(-—a))|lz = A7Y|f||B, then ||-|| 5 < C’supt%HemuOHLoo. The second
t>0

condition entering in the definition of the BMO~™! norm given in ([L.1]) merely translates the
fact that the first Picard iterate should be locally square integrable in space and time.

Those results of global existence under a smallness condition do not use the special structure
of the incompressible Navier-Stokes system and are valid for the larger class of systems of the
type (GNS). The purpose of this paper is to provide a class of examples of large initial data
which give rise to global smooth solutions for the system (IN.S) itself, and not for the larger
class (GNS). In all that follows, an initial data ug will be said “large” if

def 1
(1.3) luoll g1 = supt3[|e"Pug| =
’ t>0

is not small.

Such initial data, in the spirit of the example provided by ([.F), are exhibited in [fI] (see
also [A] for the periodic case). In particular, the following theorem is proved in [H].

Theorem 2 ([f]). Let ¢ € S(R?) be a given function, and consider two real numbers ¢ and o

in ]0, 1[. Define
1
—loge)s T3 T2
o) = D o (2) o, o),
Then for € small enough, the smooth, divergence free vector field

ug(x) = (D29 (2), —01¢°(2),0)

satisfies liH(l) |lugll 31 = oo, and generates a unique global solution to (NS).
e—s 00,00
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The proof of that theorem shows that the solution remains close to the solution of the free
equation emuo,g. It is important to notice that the proof uses in a crucial way the algebraic
structure of the non linear term w - Vu, but uses neither the energy estimate, nor the fact
that the two dimensional, incompressible Navier-Stokes is globally wellposed. Let us give
some other results on large initial data giving rise to global solutions: In [[J], the initial
data is chosen so as to transform the equation into a rotating fluid equation. In [[], [[4]
the equations are posed in a thin domain (in all those cases the global wellposedness of the
two dimensional equation is a crucial ingredient in the proof). In [ and [{], the case of an
initial data close to bidimensional vector field is studied, in the periodic case. Finally in [f]
(Remark 7), an arbitrary large initial data is constructed in the periodic case, generating a
global solution (which is in fact a solution to the heat equation, as the special dependence on
the space variables implies that the nonlinear term cancels).

The class of examples we exhibit here is quite different. They are close to a two dimensional
flow in the sense that they are slowly varying in the one direction (the vertical one). More
precisely the aim of this paper is the proof of the following theorem.

Theorem 3. Let v = (v},v2,0) be a horizontal, smooth divergence free vector field on R?
(i.e. v} is in L*(R®) as well as all its derivatives), belonging, as well as all its derivatives,
to L?(Ry,; H'(R?)); let wy be a smooth divergence free vector field on R®. Then if ¢ is small
enough, the initial data

ug(z) = (v + ew, wd) (xp,, ex3)

generates a unique, global solution u® of (NS).

Remarks

e A typical example of vector fields v{ satisfying the hypothesis is v} = (=026, 016, 0)
where ¢ is a function of the Schwarz class S(R?).

e This class of examples of initial data corresponds to a “well prepared” case. The “ill
prepared” case would correspond to the case when the horizontal divergence of the
initial data is of size € with « less than 1, and the vertical component of the initial
data is of size ¢*~1. This case is certainly very interesting to understand, but that
goes probably far beyond the methods used in this paper.

e We have to check that the initial data may be large. This is ensured by the following
proposition.

Proposition 1.1. Let (f,g) be in S(R?). Let us define h®(zy, x3) d:eff(xh)g(axg). We have,
if € is small enough,
1
||h€HB ! o (R3) ZHfHB 1°O(R2)||9HL°°(R)-

Proof. By the definition of || - [[5-1 (R3) given by ([-3), we have to bound from below the

quantity ||e!Ah%]|} (r?)- Let us write that

(e2h)(t, ) = (e f)(t, xh)(eta?%g)(s%, exs).

Let us consider a positive time ¢y such that

1 1
A
tg €02 fll poo g2y > Sl e2)-
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Then we have
1 1
2 A 2 A 2
1 R sy = 316 ey B ) EPt0, ) e

1 2, 52
> Al e I gl -

62t08§

As lin(l) e g = g in L*°(R), the proposition is proved. O
E—

Structure of the paper: The proof of Theorem [J is achieved in the next section, assuming
two crucial lemmas. The proof of those lemmas is postponed to Sections [ and [] respectively.

Notation: If A and B are two real numbers, we shall write A < B if there is a universal
constant C', which does not depend on varying parameters of the problem, such that A < CB.
If A< Band B < A, then we shall write A ~ B.

If v is a vector field, then we shall denote by C, a constant depending only on norms of vg.
Similarly we shall use the notation Cy, ., if the constant depends on norms of two vector
fields vy and wy, etc.

A function space with a subscript “h” (for “horizontal”) will denote a space defined on R?,

while the subscript “v” (for “vertical”) will denote a space defined on R. For instance L} def

LP(R?), L def LY(R), and similarly for Sobolev spaces or for mixed spaces such as LYL]
or LgHg.

2. PROOF OF THE THEOREM

The proof of Theorem [J consists in constructing an approximate solution to (NS) as a per-
turbation to the 2D Navier-Stokes system. Following the idea that we are close to the two
dimensional, periodic incompressible Navier-Stokes system, let us define v" as the solution of
the following system, where y3 € R is a parameter:

Ol + " Vit — App = —Vip, in R x R?
(NS2Ds) div, v" =0
Qﬁ:() = Ug('7 Y3)-
This system is globally wellposed for any y3 € R, and the solution is smooth in (two dimen-
sional) space, and in time. Let us consider the solution w® of the linear equation
Ows + vl - Vi — Apw® — 203w = —(thl,esQng_)l) in RT x R3
() divw® =0
wft:() = Wo,
and let us define the approximate solution
(2.1) Vap(t:2) = (0", 0) + e(w™", e w™?))(t, wp, ex3)  and
Papp(t,z) = (p, +ep,)(t xp,cx3).
Finally let us consider the unique smooth solution u® of (N.S) associated with the initial
data u§ on its maximal time interval of existence [0,7;). The proof of Theorem [ consists in
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. . . def .
proving global in time estimates on vg,,,, in order to prove that R6 = u® — Vg, remains small,
globally in time; this ensures the global regularity for (NS).

More precisely, the proof of Theorem ] relies on the following two lemmas, whose proofs are
postponed to Sections | and [ respectively.

Lemma 2.1. The vector field vg,, defined in (B-1) satisfies the following estimate:
”Upr”L2(R+;Loo(R3)) + HVUprHLQ(R"';LgOLi) < Cuowo-

Lemma 2.2. The vector field R® % o — ve, . satisfies the equation

PP
atRE + R*-VR* — AR® + Uapp VR + R° - V?)app - VQE
(E7) div R® = 0
th 0~
with || Fe|| < Clyy €3

L2(RT; H*Q(R?’)) -

Let us postpone the proof of those lemmas and conclude the proof of Theorem . We denote,
for any positive A,

V() S 0t )2 ) + V05 (8 )2z and R5 () d—efexp( A / ) “(1).

[e.e]
Lemma P.1 implies that I def / V-(t)dt is finite. By an H 3 energy estimate in R3, we get

0
L )ms e IZ 4 + IVES@IP 3 < —20Ve0IBS O, + e (B (E) - VESOIBS(1),

Jigs
(05 (1) - RAOIRS0) 3| + | (FEOIR®) 1)

The estimate (i) of Lemma 1.1 of [2] claims in particular that, for any s €] — d/2,d/2][, for
any divergence free vector field a in d space dimensions and any function b, we have

(2.2) (a-Vbb) . < ClIVall g i1l - IVl s
Applying with d = 3 and s = 1/2, this implies that
(BX(t) - VRI(8)|RX(1)) 3

2dt

+ |(BS(1) - Vei, (DIRS (1),

H2+

(2.3)

Ay VRSO
In order to estimate the other non linear terms, let us establish the following lemma.
Lemma 2.3. Let a and b be two vector fields. We have

(@ 8p0) 3| + |0 alb) 3| < (lallom + 9l ez ) 18,5 1900,

Proof. By definition of the H 3 scalar product, we have
(@-Vbb) .1 < la- Vo[V
< lallzee [ V0172

The interpolation inequality between Sobolev norm gives

(a-Vb) 1 < llallz= o] 1 V0]l 3
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Again we use that

< |[1b- Vall2[| V| 2.

1.
2

(b- Valb)

Now let us estimate (b - Va\b)H
i3
Then let us write that
Ib-Valie = [ | bGon0)Valon zs) Pdendas.
R

Gagliardo-Nirenberg’s inequality in the horizontal variable implies that

Vag €, [b(an,s)l” S (b zs)]| 4 IVRb(, as)

Iy
h Hh

Let us use the Cauchy-Schwarz inequality; this gives

Ib- V|2, < /R 6. z3)ll, 3 IV 2] 3 1V, 23)ll7g s

< VAl ey [ 106Gl 1920l
h

IVsb]

1
2
h

IN

IVl 3 101,

1 1.
T2 T2
211 L2H]

When s is positive, we have, thanks to Fourier-Plancherel in the vertical variable,
1ol 275y = // | > | Fnb(En, @3)|*déndars
VTR R JR?
~ // €822 [D(h, €3)[2dEndes
R JR?
s [ lePboras
RS

< bl
This concludes the proof of Lemma P.3.

Conclusion of the proof of Theorem . We infer from the above lemma that
[(RS(1) - i, OIBS(0) 3| + |05, (0) - RROIBZ ) 13

1
< JIVRS@I7, , + OVl R (1)

[y
H?2
Together with (R.3), this gives
1d
——||R5 (¢
s

L HIVESOIR,, < (€ - 20V IB (I,

+ CMR(®)]] 4 IV RS (1)

I I2
i i

24+ CIE®IZ,-

Choosing A such that C' — 2\ is negative, we infer that
d
LIRS,y + (1 CAMNVRS DI, < CIEWIE,.
Since R°(0) = 0, we get, as long as HRi(t)HH% is less or equal to 1/2Ce~*Mo, that

1/t 1
IRy +5 [ VRNt < et
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We therefore obtain that R® goes to zero in L°(R*; H %) NLA(RY; H %) That implies that u®

remains close for all times to vg,,, which in particular implies Theorem Bl U

3. ESTIMATES ON THE APPROXIMATE SOLUTION

In this section we shall prove Lemma P.]] stated in the previous section. The proof of the
lemma is achieved by obtaining estimates on v, stated in the next lemma, as well as on w*

(see Lemma B.2 below).

Lemma 3.1. Let v be a solution of the system (NS2Dj3). Then, for any s greater than —1
and any o € N3, we have, for any y3 in R and for any positive t,

t
Haayh(t7 ) y3)H2}SL + A ”aavhyh(t/a ) y3)H2}sLdt/ < CUO (y3)7

where C,, () belongs to L' N L*°(R) and its norm is controled by a constant C,.

Proof. For s = 0 and a = 0, the estimate is simply the classical L?-energy estimate with y3
as a parameter: writing v = (v”,0) we have

t
(3.1) llu(t, ',ys)H%i + 2/0 [Vro(t, -,yg)H%idt/ = ||Qo(',’y3)||ii-

In the case when o = 0, the estimate (i) in Lemma 1.1 of [B] gives, for any s greater than —1,

1d
5%”9@7 K y3)”2'}sl + |’Vhy(t7 K y3)”2'}sl < C”vhy(tv K y3)”Li ”Q(t? K y3)”H,SL ”vhy(tv K y3)HH}SL

We infer that

d
EHQ(ta "y yS)H2}sL + thy(ta "y yS)H2}sL < C”vhy(t? R y3)”%}21 Hy(t7 " y3)H2'}sL'

Gronwall’s lemma ensures that

t t
||y(t’ ay3)||§{fl + / thy(tla ',y3)‘|2'idt/ < ||20(ay3)||§{fl eXp(C/ ||vh2(t/’ -’y3)||i}21dtl) :
0 0

The energy estimate (B.1) implies that

t
Hﬂ(t, "y3)‘|2'i + /O ||Vh2(t,, 'ay3)||2',sldt/ < HQO(?y?))H?{i eXp <CHQO||%1?°L%L) :

This proves the lemma in the case when o« = 0. Let us now turn to the general case, by
induction on the length of «. It is clear that in the proof, we can restrict ourselves to the case
when s €] — 1,1].

Let us assume that, for some k£ € N,
t
32 vsel-1al X (10wl + [ 1 Vintton il ) < Chylom)
o <k

with Ci (1) € L' N L=(R).
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Thanks to the Leibnitz formula we have, for |a| <k +1,

00" + 0" - V0% — AR0“" = —Vip, — Z Clo*=Pyh . v, 9%
B<a
o

Performing a H 5 energy estimate in the horizontal variable and using the estimate (R.g) in
the case when d = 2 gives

fe 2 1} 2
L2 it )y, + VR0t )l
< CHVhQ( ) ay3)||L}21||aa_( ) ’y3)HH}SLthaaQ(t’ay3)HH}SL

+Ca ) ‘ (5a7ﬁ2h(’5a L y3) - Vi 0% (t, -, y3)|0“vh(t, -,ys))H
<
70

To estimate the last term, we shall treat differently the case |5| = 0 and |G| # 0. In the first
case, we notice first that when s = 0, laws of product for Sobolev spaces in R? give

(3a2h(ta'7y3) 'vhyh(t7'7y3)‘8ayh(t7'7y3)>L2 S ”ath(tav%)”;%thQh(tmyS)”B

h

SN0%0"(t, - y3) 2 1VRO“W" (2, - ys) |2 IV " (2, - ys) | 2
If s > 0, then again laws of product for Sobolev spaces in R? give, for s €]0, 1],

(070" (s ys) - V" (0 )00t 10))

h

s

SN0 | V02" 12 VRO 2" |
whereas if —1 < s <0,
‘(8“Qh(t,',y3) Ve (t, -, y3)|0%u(t, ’ys))Hi‘ S IV 0" | IVR2" |2 100" Iy -
So in any case we have
(07 0 ) - Vo (1Pt )) [ < TR0 + T 070

Now let us consider the case when || # 0. As the horizontal divergence of v is identically 0,
we have

‘ (aaiﬁyh : vh 8ﬁyh‘aa2(t7 y y3))HS ‘ S Haaiﬁyh(ta "y y3)®8ﬁyh(t7 Yy yg)”H}i ”Vhaay(t, y yg)HHfL
h

Laws of product for Sobolev spaces in R? give, for s €] — 1, 1],

B h h —-3,h h
[0°7Pu" © 0P|y < ClO™ P01 107 Vi oo,

where s’ is chosen so that s < s’ < 1.
Finally we deduce that
d
%H@O‘y(t, -,ys)HQ-s + ||Vh<9a2(t,',y3)||2-s < CHVhQH%? ||(9°‘Q||2-s
+C Z ’aa 6 t, 7y3)”H5 Ha’GVhU( t, 7y3)”H5 s’ ”Vha U( ) 7y3)HHS

BLa
BE{0,a}
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Gronwall’s lemma together with the induction hypothesis (B.9) implies that

t
Z <H8ay(t7ay3)”22 +/0 Haavhy(t,7'7y3)”2'}idt/>

|a|=k+1
t
(X 10wl + Crunlon) ) exn(Ch [ 19t
la|=k+1 0
The L? energy estimate (B.1]) allows to conclude the proof of Lemma [B.1. (]

From this lemma, we deduce the following corollary.

Corollary 3.1. Let v" be a solution of the system (N.S2Ds). Then, for any non negative o,
we have
h h
v HL2(R+;H0(R3)) <Gy and [0% ”L2(R+;ch>ogg) < Cu.

Proof. To start with, let us assume ¢ > 0. Lemma B.1] applied with s = o — 1 implies that

(3.3) Vo >0, Va €N, ||8ayh\|L2(R+;L%Hg) < Chy-
Then, for any non negative o, we have
Y3
Haay(t, ) y3)||§_]g = 2/ (838a2(t, ) yé)|8a2(ta "y yé)Hgdyé
—00

IN

h h
2010505 (1, ) 5 100" 8, ) e
By the Cauchy-Schwarz inequality, we have

1 1
h h|2 h|2
VO' 2 07 VOé € N7 ”aay ”LQ(RJF;L?IOH;{) S Hagaay Hl212(R+;Lgng)”aaQ |’[2/2(R+;L8°Hg).

From (B-3), we infer
(3.4) ¥o >0, Ya € N, 070"l 2+, 100717y < Coo-

Now, by interpolation, it is enough to prove the first inequality with ¢ = 0. The sys-
tem (N.S2Ds3) can be written

{ o —App = f
Yjt=0 = vo(",y3)

with £ 3 QD))

1<j,k<2
where Q) are homogenenous smooth Fourier multipliers of order 1. By Sobolev embeddings
in R?, we get, for any y3 in R,

||2('a93)||L2(R+ xR?) = ||Qo(‘a313)||H;1 + Hf("y3)HL1(]R+;H;1)

< . . . 2
< leoCowla +Cllelow)l,

< (-, 4—1 + Cllu(- 1 sup||lv(- 1.
< Jluo( y3)||Hh1 [l ’y3)‘|L2(R+;Hh5) y3P||_( ,ys)HLQ(RJr;Hh;)
As su v(-, < v , we infer from
Py, llu( ys)HLQUR+;Hé) —'”—“19(R+,vay§) (B4)

< Cy.

2 < 2 2
Il ey S Mol + Coolel?,

The corollary is proved. O
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Finally we have the following estimate on w°®.

Lemma 3.2. Let w® be a solution of the system (T). Then, for any s greater than —1 and
any a € N® and for any positive t, we have

100y + [ 107 < Con

Proof. We shall only sketch the proof, as it is very close to the proof of Lemma B.1 which was
carried out above. The only difference is that the horizontal divergence of w does not vanish
identically, but that will not change very much the estimates. We shall only write the proof
in the case when a = 0 and —1 < s < 1, and leave the general case to the reader. Using
Lemma 1.1 of [P}] we have, for any y3 in R,

<yh(t7 ) y3) : Vhwe(t7 ) y3)‘w€(t7 ) y3))Hs S C”Vhy(t, ) y3)”L,2l ”Vhﬂe(ta y yg)HH}SL ”we(t? ) y3)HHS

n h
Thus we get

1d
S e )12, + 190502, g, < ST OI2, g+ CIVA O g3l (D)2 5,
_52 /R(aiigl(ta'7y3)’we’3(t7'7y3))]—.[idy3_A(vhgl(t7'7y3)’we7h(t7'7y3))HZdy3-

By integration by parts we have, thanks to the divergence free condition on w*®,

— [ @yt s = [ (0,00 057 )
R R

= = [y v 7 )
By definition of the inner product of H i, we get

_/(83]21(t7'7y3)’w673(t7'7y3))]i[£dy3:/(vhgl(tfay?))‘we’h(ta'7y3))H}Sldy3-
R R

Thus we have
1d

5 @2, g + IV (O 5 < FIVARE @2,
+ IV O 13l Ol gy — (=) [ (Vo 6™ e )y

Now we notice that
2 .
—(e%02 + Ap)p, = div(v" - Vywt) = divz 0; (v w®)
which can be written in the simpler way
—(528§ + Ah)]_?l = divy, N
with N = v/ - V,w" 4 95(w3uh). Tt is easy to check that for any o € R,

h
(3.5) IVap N2 e S Nl L2 s
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simply by noticing that
2 2042~ 2
IVip, By~ [ 6P 15, OF de

~ 2044 x7h 2 d&
R (e + i)

N

h
IN*11Z2 e

We infer from (B.5) that

N

h h
IVapy e < M2 V™[l e + 105 (w™ 0"l 2 0

IN

lo® - Vhw?|| s e + w050l s e + lu divi w™"|| s o
We claim that for all —1 < s < 1,

def
Ih = /R‘(vhgl(u7y3)‘w8(t77y3))‘H2dy3

h h
(3.6) —HVhw‘fHLsz + CI!WEHLQHSHVQ oo r2 (U 2" 70 2)-

Let us prove the claim. Suppose first that s = 0. Then a product law gives

L Y Y
h 2
S Y I Y | P 7 | C T P

h
By interpolation we get
c 1
7

1 1
h 2 hi2
T, < |V} @)1 e 12 IV N 2o p2 + 120% |2 s) I VR0 L2 () 19520 e 12

L2(]R3 H’LU

The claim in the case s = 0 follows from a convexity inequality, which gives
1
Iy < ZthMEHi2(R3) + C|’w€Hi2(R3)(1 + HQH%gOLi)”VQH%gOLi

In the case when 0 < s < 1, then we use the product rule

h
|

IVhp [l 2 st < o w2 s 1Vl oo 2

£
. .é\lvhw I, -3

s
v vilp

along with the fact that
Tn < IVapy g2 -1 IVl 12 gy
Finally in the case when —1 < s < 0, we write
h h
In < llw® - Vol s w8l 2 gy + llw” - 0% 2 g Vi 2 s

h h
S IV e rz ™l g s IV w®l 2 s + [l H _H_EH s+2\lvhw€\lms

The claim (B.6)) follows by interpolation.

Using that result we obtain that

d
Tt DIz e + 1V (DN e S IVE O ge 1 0™ (DN s (1 + 10" () e 2)
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and we conclude by a Gronwall lemma. Indeed we get that
e O+ [ 19O < ol

<o ([ IV WOy 0+ 1 i) ).
But by the basic energy estimate (B.1]), we have
”Qh(t)HLgOLi < llvoll pgo r2-
Moreover, Corollary B.1] implies that
Vo' € L(RY; LY L),

so Lemma B.9 is proved in the case when o = 0. The case when « is positive is an easy
adaptation of the proof of Lemma B.1; it is left to the reader. O

Clearly Lemmas B.1 and B.9 allow to obtain Lemma P.1] stated in the previous section.

4. THE ESTIMATE OF THE ERROR TERM

In this section we shall prove Lemma P.9 stated above. We need to write down precisely the
equation satisfied by the remainder term R®, and to check that the forcing terms appearing
in the equation can be made small.

Let us recall that
Wpltia) = ((W",0)+ e(w™, e~ w ) (t,p,cs) and
Papp(tz) = (p, +ep,)(t xp,cx3).
It is an easy computation to see that

(at Vapp T app

+ € (atw&h + y : Vhw&h - Ahwe,h - 52632,w€’h, O) (ta Lh, 6'1:3)

Vvapp Avapp) (t,zp,x3) = (8tv + ot Vot — Ahgh,O)(t,xh,Exg)

+ <0, Qw3 + vl - Vypw? — Apw™3 — 520;?@5’3) (t,xp,cx3) + eF°(t, 2, ex3)
where

Fe(t,an,ys) & ((aw6 V" w® - Vw?) + (w - Vo', 0) + (950", 0)) (t,xn,ys3).

In order to simplify the notation, let us write Fe = [l 4 [92 with

ol Y (cwf Vot wt - Vo ?) + (uf - Vol',0) and

o2 p20n ).
Recalling the equations satisfied by v" and w®, we infer that
(8,51)

app app vva]o]!) Avapp) (t Lh) .%'3) vPpr +eG* (ta Th, 5-%'3)
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Wlth Ga(t,$h7y3) :e <F5 (0763]20)> (t’xf“yg) and Fe(t,xh,xg) d:ef EGE(t,xh,El'g). Denot—
ing ¢° = p° — pg,,, we infer that

OuR*+ R*- VR + 07, VRS + R* - V15, — AR = —V¢* + F~.

app
1

< Copun€3-

So Lemma P.9 will be established as soon as we prove that HFeHL2 ®+- @) =

The forcing term F© consists in three different types of terms: a pressure term involv-
ing Py @ linear term 628§yh(t,xh,6x3), and finally a number of nonlinear terms, defined

as Eﬁe’l(t,xh,axg) above. Each of these contributions will be dealt with separately. Let us
start by the pressure term.

Lemma 4.1. The following estimate holds:

wl»—t

6H(831—90)(t’xh’m?’)um(w-ﬂ—%(m%) < ChpuwpE? -

Proof. We define P (t, zp, x3) def ((93£0)(t, xp,ex3). Sobolev embeddings enable us to write
155 |

155

<
cenitesy © 10lLg i)

_2
S € 3||83£0||L2(R+;L%(R3))'
Recalling that
2
py = (A1) 90k(0’")
Gk=1
we have by Sobolev embeddings,
2

k
”a?’pOHLQ (R LQ(RS)) g Z ijafﬂ) ”LQ(R+ LQ(RS))

k=1
S 2l pee et 3@y 1952l L2+ 3 m3)
O - O

so we can conclude by Lemma B.]. This proves Lemma [£.1]. O

Now let us consider the linear term 628§yh(2€, xp,ex3). The statement is the following.

Lemma 4.2. The following estimate holds:

e%(95u") (¢, xn, e23)|

N

-3y S Owe

Proof. We have

(@50t wn, eas) | c|| s (9u0" (t,wnsw3))|

- <
LARHHTE®E) L2(RFSH 3 (BY)

N

€H (33Qh)(t7 Thy .%'3) “LQ(R+;H% (RS))’
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A computation in Fourier variables shows that, for any function a on R?, we have

laan ezl = 5 [, (6 )| lel ae
< %/R a6 2) 1o a6 + [ Ja(en, 2)[ 2 ag %

By interpolation, we deduce that

1
la(zn,eza)lly oy < Zllalle@s)IVaallra@s) + llall2@s) 05al 12 es)-

H? (]RS)
Applying this inequality with a = dsv, we get

2| (D20 (t, wn, e3) | - I L OLE

1 =
L2(R+;H77(R3)) ~ Hz2 R+.L2(R3))H83vh2(t)

1
Hz2 R+;L2(R3))

+€H831)( )HL2 R+ L2(R3 H@%v( )HL2(R+ L2(R3))

by Lemma B.J. This proves Lemma [L.3. O

Now let us turn to the nonlinear terms composing F*¢, which we denoted above eFel,
Lemma 4.3. The following estimate holds:

e FEL(t, zp, ex3)| 3

< 3.
12 R+ H Q(RS)) — CUOﬂU()g

Proof. We recall that
ol — (ew - Vut, wf - Va©?) + (w - Vo', 0).

Notice that for all functions a and b and any 1 < 57 <3,
a0l a0l

L2(RT; H_Q(R:“)) ~ L2(RT; L2(]R3))
S lallpee mt;zs ey 1950l L2 (r+ L3 (R2)) -

Defining ¢ (t, zp, x3) = (ad;b)(t, xp,ex3) this implies that

2
€ < -~ 3 )
||C ||L2(R+;H7% (RS)) ~ € 3 Ha||L°°(R+;H% (RS)) ||a_]bHL2(R+;H% (RS))'
We can apply that inequality to @ and b equal to v or w®, due to the results proved in Section fl,
and the lemma follows. O
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