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Abstract

In this paper we derive the moderate deviation principle for stationary sequences of bounded
random variables under martingale-type conditions. Applications to functions of ¢-mixing se-
quences, contracting Markov chains, expanding maps of the interval, and symmetric random
walks on the circle are given.

1 Introduction

For the stationary sequence (X;);cz of centered random variables, define the partial sums and
the normalized partial sums process by

S, —ZX and W, ( *I/QZX

7=1

In this paper we are concerned with the moderate deviation principle for the normalized partial
sums process W, considered as an element of D([0,1]) (functions on [0, 1] with left-hand limits
and continuous from the right), equipped with the Skorohod topology (see Section 14 in Billingsley
(1968) for the description of the topology on D([0,1])). More exactly, we say that the family of
random variables {W,,,n > 0} satisfies the Moderate Deviation Principle (MDP) in DI0, 1] with
speed a, — 0 and good rate function I(.), if the level sets {z,I(x) < a} are compact for all
a < oo, and for all Borel sets

—inf I(t) < liminfa,logP(ya,W, €T)
tel’ n
< limsupa,logP(y/a,W,, € I') < —inf I(t). (1)

a tel’

The Moderate Deviation Principle is an intermediate behavior between the central limit the-
orem (a, = a) and Large Deviation (a, = a/n). Usually, MDP has a simpler rate function,
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inherited from the approximated Gaussian process, and holds for a larger class of dependent
random variables than the large deviation principle.

De Acosta and Chen (1998) used the renewal theory to derive the MDP for bounded functionals
of geometrically ergodic stationary Markov chains. Puhalskii (1994) and Dembo (1996) applied the
stochastic exponential to prove the MDP for martingales. Starting from the martingale case and
using the so-called coboundary decomposition due to Gordin (1969) (X = My + Z — Zy11, where
Mj, is a stationary martingale difference), Gao (1996) and Djellout (2002) obtained the MDP for
¢-mixing sequences with summable mixing rate. In the context of Markov chains, the coboundary
decomposition is known as the Poisson equation. Starting from this equation, Delyon, Juditsky
and Liptser (2006) proved the MDP for n=1/23")_| H(Y},), where H is a Lipschitz function, and
Y, = F(Y,-1,&,), where F satisfies |F(z, z) — F(y,t)| < klz—y|+ L|z—t| with £ < 1, and (&,)n>1
is an iid sequence of random variables independent of Y. In their paper, the random variables
are not assumed to be bounded: the authors only assume that there exists a positive § such that
E(e’81) < 0o, They strongly used the Markov structure to derive some appropriate properties
for the coboundary (see their lemma 4.2).

In this paper we propose a modification of the martingale approximation approach that allows
to avoid the coboundary decomposition and thus to enlarge the class of dependent sequences
known to satisfy the moderate deviation principle. Recent or new exponential inequalities are
applied to justify the martingale approximation. The conditions involved in our results are well
adapted to a large variety of examples, including regular functionals of linear processes, expanding
maps of the interval and symmetric random walks on the circle.

The paper is organized as follows. In Section 2 we state the main results. A discussion of the
conditions, clarifications, and some simple examples and extensions follow. Section 3 describes
the applications, while Section 4 is dedicated to the proofs. Several technical lemmas are proved
in the appendix.

2 Results

From now on, we assume that the stationary sequence (X;)ez is given by X; = Xyo0T*, where
T : Q+— ) is a bijective bimeasurable transformation preserving the probability P on (2, .A4). For
a subfield Fy satisfying Fo C T~1(Fy), let F; = T7(Fy). By || X || we denote the L,-norm, that
is the smallest u such that P(|X| > u) = 0.

Our first theorem and its corollary treat the so-called adapted case, X, being Fy—measurable
and so the sequence (X;);ez is adapted to the filtration (F;);cz.

Theorem 1 Assume that || Xo||eo < 00 and that Xy is Fo—measurable. In addition, assume that

> P E(S,]Fo) [l < 00, (2)
n=1
and that there exists 0% > 0 with
lim ||n_1E(SZ|}"O) - <72||C>O =0. (3)

Then, for all positive sequences a, with a, — 0 and na, — oo, the normalized partial sums
processes Wi (.) satisfy ([]) with the good rate function 1,(-) defined by

L(h) = 55 [ (@) (@
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if simultaneously o > 0, h(0) = 0 and h is absolutely continuous, and I,(h) = co otherwise.

The following corollary gives simplified conditions for the MDP principle, which will be verified
in several examples later on.

Corollary 2 Assume that || Xo||e < 00 and that X is Fo—measurable. In addition, assume that

D 0 P IE(Xa|Fo) o < 00, ()
n=1
and that for all i,5 > 1,
Tim [[E(XGXG|F ) = E(XGX) [ = 0. (6)

Then the conclusion of Theorem [ holds with 0* =", ., E(XoX}).

The next theorem allows to deal with non-adapted sequences and it provides additional
applications. Let F_, = ﬂnZO F_, and Fo = VkeZ Fi.

Theorem 3 Assume that || Xo||eo < 00, E(Xo|F_o) = 0 almost surely, and Xq is Foo-measurable.
Define the projection operators by P;(X) = E(X|F;) — E(X|F;_1) . Suppose that (§) holds and

that
> IPo(X)) oo < 0. (7)

JEZ

Then the conclusion of Theorem [ holds with 0* =37, ., E(XoX}).

2.1 Simple examples, comments and extensions

Comment 4 ¢-mixing sequences. Recall that if Y is a random variable with values in a Polish
space ) and if M is a o-field, the ¢-mixing coefficient between M and o(Y) is defined by

¢M,o(Y)) = sup [[Pyja(A) = Py (A)lo (8)

AeB(Y)

For the sequence (X;)icz and positive integer m , let ¢,,,(n) = sup; - <i5n @( Mo, 0( Xy, ..., Xi,))
and let ¢(k) = ¢oo (k) = lim,, o0 @i (k) be the usual ¢p—mixing coefficient. It follows from Corollary
that if the variables are bounded, the conclusion of Theorem [l holds as soon as

D kP¢i(k) < 0o and Lim (k) = 0. (9)
k>0 heo

The condition (fJ) improves on the one imposed by Gao (1996), that is ), ¢(k) < oo, to get the
MDP for bounded random variables (see his Theorem 1.2).

Comment 5 Application to the functional LIL. Since the variables are bounded, under the
assumptions of Theorem [[| or of Theorem [, the MDP also holds in C[0, 1] for the Donsker process

Do(t) = Wo(t) +n~ 2 (nt — [nt]) Xpng a1 -

Hence, if 0 > 0, it follows from the proof of Theorem 1.4.1 in Deuschel and Stroock (1989), that
the process
{(20%loglogn)~Y2D,(t) : t € [0,1]} (10)
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satisfies the functional law of the iterated logarithm. To be more precise, if S denotes the subset
of C[0, 1] consisting of all absolutely continuous functions with respect to the Lebesgue measure
such that h(0) = 0 and fol(h' (t))%dt < 1, then the process defined in ([L0) is relatively compact
with a.s. limit set S. In the case of bounded random variables, we then get new criteria to derive
the functional LIL. In particular, the functional LIL holds for ¢-mixing bounded random variables

satisfying ().

Comment 6 Linear processes. Let (¢;);ez be a sequence of real numbers in ¢!(Z) (absolutely
summable). Define X = >, , ciex—; Where (e4)rez is a strictly stationary sequence satisfying
(@) and ([). Then, so does the sequence (Xj)rez, and the conclusion of Theorem P holds. In
particular, the result applies if gy is Fo-measurable, E(g1|Fy) = 0 and

Tim [B(]F-) ~ ()]l = 0 -

Comment 7 Non—mixing in the ergodic sense example. The following simple example
shows that Theorem [l is applicable to non-mixing in the ergodic theoretical sense sequences.
Moreover it covers a strictly larger class of examples than its Corollary B. For all k € Z, let
Qri1 = —Qr where P(Qo = £1) = 1/2 and X}, = Q) + Y; where (Yy)rez is an iid sequence of
zero mean and bounded random variables, independent of (). We can easily check that all the
conditions of Theorem [I| hold while the conditions of Corollary [} are not satisfied.

Comment 8 Stationary ergodic martingales that does not satisfy MDP. Let Y, be the
stationary discrete Markov chain with the state space N and the transition kernel given by P(Y; =
j—1Yy=j)=1foral j>1and P(Y7 = j|Yo =0) =P(r = j) for j € N with E(7) < o0
and P(7 = 1) > 0 which implies that (Y}) is ergodic. Let Xj = &pl(v,20) Where (&) is an iid
sequence independent of (Yy) and such that P(§, = £1) = 1/2. Then X}, is a stationary ergodic
martingale difference which is also a bounded function of an ergodic Markov chain. Straightforward
computations show that if 7 does not have a finite exponential moment then there exists a positive
sequence a, — 0 with na,, — oo for which ([lJ) does not hold. Thus the MDP principle is not true
in general for the stationary sequences satisfying (f]) without a certain form of condition (). A
similar example was suggested in Djellout (2002, Remark 2.6).

Comment 9 On Var(S,) and Theorem [Il. Note that if >.°° n=3/2||E(S,|F)|l2 < oo, then,
by Peligrad and Utev (2005)

lim Var(S,)

n—oo n

— g2 = E(XIQ) + ZZijE(ng (Soi+1 — Sai)) .

J=0

On the other hand, we shall prove later on that Condition (P)) along with (f) are sufficient for the

validity of (B). Therefore the conclusion of Theorem [l holds under (B) and ([) with o2 identified
in this remark.

Comment 10 Sequences that are not strictly stationary. The proof of Theorem J is
based on the exponential inequality from Lemma P2, that was established without stationarity
assumption. Therefore, Theorem [J admits various extensions to non-stationary sequences. The
following slight generalization is motivated by the fixed design regression problem Z, = 0q; +
X, where the fixed design points are of the form ¢, = 1/g(k/n), the error process Xj is a
stationary sequence and we analyze the error of the estimator § = n~! Y1 Zrg(k/n). It {X;}iez
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satisfies the conditions of Theorem [, and if ¢ is a Lipschitz function, then the process W, =
{n=1/2 ZZ 19(i/n)X;,t € [0, 1]} satisfies ([]) with the good rate function J(-) defined by

J(h) = L /01 <h/(u)>2du, where 0% = ZE(XoXk)-

2
20% Jo N glu) =

The proof of this result is omitted. It can be done by following the proof of Theorem B To
be more precise we start by proving the MDP for the process W, (t) = n='/2 Z[m’ Ol g(i/n)X
where v(t) = o2 fo x)dz. For W,(.), the rate function is I,(.) as in Theorem [[. To go back to
the process W, (.), use the change-of-time W,, = W, o v.

3 Applications

In this Section we present applications to functions of ¢-mixing processes, contracting Markov
chains, expanding maps of the interval and symmetric random walks on the circle. The proofs are
given in Section 4.

3.1 Functions of ¢-mixing sequences

In this section, we are partly motivated by Djellout et al. (2006, Theorem 2.7), who have proved
the MDP for

Xk = f(Yk, e ,Yk,g) — E(f(Yk, ceey Yk,g)) where Yk = Z Ci€k—j (11)

1€Z

In their Theorem 2.7, Djellout et al. (2006) assume that

(i) (€:)iez is an iid sequence;

(ii) (condition on ¢;) the spectral density of Y} is continuous on [—m, 7[;

(iii) (condition on &y) & satisfies the so-called LSI condition, which implies that E(exp(de?)) < oo
for some positive §, and that the distribution ¢y has an absolutely continuous component with
respect to the Lebesgue measure with a strictly positive density on the support of p (see their
condition (2.1));

(iv) (condition on f) the functions 0;f are Lipschitz for i = 0,..., (.

By applying our main results, we derive the Propositions ﬂ and [[) stated below. In the
case where X}, is given by ([L]), the Proposition [L1 will allow us to obtain the MDP for a large
class of functions. However, we require a stronger condition than (ii), that is we assume that
the sequence (¢;)iez is in ¢1(Z), and instead of (iii), we suppose that g takes its values in some
compact intervall [a,b] (this assumption cannot be compared to the LSI condition (iii)). Our
method allows to link the regularity of f to the behavior of the coefficients (¢;);cz (in that case,
the condition ([[§) given below means that } .., w;(2(b—a)|c;|) < oo for any j = 0,..., ¢, where w;
is the modulus of continuity of f with respect to the j-th coordinate). In addition, our innovations
maybe dependent: more precisely, (¢;);cz is assumed to be a stationary ¢-mixing sequence.

We now describe our general results. Let (g;);ez = (€0 0 T")iez be a stationary sequence of
¢-mixing random variables with values in a subset A of a Polish space X. Starting from the
definition (§), we denote by ¢.(n) the coefficient ¢.(n) = ¢(o(g;,i < 0),0(g4,7 > n)).



Our first result is for non-adapted sequences, that is satisfying the representation ([2) below.
Let H be a function from AZ to R satisfying the condition

C(A): forany x,yin A%, |H(z)— H(y)| < ZAilggﬁéyi, where ZAi < 0,

i€Z i€Z
Define the stationary sequence Xj, = Xq 0 T* by

Xk = H((er—i)iez) — E(H((ex—i)iez)) - (12)
Note that X}, is bounded in view of C'(A).

Proposition 11 Let (X)pez be defined by ([[3), for a function H satisfying C(A). If 3>, ., ¢(k)
is finite, then the conclusion of Theorem [§ holds with 0® =", ., E(XoXy).

For adapted sequences, that is satisfying the representation ([lJ) below, we can assume that
H satisfies another type of condition. Let H be a function from AN to R satisfying the condition

C'(A): foranyi>0, sup |H(z)— H(zWy)| < R;, where R; decreases to 0,
€ AN yec AN

the sequence (y being defined by (zWy); = z; for j < i and (z@Wy); = y; for j > i. Define the
stationary sequence X = X, o0 T* by

Xy = H((er—i)ien) — E(H((er—i)ien)) - (13)

Proposition 12 Let (X)rez be defined by ([[3), for a function H satisfying C'(A). If
. ¢-(k — 0)
YR <00, (14)
=1 k>t vk

then the conclusion of Theorem [l holds with o® =Y, , E(XoXy). In particular, the condition
(Z4) holds as soon as

130 9e(k) <00 and 3, o k™ V2Ry < .
2. Y oo Be <00 and Y, o k720 (k) < oo

Application to functions of linear processes. Assume that ¢; takes its values in a compact
interval A = [a,b] of R, and let (¢;)icz be a sequence of real numbers in ((Z). Let m =
inf,caz > icq ¢ty and M = Sup,caz Y0z Ci%;. For a function f from [m, M]% to R, let w; be
the modulus of continuity of f with respect to the i-th coordinate, that is

wi(h) = sup [f (@) = f(a“0)],

x€[m,M)Z te[m,M],|z;—t|<h

the sequence Y being defined by l’g»i’t) = z; for j # i and a:z(i’t) =t. Assume that

for any z,y in [m, M]* [ f(x) = f(y)| <D willei = yil) < 0.

1€EZ



Define the random variables Y, = ZiEZ Ci€r_;, and let

Xi = f(Ye-i)icz) — E(f((Yr-i)icz) (15)

(note that ([J) is a generalization of ([[1])). Clearly, X} may be written as in ([J), for a function
H from A% to R. Moreover, H satisfies C(A) with A; < 3,5 we(2(b — a)|c;—¢|) provided that

D) wi2(b - a)lei]) < oo (16)

1€Z LeZ

From Proposition [, if ), ., ¢-(k) < oo and if ([[d) holds, then the conclusion of Theorem [I]
holds. In particular, the condition ([[f) holds as soon as there exist (b;);cz in £*(Z) and « in ]0, 1]
such that we(h) < be|h|* and ), |c;|* < 0o. Two simple examples of such functions are:

L. f(z) =Y ez 9i(x;) for some g; such that |g;(x) — g;(y)| < bilx — y|* for any x,y in [m, M].
2. f(z) = {_,hi(z;) for some h; such that |h;i(x) — hi(y)| < K|z —y|* for any z,y in [m, M].

Now, assume that ¢; = 0 for i < 0, so that Y, = > .. ciep—i. If f is in fact a function
of z through z only, we simply denote by w = wjy its modulus of continuity over [m, M]. In
that case Xy = f(Ys) — E(Y)) may be written as in ([[J) for a function H satisfying C’(A) with
R <w(2b—alY -, |ck|). From item 1 of Proposition [[3, if Y, ¢-(k) < oo and if

Zn_l/Qw(2|b—a|Z|ck|> < 00, (17)
n>1 k>n

then the conclusion of Theorem [l holds. In particular, if |¢;| < Cp' for some C' > 0 and p €]0, 1],
the condition ([[7) holds as soon as:

1
/ﬂdt<oo.
o ty/|logt]

Note that this condition is satisfied as soon as w(t) < D|log(t)|~" for some D > 0 and some
v > 1/2. In particular, it is satisfied if f is a-Hélder for some a €]0, 1].

3.2 Contracting Markov chains

Let (Y,,)n>0 be a stationary Markov chain of bounded random variables with invariant measure u
and transition kernel K. Denote by ||-||~,, the essential supremum norm with respect to p. Let A4
be the set of 1-Lipschitz functions. Assume that the chain satisfies the two following conditions:

there exist C' > 0 and p €]0, 1] such that  sup [|[K"(g) — 1(9)]|oo,n < Cp™, (18)
geEA
for any f,g € Ay and any m >0 lim [|[K"(fK™(9)) — p(f K™ (9))lloo = O- (19)

We shall see in the next proposition that if (I§) and ([[d) are satisfied, then the MDP holds in
D0, 1] for the sequence

Xo = f(Yn) = p(f) (20)

as soon as the function f belongs to the class £ defined below.
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Definition 13 Let L be the class of functions f from R to R such that |f(z) — f(y)| < c(|z—y|),
for some concave and non decreasing function c satisfying

L)
/0 Wdt<oo. (21)

Note that (B1)) holds if ¢(t) < D|log(t)|~" for some D > 0 and some v > 1/2. In particular, £
contains the class of functions from [0, 1] to R which are a-Hdlder for some « €]0, 1].

Proposition 14 Assume that the stationary Markov chain (Yy)n>o satisfies ([I8) and (I3), and
let X, be defined by (Bd). If f belongs to L, then the conclusion of Theorem [1 holds with

o =a*(f) = u((f — p(N))*) +2D (K" (f) - (f — ().

The proof of this proposition is based on the following lemma which has interest in itself.

Lemma 15 Let u, = sup,cp, [|K"(9) — p(9)llcc,u- Let f be a function from R to R such that
|f(x) = f(y)] < e(lx —y|) for some concave and non decreasing function c. Then

K™ () = () oo < cun) -

Remark 16 If u, < Cp" for a C > 0 and p €]0,1], and if c(t) < D|log(t)|™" for D > 0 and
v >0, then

K" () = (Pl = O(n77)..

We now give two conditions under which ([[§) and ([[9) hold. Let [a,b] be a compact interval in
which lies the support of y1. For a Lipschitz function f, let Lip(f) = sup, ye(on [/ (2) = f(@)]/|z—yl.
The chain is said to be Lipschitz contracting if there exist £ > 0 and p €]0, 1] such that

Lip(K™(f)) < rp"Lip(f) (22)

Let BV be the class of bounded variation functions from [a,b] to R. For any f € BV, denote by
|df || the total variation norm of the measure df: ||df|| = sup{ [ gdf, ||gllcc < 1}. The chain is said
to be to be BV-contracting if there exist x > 0 and p € [0, 1] such that

[dE™ ()] < wp"||df ] (23)

It is easy to see that if either (B2) or (P3) holds, then ([[§) and ([[J) are satisfied (to see that
the condition (PJ) implies ([[9), it suffices to note that it implies the same property for two
BV functions f,g (see (52)), and that any Lipshitz function from [a, ] to R can be uniformly
approximated by BV functions).

Application to iterated random functions. The stationary bounded Markov chain (Y},),>0
with transition kernel K is one-step Lipschitz contracting if there exists p €]0, 1[ such that

Lip(K(f)) < pLip(f)-

Note that if K is one-step Lipschitz contracting then (B3) obviously holds with x = 1. The one-
step contraction is a very restrictive assumption. However, it is satisfied if Y, = F(Y,,_1,¢&,) for
some iid sequence (g;);~o independent of Y, and some function F' such that

[F(z,e1) = Fy,en)lls < ple —y|  for any z,y in R. (24)



Remark 17 Under a more restrictive condition on F than (24), namely
|F(2,2) = Fy,t)| < plz —y| + LIz — t], (25)

Delyon et al (2006) have proved the MDP for X, = f(Y,) — u(f) when f is a lipschitz function.
In their paper, the chain is not assumed to be bounded. It is only assumed that E(e®') < oo for
some § > 0, which implies the same property for X1 (for a smaller §) by using the inequality (BJ).

Application to expanding maps. Let T be a map from [0, 1] to [0, 1] preserving a probability
won [0,1], and let
] |
X = fo T — u(f), Walt) = Wo(f,t) =n™2> (fo T" 7' = u(f))
i=1

Define the Perron-Frobenius operator K from L?([0, 1], 1) to L*([0, 1], u) via the equality

/0 (Kh)(2) f (x)p(de) = / W(z)(f o T)()u(d) . (26)

The map T is said to be BV -contracting if its Perron-Frobenius operator is BV -contracting, that
is satisfies (R3). As a consequence of Proposition [14, the following corollary holds.

Corollary 18 [fT is BV -contracting, and if f belongs to BV UL, then the conclusion of Theorem

[@ holds with
o” =0(f) = u((f — n(£))?) +2D _pu(fo T (f = u(f))).

n>0

Let us present a large class of BV -contracting maps. We shall say that 7" is uniformly expanding
if it belongs to the class C defined in Broise (1996), Section 2.1 page 11. Recall that if T" is uniformly
expanding, then there exists a probability measure p on [0, 1], whose density f,, with respect to
the Lebesgue measure is a bounded variation function, and such that p is invariant by 7. Consider
now the more restrictive conditions:

(a) T is uniformly expanding.

(b) The invariant measure p is unique and (7, ;) is mixing in the ergodic-theoretic sense.

(c) —1y,50 is a bounded variation function.

fu
Starting from Proposition 4.11 in Broise (1996), one can prove that if 7" satisfies the assumptions
(a), (b) and (c) above, then it is BV contracting (see for instance Dedecker and Prieur (2007),
Section 6.3). Some well known examples of maps satisfying the conditions (a), (b) and (c) are:

1. T(x) = pa — [Bx] for § > 1. These maps are called S-transformations.
2. [ is the finite union of disjoint intervals (Ix)1<k<n, and T'(z) = arx + by on Iy, with |a| > 1.

3. T(x) = a(z™* — 1) — [a(z™" — 1)] for some a > 0. For a = 1, this transformation is known
as the Gauss map.

Remark 19 The case where f(x) = x (that is X,, = T™ — u(T)) has already been considered by
Dembo and Zeitouni (1997). However, in this paper, the assumptions on T are more restrictive
than the assumptions (a), (b) and (c) above. In particular, they assume that there is a finite
partition (I;)1<j<m of [0,1] on which T restricted to Iy is C* and inf,e; |T'(x)| > 1, so that their
result does not cover the case of the Gauss map (Example 3 above).



3.3 Symmetric random walk on the circle

Let K be the Markov kernel defined by

Kf(e) = 5(fa+a)+ fx —a)

on the torus R/Z, with a irrational in [0, 1]. The Lebesgue-Haar measure m is the unique proba-
bility which is invariant by K. Let (;);cz be the stationary Markov chain with transition kernel
K and invariant distribution m. Let

[ni]

Xi = f(&) =m(f) s Walt) = Walf,t) =n" Y (f(&) —m(f)). (27)

i=1

From Derriennic and Lin (2001), Section 2, we know that the central limit theorem holds for
n~2W,(f,1) as soon as the series of covariances

a*(f) =m((f —m(f)*) +2)_ m(fE"(f —m(f))) (28)

n>0

is convergent, and that the limiting distribution is N'(0,0%(f)). In fact the convergence of the
series in (R§) is equivalent to

o
kezz* d|(£2,>z|)2 = (29)

where f(k) are the Fourier coefficients of f. Hence, for any irrational number a, the criterion (9)
gives a class of function f satisfying the central limit theorem, which depends on the sequence
((d(ka,Z))kez-. Note that a function f such that

ligninfk|f(k:)| >0, (30)

does not satisfies (R9) for any irrational number a. Indeed, it is well known from the theory of
continued fraction that if p, /g, is the n-th convergent of a, then |p,—qg,a| < ¢, !, so that d(ka,Z) <
k=1 for an infinite number of positive integers k. Hence, if (B0) holds, then |f(k)|/d(ka, Z) does
not even tend to zero as k tends to infinity.

Our aim in this section is to give conditions on f and on the properties of the irrational number
a ensuring that the MDP holds in D[0, 1].

a is said to be badly approximable by rationals if for any positive ¢, (31)
the inequality d(ka,Z) < |k|~'=¢ has only finitely many solutions for k € Z.

From Roth’s theorem the algebraic numbers are badly approximable (cf. Schmidt (1980)). Note
also that the set of badly approximable numbers in [0, 1] has Lebesgue measure 1.

In Section 5.3 of Dedecker and Rio (2006), it is proved that the condition (B9) (and hence the
central limit theorem for n=*/2W,,(f,1)) holds for any badly approximable number a as soon as

sup |k|'*| f(k)| < oo for some positive €. (32)
k40

Note that, in view of (B0), one cannot take ¢ = 0 in the condition (B2).
In fact, for badly approximable numbers, the condition (B3) implies also the MDP in D|0, 1]:

10



Proposition 20 Suppose that a is badly approzimable by rationals, i.e satisfies (31). If the func-
tion f satisfies ([33), then the conclusion of Theorem [] holds with o* = o*(f).

Note that, under the same conditions, the process {W,,(f,t),t € [0, 1]} satisfies the weak invariance
principle in D[0, 1]. Indeed, to prove Proposition P{, we show that the conditions of Corollary J] are
satisfied, but these conditions imply the weak invariance principle (see for instance Peligrad and
Utev (2005)). From Comment [, we also infer that the Donsker process defined in ([L0) satisfies
the functional law of the iterated logarithm.

4 Proofs

Since the proofs of our results are mainly based on some exponential bounds for the deviation prob-
ability of the maximum of the partial sums for dependent variables, we present these inequalities,
which have interest in themselves.

4.1 Exponential bounds for dependent variables

We state first the exponential bound from Proposition 2 in Peligrad, Utev and Wu (2007) that
we are going to use in the proof of the main theorem.

Lemma 21 Let (X;);cz be a stationary sequence of random wvariables adapted to the filtration
(Fi)icz- Then

. 2
P(max |5 > 1) < 4V/eexp (—2/2n[[[ X100 +80 ) =2 E(S)1F0) 1] )
<i< =
In the next lemma, we bound the maximal exponential moment of the stationary sequence by
using the projective criteria.

Lemma 22 Let {Yj}rez be a sequence of random variables such that for all j, E(Y;|F-w) =0
almost surely and Y; is Foo-measurable. Define the projection operators by P;(X) = E(X|F;) —
E(X|F;_1) . Assume that

1Pj(Yi)llow <p; and D:= Y p;<oc

j=—o00
Let {gr , k € N} be a sequence of numbers and define,

k n
Sk=>_gYi, My=max S; , Gi =) g}
i=1 i=1

1<5<k

Then,
Eexp(tM,) < 4exp(3G2D*t?).

In particular,
2

X
P max 181 > ) < Sexp W)'

11



Proof. Start with the decomposition

Ye= > Py(Yi) = Y bR y(Yi)/b,

j=—o0 j=—o0

where b; = p;/D > ||Py—;j(Y) ||/ D, for any j € Z. Then

S, = Z b kz:gkpk—j(yk)/bj'
=1

j=—o0

Thus,

1<m<n

M, < Z b; max ZPk_j(gkYk)/bj =: Z b; M)
j k=1

j=—00 j:—OO

where M) denotes maxi<m<n O pey 9k Pe—i(Y)/b;.
Since exp(z) is convex and non-decreasing and b; > 0 with >, , b; = 1,

Eexp(tM,) < EeXp( Z bth,(Lj)> < Z b;Eexp(tMP)) .

J=—00 J=—00

Consider the martingale difference Uy = gxFPy—;(Yx)/b;, 7 = 1,...,n. Since the variables Z; =
exp(t(Uy + - - - + Uy)/2) form a submartingale, Doob’s inequality yields

Eexp(tMY) = E( max Z,i) < 4EZ% = 4B exp(t(U; + - - + Uy,)).

1<k<n

Applying Azuma’s inequality to the right-hand side, and noting that

1Uklloo = 1grlll P (Vi) oo /b5 < lgx| D,
we infer that A
E exp(tMY) < dexp(1G2D*).
Since ), b; = 1, we obtain that

Eexp(tM,) < Z bidexp(3G2 D) = dexp(:GLD*t) .
jez

Next, to derive the one-sided probability inequality we use the exponential bound with ¢t =
z/(G2D?), so

2

P(M, > x) < Eexp(tM,) exp(—tx) = 4 exp ( - 2G2D2 ) '

Finally, to derive the two-sided inequality we observe that the stationary sequence {—Y;} also
satisfies the conditions of the lemma. The proof is complete. ¢

The next technical lemma provides an exponential bound for any random vector plus a cor-
rection in terms of conditional expectations (see also Wu, 1999).
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Lemma 23 Let {X;}1<i<n be a vector of real random variables adapted to the filtration {F,}n>1.
Denote B=sup,<;<, || Xilloo. Then, for all 6 > 0 and c a natural number with cB/n < §/2, we
have

ic

5n 1
P(max |—ZX | > 0) < 2exp(— 5 )+ P( sup |- Z E(X;|Fic1e)| 2

1<i<n'm 4B%¢c ; c
1<i<[n/] j=(i—1)c+1

) (33)

>

Proof of Lemma Let ¢ be a fixed integer and k = [n/c| (where, as before, [z] denotes the
integer part of x). The initial step of the proof is to divide the variables in consecutive blocks of
size ¢ and to average the variables in each block

}/i,c:% Z X],Z21

(i—1)c+1

Then, for all 1 <4 < k we construct the martingale,

% %

Mie =Y (Yie—E(YdFj-ne) = Y Die

j=1 j=1

and we use the decomposition
X, > 4 >5- L > §/2)
1@%‘52 |2 s P(ualy Z o 2020 < Plmax I Z o 29/2)

< P(max—|Mw|>5/4)+P max—|ZE AFGne) > /4)

1<i<k k

1
< P(max (Mol > 6/4) + P(max [E(V;o|Fi1)| > 6/4).

1<i<k
Next, we apply Azuma’s inequality to the martingale part and obtain,
2.2 52n

< _
sorg?) = 2P~ grope)

IS < _
P (2%>2|MZC| > 5k:/4) < 2exp(

which implies that

2

L)+ P(max [E(Y; Fine)| > 6/4)

P(max \—ZX |2 0) < 2exp(— = max

1<i<n N

proving the lemma. ¢

4.2 Some facts about the moderate deviation principle

This paragraph deals with some preparatory material. The following theorem is a result
concerning the MDP for a triangular array of martingale differences sequences. It follows from
Theorem 3.1 and Lemma 3.1 of Puhalskii (1994), (see also Djellout (2002), Proposition 1 and
Lemma 2).

13



Lemma 24 Let k, be an increasing sequence of integers going to infinity. Let {D;,}1<j<k, be
a triangular array of martingale differences adapted to a filtration F;,. Define the normalized
partial sums process Z,(t) = n=/? Zgi"f} D;,,. Let a, be a sequence of real numbers such that
an, — 0 and na, — oo. Assume that |Dj,|l« = o(y/na,) and that for all 6 > 0, there exists
o2 >0 such that

k

. IS

lim sup a,log P (’E E 1 E(D7 | F-1)n) — 02’ > 5) = —0. (34)
J:

n—oo

Then, for the given sequence a, the partial sums processes Z,(.) satisfy (@) with the good rate
function 1,(-) defined in ().

To be able to obtain the moderate deviation principle by approximation with martingales we
state next a simple approximation lemma from Dembo and Zeitouni (1998, Theorem 4.2.13. p
130), called exponentially equivalence lemma.

Lemma 25 Let &,(.) = {&.(t),t € [0,1]} and (,(.) := {G.(t),t € [0,1]} be two processes in
D([0,1]). Assume that for any § > 0,

lim sup anlogP(\/@ sSup |€n(t) - Cn(t)| > 5) = -

n—0o0 t€(0,1]
Then, if the sequence of processes &,(.) satisfies ([) then so does the sequence of processes (,(.).

In dealing with dependent random variables, to brake the dependence, a standard procedure
is to divide first the variables in blocks. This technique introduces a new parameter, and so, in
order to use a blocking procedure followed by a martingale approximation, we have to establish a
more specific exponentially equivalent approximation, as stated in the following lemma:

Lemma 26 For cmy positive integer m, let k,, ,,, be an increasing sequence of integers going to

infinity. Let {d]n; H<j<kn. e a sequence of triangular array of martingale differences adapted to

a filtration F; (") Define the normalized partial sums process Z3™ (t) = n=4/2 Skt gm) = pop g
be a sequence of positive numbers such that a,, — 0 and na, — co. Assume that for all m>1
sup Hd%)HOO = o(y/na,) as n — oo (35)
1<j<knm

and that for all § > 0, there exists 0 > 0 such that

k“nm
lim lim sup a,logP () ZE ]n )| F s 1 ) —o? > ):—oo. (36)

Let {(,(t) ,t € [0,1]} be a sequence of D[0,1]-valued random variables such that for all 6 > 0,

lim lim sup a,log P(y/a, sup |Cu(t) — Z0(t)] > §) = —o0 (37)

m—oo n—00 te[0,1]

Then, the processes (,(.) satisfy () with the good rate function I,(-) defined in (4).
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Proof. Define the functions
A1(0,n,m) = aylog P( sup |(,(t) — ZT(Lm) ()] =9);
te(0,1]
[kn,mt]

1
Ay(6,n,m) = aylogP | sup ’— Z E((d")?|F™ ) —t0?| > 6

J,n _]—1)771
tefo,1] ' T = (

As(8,n,m) =log ( sup [|d\" ) — log (vanm) -

1<j<kn,m

Observe that the functions A;,7 = 1, 2, 3 satisfy the conditions of Lemma B( from Appendix and

so, we can find a sequence m,, — oo such that the martingale difference sequence (dszn)) satisfies

the conditions of Lemma P4. We then derive that the sequence of processes Z,(lm”)(.) satisfies ([l])
and, by applying Lemma B3, so does the sequence (,(.) . ¢

4.3 Proof of Theorem

Let m be an integer and k = ky,,, = [n/m| (where, as before, [x] denotes the integer part of

The initial step of the proof is to divide the variables in blocks of size m and to make the sums
in each block

j=(i—1)m+1
Then we construct the martingales,
o [n/m] [n/m]
M =Y (Xim = B(Ximn|Fym) == D> Dim
i=1 i=1

and we define the process {Mém)(t) :t€[0,1]} by

M™ () = M)

s

Now, we shall use Lemma P@ applied with dﬁ) = Dj,, and verify the conditions (Bf) and

(3

We start by proving (Bd). Notice first that {D;,,}:>1 is a rowwise stationary sequence of
bounded martingale differences. We have to verify

[n/m]
L 1 2 2
WILE%O lim sup a,log P ‘ﬁ E 1 E(D5,.|F-1ym) —0°| 26 | = —c0. (38)
]:

Notice that
E(D7,|Fi-im) = B(X: | Fi-1ym) — (B(Xjm| Fi—1ym)))?

and that, by stationarity

[n/m]

%H Y (EB(XmlFyovm)?|| < IFE(Sm| Fo)ll.

0o m
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Also

[n/M]
H— X2l Fiom) = 02| < I E(SEIF) = 0%l + (1 — kim/n)o®
Consequently
g TR [ < EC 2 ———— )
hmsupH— > (B2, F o) - 0| < 20 i B(S IR — 0
n—o00 j=1 o

which is smaller than 6/2 provided m is large enough, by the first part of Lemma P9 from Appendix
and condition (fJ). This proves (BY).
It remains to prove (B7), that means in our notation that for any § > 0

lim lim sup a,log P (Q [4n sup |Spy — ,gm)(t)| > 5) = —00. (39)
m—00 n—o0 n tefo,1)

Notice first that

[rt] [kt
sup |S[nt] <>| < sup ‘ Z Xy + sup |ZE lm|~7:(z 1)m)‘
t€(0,1] te(0,1] i= [k fmt1 tef0,1] =

J
< o(y/nay) + max } | Z E(Xim|Fi-ym)|-
i—1

1<j<[n/m

Then, by using Lemma R we derive that

;
[ay,
aylog P — max E Xim!|Fli- >4
& ( n 1<]<[n/m}‘i:1 ( ‘ b )| )

&*m
< aylog(4v/e) — S '
= V) SRS, A+ S0 ) P TE(S, T

which is convergent to —oo when n — oo followed by m — oo, by Lemma P9.

4.4 Proof of Corollary  and Remark 5

Notice that obviously, by triangle inequality and changing the order of summation, () implies
(). So, in order to establish both Corollary B and Remark 5, we just have to show that condition
(B) together with (@) imply condition (). This will be achieved by using the following two lemmas.

First let us introduce some notations. Let Sy, = S, — S, and set

Aroo = D 2P E(Sw]Fo) oo s Aoo = | E(XTIF) L+ D 277 E(Sw] Fo) oo -
J=r Jj=0

By Peligrad and Utev (2005), ﬁo,oo < oo is equivalent to ().
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Lemma 27 Assume that Xg is Fo-measurable and that |E(X?|F)|lw < 00. Let n, r be integers
such that 271 < n < 2". Then

r—1 A 9
[B(S2170) e < n(IBOTIF)IE + 5D 272 B(Sw] F)loe) < A
j=0

Moreover, under (3),
In " E(SHT) =l = 0 as n— oo,

where I is the o-field of all T-invariant sets and
n=E(X{T)+ i 27TE(S5 (Saitr — S)|T) .
=0
In particular, if E(X;X;|F_) = E(X;X;), for any i,j in Z, then
n=o"=E(X})+ i 2B (S (Saj+1 — Sai)) -
j=0

Proof. The proofs of the first three statements are almost identical to the proof of the corre-
sponding facts in Proposition 2.1 of Peligrad and Utev (2005). The only changes are to replace
everywhere the Lo—norm ||z|| by the L,—norm ||z|+ and the usual expectation E(X) by the
conditional expectation E(X) = E(X|F). The last statement follows from Proposition 2.12 in
Bradley (2002), since for all 4, j,

E(X,X;|T) = E(E(X;X,|F_)|T) = E(X;X,). ©

Lemma 28 Assume that X, is Fo-measurable and that |[E(X?|Fo)|le < 00. Suppose that the
conditions (§) and (@) are satisfied. Then,

In'E(S%|F) — 0%|ee — 0 as n— oo
Proof. By Lemma P7, it is enough to show that
LIB(S31D) — B(S2) e — 0 a5 — o0
We prove this lemma by diadic recurrence. For t integer, denote
Aer = |E(SF1F-k) — E(S})|oo -
Then, by the properties of conditional expectation and stationarity, for all ¢ > 1

Ase = |[E(S3IF-k) — E(S3) e < [E(SFIF-1) — E(S))lloc
HIE(SEulFok) — B(S])lloo + 2B (SeSt2e| F-r) — B(SeSe2t)lloc
< 2AE(S/Fk) — E(S))lloo + 20E(SeSt 20 Fr)lloo + 2/E(S:Si0)] -

17



Using for the last two terms the bound from Lemma P7, the Cauchy-Schwartz inequality and

stationarity, we have
Agr e < 2Au 5 + AP A | E(Se| Fo) |l
Whence, with the notation
B, = 27"||B(S5 | F_k) — E(S5) |0 = 27" Agr
by recurrence, for all » > m and all £ > 0, we derive

—r+4+3

Br,k S Br—l,k + 272 Ac>o||]5)(52T*1|~¢'0)||c>o S Bm,k + 2Ac>o Z 2_]/2||E(SQJ|JTO)||OO .

j=m

Therefore

27" |E(S2|F_t) — E(S3) ]l € B + 2800800 -
Now notice that, by stationarity and triangle inequality
IE(S3|F0) = (S5 )lloo < B(S5[F-r) = B(S3) [l + IB(S3 — Si paar|F0) | oc
and that by Lemma P7

IE(S3: — Si k2 Fo)lloc IE((S2r = Srzr) 2| Fo) | L2 NB((Ser + Skerer)*|F0) 137

4k E(XT|Fo) 1371 E(S3 | Fo) 147
22k | E(XF | Fo) | Ao

IAIAIA

Then, starting from ([I]) and using ([[() and (f3), we derive that for r > m + 1,
27| B(S5:Fo) = E(S5) oo < Bunk + 280 B oe + 277 B(XT]F) [P A
As a consequence

limsup 27" ||E(S2 | Fo) — E(S2)|loe < Bk + 2800 A o0 -

r—00

Then, we first let & — oo and by Condition [ it follows that limy_..c B,,x = 0. Then, we let m

tend to infinity and by Condition (B), we derive

lim 277 ||E(S2.|Fy) — E(S2)|lee = 0.

r—00

To complete the proof of the lemma we use the diadic expansion n = 22;52’“% where a,_1 =1

and a; € {0, 1} and continue the proof as in Proposition 2.1 in Peligrad and Utev (2005).

4.5 Proof of Theorem

Fix a positive integer m and define the stationary sequence

Eiom = E(X| Fjpm-1) — B(X;|F;_m)

18



Using a standard martingale decomposition (see also Hall and Heyde, 1980), we define

0o 2m—2
=Y Bl Fiam1) = D ElnmlFirm-1).
t=0 k=0
and observe that
2m—2 m—1
Oomlloe = 11> D PiXi)lloo < 2m Y [ Po(Xi)]|oo < 00 (43)
k=0 i=k—m-+1 i€Z
Then, E(0;11.m|Fjtm-1) = ;m — &;m and thus,
k k
Z gj,m = el,m - ek—l—l,m + Z dj,m . (44)
=1 j=1
where d; ., := 0;41.m — E(0j 11| Fj+m—1) is a stationary bounded martingale difference.
Moreover,
k k
S X =3yt B (45)
j=1 j=1
where
k
R = 01m — Oy + O _[Xj = E(X;|1Fjm1) + B(XG|Fj )]
j=1

First, we show that Ry, is negligible for the moderate deviation. We notice that by ([J) it is
enough to establish that

k
b = X — E(X| Fiim-1) + B Fjom)]
j=1
is negligible. Observe that
X; = B(X;|Fjima) + BOGIFjmm) = > Piy(X;) and

[t|>m

D NP = BOXGIFjmr) + BOGIF ) llso < Y I1Po(Xi)lloo = D (46)

JEZ |k|>m

Now, the exponential inequality given in Lemma P2 entails that

P( max

1<k<n

k
52
S ELX — BOGIE ) + BOGIF ]| = 0v/nfan) < Sexp (- —)

The last inequality together with ([) and Lemma B3 reduces the theorem to the MDP principle
for bounded stationary martingale difference {d;, ; j € Z}.
Then, by Lemma Pd, it remains to verify that

L. RS
lim limsup a, lnP(‘E Z(E(d§7m|fj+m—1) —0°)

m—0o0 n—oo -
J=1

25)2—0@.

19



In order to prove this convergence, by Lemma P3, applied with B = 2(,., |]P0(Xg)|]00)2, it is
enough to establish that

lim lim sup H% i(E(diM}—m—l) - 02)H =0.

m—0 n 0o 0

Since {d;,} is a martingale difference, it follows from the decomposition (f4)) and (f3), that it
remains to prove that

o 1 - 2
e 3 )i -0 e
j=2m—1
Write
n 9 n (N+i)An
S )= D Gut2 Y Y Gt D D Gt
j=2m—1 i=2m—1 i=2m—1 j=i+1 1=2m—1 j=N+i+1
Notice that, since &;,, = ijg” 1 Pu(X;), we get
Z Z gz m&] m|JTm 1)||oo =~ Z Z ||E gz m&] m|fm 1)”00
1=2m—1 j=N+i+1 1=2m—1 j=N+i+1
n i+m—1
Z D B oo D I1P(XKiro)lloe < D NP(X)lloo Y I1P(Xe)]|ow — 0
i=2m—1 k=i—m+1 (>N i1€Z [¢|>N/2
as N — oo, uniformly in n, and so, ([[]) is implied by
1 (N+i)An
lim i H—E( 2 i Fon— )— =0, 48
Jim limsup ||~ @;;fm* zmjzg il Fnt) = o (48)

where 0% = E(X?) +2E(Xo X))+ -+ 2E(XoXn_1). Write &, = X; + (&.m — X;). By condition
@), we easily get that

n (N+i)An

n{iﬂn&)limsupH%E( Z X2 +2 Z Z Xi X | Fon 1>—

i=2m—1 i=2m—1 j=i+1

hence (f§) holds since

1X; = Eimlloe < > IPo(Xi)lloe = 0 as m—o00. o

k| =m

4.6 Proof of Proposition 1]

Let F, = o(e;,i < k). From Theorem 4.4.7 in Berbee (1979), there exists (£});~o distributed as
(£;)i=0 and independent of Fy such that

”E<1{5k7£5§€,for some k > n}|f0)”oo = (bs(n) .
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Let (51(-0))1-62 be the sequence defined by 51(-0) =¢; if i <0 and 550) = ¢ if i > 0. Let (5571))1-62 be

the sequence defined by 8571) =g if 1 <0, 5571) =¢; if i > 0 and e((fl) = x where x € A. Define

now Z, = H((ex_;)icz), Z,(CO) = H((z—:,(go_)i)iez) and Z,(C_l) = H((e,(ﬁ__?)iez). We shall apply Theorem
B. Note first that ([q) is equivalent to Y, [[Po(Zi)|ls < 00. Now
Po(2Z;) = B(2°|Fo) = B(Z V| F ) + B(Z - 2| Fo) — B(Z; — 20 V| FL).
Denoting by E.(-) the conditional expectation with respect to €, we infer from C(A) that
E(Z"|Fo) = B(Z|F )| = [Bo(H((e))jez) — H((eZ))jen))| < A

Now, from C(A) again,

B(Z — ZV|Fo)| < A B(le pe | Fo) and B(Z — 20V |FL) < A+ ) A B(L, 2 |Fo0).

k=1 k=1

Consequently, by the ¢-mixing property, we obtain the upper bound

Z HPO(ZZ')HOO < 2 Z Ai +2 Z Z Aifk(be(k) )

i€Z i€Z i€l k=1
which is finite provided that ) .., A; < oo and ), ¢.(k) < oco. It remains to prove (f). Let
X\ = 7O _E(z"). We have
IB(X:Xi|Fo) — B(Xe X))l < [BXOX 1) - B X))
+ |EXu(X — X)) Fo) — BXG(X = X))o
+ B X - X)NF0) — B (X = X))o (49)

Clearly, by C'(A) and the ¢-mixing property,

IB(XH(X — X )| Fo) — BXX(X) = X))o < 4l Xkl > Aripe(),
k=1

which tends to zero as [ tends to infinity. In the same way

. 0 0 0 0
lim [ B (X5 — X7 1Fo) = B (X = X))o = 0.

Let H, = H — E(Z,go)). Let (1;)iez be distributed as (g;);ez and independent of ((¢;)icz, (£})i>0),
and let (ngo))iez be the sequence defined by ni(o) =, if + <0 and ni(o) = ¢} if ¢ > 0. With this
notations, we have

0 0 0 0 0 0 0
EXOXO1F) - BXOX) = E(H(e)ier) H(())icz) — Hi(n")ie2)))
0 0 0
+ B (H(()iez) Hi((62 )iez) — Hil()iez)))  (50)
Consequently, applying C'(A) once more, we have that
0 0 0 0 0 0
B X 1F) = B X oo < 1X 00 D A+ 11X o DA,

i>1 i>k

which tends to zero as k and [ tends to infinity. This completes the proof. ¢
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4.7 Proof of Proposition

We shall apply Corollary B. We use the same notations as for the proof of Proposition [[1 With
these notations, we have

E(X;| 7o) = E(X"|Fo) + B(X — X | 7o)
Now, applying C'(A),
k k
E(Xx = XO|Fo)| < R iB(lee | Fo) + > R iPlei # €))
i=1 i=1
and by the ¢-mixing property,

k
IB(X: = X0 Fo) oo <2 Riie(i) - (51)

i=1
Now, by C’"(A) again,

I Fo)llso = [B(H (e )iez) — H((0)iez)lleo < R
Consequently, since ¢.(0) > 0, the condition (f]) is implied by ([4). It remains to prove (). We
start from the decomposition (E9). By (1),

!
(XX = X7)1Fo) = B = X))o < 4l Xullow D Froite(i),
i=1

k
and [|E(X"(X; — X)) |Fo) — B(X” (X = XN < 41Xl Y Riitre(i) -
=1

Hence, in view of ([4), these two terms converges to zero as k and [ tend to infinity. From (BQ)
and condition C"(A), we have that

0 0 0 0 0 0
IEXY X 1F) — BX X)) oo < 1X2 oo R + 1 X0 Re

which again converges to zero as k and [ tend to infinity. This completes the proof. ¢

4.8 Proof of Proposition [[4

It suffices to prove that for any f in £, the sequence X; = f(Y;) — u(f) satisfies the conditions ({)
and (B) of Corollary .

Note first that () holds because of ([9) and because any continuous function from [0, 1] to R
can be uniformly approximated by Lipschitz functions.

From Lemma [, we have that

K" () = () lloo < e(Cp")

for some concave non decreasing function ¢. Consequently (f]) holds as soon as Y, ., k~"/%c(Cp")
is finite, which in turn is equivalent to (£1)).
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4.9 Proof of Lemma [5

Let (Y;);>1 be the Markov chain with transition Kernel K and and invariant measure p. From
Lemma 1 in Dedecker and Merlevede (2006), we know that there exists Y;* distributed as Y} and
independent of Yj such that

sup || K*(g) = 1(9)lloo = IB(Yr = YY) lloc -

geEA

For any f such that |f(x) — f(y)| < ¢(|x — y|), we have

IEE(F) = 1(Dllooss = IE(f(Ya)[Y0) = B((Y)Y0)lloo
< ECe(Yr = Y DY)l -

Since c is concave and non decreasing, we get that
IEE(f) = 1(Flloos < (BT = Y IY0) oo < (I E(IYr = Y 1¥0) loc)

and the proof is complete. ¢

4.10 Proof of Corollary [I§

Let (Y;);>1 be the Markov chain with transition Kernel K and invariant measure p. Using the
equation (PG) is easy to see that (Yp,...,Y,,) is distributed as (T, ..., T). Consequently, for f
in £, Corollary [[§ follows from Proposition [[4 and Condition (B3).

Assume now that f is BV. We shall prove that the sequence X; = f(Y;) — u(f) satisfies the
conditions (f) and (B) of Corollary B. Since K is BV -contracting we have that

IEXY0) oo = IE*(f) = n()lsoy < NIEF(H)]| < Colldf

so that ([]) is satisfied. On the other hand, applying Lemma 1 in Dedecker and Prieur (2007), we
have that, for any [ > k£ > 0,

IE(X5:X1|Y0) — B(X:X)l|oo < C(1 4 C)p"|ldf|I?, (52)

so that (g) holds. This completes the proof of Corollary [[§ when f is BV. o

4.11 Proof of Proposition

To prove Proposition R0, it suffices to prove that the sequence X; = f(&) — m(f) satisfies the
conditions (J) and () of Corollary f]. Let || - ||oo,m be the essential supremum norm with respect
to m.

Note that ||E(X,[&0)]le = | K"(f) — m(f)||oo,m, and that

K"(f)(z) —m(f) = Z cos™(2nka) f (k) exp(2irkz) .

keZ*

By assumption, there exists C' > 0 such that sup;_ [k|'*¢| f(k)| < C. Hence

Z ||Kn ||oom <C Z |/{7| 1— EZ |COS 27’(’]{3& (5?))

n>0 keZ* n>0
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Here, note that there exists a positive constant K such that, for any 0 < a < 1, we have

n~4a" < Ka(l —a)” o see this, it suffices to compare the sum wi e integra

o 2a" < Ka(l V2 (¢ this, it suffices t pare th ith the integral
of the function h(z) = z7/2a%). Consequently, we infer from (FJ) that

5™ (f) = m(f)lloo.m 1
Z vn = R Z k|**ey/1 — | cos(2mka)|

keZ*

1
<
< OK ), k[12d(2ka, Z)’ (54)

keZ*

the last inequality being true because (1—|cos(mu)|) > m(d(u, Z))?. Since a is badly approximable
by rationals, then so is 2a. Hence, arguing as in the proof of Lemma 5.1 in Dedecker and Rio
(2006), we infer that for any positive 7 there exists a constant D such that

< DN+ (4n)
Z d Qka Z)

Applying this result with n = /2, we infer from (f4) that

Kn o0, m —1—
Z H ( )H <20KDZQ(N+2 1+6/2)N max k, 1 E<OO,

2N <p<oN+1
n>0 N>0 SR>

so that the condition ([J) of Corollary J is satisfied. The condition (ff) of Corollary P} follows from
the inequality (5.18) in Dedecker and Rio (2006). <

4.12 Appendix

This section collects some technical lemmas.

The proof of the following lemma is left to the reader since it uses the same arguments as in
the proof of Proposition 2.5 in Peligrad and Utev (2005) by replacing the Ly norm by the L
norm.

Lemma 29 Under condition (3),

IE(Sm|Fo)llso [E(Smj| Fo)loo
Jm - Z /2

— 0 asm — oo.

The following lemma gives a simple fact about convergence.

Lemma 30 Let Aj(x,n,m), j = 1,...,J, x > 0, be real valued functions such that for each
J,m,m the functzon A;(x,n,m) is non-increasing in x > 0 and assume that, for any x > 0,
lim sup lim sup A;(z,n,m) = —o00.

Then for any w, — oo, there exists m,, — oo such that m, < u, and, for any v > 0 and
j=1,....J,

limsup A,(x, n, m,) = —oco

n—0o0
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Proof. First, we observe that by considering the function

A(z,n,m) = lr?]ixJAj(x,n,m) ,

the lemma reduces to the case J = 1.
Construct a strictly increasing positive integer sequences ¢ and ny such that for all n > ny,

Let g(n) = k for ni, < n < ngyq starting with £ = 1 and g(n) = 1 for n < ny. Then, g(n) is
non-decreasing, g(n) — oo and for all n > n; such that n, <n < ngyy (and so g(n) = k).

Ngn) = Mg < N
Now, let G(n) be a positive integer sequence such that G(n) < g(n) and G(n) — oo. Then,
nG(n) < Ngn) = Mk <N
Hence, there exists G(n) such that
Vam) < Un , Ngmy <n and G(n) — oo
Finally, let m,, = ¥g(,). Then, obviously
m, <u, and m, — 00.

On the other hand, for any > 0 and n such that x > 1/G(n), since A(z,n, m) is non-increasing
in x, we have

A(z,n,my)

A(1/G(n),n,m,) = A(1/G(n),n, Yem))
-G

<
< (n) — —o0

which proves the lemma. ¢
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