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q-SCHUR ALGEBRAS AND COMPLEX REFLECTION GROUPS

RAPHAËL ROUQUIER

To Victor Ginzburg, on his fiftieth birthday

Abstract. We show that the category O for a rational Cherednik algebra of type A is equiva-
lent to modules over a q-Schur algebra (parameter 6∈ 1

2
+Z), providing thus character formulas

for simple modules. We give some generalization to Bn(d). We prove an “abstract” translation
principle. These results follow from the unicity of certain highest weight categories covering
Hecke algebras. We also provide a semi-simplicity criterion for Hecke algebras of complex
reflection groups and show the isomorphism type of Hecke algebras is invariant under field
automorphisms acting on parameters.

1. Introduction

This paper (and its sequel) develops a new aspect of the representation theory of Hecke
algebras of complex reflection groups, namely the study of quasi-hereditary covers, analogous
to q-Schur algebras in the symmetric groups case. An important point is the existence of a
family of such covers: it depends on the choice of “logarithms” of the parameters.

The theory we develop is particularly interesting when the ring of coefficients is not special-
ized: it blends features of representation theory over C at roots of unity and features away
from roots of unity, where Lusztig’s families of characters show up (in that respect, it is a
continuation of [Rou1], where combinatorial objects are given homological definitions, which
led to generalizations from real to complex reflection groups).

The main idea of this first paper is the unicity of certain types of quasi-hereditary covers.
This applies in particular to the category O of rational Cherednik algebras : we show that,
in type A, when the parameter is not in 1

2
+ Z, the category O is equivalent to the module

category of a q-Schur algebra, solving a conjecture of [GGOR]. As a consequence, we obtain
character formulas for simple objects of O in this case. We also obtain a general translation
principle for category O of a Cherednik algebra.

In §3, we introduce a function “c” on the set of irreducible characters of W , with values
linear functions of the logarithms of the parameters and we construct an order on the set of
irreducible characters of W . This is suggested by [DunOp, Lemma 2.5] (“roots of unity” case)
as well as by [Lu1] (“away from roots of unity”).

In §4, we develop a general theory of (split) highest weight categories over a commutative ring.
This is a categorical version of Cline-Parshall-Scott’s integral quasi-hereditary algebras. We
study covers of finite dimensional algebras by highest weight categories and consider different
levels of “faithfulness”. The simplest situation is that of a “double centralizer Theorem”. The
key results are Proposition 4.42 (deformation principle) and Theorem 4.49 (unicity).

§5 shows that category O for Cherednik algebras gives a cover of Hecke algebras of complex
reflection groups, and that it has the faithfulness property when the rank 1 parabolic Hecke
subalgebras are semi-simple. This provides a translation principle for category O. We also give
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2 RAPHAËL ROUQUIER

a simple criterion for semi-simplicity of Hecke algebras in characteristic 0, generalizing the usual
property for Coxeter groups and the “one-parameter case”, that the algebra is semi-simple if
that parameter is not a root of unity (Theorem 3.5). We prove that rescaling the parameters
by a positive integer (without affecting “denominators”) doesn’t change category O, up to
equivalence, and that the Hecke algebra is unchanged, up to isomorphism of C-algebras, by
field automorphisms acting on parameters. In the last part, we describe blocks with “defect 1”.

Finally, in §6, we consider the case W = Bn(d). We show that, for a suitable choice of
“logarithms of parameters”, the category O is equivalent to modules over Dipper-James-Mathas
q-Schur algebra (Theorem 6.8). Otherwise, we obtain new q-Schur algebras. Putting our work
together with Yvonne’s [Yv] suggests that the decomposition matrices should be given by
Uglov’s canonical bases of the level d Fock spaces.

Relations between Kazhdan-Lusztig theory and modular representations at roots of unity
have been investigated by various authors [Ge2, GeRou, Ge3, Jac1, Jac2], and [DuPaSc1,
DuPaSc2, DuPaSc3], whose “integral” approach influenced our §4. We hope our approach
provides some new insight.

The second part will deal with integral aspects, bad primes and dualities and will address the
relations between the representation theory “at t = 0” of the rational Cherednik algebra and
Lusztig’s asymptotic Hecke algebra. We will discuss more thoroughly the case of finite Coxeter
groups and present a number of conjectures.

I thank Susumu Ariki, Steve Donkin, Karin Erdmann, Pavel Etingof, Victor Ginzburg and
Bernard Leclerc for useful discussions.

2. Notations

Let k be a commutative ring and A a k-algebra. We denote by A-mod the category of finitely
generated A-modules and by A-proj the category of finitely generated projective A-modules.
We write ⊗ for ⊗k. Let M be a k-module. We put M∗ = Homk(M, k) and given n a non-
negative integer, we write M⊕n for Mn, the direct sum of n copies of M , when there is a risk
of confusion.

Let k′ be a commutative k-algebra. We put k′M = k′⊗M . We put k′(A-mod) = (k′A)-mod.
We denote by Irr(A) the set of isomorphism classes of simple A-modules. If m is a maximal
ideal of k, then we put M(m) = (k/m)M , etc... Given B another k-algebra, we write (A-mod)⊗
(B-mod) for (A⊗ B)-mod.

Let A be an abelian category. We denote by Db(A) the derived category of bounded com-
plexes of objects of A. We denote by A-proj the full subcategory of A of projective objects.
Given I a set of objects of A, we denote by AI the full exact subcategory of A of I-filtered
objects, i.e., objects that have a finite filtration whose successive quotients are isomorphic to
objects of I.

Given G a finite group, we denote by Irr(G) the set of irreducible (complex) characters of G.
Let Λ be a set. Given ≤1 and ≤2 two orders on Λ, we say that ≤1 refines ≤2 if λ ≤2 λ

′

implies λ ≤1 λ
′. Fix an order on Λ. A subset I of Λ is an ideal (resp. a coideal) if λ′ ≤ λ (resp.

λ ≤ λ′) and λ ∈ I imply λ′ ∈ I. Given λ ∈ Λ, we put Λ<λ = {λ′ ∈ Λ|λ′ < λ}, etc...

3. Parameters for Hecke algebras

3.1. Definitions.
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3.1.1. Hecke algebra. Let W be a finite reflection group on a complex vector space V . Let A
be the set of reflecting hyperplanes of W and for H ∈ A, let WH be the pointwise stabilizer of
H in W , let eH = |WH |, and let oH be the cardinality of W (H) (=orbit of H under W ).

Let U =
∐

H∈A/W Irr(WH). We have a bijection Z/eH
∼
→ Irr(WH), j 7→ detj

|WH
, and we

denote by (H, j) the corresponding element of U . Let Gm be the multiplicative group over Z.
Let T = (Gm)U and k = Z[T] = Z[{x±1

u }u∈U ].

Let Vreg = V −
⋃

H∈AH , let x0 ∈ Vreg, and let BW = π1(Vreg/W, x0) be the braid group of W .
Let H be the Hecke algebra of W over k [BrMaRou, §4.C], quotient of k[BW ] by the relations

∏

0≤j<eH

(σH − xH,j) = 0.

There is one such relation for each H ∈ A. Here, σH is an sH-generator of the monodromy
around H , where sH is the reflection around H with determinant e2iπ/eH .

In the rest of the paper, we make the following assumption, which is known to hold for all
but finitely many irreducible complex reflection groups, for which it is conjectured to be true
[BrMaRou, §4.C] (cf [EtRa, §6] for a proof of a weak version of the conjecture, when dimV = 2).

Hypothesis 1. The algebra H is free over k, of rank |W |.

3.1.2. Specialization. Let k be a commutative ring. A parameter for W is an element x· = {xu}
of T(k). This is the same data as a morphism of groups X(T) → k× or a morphism of rings
k → k, xu 7→ xu.

Let m = lcm({eH}H∈A) and Φm(t) ∈ Z[t] be the m-th cyclotomic polynomial. Let km =
Z[t]/(Φm(t)). We will identify km with its image through the embedding km → C, t 7→ e2iπ/m.

The canonical morphism k[BW ] → k[W ], σH 7→ sH , induces an isomorphism km ⊗k H
∼
→

km[W ] where the specialization k → km is given by ρ = {tjm/eH}(H,j)∈U ∈ T(km). It is

convenient to shift the elements of T by ρ. We put qH,j = xH,jt
−jm/eH ∈ km[T]. Given a

specialization km[T] → k, we denote by q· the image of q·. We put H(q·) = kH.

The algebra kmH is a deformation of km[W ]. It follows that C(T)H is semi-simple. Let
K be a field extension of C(T) such that KH is split semi-simple. Let S be a local C[T]-
subalgebra of K, integrally closed in K, and whose maximal ideal contains {qu − 1}u∈U . Then

we have a canonical isomorphism Irr(W )
∼
→ Irr(KH) (“Tits deformation Theorem”). More

generally, let k be a field such that kH is split semi-simple, together with an integrally closed
local km[ 1

|W |
][T]-subalgebra S of k whose maximal ideal contains {qu − 1}u∈U . Then we have a

canonical isomorphism Irr(W )
∼
→ Irr(kH), χ 7→ χk.

By [Mal, Corollary 4.8], if the representation V of W is defined over a subfield K0 of C and

the group of roots of unity in K0 is finite of order l, then K0({q
1/l
u }u∈U) is a splitting field for

H. We choose S = K0[{q
1/l
u }]

(q
1/l
u −1)u

to define the bijection Irr(W )
∼
→ Irr(K0({q

1/l
u }u∈U)H).

Remark 3.1. One could also work with the smaller coefficient ring Z[{au}][{a
±1
H,0}] instead of

k and define H with the relations σeH
H + aH,eH−1

σeH−1
H + · · ·+ aH,0 = 0.

3.2. Logarithms of the parameters.
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3.2.1. Function c. Let t be the Lie algebra of T over km. Let {hu}u∈U be the basis of X(t)
giving the isomorphism

∑
u hu : t

∼
→ kU

m corresponding to the isomorphism
∑

u qu : T(km)
∼
→

Gm(km)U . We denote by tZ =
⊕

u h−1
u (Z) the corresponding Z-Lie subalgebra of t.

Let χ ∈ Irr(W ). We put

nH,j(χ) =
oHeH

χ(1)
〈χ|WH

, detj
|WH

〉.

This is the scalar by which
∑

H′∈W (H),w∈WH′
det(w)−jw acts on an irreducible representation of

W with character χ. In particular, this is a non-negative integer.
We define a map c : Irr(W ) → X(t) by

χ 7→ cχ =
∑

(H,j)∈U

nH,j(χ)hH,j.

We also put

c′χ =
∑

(H,j)∈U

nH,j(χ)(hH,j − hH,0) = cχ −
∑

H∈A/W

oHeHhH,0.

So, c′χ = 0 if and only if χ is the trivial character.

3.2.2. Lift. Let k be a commutative ring and q· ∈ (k×)U . Let Γ be the subgroup of k× generated
by {qu}u∈U . We denote by Γtor its subgroup of elements of finite order.

Let Γ̃ be a free abelian group together with a surjective morphism exp : Γ̃ → Γ and an
isomorphism Z

∼
→ ker(exp):

0 → Z → Γ̃
exp
−−→ Γ → 0.

Let us fix an order on Γ̃ with the following properties:

• it extends the natural order on Z

• it is compatible with the group law
• if x /∈ Z and x > 0, then x + n > 0 for all n ∈ Z, i.e., the order on Γ̃ induces an order

on Γ.

We define the coarsest order to be the one given by x > 0 if and only if x ∈ Z>0.

Let h· ∈ Γ̃ ⊗Z tZ with q· = exp(h·) : this is the data of {hu} ∈ Γ̃U with qu = exp(hu). To h·
corresponds a morphism X(t) → Γ̃. We denote by c : Irr(W ) → Γ̃ the map deduced from c.

Let π ∈ BW be the element given by the loop t ∈ [0, 1] 7→ e2iπt. This is a central element of
BW and we denote by Tπ its image in H.

We have χk(Tπ) = exp(cχ) [BrMi, Proposition 4.16]. Cf also [BrMaMi, §1] for a more detailed
discussion.

Remark 3.2. Note that given Γ, there exists always Γ̃ as above, when k is a domain: take
Γ = Γtor × L with L free and g a generator of Γtor. Let Γ̃ = 〈g̃〉 × L. Define exp by g̃ 7→ g and

as the identity on L. The coarsest order on Γ̃ satisfies the conditions above.

Example 3.3. Assume the qu’s are roots of unity and k is a domain. Then, Γ is a finite cyclic
group and Γ̃ is free of rank 1. The order on Γ̃ is the coarsest order.

3.2.3. Order on Irr(W ). We define now an order on Irr(W ). Let χ, χ′ ∈ Irr(W ). We put χ > χ′

if cχ < cχ′ (equivalently, c′χ < c′χ′).

3.3. Change of parameters.
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3.3.1. Twist. Let W∧ = Hom(W,C×) be the group of one-dimensional characters of W . We
have an isomorphism given by restriction W∧ ∼

→
(∏

H∈A Irr(WH)
)
/W . The group W∧ acts by

multiplication on U , and this gives an action on km = km ⊗Z k. Let ξ ∈ W∧. The action of
ξ on km is given by qH,j 7→ qH,j+rH

, where ξ|WH
= detrH

|WH
. It extends to an automorphism of

km-algebras km[BW ]
∼
→ km[BW ], σH 7→ ξ(sH)−1σH . It induces automorphisms of km-algebras

kmH
∼
→ kmH and km[W ]

∼
→ km[W ], w 7→ ξ(w)−1w for w ∈W .

There is a similar action of ξ on X(t) given by hH,j 7→ hH,j+rH
. We denote by θξ these

automorphisms induced by ξ. We have θξ(cχ) = cχ⊗ξ.

3.3.2. Permutation of the parameters. Consider G =
∏

H∈A/W S(Irr(WH)) ⊂ S(U). It acts
on T, hence on k. Let g ∈ G. We denote by kg the ring k viewed as a k-module by letting

a ∈ k act by multiplication by g(a). There is an isomorphism of k-algebras H
∼
→ kgH, σH 7→

σH , a 7→ g(a) for a ∈ k. The action on t is given by hH,j 7→ hH,g(j) + g(j)−j
eH

(we view g as an

automorphism of {0, . . . , eH − 1}).

Let K = C({q
1/l
u }u). We extend the action of G to an action by C-algebra automorphisms

on K : the element g sends q
1/l
H,j to q

1/l
H,g(j)e

2iπ(g(j)−j)/(leH ). We deduce an action (by ring

automorphisms) on KH fixing the image of BW . The action of G on Irr(KH) induces an
action on Irr(W ).

3.3.3. Normalization. Consider a map f : A/W → k×. Let q′· be given by q′H,j = f(H)qH,j.
Let k′ be k as a ring, but viewed as a k-algebra through q′·. Then, we have an isomorphism of

k-algebras kH
∼
→ k′H, TH 7→ f(H)−1TH (here, TH is the image of σH).

So, up to isomorphism, kH depends only on q· modulo the “diagonal” subgroup (Gm)A/W of
T. In particular every Hecke algebra over k is isomorphic to one where qH,0 = 1 for all H ∈ A.

Similarly, consider a map f̃ : A/W → Γ̃. Put h′H,j = f̃(H) + hH,j . Then, c′χ|h·=h′
·
= c′χ|h·=h·

:

we can reduce to the study of the order on Irr(W ) to the case where hH,0 = 0 for all H .

Remark 3.4. Assume there is κ ∈ Γ̃ with hH,j = 0 for all H and j 6= 0 and hH,0 = κ (“spetsial

case”). Then, c′χ = −N(χ)+N(χ∗)
χ(1)

κ, where N(χ) is the derivative at 1 of the fake degree of χ (cf

[BrMi, §4.B]).
Assume furthermore that W is a Coxeter group. Let aχ (resp. Aχ) be the valuation (resp.

the degree) of the generic degree of χ. Then, N(χ)+N(χ∗)
χ(1)

= aχ + Aχ [BrMi, 4.21], hence c′χ =

−(aχ + Aχ)κ.

3.4. Semi-simplicity. Let us close this part with a semi-simplicity criterion for Hecke algebras
of complex reflection groups over a field of characteristic 0. It generalizes the classical idea for
Coxeter groups, that, in the equal parameters case ((qH,0, qH,1) = (q,−1)), the Hecke algebra
is semi-simple if q is not a non-trivial root of unity.

Theorem 3.5. Let k → k be a specialization with k a characteristic 0 field. Assume that
Γtor = 1. Then, kH is semi-simple.

The proof uses rational Cherednik algebras and will be given in §5.2.1.

In general, using the action of Tπ (cf §3.2.2), we have the following weaker statement:

Proposition 3.6. Let R be a local commutative noetherian k-algebra with field of fractions K
and residue field k. Assume KH is split semi-simple.
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If χK and χ′
K are in the same block of RH, then cχ − cχ′ ∈ Z.

4. Quasi-hereditary covers

4.1. Integral highest weight categories. In this part, we define and study highest weight
categories over a commutative noetherian ring (extending the classical notion for a field). This
matches the definition of split quasi-hereditary algebras [CPS2]. In the case of a local base
ring, a different but equivalent approach is given in [DuSc1, §2] (cf also loc. cit. for comments
on the general case).

4.1.1. Reminders. Let k be a commutative noetherian ring. Let A be a finite projective k-
algebra (i.e., a k-algebra, finitely generated and projective as a k-module). Let C = A-mod.

Let us recall some basics facts about projectivity.

Let M be a finitely generated k-module. The following assertions are equivalent:

• M is a projective k-module.
• kmM is a projective km-module for every maximal ideal m of k.
• Tork

1(k/m,M) = 0 for every maximal ideal m of k.

Let M be a finitely generated A-module. The following assertions are equivalent:

• M is a projective A-module.
• kmM is a projective kmA-module for every maximal ideal m of k.
• M is a projective k-module and M(m) is a projective A(m)-module for every maximal

ideal m of k.
• M is a projective k-module and Ext1

A(M,N) = 0 for all N ∈ C ∩ k-proj.

We say that a finitely generated A-module M is relatively k-injective if it is a projective
k-module and Ext1

C(N,M) = 0 for all N ∈ C ∩ k-proj. So, M is relatively k-injective if and
only if M is a projective k-module and M∗ is a projective right A-module.

4.1.2. Heredity ideals and associated modules.

Definition 4.1. An ideal J of A is an indecomposable split heredity ideal [CPS2, Definition
3.1] if the following conditions hold

(i) A/J is projective as a k-module
(ii) J is projective as a left A-module
(iii) J2 = J
(iv) EndA(J) is Morita equivalent to k.

Remark 4.2. Note that a split heredity ideal, as defined in [CPS2, Definition 3.1], is a di-
rect sum of indecomposable split heredity ideals, corresponding to the decomposition of the
endomorphism ring into a product of indecomposable algebras. Note further that J is a split
heredity ideal for A if and only if it is a split heredity ideal for the opposite algebra Aopp [CPS2,
Corollary 3.4].

Given L an A-module, we denote by

τL : L⊗EndA(L) HomA(L,A) → A, l ⊗ f 7→ f(l)

the canonical morphism of (A,A)-bimodules.
Given P an A-module, we define similarly τ ′L,P : L⊗ HomA(L, P ) → P .

Lemma 4.3. Let L be a projective A-module. Then, J = im τL is an ideal of A and J2 = J .
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Proof. Since τL is a morphism of (A,A)-bimodules, it is clear that J is an ideal of A. Let
E = EndA(L) and L∨ = HomA(L,A). We have a commutative diagram

L⊗E L
∨ ⊗A L⊗E L

∨

τL⊗τL ))TTTTTTTTTTTTTTT ∼

l⊗f⊗l′⊗f ′ 7→l⊗f(−)l′⊗f ′

// L⊗E EndA(L) ⊗E L
∨

l⊗φ⊗f ′ 7→f ′(φ(l))uujjjjjjjjjjjjjjj

A⊗A A = A

where the horizontal arrow is an isomorphism since L is projective. The image in A of L ⊗E

idL ⊗EL
∨ is equal to J and the diagram shows it is contained in J2. �

Lemma 4.4. Let J be an ideal of A which is projective as a left A-module and such that J2 = J .
Let M be an A-module. Then, HomA(J,M) = 0 if and only if JM = 0.

Proof. Consider m ∈ M with Jm 6= 0. The morphism of A-modules J → M, j 7→ jm is not
zero. This shows the first implication. The image of a morphism of A-modules J → M is
contained in JM , since J2 = J . This proves the Lemma. �

Lemma 4.5. Let L be a projective object of C which is a faithful k-module. The following
assertions are equivalent

(i) τ ′L,P : L⊗HomC(L, P ) → P is a split injection of k-modules for all projective objects P
of C.

(ii) τ ′L,A : L⊗ HomC(L,A) → A is a split injection of k-modules.

(iii) k
∼
→ EndC(L) and given P a projective object of C, then there is a subobject P0 of P

such that
– P/P0 is a projective k-module
– HomC(L, P/P0) = 0 and
– P0 ≃ L⊗ U for some U ∈ k-proj.

Proof. The equivalence between (i) and (ii) is clear.
Assume (i). Then, τ ′L,L : L⊗ EndA(L) → L is injective. Since it is clearly surjective, it is an

isomorphism. Since L is a progenerator for k, we obtain k
∼
→ EndA(L). Let P be a projective

object of C. Let P0 = im τ ′L,P , a direct summand of P as a k-module. The map

HomA(L, τ ′L,P ) : HomA(L,L⊗ HomA(L, P )) → HomA(L, P )

is clearly surjective, hence HomA(L, P/P0) = 0. This proves (iii).
Assume (iii). Let P be a projective object of C. The canonical map HomA(L, P0) →

HomA(L, P ) is an isomorphism. We have canonical isomorphisms HomA(L,L⊗U)
∼
→ EndA(L)⊗

U
∼
→ U . So, τ ′L,P is injective with image P0 and (i) holds. �

Remark 4.6. Note that if k has no non-trivial idempotent, then every non-zero projective
k-module is faithful.

Let M(C) be the set of isomorphism classes of projective objects L of C satisfying the equiv-
alent assertions of Lemma 4.5.

Let Pic(k) be the group of isomorphism classes of invertible k-modules. Given F ∈ Pic(k)
and L ∈M(C), then L⊗ F ∈M(C). This gives an action of Pic(k) on M(C).

Proposition 4.7. There is a bijection from M(C)/Pic(k) to the set of indecomposable split
heredity ideals of A given by L 7→ im(τL).
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Furthermore, the canonical functor (A/ im τL)-mod → A-mod induces an equivalence between
(A/ im τL)-mod and the full subcategory of C of objects M such that HomC(L,M) = 0.

Proof. We will prove a more precise statement. We will construct inverse maps α, β between
M(C) and the set of isomorphism classes of pairs (J, P ), where J is an indecomposable split
heredity ideal of A and P is a progenerator for EndA(J) such that k

∼
→ EndEndA(J)(P ). Here,

we say that two pairs (J, P ) and (J ′, P ′) are isomorphic if J ′ = J and P ′ ≃ P .

Let L ∈ M(C), let J = im τL and let B = EndA(J). By assumption, A/J is a projec-
tive k-module. Also, J2 = J by Lemma 4.3. Note that HomA(L,A) is a faithful projective
k-module. Since L ⊗ HomA(L,A) ≃ J , it follows that J is a projective A-module. Also,
Endk(HomA(L,A))

∼
→ EndA(J) because k

∼
→ EndA(L). This gives HomA(L,A) a struc-

ture of right B-module. Let P = Homk(HomA(L,A), k). This is a progenerator for B and
k

∼
→ EndB(P ). We have obtained a pair (J, P ) = α(L) as required.

Consider now a pair (J, P ). Let B = EndA(J). Let L = J ⊗B P , a projective A-module.

We have k
∼
→ EndB(P )

∼
→ EndA(L). Let i : J → A be the inclusion map. There is p ∈ P

and f ∈ HomB(P,HomA(J,A)) such that f(p) = i. Let g ∈ HomA(J ⊗B P,A) be the adjoint
map. Given j ∈ J , we have τJ⊗BP (j ⊗B p ⊗ g) = j. So, J ⊂ im τL. Finally, we have

HomA(L,A/J)
∼
→ HomB(P,HomA(J,A/J)). By Lemma 4.4, we have HomA(J,A/J) = 0,

hence HomA(L,A/J) = 0. So, im(τL) ⊂ J , hence im(τL) = J . We have an isomorphism of right

B-modules HomB(P,B) ≃ Homk(P, k) by Morita theory. We have EndA(J)
∼
→ HomA(J,A)

since HomA(J,A/J) = 0. So, we have isomorphism of right B-modules

HomA(L,A) ≃ HomB(P,HomA(J,A)) ≃ HomB(P,B) ≃ Homk(P, k).

We deduce

J ≃ J ⊗B P ⊗ Homk(P, k)
∼
→ L⊗ HomA(L,A).

Now, τL : L ⊗ HomA(L,A) → J is an isomorphism, since it is a surjection between two
isomorphic finitely generated projective k-modules. We have constructed L = β(J, P ) ∈ M(C)
and we have proved that βα = id. Since HomA(L,A)⊗B P ≃ Homk(P, k)⊗B P ≃ k, it follows
that αβ = id.

The last assertion of the Proposition is an immediate consequence of Lemma 4.4. �

Remark 4.8. From the previous Theorem, we see that (A/ im τL)-mod is a Serre subcategory
of A-mod (i.e., closed under extensions, subobjects and quotients).

Let us now study the relation between projective A-modules and projective (A/J)-modules.

Lemma 4.9. Let L ∈M(C) and J = im τL.
Given P ∈ C-proj, then im τ ′L,P = JP and P/JP is a projective A/J-module.

Conversely, let Q ∈ (A/J)-proj. Let U ∈ k-proj and f : U → Ext1
A(Q,L) be a surjection. Let

0 → L⊗U∗ → P → Q→ 0 be the extension corresponding to f via the canonical isomorphism
Homk(U,Ext1

A(Q,L))
∼
→ Ext1

A(Q,L⊗ U∗). Then, P ∈ C-proj.

Proof. The first assertion reduces to the case P = A, where it is clear.
Let us now consider the second assertion. It reduces to the case Q = (A/J)n for some

positive integer n. The canonical map An → (A/J)n factors through φ : An → P . Let
ψ = φ + can : An ⊕ L ⊗ U∗ → P and N = kerψ. Then, ψ is surjective and there is an exact
sequence of A-modules 0 → N → J⊕n ⊕ L⊗ U∗ → L⊗ U∗ → 0. Such a sequence splits, hence
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N ≃ L ⊗ V for some V ∈ k-proj. By construction, Ext1
A(P, L) = 0, so Ext1

A(P,N) = 0. It
follows that ψ is a split surjection, hence P is projective. �

The following Lemma shows that M(C) behaves well with respect to base change.

Lemma 4.10. Let L be an object of C. Let R be a commutative noetherian k-algebra. If
L ∈M(C), then RL ∈M(RC).

The following assertions are equivalent

(i) L ∈M(C).
(ii) kmL ∈ M(kmC) for every maximal ideal m of k.
(iii) L is projective over k and L(m) ∈M(C(m)) for every maximal ideal m of k.

Proof. There is a commutative diagram

RL⊗R HomRA(RL,RA)
τ ′
RL,RA // RA

R(L⊗ HomA(L,A))
Rτ ′

L,A

44iiiiiiiiiiiiiiiiiiii

∼

OO

This shows the first assertion.
Assume (ii). Since kmL is a projective kmA-module for every m, it follows that L is projective

A-module. We obtain also that τ ′L,A is injective and that its cokernel is projective over k. So,
(ii)=⇒(i).

Assume (iii). Then, L is a projective A-module. Also, τ ′L,A is injective. The exact sequence
0 → L⊗HomA(L,A) → L→ coker τ ′L,A → 0 remains exact after tensoring by k/m for every m,

hence Tork
1(k/m, coker τ ′L,A) = 0 for all m, so coker τ ′L,A is projective over k. Hence, (iii)=⇒(i).

Finally, (i)=⇒(ii) and (i)=⇒(iii) are special cases of the first part of the Lemma. �

4.1.3. Definition. Let C be (a category equivalent to) the module category of a finite projective
k-algebra A. Let ∆ be a finite set of objects of C together with a poset structure.

Given Γ an ideal of ∆, we denote by C[Γ] the full subcategory of C of objects M such that
Hom(D,M) = 0 for all D ∈ ∆ \ Γ.

We put ∆̃ = {D⊗U |D ∈ ∆, U ∈ k-proj}. We put the order on ∆̃ given by D⊗U < D′⊗U ′

if D < D′. We also put ∆⊗ = {D ⊗ U |D ∈ ∆, U ∈ Pic(k)}.

Definition 4.11. We say that (C,∆) is a highest weight category over k if the following con-
ditions are satisfied:

(1) The objects of ∆ are projective over k.
(2) EndC(M) = k for all M ∈ ∆.
(3) Given D1, D2 ∈ ∆, if HomC(D1, D2) 6= 0, then D1 ≤ D2.
(4) C[∅] = 0.

(5) Given D ∈ ∆, there is P ∈ C-proj and f : P → D surjective such that ker f ∈ C∆̃>D .

We call ∆ the set of standard objects.

Let (C,∆) and (C′,∆′) be two highest weight categories over k. A functor F : C → C′ is
an equivalence of highest weight categories if it is an equivalence of categories and if there is a
bijection φ : ∆

∼
→ ∆′ and invertible k-modules UD for D ∈ ∆ such that F (D) ≃ φ(D)⊗UD for

D ∈ ∆.
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When k is a field, this corresponds to the usual concept of a highest category [CPS1]. We
leave it to the interested reader to extend the definition to the case where ∆ is an infinite set
(this will cover representations of reductive groups over Z) and to the non split situation where
(2) is relaxed.

Lemma 4.12. Let C be the module category of a finite projective k-algebra. Let ∆ be a finite
set of objects of C together with a poset structure. Let L be a maximal element of ∆.

Then, (C,∆) is a highest weight category if and only if L ∈M(C) and (C[∆ \ {L}],∆ \ {L})
is a highest weight category.

Proof. Assume (C,∆) is a highest weight category. Given D ∈ ∆, let PD be a projective

object of C with a surjection PD → D whose kernel is in C∆̃>D (Definition 4.11 (5)). Let
P =

⊕
D∈∆ PD. Then, P is a progenerator for C (Definition 4.11 (4)).

By Definition 4.11 (5), L is projective. We deduce that PD has a submodule QD ≃ L⊗ UD

for some UD ∈ k-proj with PD/QD ∈ C(∆̃\{L})>D . So, P has a submodule Q ≃ L ⊗ U for some

U ∈ k-proj with P/Q ∈ C∆̃\{L} ⊂ C[∆ \ {L}]. We deduce that L ∈ M(C). Also, PD/QD is a
projective object of C[∆\{L}] (Lemma 4.9) and (5) holds for C[∆\{L}]. So, (C[∆\{L}],∆\{L})
is a highest weight category.

Assume now L ∈ M(C) and (C[∆ \ {L}],∆ \ {L}) is a highest weight category.
Let D ∈ ∆ \ {L} and Q be a projective object of C[∆ \ {L}] as in Definition 4.11 (5).

Let U ∈ k-proj and p : U → Ext1
C(Q,L) be a surjection. Via the canonical isomorphism

Homk(U,Ext1
C(Q,L))

∼
→ Ext1

C(Q,L⊗ U∗), this gives an extension 0 → L⊗ U∗ → P → Q→ 0.
By Lemma 4.9, P is projective (in C). So, (5) holds for C and C is a highest weight category. �

Proposition 4.13. Let (C,∆) be a highest weight category. Then,

• Given Γ an ideal of ∆, then (C[Γ],Γ) is a highest weight category and C[Γ] is the full

subcategory of C with objects the quotients of objects of CΓ̃. This is a Serre subcategory
of C.

• Given D1, D2 ∈ ∆, if Exti
C(D1, D2) 6= 0 for some i, then D1 ≤ D2. Furthermore,

Exti
C(D1, D1) = 0 for i > 0.

• Let P ∈ C-proj and let ∆
∼
→ {1, . . . , n}, ∆i ↔ i, be an increasing bijection. Then,

there is a filtration 0 = Pn+1 ⊂ Pn ⊂ · · · ⊂ P1 = P with Pi/Pi+1 ≃ ∆i ⊗ Ui for some
Ui ∈ k-proj.

Proof. By induction, it is sufficient to prove the first assertion in the case where |∆ \Γ| = 1. It
is then given by Lemma 4.12.

Let us now prove the second assertion. Let Ω be a coideal of ∆. Then, every object of CΩ̃

has a projective resolution with terms in CΩ̃. This shows the first part of the second assertion.
The second part follows from the fact that there is a projective P and f : P → D1 surjective

with kernel in CΩ̃, with Ω = ∆>D1 .
The last assertion follows easily by induction on |∆| from Lemma 4.12 and its proof. �

Proposition 4.14. Let k′ be a commutative noetherian k-algebra. Let (C,∆) be a highest weight
category over k. Then (k′C, k′∆) is a highest weight category over k′ and (k′C)[k′Γ] ≃ k′(C[Γ])
for all ideals Γ of ∆.

Proof. Let A be a finite projective k-algebra with an equivalence C
∼
→ A-mod. Let L be a

maximal element of ∆. Then, L ∈ M(C) (Lemma 4.12) and k′L ∈ M(k′C) (Lemma 4.10).
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Let J be the ideal of A corresponding to L. For Γ = ∆ \ {L}, we have C[Γ]
∼
→ (A/J)-mod,

(k′C)[k′Γ]
∼
→ k′(A/J)-mod, and we deduce that (k′C)[k′Γ] ≃ k′(C[Γ]).

The Proposition follows by induction on |∆| from Lemmas 4.10 and 4.12. �

Testing that (C,∆) is a highest weight category can be reduced to the case of a base field:

Theorem 4.15. Let C be the module category of a finite projective k-algebra. Let ∆ be a finite
poset of objects of C ∩ k-proj.

Then, (C,∆) is a highest weight category if and only if (C(m),∆(m)) is a highest weight
category for all maximal ideals m of k.

Proof. The first implication is a special case of Proposition 4.14. The reverse implication follows
by induction on |∆| from Lemmas 4.10 and 4.12. �

4.1.4. Quasi-hereditary algebras. Let us recall now the definition of split quasi-hereditary alge-
bras [CPS2, Definition 3.2].

A structure of split quasi-hereditary algebra on a finite projective k-algebra A is the data of
a poset Λ and of a set of ideals I = {IΩ}Ω coideal of Λ of A such that

• given Ω ⊂ Ω′ coideals of Λ, then IΩ ⊂ IΩ′

• given Ω ⊂ Ω′ coideals of Λ with |Ω′ \ Ω| = 1, then IΩ′/IΩ is an indecomposable split
heredity ideal of A/IΩ

• I∅ = 0 and IΛ = A.

The following Theorem shows that notion of highest weight category corresponds to that of
split quasi-hereditary algebras.

Theorem 4.16. Let A be a finite projective k-algebra and let C = A-mod.
Assume A, together with Λ and I is a split quasi-hereditary algebra. Given λ ∈ Λ, let

∆(λ) ∈ M((A/IΛ>λ
)-mod) correspond to IΛ≥λ

/IΛ>λ
. Then, (C, {∆(λ)}λ∈Λ) is a highest weight

category.
Conversely, assume (C,∆) is a highest weight category. Given Ω a coideal of ∆, let IΩ ⊂ A be

the annihilator of all objects of C[∆\Ω]. Then, A together with {IΩ}Ω is a split quasi-hereditary
algebra and (A/IΩ)-mod identifies with C[∆ \ Ω].

Proof. We prove the first assertion by induction on |Λ|. Assume A is a split quasi-hereditary
algebra. Let λ ∈ Λ be maximal and let Γ = Λ \ {λ}. Let J = Iλ. By Proposition 4.7, we
have C[{∆(λ′)}λ′∈Γ]

∼
→ (A/J)-mod. Since A/J is a split quasi-hereditary algebra, it follows by

induction that (C[{∆(λ′)}λ′∈Γ], {∆(λ′)}λ′∈Γ) is a highest weight category. By Lemma 4.12, it
follows that (C, {∆(β)}β∈Λ) is a highest weight category.

We prove the second assertion by induction on |∆|. Let (C,∆) be a highest weight category.
Let Ω ⊂ Ω′ be coideals of ∆ with |Ω′\Ω| = 1. If Ω = ∅, then Ω′ = {L} and L ∈M(C), hence I{L}

is an indecomposable split heredity ideal of A (Proposition 4.7). Assume now Ω 6= ∅ and let L
be a maximal element of Ω. Then, C[∆\{L}] ≃ (A/I{L})-mod (Proposition 4.7). By induction,
IΩ′/IΩ is an indecomposable split heredity ideal of A/IΩ. So, A is a split quasi-hereditary
algebra. �

Remark 4.17. Note that, starting from a split quasi-hereditary algebra, we obtain a well
defined poset ∆⊗, but ∆ is not unique, unless Pic(k) = 1.

Remark 4.18. Note that Theorem 4.15 translates, via Theorem 4.16, to a known criterion for
split quasi-heredity [CPS2, Theorem 3.3].
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4.1.5. Tilting objects.

Proposition 4.19. Let (C, {∆(λ)}λ∈Λ) be a highest weight category. Then, there is a set
{∇(λ)}λ∈Λ of objects of C, unique up to isomorphism, with the following properties

• (Copp, {∇(λ)}λ∈Λ) is a highest weight category.

• Given λ, β ∈ Λ, then Exti
C(∆(λ),∇(β)) ≃

{
k if i = 0 and λ = β

0 otherwise.

Proof. Let A be a finite projective k-algebra with A-mod
∼
→ C, together with its structure

I of split quasi-hereditary algebra (Theorem 4.16). Then, Aopp together with I is a split
quasi-hereditary algebra [CPS2, Corollary 3.4]. Let C∗ = Aopp-mod and {∆(λ∗)}λ∈Λ be a
corresponding set of standard objects.

We have Ext>0
A (∆(λ),∆(β∗)∗) = 0 for all β with β 6> λ, since ∆(λ),∆(β∗)∗ ∈ (A/I>λ)-mod

and ∆(λ) is a projective (A/I>λ)-module. Similarly, we have Ext>0
Aopp(∆(β∗),∆(λ)∗) = 0 if

λ 6> β. Since Ext>0
A (∆(λ),∆(β∗)∗)∗ ≃ Ext>0

Aopp(∆(β∗),∆(λ)∗), we deduce that this vanishes for
all λ, β. In the same way, we obtain HomA(∆(λ),∆(β∗)∗) = 0 for β 6= λ.

Let m be a maximal ideal of k. We know that HomA(m)(∆(λ)(m),∆(λ∗)(m)∗) = k/m (cf
eg [CPS1, proof of Theorem 3.11]). Let Uλ = HomA(∆(λ),∆(λ∗)∗). This is a projective k-
module, since ∆(λ),∆(λ∗)∗ ∈ (A/I>λ)-mod, ∆(λ∗)∗ is a projective k-module, and ∆(λ) is a
projective (A/I>λ)-module. It follows that Uλ is invertible. Let ∇(λ) = U∗

λ ⊗ ∆(λ∗)∗. Then,
HomA(∆(λ),∇(λ)) ≃ k.

Let us now show the unicity part. Let {∇′(λ)}λ∈Λ be a set of objects of C with the same
properties. We show by induction that ∇′(λ) ≃ ∇(λ).

Assume this holds for λ > α. Then, {∇′(λ)∗}λ6>α and {∇(λ)∗}λ6>α are sets of standard objects
for a highest weight category structure on (A/I>α)opp-mod. The maximality of α shows that
∇′(α)∗ is a projective (A/I>α)opp-module, hence it has a filtration 0 = Pn ⊂ · · · ⊂ P1 = ∇′(α)∗

such that Pi/Pi+1 ≃ ∇(λi)
∗ ⊗ Ui for some Ui ∈ k-proj and λi 6>α, as in Proposition 4.13.

By assumption, we have Hom(∇′(α)∗,∆(β)∗ ⊗ U) ≃ Hom(∆(β),∇′(α)) ⊗ U = δα,β · U and
Ext1(∇′(α)∗,∆(β)∗ ⊗ U) = 0, hence there is a unique term in the filtration and ∇′(α) ≃
∇(α). �

We put ∇ = {∇(λ)}λ∈Λ and ∇̃ = {L⊗ U |L ∈ ∇, U ∈ k-proj}.

From Proposition 4.19 and its proof, we deduce:

Proposition 4.20. Given λ ∈ Λ, there is a relatively k-injective module I and an injection

g : ∇(λ) → I with coker g ∈ C∇̃>λ.

Lemma 4.21. Let M ∈ C ∩ k-proj. Then, M ∈ C∆̃ if and only if Ext1
C(M,∇(λ)) = 0 for all

λ ∈ Λ. Similarly, M ∈ C∇̃ if and only if Ext1
C(∆(λ),M) = 0 for all λ ∈ Λ.

Proof. The first implication is clear. We show the converse by induction on |Λ|. Let M ∈
C ∩ k-proj with Ext1

C(M,∇(λ)) = 0 for all λ ∈ Λ
Let λ ∈ Λ be maximal. Let M0 = im τ∆(λ),M , a subobject of M together with a surjective

map f : ∆(λ) ⊗ U → M0, where U = HomC(∆(λ),M) ∈ k-proj. Given λ′ 6= λ, we have
HomC(M0,∇(λ′)) = 0, hence Ext1

C(M/M0,∇(λ′)) = 0. We have M/M0 ∈ C[{∆(λ′)}λ′ 6=λ], hence

M/M0 ∈ C∆̃ by induction. So, Exti
C(M/M0,∇(λ′)) = 0 for all i > 0 and λ′ ∈ Λ. Consequently,

Ext1
C(M0,∇(λ′)) = 0 for all λ′ ∈ Λ.
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Let N = ker f . We have HomC(∆(λ),∇(λ′)) = 0 for λ′ 6= λ, hence HomC(N,∇(λ′)) = 0 for
λ′ 6= λ.

By construction, the canonical map HomC(∆(λ),∆(λ)⊗U) → HomC(∆(λ),M0) is surjective.
So, HomC(∆(λ), N) = 0. Let P be a projective object of C with a surjection P → N . There is

a subobject P0 of P with P0 ≃ ∆(λ) ⊗ U ′ for some U ′ ∈ k-proj and P/P0 ∈ C
˜{∆(λ′)}λ′ 6=λ . We

obtain a surjection P/P0 → N . We have HomC(P/P0,∇(λ)) = 0, hence HomC(N,∇(λ)) = 0.

We deduce that N = 0, hence M ∈ C∆̃.
The second statement follows by duality. �

The following Lemma will be useful in §4.2.3.

Lemma 4.22. Let A be a split quasi-hereditary k-algebra. Let M ∈ (A-mod)∆̃. If Ext1
A(M,N) =

0 for all N ∈ ∆, then M is projective.

Proof. We have Ext1
A(M,N) = 0 for all N ∈ (A-mod)∆̃. Let 0 → N → P → M → 0 be an

exact sequence with P projective. Then, N is ∆̃-filtered (Lemma 4.21), hence Ext1
A(M,N) = 0

and the sequence splits. �

Recall that the category of perfect complexes for A is the full subcategory of Db(A-mod) of
objects isomorphic to a bounded complex of finitely generated projective A-modules.

Proposition 4.23. Every object of C ∩ k-proj has finite projective dimension. More precisely,
a complex of C that is perfect as a complex of k-modules is also perfect as a complex of C.

Proof. This is almost [CPS2, Theorem 3.6], whose proof we follow. We show the Proposition
by induction on |Λ|. Consider λ ∈ Λ maximal and let J be the ideal of A corresponding
to the projective object L = ∆(λ). Note that we have an isomorphism of (A,A)-bimodules
L⊗ L∨ ∼

→ J , where L∨ = HomA(L,A). The exact sequence of (A,A)-bimodules

0 → J → A→ A/J → 0

induces an exact sequence of functors A-mod → A-mod

0 → L⊗ HomA(L,−) → Id → (A/J) ⊗A − → 0.

Let C be a complex of A-modules. We have a distinguished triangle

L⊗ HomA(L,C) → C → A/J ⊗L
A C  .

Assume C is perfect, viewed as a complex of k-modules. Then, HomA(L,C) is perfect as
a complex of k-modules, hence L ⊗ HomA(L,C) is perfect as a complex of A-modules. In
particular, A/J⊗L

AC is an object of Db((A/J)-mod) that is perfect as a complex of k-modules.
By induction, it is perfect as a complex of (A/J)-modules. Since A/J is perfect as a complex
of A-modules, it follows that A/J⊗L

AC is a perfect complex of A-modules, hence C as well. �

Remark 4.24. Let T be the full subcategory of Db(C) of complexes that are perfect as com-

plexes of k-modules. Fix an increasing bijection Λ
∼
→ {1, . . . , n}. Then, T has a semi-orthogonal

decomposition T = 〈∆1 ⊗ k-perf,∆2 ⊗ k-perf, . . . ,∆n ⊗ k-perf〉. This gives an isomorphism

K0(k-proj)∆ ∼
→ K0(T ) = K0(C-proj), {[Lλ]}λ∈Λ 7→

∑

λ

[∆(λ) ⊗ L]

In the isomorphism above, one can replace ∆(λ) by a projective object P (λ) as in Definition
4.11, (5), or by ∇(λ), I(λ) or T (λ). We recover [Do2, Corollary 1.2.g] (case of integral Schur
algebras).
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Definition 4.25. An object T ∈ C is tilting if T ∈ C∆̃ ∩ C∇̃. We denote by C-tilt the full
subcategory of C of tilting objects.

A tilting complex is a perfect complex C with the following properties

• C generates the category of perfect complexes as a full triangulated subcategory closed
under taking direct summands and

• HomDb(A-mod)(C,C[i]) = 0 for i 6= 0.

Note that a tilting module is not a tilting complex in general, for the generating property will
be missing in general. Nevertheless, there is a tilting module which is a tilting complex, as
explained below.

Proposition 4.26. Let M ∈ C∆̃. Then, there is T ∈ C-tilt and an injection i : M → T with

coker i ∈ C∆̃.
Let λ ∈ Λ. There is T (λ) ∈ C-tilt and

• an injection i : ∆(λ) → T (λ) with coker i ∈ C∆̃<λ;

• a surjection p : T (λ) → ∇(λ) with ker p ∈ C∇̃<λ.

Let T =
⊕

λ∈Λ T (λ). Then, T is a tilting complex. Let Ar = EndC(T ) and Cr = Ar-mod. There

is an equivalence RHomC(T,−) : Db(C)
∼
→ Db(Cr). Let Λr = {λr}λ∈Λ be the opposite poset to

Λ. Let ∆(λr) = RHomC(T,∇(λ)). Then, (Cr, {∆(λr)}λr∈Λr) is a highest weight category.

Proof. Let us fix an increasing bijection ∆
∼
→ {1, . . . , n}, ∆i ↔ i. Let M ∈ C∆̃. We construct

by induction an object T with a filtration 0 = Tn+1 ⊂ M = Tn ⊂ · · · ⊂ T0 = T such that
Ti−1/Ti ≃ ∆i ⊗ Ui for some Ui ∈ k-proj, for i ≤ n.

Assume Ti is defined for some i, 2 ≤ i ≤ n. Let Ui ∈ k-proj with a surjection of k-modules
Ui → Ext1

C(∆i, Ti). Via the canonical isomorphism Homk(Ui,Ext1
C(∆i, Ti))

∼
→ Ext1

C(∆i⊗Ui, Ti),
we obtain an extension

0 → Ti → Ti−1 → ∆i ⊗ Ui → 0.

By construction, we have Ext1(∆i, Ti−1) = 0, since Ext1
C(∆i,∆i) = 0 (Proposition 4.13).

We have T/M, T ∈ C∆̃. By Proposition 4.13, we have Ext1
C(∆i, T ) ≃ Ext1

C(∆i, Ti−1) = 0. It
follows from Lemma 4.21 that T is tilting.

Assume M = ∆(λ). Then, in the construction above, one can replace the bijection ∆
∼
→

{1, . . . , n}, ∆i ↔ i by an increasing bijection ∆<λ
∼
→ {1, . . . , m}, ∆i ↔ i, and obtain the same

conclusion. This produces a tilting object T (λ). It has a ∇̃-filtration with top term ∇(λ) giving
rise to a map p : T (λ) → ∇(λ) as required.

Every object of C∆̃ has finite homological dimension (Proposition 4.23). In particular, T is
a perfect complex. We have Exti

C(T, T ) = 0 for i 6= 0 by Lemma 4.21. Let D be the smallest
full triangulated subcategory of Db(C) containing T and closed under direct summands. By
induction, D contains ∆, hence it contains the projective objects of C. So, T generates the
category of perfect complexes and T is a tilting complex.

As a consequence, we have an equivalence F = RHomC(T,−). Note that ∆(λr) has non zero
homology only in degree 0 by Lemma 4.21 and it is projective over k. Let P (λr) = F (T (λ)),
an object with homology concentrated in degree 0 and projective. Also, we obtain a surjection
P (λr) → ∆(λr) with kernel filtered by terms ∆(βr) ⊗ U with U ∈ k-proj and βr > λr. This
shows that (Cr, {∆r(λ)}) is a highest weight category. �

The highest weight category Cr in the Proposition above is called the Ringel dual of C.
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Proposition 4.27. Fix a family {T (λ)}λ∈Λ as in Proposition 4.26. Then, every tilting object
of C is a direct summand of a direct sum of T (λ)’s.

Furthermore, the category Cr is independent of the choice of the T (λ)’s, up to equivalence of
highest weight categories.

Proof. The first assertion follows using these equivalences from the fact that every projective
object of Cr is a direct summand of a direct sum of P (λr)’s.

Consider another family {T ′(λ)} and the associated T ′, C′r. We consider the composite
equivalence

F : RHomC(T
′,−) ◦ RHomC(T,−)−1 : Db(Cr)

∼
→ Db(C′r).

It sends ∆(λr) to ∆(λ′r), hence it sends projective objects to objects with homology only in
degree 0, which are projective by Lemma 4.21. So, F restricts to an equivalence of highest
weight categories Cr ∼

→ C′r. �

Remark 4.28. Note that we don’t construct a canonical T (λ) (nor a canonical P (λ)), our
construction depends on the choice of projective k-modules mapping onto certain Ext1’s.

Remark 4.29. The theory of tilting modules has been developed by Donkin for algebraic
groups over Z, cf [Do1, Remark 1.7].

4.1.6. Reduction to fields.

Proposition 4.30. Let (C,∆) be a highest weight category over k. Let M ∈ C ∩ k-proj. Then,

M ∈ C∆̃ (resp. M ∈ C-tilt) if and only if the corresponding property holds for M(m) in C(m),
for all maximal ideals m of k.

If k is indecomposable, then the same statement holds for the properties of belonging to ∆̃ or
∆⊗.

Proof. Given V a k-module, we put V̄ = (k/m)⊗V . Let C be a bounded complex of projective
objects of C and N ∈ C ∩ k-proj. Then, we have a canonical isomorphism

(k/m) HomDb(A)(C,N)
∼
→ HomDb(Ā)(C̄, N̄)

(this only needs to be checked for C = A[i], where is it clear). It follows from Proposition 4.23
that we have a canonical isomorphism

(k/m) HomA(L,N)
∼
→ HomĀ(L̄, N̄)

for L,N ∈ C ∩ k-proj.

Let M ∈ C ∩ k-proj with M(m) ∈ C(m)∆̃(m) for every maximal ideal m. We show that

M ∈ C∆̃ by induction on the projective dimension of M (which is finite by Proposition 4.23).
Let 0 → L → P → M → 0 be an exact sequence with P projective. By Lemma 4.21,

L(m) ∈ C(m)∆̃(m) for every m.

By induction, it follows that L ∈ C∆̃. Let N ∈ ∇. We have Ext>0
A(m)(L(m), N(m)) = 0. Let

0 → Cr → · · · → C0 → L → 0 be a projective resolution. Let D = 0 → HomA(C0, N) →
HomA(C1, N) → · · · → HomA(Cr, N) → 0. We have H i(D(m))

∼
→ Exti

A(m)(L(m), N(m)) = 0

for i > 0. It follows that the complex D is homotopy equivalent to H0(D), as a com-
plex of k-modules, and H0(D) is projective. So, the canonical map HomA(L,N)(m) →
HomA(m)(L(m), N(m)) is an isomorphism.
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We have a commutative diagram whose horizontal sequences are exact

HomA(P,N)(m) //

∼

��

HomA(L,N)(m) //

∼

��

Ext1
A(M,N)(m) //

��

0

HomA(m)(P (m), N(m)) // HomA(m)(L(m), N(m)) // Ext1
A(m)(M(m), N(m)) // 0

We have Ext1
A(m)(M(m), N(m)) = 0 and it follows that Ext1

A(M,N)(m) = 0. Since Ext1
A(M,N)

is a finitely generated k-module, it must thus be 0. Lemma 4.21 shows that M ∈ C∆̃.
The other statements follow easily. �

Remark 4.31. If k is decomposable, then being in ∆̃ cannot be tested locally — only being a
sum of objects of ∆̃ can be tested locally.

4.2. Covers.

4.2.1. Double centralizer. Let k be a commutative noetherian ring and A a finite dimensional
k-algebra. Let C = A-mod.

Let P be a finitely generated projective A-module, B = EndA(P ), F = HomA(P,−) :
A-mod → B-mod, and G = HomB(FA,−) : B-mod → A-mod. The canonical isomorphism
HomA(P,A) ⊗A −

∼
→ HomA(P,−) makes F a left adjoint of G. We denote by ε : FG → Id

(resp. η : Id → GF ) the corresponding unit (resp. counit). Note that ε is an isomorphism.

The following Lemma is immediate.

Lemma 4.32. Let M ∈ A-mod. The following assertions are equivalent

• the map η(M) : M → GFM is an isomorphism

• F induces an isomorphism HomA(A,M)
∼
→ HomB(FA, FM)

• M is a direct summand of a module in the image of G.

We will consider gradually stronger conditions on F .

Lemma 4.32 gives :

Proposition 4.33. The following assertions are equivalent:

• the canonical map of algebras A→ EndB(FA) is an isomorphism
• for all M ∈ A-proj, the map η(M) : M → GFM is an isomorphism
• the restriction of F to A-proj is fully faithful.

Let us name this “double centralizer” situation.

Definition 4.34. We say that (A,P ) (or (A-mod, P )) is a cover of B if the restriction of
HomA(P,−) to A-proj is fully faithful. We say also that (C, F ) is a cover of B-mod.

Remark 4.35. Let E = P ⊗B − : B-mod → A-mod. This is a left adjoint of F . The canonical
map Id → FE is an isomorphism. By Morita theory, the following conditions are equivalent:

• F : A-mod → B-mod is an equivalence with inverse G ≃ E
• F : A-mod → B-mod is fully faithful
• for all M ∈ A-mod, the map η(M) : M → GFM is an isomorphism
• the adjunction map EFA→ A is an isomorphism.

The “cover” property can be checked at closed points:
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Proposition 4.36. Assume k is regular. If (A(m), P (m)) is a cover of B(m) for every maximal
ideal m of k, then (A,P ) is a cover of B.

Proof. Since (A,P ) is a cover of B if and only if (kmA, kmP ) is a cover of kmB for every maximal
ideal m of k, we can assume k is local. We prove now the Proposition by induction on the Krull
dimension of k. Let π be a regular element of the maximal ideal of k. We have a commutative
diagram with exact rows

0 // EndB(FA)
π // EndB(FA) // HomB(FA, (k/π)FA)

EndB(FA)
π // EndB(FA) // EndB(FA) ⊗ k/π //

?�

OO

0

0 // A
π //

OO

A //

OO

(k/π)A //

OO

0

and the canonical map EndB(FA) ⊗ k/π → HomB(FA, (k/π)FA) is injective.
By induction, ((k/π)A, (k/π)P ) is a cover of (k/π)B, hence the canonical map (k/π)A →

HomB(FA, (k/π)FA) is an isomorphism. It follows that the canonical map EndB(FA)⊗k/π →
HomB(FA, (k/π)FA) is an isomorphism, hence the canonical map (k/π)A→ EndB(FA)⊗k/π
is an isomorphism as well. By Nakayama’s Lemma, we deduce that the canonical map A →
EndB(FA) is an isomorphism. �

4.2.2. Faithful covers. We assume now that we are given a highest weight category structure
(C,∆) on C. If C is a cover of B-mod, we say that it is a highest weight cover.

Definition 4.37. Let i be a non-negative integer. We say that (A,P ) (or (A-mod, P )) is an

i-faithful cover of B if F = HomA(P,−) induces isomorphisms Extj
A(M,N)

∼
→ Extj

B(FM,FN)

for all M,N ∈ C∆̃ and j ≤ i. We say also that (C, F ) is an i-cover of B-mod.

Remark 4.38. For i big enough, this will force F to be an equivalence, assuming k is a field.

Remark 4.39. Note that the 0-faithfulness assumption is not satisfied in Soergel’s theory on
category O for a complex semi-simple Lie algebra, cf already the case of sl2.

Proposition 4.40. The following assertions are equivalent:

(1) (C, F ) is a 0-faithful cover of B-mod.

(2) for all M ∈ C∆̃, the map η(M) : M → GFM is an isomorphism

(3) every object of C∆̃ is in the image of G
(4) for all T ∈ C-tilt, the map η(T ) : T → GFT is an isomorphism
(5) every object of C-tilt is in the image of G.

Proof. The equivalence of (1), (2) and (3) and the equivalence of (4) and (5) is given by Lemma
4.32.

Assume (4). Let M ∈ C∆̃. Then there is an exact sequence

0 →M → T → N → 0
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where T ∈ C-tilt N ∈ C∆̃ (Proposition 4.26). We have a commutative diagram with exact rows

0 // M //

η(M)
��

T //

∼ η(T )
��

N //

η(N)
��

0

0 // GFM // GFT // GFN

It follows that η(M) is injective for all M ∈ C∆̃. In particular, in the diagram above, η(N) is
injective and it follows that η(M) is surjective. So, (4) implies (2) and the converse is trivial. �

Proposition 4.41. Assume (C, F ) is a 0-faithful cover of B-mod. The following assertions
are equivalent:

(1) (C, F ) is a 1-faithful cover of B-mod.

(2) F restricts to an equivalence of exact categories C∆̃ ∼
→ (B-mod)F ∆̃ with inverse G

(3) for all M ∈ C∆̃, we have R1G(FM) = 0

Proof. If (2) holds, then Ext1
A(M,N)

∼
→ Ext1

B(FM,FN) for M,N ∈ (A-mod)∆̃, i.e., (1) holds.
We have R1G(FM) = Ext1

B(FA, FM) = 0, hence (1)=⇒(3).

Assume (3). Let X, Y ∈ C∆̃ and let 0 → FX → U → FY → 0 be an exact sequence. We

have an exact sequence 0 → GFX → GU → GFY → 0. Since X
∼
→ GFX and Y

∼
→ GFY ,

we deduce that GU ∈ C∆̃. Now, FGU
∼
→ U , hence U ∈ F (C∆̃). It follows by induction on the

length of a F ∆̃-filtration that F (C∆̃) = (B-mod)F ∆̃. So, (3) implies (2). �

The following very useful result shows that 1-faithful quasi-hereditary covers arise naturally
as deformations of 0-faithful covers.

Proposition 4.42. Assume k is regular and KA is split semi-simple. If (A(m), P (m)) is a
0-faithful cover of B(m) for every maximal ideal m of k, then (A,P ) is a 1-faithful cover of B.

Proof. As in the proof of Proposition 4.36, we can assume k is local with maximal ideal m.
Let us first assume k is a discrete valuation ring with uniformizing parameter π. Let

N ∈ (A-mod)∆̃. The composition of canonical maps (k/π)N → (k/π)GFN → G((k/π)FN)
is an isomorphism by assumption and the second map is surjective, hence both maps are iso-
morphisms. By Nakayama’s Lemma, it follows that the canonical map N → GFN is an
isomorphism. Since π is regular for k, FA and FN , the Universal Coefficient Theorem (i.e.,
the isomorphism (k/π) ⊗L

k RG(FN)
∼
→ RG(FN ⊗L

k (k/π)) gives an exact sequence

0 → (k/π)GFN → G((k/π)FN) → Tork
1(R

1G(FN), k/π) → 0.

We deduce that Tork
1(E, k/π) = 0, where E = R1G(FN), hence E is free over k. Note that

the canonical map N ′ → GFN ′ is an isomorphism for every N ′ ∈ KA-mod, hence KB is
Morita-equivalent to KA (cf Remark 4.35). Since KB is semi-simple, E is a torsion k-module
and this forces E = 0. So, the Proposition holds in the case k has Krull dimension 1.

We prove now the Proposition by induction on the Krull dimension of k. Assume the Krull
dimension of k is at least 2. There is α ∈ k − {0} such that A[α−1] is isomorphic to a product
of matrix algebras over k[α−1]. Then (kp/p)A is split semi-simple, whenever p is a prime ideal
of k with α 6∈ p.

We proceed as in the proof of Proposition 4.36. Let N ∈ (A-mod)∆̃ such that R1GFN 6= 0.
Let Z be the support of R1GFN in Spec k, a non-empty strict closed subvariety. Let π ∈ m

regular with Z ∩ Spec(k/π) 6= ∅ and α 6∈ (π).
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We have a commutative diagram with exact rows

0 // GFN
π // GFN // G((k/π)FN)

GFN
π // GFN // (k/π)GFN //

?�

OO

0

0 // N
π //

OO

N //

OO

(k/π)N //

OO

0

Since the canonical map (k/π)N → G((k/π)FN) is an isomorphism, we deduce that the
canonical map N → GFN is an isomorphism. The Universal Coefficient Theorem gives an
exact sequence

0 → (k/π)GFN → G((k/π)FN) → Tork
1(R

1G(FN), k/π) → 0.

It follows that R1G(FN) has no π-torsion, which is a contradiction. So, R1GN = 0. We
deduce that (A,P ) is a 1-faithful cover of B. �

Remark 4.43. In the proof above, the case of a discrete valuation ring has been treated
separately, for if k/π is finite, then there might be no element α as needed. An alternative
proof would be to take a faithfully flat extension of k to avoid this problem.

4.2.3. Unicity of faithful covers.

Definition 4.44. We say that two highest weight covers (C, F ) and (C′, F ′) of B are equivalent

if there is an equivalence of highest weight categories C
∼
→ C′ making the following diagram

commutative

C

∼

��

F

##HHHHHHHHH

B-mod

C′
F ′

;;wwwwwwwww

The following result shows that a 1-faithful highest weight cover depends only on F∆⊗:

Proposition 4.45. Let (C, F ) be a 1-faithful highest weight cover of B.
Given M ∈ F∆, there is a pair (Y (M), pM ) unique up to isomorphism with Y (M) ∈ B-mod

and pM : Y (M) → M a surjection such that ker pM ∈ (B-mod)F ∆̃ and Ext1
B(Y (M), F∆) = 0.

Given N ∈ ∆ with M = F (N) and qN : P (N) → N a surjective map with ker qN ∈ C∆̃

and P (N) a projective A-module, then Y (M) = F (P (N)) and pM = F (qN) satisfy the property
above.

Let Y =
⊕

M∈F∆ Y (M), A′ = EndB(Y ), ∆′ = HomB(Y, F∆), and P ′ = Hom(A′)opp(Y,A′).
Then, (A′-mod,∆′) is a highest weight category and together with HomA′(P ′,−), this is a 1-
faithful highest weight cover of B equivalent to (C, F ).

Proof. The unicity follows from Lemma 4.22, while the construction of (Y (M), pM) with the
required properties is clear.
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Note that
⊕

N∈∆ P (N) is a progenerator for A, since every object of ∆ appears as a quotient.

We have a canonical isomorphism EndA(
⊕

N∈∆ P (N))
∼
→ A′, hence an equivalence

HomA(
⊕

N∈∆

P (N),−) : A-mod
∼
→ A′-mod

giving rise to the commutative diagram of Definition 4.44. �

We deduce a unicity result.

Corollary 4.46. Let (C, F ) and (C′, F ′) be two 1-faithful highest weight covers of B. Assume
F∆⊗ ≃ F ′∆′

⊗. Then, (C, F ) and (C′, F ′) are equivalent highest weight covers.

4.2.4. Deformation. We assume in §4.2.4 that k is a noetherian domain with field of fractions
K.

When KC is split semi-simple, we can restate the definition of a highest weight category
structure on C as follows (cf [DuPaSc2, Lemma 1.6]):

Proposition 4.47. Let C be the module category of a finite projective k-algebra and let ∆ be a
finite poset of objects of C ∩ k-proj. Assume KC is split semi-simple.

Then, (C,∆) is a highest weight category if and only if there is a bijection Irr(KC)
∼
→ ∆, E 7→

∆(E), such that

• K∆(E) ≃ E for E ∈ Irr(KC).
• for E ∈ Irr(KC), there is a projective module P (E) with a filtration 0 = Pr ⊂ · · · ⊂
P1 = P (E) such that P1/P2 ≃ ∆(E) and Pj/Pj+1 ≃ ∆(Fj) ⊗ Uj for some Fj > E and
Uj ∈ k-proj, for j ≥ 2.

•
⊕

E∈Irr(KC) P (E) is a progenerator of C.

Note that ∆⊗ is determined by the order on Irr(KC) : given Q a projective object of C with
KQ ≃ E ⊕

⊕
F>E F

aF for some integers aF , then, the image of Q by a surjection KQ → E is
isomorphic to ∆(E) ⊗ U for some U ∈ Pic(k).

Let B be a finite projective k-algebra with KB split semi-simple. Let (C, F ) be a 1-faithful
highest weight cover of B. Then, (KC, KF ) is a 1-faithful highest weight cover of KB, hence
KF : KC → KB-mod is an equivalence and it induces a bijection Irr(KC)

∼
→ Irr(KB). We will

say that (C, F ) is a highest weight cover of B for the order on Irr(KB) coming from the one
on Irr(KC). Given I ⊂ Irr(KB), we denote by (KB)I the sum of the simple KB-submodules
of KB isomorphic to elements of I.

Lemma 4.48. Let J ⊂ I be coideals of Irr(KB) such that no two distinct elements of I \J are
comparable. Then,

(
(KB)I ∩ B

)
/
(
(KB)J ∩ B

)
≃
⊕

E∈I\J

F∆(E) ⊗ UE .

where UE ∈ k-proj and rankk UE = dimK E.

Proof. Recall that C = A-mod, F = HomA(P,−) and B = EndA(P ). Since P is ∆̃-filtered,

there is a filtration P0 ⊂ P1 ⊂ P with P0 ∈ C∆̃(J), P1/P0 ≃
⊕

E∈I\J ∆(E) ⊗ UE for some

UE ∈ k-proj, and P/P1 ∈ C∆̃(Irr(KB)\I). So, we have a filtration FP0 ⊂ FP1 ⊂ FP = B and
(KB)I ∩B = FP1 and (KB)J ∩B = FP0, since FP0 and FP1 are direct summands of FP as
k-modules. Furthermore, dimK KUE = dimK E and we are done. �
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We can now show that a 1-faithful highest weight cover is determined by the induced order
on Irr(KB).

Theorem 4.49. Let B be a finite projective k-algebra such that KB is split semi-simple. Fix
two orders, ≤1 and ≤2 on Irr(KB). Let (C1, F1) and (C2, F2) be 1-faithful highest weight covers
of B for the orders ≤1 and ≤2.

Assume ≤1 is a refinement of ≤2. Then, there is an equivalence C1-mod
∼
→ C2-mod of highest

weight covers of B inducing the bijection Irr(KC1)
∼
→ Irr(KB)

∼
→ Irr(KC2).

Proof. Let E ∈ Irr(KB), I = Irr(KB)≥1E and J = Irr(KB)>1E. These are coideals for ≤1

and also for ≤2. Using Lemma 4.48, we obtain F1∆1(E) ⊗ ME ≃ F2∆2(E) ⊗ NE where
ME , NE ∈ k-proj and rankk ME = rankk NE = dimK E. Since EndB(F1∆1(E)) = k, we deduce
that HomB(F1∆1(E), F2∆2(E)) is an invertible k-module and since

F1∆1(E) ⊗ HomB(F1∆1(E), F2∆2(E))
∼
→ F2∆2(E),

we obtain F2∆2(E)
∼
→ UE ⊗ F1∆1(E) for some UE ∈ Pic(k). The result follows now from

Corollary 4.46. �

Remark 4.50. Let us give a variant of Theorem 4.49. Let C1 be a 1-faithful highest weight cover
of B with associated order ≤1 on Irr(KB). Let ≤′ be an order on Irr(KB) and {S ′(E)}E∈Irr(KB)

be a set ofB-modules such that given J ′ ⊂ I ′ coideals of Irr(KB) for ≤′ such that no two distinct
elements of I ′ \ J ′ are comparable for ≤′, we have

(
(KB)I′ ∩B

)
/
(
(KB)J ′

∩ B
)
≃

⊕

E∈I′\J ′

S ′(E) ⊗ME

for some ME ∈ k-proj with rankk ME = dimK E. Assume ≤1 is a refinement of ≤′. Then, given
E ∈ Irr(KB), we have S ′(E)

∼
→ F1∆1(E) ⊗ UE for some UE ∈ Pic(k).

In particular, if C2 is a 1-faithful highest weight cover of B with associated order ≤2 and if
≤2 is a refinement of ≤′, then C1 and C2 are equivalent highest weight covers.

Remark 4.51. It would interesting to investigate when two 1-faithful highest covers are derived
equivalent (cf Conjecture 5.6 for the case of Cherednik algebras). This might be achieved
through perverse equivalences (cf [ChRou] and [Rou3, §2.6]).

5. Cherednik’s rational algebra

We refer to [Rou2] for a survey of the representation theory of rational Cherednik algebras.

5.1. Category O.

5.1.1. Given H ∈ A, let αH ∈ V ∗ with H = kerαH and let vH ∈ V such that CvH is a
WH-stable complement to H .

The rational Cherednik algebra A is the quotient of C[{hu}u∈U ] ⊗C T (V ⊕ V ∗) ⋊W by the
relations

[ξ, η] = 0 for ξ, η ∈ V, [x, y] = 0 for x, y ∈ V ∗

[ξ, x] = 〈ξ, x〉 +
∑

H∈A

〈ξ, αH〉〈vH , x〉

〈vH , αH〉
γH
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where

γH =
∑

w∈WH−{1}

(
eH−1∑

j=0

det(w)−j(hH,j − hH,j−1)

)
w.

Remark 5.1. From the definition in [GGOR, §3.1] one gets to the notations here by putting
hH,j = −kH,−j (here, we allow the possibility hH,0 6= 0 to make twists by linear characters of
W more natural).

From the definitions in [EtGi, p.251], W being a finite Coxeter group, one puts hH,0 = 0 and
hH,1 = cα for H the kernel of the root α.

5.1.2. Let k′ be a local commutative noetherian C[{hu}]-algebra with residue field k.
Let O be the category of finitely generated k′A-modules that are locally nilpotent for S(V ).

Given E ∈ Irr(W ), we put ∆(E) = k′A ⊗S(V )⋊W E and we denote by ∇(E) the submodule
of k′ HomS(V ∗)⋊W (A, E) of elements that are locally finite for S(V ). Let ∆ = {∆(E)}E∈Irr(W ).
We define an order on Irr(W ) by χ > χ′ if cχ′ − cχ ∈ Z>0.

Theorem 5.2. (O,∆) is a highest weight category with costandard objects the ∇(E)’s.

Proof. We know that O ≃ R-mod for some finite projective k′-algebra R [GGOR, Corollary
2.8]. By Theorem 4.15, it suffices to check the highest weight category property for kO: this is
given by [GGOR, Theorem 2.19]. �

5.2. Covers of Hecke algebras.

5.2.1. Let m be a maximal ideal of C[{hu}] and k′ be the completion at m. We view k′ as a
k-algebra via qu 7→ e2iπhu .

Let m̂ be the maximal ideal of k′ and k = k′/m̂. Let h· = {hu} ∈ kU be the image of h. Let
Γ̃ be the subgroup of k generated by Z and the hu’s. We have an exact sequence

0 → Z → Γ̃
x 7→e2iπx

−−−−−→ e2iπΓ̃ → 0

and we are in the setting of §3.2.2, where we choose the coarsest order. In particular, the order
on Irr(W ) introduced in §5.1.2 is the same as the one defined in §3.2.3.

There is a functor KZ : O → k′H-mod [GGOR, §5.3] (note that in the definition of the Hecke
algebra in [GGOR, §5.2.5], one should read e−2iπkH,j instead of e2iπkH,j ). By [GGOR, §5.3, 5.4],
there is a projective object PKZ of O and an isomorphism k′H

∼
→ EndO(PKZ) such that the

functor KZ is isomorphic to HomO(PKZ,−).

Theorem 5.3. (kO,KZ) is a highest weight cover of kH.
Assume xH,j 6= xH,j′ for all H ∈ A and j 6= j′. Then, (O,KZ) is a 1-faithful highest weight

cover of k′H.

Proof. The first statement is [GGOR, Theorem 5.16]. The second statement follows, via Propo-
sition 4.42, from [GGOR, Proposition 5.9]. �

Proposition 5.4. Assume Γtor = 1. Then, kO and kH are semi-simple.

Proof. The semi-simplicities of kO and of kH are equivalent (cf Theorem 5.3). The algebra kH
depends only on the hu’s up to shifts by integers. So, in order to prove that kH is semi-simple,
we can assume that the restriction of t 7→ e2iπt to the subgroup Γ0 of C generated by the hu’s
gives an isomorphism Γ0

∼
→ Γ. Then, given χ, χ′ ∈ Irr(W ), we have cχ − cχ′ ∈ Z if and only if
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cχ = cχ′ . In particular, no two distinct elements of Irr(W ) are comparable. So, O is semi-simple
and kH as well. �

Proof of Theorem 3.5. Without loss of generality, we may assume that k has finite transcen-
dence degree over Q. Then, there is an embedding of k in C and we can assume k = C. Now,
the result follows from Proposition 5.4. �

5.2.2. We denote by O(h·) the category kO.
From Theorems 4.49 and 5.3, we deduce a translation principle for category O:

Theorem 5.5. Assume xH,j 6= xH,j′ for all H ∈ A and j 6= j′. Let τ ∈ tZ and assume the order
on Irr(W ) defined by h· is the same as the one defined by h· + τ . Then, there is an equivalence
O(h·)

∼
→ O(h· + τ) of quasi-hereditary covers of kH.

It would be interesting to describe precisely which τ ’s satisfy the assumptions of the Theorem.

Conjecture 5.6. Given any τ ∈ tZ, then Db(O(h·))
∼
→ Db(O(h· + τ)).

Remark 5.7. Let κ ∈ Q>0 with κ 6∈ ( 1
eH

Z) \ Z for all H ∈ A. Assume hH,j = 0 for all j 6= 0
and hH,0 = κ, for all H . Let τ be given by τH,j = 0 for j 6= 0 and τH,0 = 1. Then τ satisfies
the assumption of the Theorem, i.e., the order defined by h· is the same as the one defined by
τ + h·.

We conjecture that, for general W , the shift functor associated to ζ a linear character of W
gives an equivalence if h· and h· + τ define the same order on Irr(W ), where τ is the element
corresponding to ζ . Note that shift functors are compatible with the KZ functor, hence when
they are equivalences, they are equivalences of highest weight covers of the Hecke algebra as in
Theorem 5.5.

When W has type An−1, Gordon and Stafford proved that the shift functor is an equivalence
(parameter 6∈ 1

2
+ Z) [GoSt1, Proposition 3.16].

Note that equivalences arise also from twists [GGOR, §5.4.1]:

Proposition 5.8. Let ζ ∈ W∧. We have an equivalence O(h·)
∼
→ O(θξ(h·)) compatible, via

KZ, with the isomorphism θξ : H(exph·)
∼
→ H(exp θξ(h·)).

5.2.3. We show now that Hecke algebras do not change, up to isomorphism of C-algebras, by
field automorphisms acting on parameters. As a consequence, we show that category O doesn’t
change if h· is rescaled by a positive integer, as long as the denominators do not change.

We fix K0 be a subfield of C such that the reflection representation V of W is defined over
K0.

Proposition 5.9. Let q· ∈ T(C) with finite order. Then, there exists a K0-algebra A and an
isomorphism of C-algebras C ⊗K0 A ≃ H(q·).

Proof. Let h· ∈ QU such that q· = e2iπh· . Consider the category OK0 for the rational Cherednik
algebra defined over K0, with parameter h·. The simple objects of OK0 remain simple in
C ⊗K0 OK0, hence there is a projective object PKZ,K0 of OK0 such that C ⊗K0 PKZ,K0 ≃ PKZ.
Then, A = EndOK0

(PKZ,K0) satisfies the requirement of the Proposition. �

For Hecke algebras, the next result, which is an immediate consequence of Proposition 5.9,
answers positively (over C) a problem raised by Radha Kessar. In type A, the result is due to
Chuang and Miyachi [ChMi]. Note that their result covers also fields of positive characteristic.
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Theorem 5.10. Let q· ∈ T(C) with finite order and let σ be an automorphism of K0({qu})/K0.
Then, we have an isomorphism of C-algebras: H(σ(q·)) ≃ H(q·).

Remark 5.11. The previous two results can be lifted. We use the notations of the proof of
Proposition 5.9.

Let m0 be the maximal ideal ofK0[{hu}] generated by the hu−hu and let k0 be the completion
at m0. Let kq· be the completion of C[{q±1

u }] at the maximal ideal generated by the qu − qu.
Let R = C[[{Xu}]] and consider the morphisms of algebras k0 → R, hu − hu 7→ Xu and
kq· → R, qu − qu 7→ e2iπXu . As in Proposition 5.9, one shows there is a K0[{hu}]-algebra A0

and an isomorphism of R-algebras R⊗k0 A0 ≃ R⊗kq·
kq·H.

Consider now the setting of Theorem 5.10. We have an isomorphism of R-algebras R⊗kσ(q·)

kσ(q·)H ≃ R⊗kq·
kq·H.

Theorem 5.12. Let q· ∈ T(C) with finite order and let r ∈ Z>0 such that there is an auto-
morphism σ ∈ K0({qu})/K0 with σ(q·) = qr

· . Assume xH,j 6= xH,j′ for all H ∈ A and j 6= j′.

Then, there is an equivalence O(h·)
∼
→ O(rh·), which identifies highest weight covers of

H(σ(q·)) ≃ H(q·).

Proof. The order on Irr(W ) induced by rh· is the same as the order induced by h·. So, via the
isomorphism of Remark 5.11, O(h·) and O(rh·) deform to 1-faithful highest weight covers of
the same algebra (Theorem 5.3) and the result follows from Theorem 4.49. �

Let us restate the previous Theorem in the case of Weyl groups and equal parameters, where
it takes a simpler form.

Corollary 5.13. Assume W is a Weyl group, hu,1 = 0, hu,0 = h is constant and h ∈ (1
d
Z) \

(1
2

+ Z) for some d ∈ Z>0. Given r ∈ Z>0 prime to d, there is an equivalence O(h)
∼
→ O(rh),

which identifies highest weight covers of H(qr) ≃ H(q).

Finally, let us relate characters. Define

eu =
∑

b∈B

b∨b+
∑

H∈A

eH−1∑

j=1

∑

w∈WH

(hH,j − hH,0) det(w)−jw

where B is a basis of V and {b∨}b∈B is the dual basis of V ∗. Given M ∈ O and a ∈ C, we
denote by Ma the generalized a-eigenspace of eu on M , a finite dimensional vector space. The
character of M is an element of Z[[t]] · Irr(W ) given by χM(w, t) = TrM(w · teu) ∈ C[[t]] (here,

w ∈W ). Given E ∈ Irr(W ), one has χ∆(E)(w, t) = TrE(w)tc
′
E

detV ∗(1−wt)
(cf e.g. [EtCh, §2.1]).

The following result was conjectured by Etingof. It follows immediately from Theorem 5.12.

Proposition 5.14. With the assumptions of Theorem 5.12, we have

χLrh·(E)(w, t) =
detV ∗(1 − wtr)

detV ∗(1 − wt)
χLh·(E)(w, t

r).

In particular, Lrh·(E) is finite-dimensional if and only if Lh·(E) is finite-dimensional and when
this is the case, we have dimLrh·(E) = rdimV dimLh·(E).
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5.2.4. We discuss now blocks of “defect 1” and show their structure depends only on their
number of simple objects.

Given d a positive integer, recall that a Brauer tree algebra associated to a line with d vertices
(and exceptional multiplicity 1) is a C-algebra Morita-equivalent to the principal block of the
Hecke algebra of the symmetric group Sd at parameter (q0, q1) = (e2iπ/d,−1) (cf [Ben, §4.18]
for a general definition). Consider now

B̃rd = EndBrd
(Brd ⊕ C)

where C is the trivial representation of Brd. This is a quasi-hereditary algebra whose module
category is ubiquitous in rational representation theory. It occurs as perverse sheaves on Pd

for the partition A0
∐

A1
∐

· · ·
∐

Ad.

We assume here that the algebra H is endowed with a symmetrizing form t: here, t in a linear
form H → k with t(ab) = t(ba) for all a, b ∈ H and the pairing H × H → k, (a, b) 7→ t(ab), is
perfect. This is well-known to exist for W a finite Coxeter group (take t(Tw) = δ1w) and it is
known to exist for the infinite series G(r, p, n) [MalMat].

Let n ⊂ m̂ be a prime ideal such that R = k′/n is a discrete valuation ring. Denote by π a
uniformizing parameter for R. Denote by K the field of fractions of R. Its residue field is k.

Let A be a block of RO. We assume KA is semi-simple. We denote by IrrA(W ) the set of
E ∈ Irr(W ) such that ∆(E) ∈ A. We denote by B the block of RH corresponding, via the
KZ-functor, to A [GGOR, Corollary 5.18]. Given χ ∈ IrrA(W ), we denote by sχ ∈ R the Schur
element of χK : the primitive idempotent of Z(KH) corresponding to χK is s−1

χ

∑
a χK(a)a∨,

where a runs over a basis of H over k and (a∨) is the dual basis.

The following Theorem gives the structure of blocks with defect one. Theorem 5.15 was
known for W of type An in case the order of h in C/Z is n + 1 [BerEtGi, Theorem 1.4].
When W is a Coxeter group, the statement about H in Theorem 5.15 goes back to Geck [Ge1,
Theorem 9.6] (in the case of equal parameters, but the proof applies to unequal parameters as
well) and we follow part of his proof.

Theorem 5.15. Let d = | IrrA(W )|. Assume for every χ ∈ IrrA(W ), we have π−1sχ ∈ R×

(“defect 1”). Then, > is a total order on IrrA(W ), kB is Morita equivalent to Brd and A is

equivalent to B̃rd-mod. In particular, if χ1 < · · · < χd are the elements of IrrA(W ), then, for
n = 1, . . . , d, we have

[L(χn)] =

n∑

i=1

(−1)i+n[∆(χi)].

Proof. Given E ∈ IrrA(W ), we denote by L(E), ∆(E) and P (E) the corresponding simple,
standard and projective objects of kA. Let IrrA(W )0 be the set of E ∈ IrrA(W ) such that
KZ(L(E)) 6= 0.

Brauer’s theory of blocks of finite groups of defect 1 carries to RH (cf [Ge1, Propositions
9.1-9.4] for the case of Weyl groups) and shows that

(i) [∆(E) : L(F )] ∈ {0, 1} for E ∈ IrrA(W ) and F ∈ IrrA(W )0.
(ii) Given E ∈ IrrA(W )0, there is a unique F ∈ IrrA(W ) distinct from E such that [P (E)] =

[∆(E)] + [∆(F )].
(iii) Given E ∈ IrrA(W ), then KZ(∆(E)) is uniserial.
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Let E ∈ IrrA(W ). Let E1 6= E2 ∈ IrrA(W ) distinct from E and such that L(E1) and L(E2)
are composition factors of ∆(E).

Since [P (E1)] = [∆(E1)] + [∆(E)], the reciprocity formula shows that [∆(E2) : L(E1)] = 0.
We have [P (E2)] = [∆(E2)] + [∆(E)] by the reciprocity formula, so we have an exact sequence

0 → ∆(E) → P (E2) → ∆(E2) → 0.

Let ΩL(E2) be the kernel of a projective cover P (E2) → L(E2). Let M be the kernel of a
surjective map ∆(E2) → L(E2). We have an exact sequence

0 → ∆(E) → ΩL(E2) →M → 0.

Since Hom(M,L(E1)) = 0 and Hom(∆(E), L(E1)) = 0, it follows that Hom(ΩL(E2), L(E1)) =
0, hence Ext1(L(E2), L(E1)) = 0. Similarly, one shows that Ext1(L(E1), L(E2)) = 0.

Let N be the kernel of a surjective map ∆(E) → L(E). We have shown that N is semi-simple.
Since KZ(∆(E)) is uniserial, we deduce that KZ(N) is simple or 0. So, we have proven

(iv) Given E ∈ IrrA(W ), there is at most one F ∈ IrrA(W )0 distinct from E and such that
[∆(E) : L(F )] 6= 0.

The decomposition matrix of B has at most two non-zero entries in each row and in each
column. It follows that kB is a Brauer tree algebra associated to a line (cf [Ge1, Theorem 9.6]).
In particular, the order > on IrrA(W ) is a total order. Also, there is a unique E ′ ∈ Irr(W )
such that KZ(L(E ′)) = 0. We have P (E ′) = ∆(E ′) and KZ(∆(E ′)) is a simple module. Via
an appropriate identification of kB-mod with Brd-mod, it corresponds to the trivial module C.

Since kA ≃ EndkH

(⊕
E∈IrrA(W ) KZ(P (E))

)
-mod, it follows that kA ≃ B̃rd-mod. �

Let us give a concrete application of the previous result. Assume there is r ∈ Z>0 such that
for all u, we have hu = au

r
for some au ∈ Z. The Schur element sχ is the specialization at

qu = qau of the generic Schur element sχ of χ, where q = e2iπh and π = h− 1
r
. The assumption

“π−1sχ ∈ R×” will be satisfied if and only if the r-th cyclotomic polynomial in q (over K0)
divides sχ exactly once.

In case au = 1 for all u and W is a finite Coxeter group, then the principal block satisfies
the assumption if and only if Φr(q) divides the Poincaré polynomial of W exactly once. Note
that in such a case the other blocks either satisfy the assumption or are simple.

We list now for each finite exceptional irreducible Coxeter group W all simple finite dimen-
sional representations in a block A of defect 1 and provide their character. We assume au = 1
for all u. We denote by φm,b an irreducible representation of W of dimension m whose first
occurrence in S(V ) is in degree b. When we use this notation, there is a unique irreducible
representation of W with that property. For example, φ1,0 = C is the trivial representation
and φdimV,1 = V . Computations have been performed in GAP, using the CHEVIE package
[CHEVIE]. The blocks are described in [GePfe, Appendix F].

F4 • h = 1/12, L(C) = φ1,0.
• h = 1/8, L(C) = φ1,0 + tφ4,1 + t2φ1,0.

H3 • h = 1/10, L(C) = φ1,0.
• h = 1/6, L(C) = φ1,0 + tφ3,1 + t2φ1,0.

H4 • h = 1/30, L(C) = φ1,0.
• h = 1/20, L(C) = φ1,0 + tφ4,1 + t2φ1,0.
• h = 1/15, L(C) = φ1,0 + tφ4,1 + t2(φ1,0 + φ9,2) + t3φ4,1 + t4φ1,0 and L(φ4,7) = t2φ4,7.
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• h = 1/12, L(C) = φ1,0 + tφ4,1 + t2(φ1,0 + φ9,2) + t3(φ4,1 + φ16,3) + t4(φ1,0 + φ9,2) +
t5φ4,1 + φ1,0.

• h = 1/10, L(φ4,1) = t3(φ4,1 + tφ1,0 + t2φ4,1).

E6 • h = 1/12, L(C) = φ1,0.
• h = 1/9, L(C) = φ1,0 + tφ6,1 + t2φ1,0.

E7 • h = 1/18, L(C) = φ1,0.
• h = 1/14, L(C) = φ1,0 + tφ7,1 + t2φ1,0.
• h = 1/10, L(φ7,1) = t9/2(φ7,1 + tφ1,0 + t2φ7,1).

E8 • h = 1/30, L(C) = φ1,0.
• h = 1/24, L(C) = φ1,0 + tφ8,1 + t2φ1,0.
• h = 1/20, L(C) = φ1,0 + tφ8,1 + t2(φ1,0 + φ35,2) + t3φ8,1 + t4φ1,0.
• h = 1/18, L(φ8,1) = t5/3(φ8,1 + t(φ1,0 + φ28,8) + t2φ8,1).
• h = 1/15, L(C) = φ1,0 + tφ8,1 + t2(φ1,0 + φ35,2) + t3(φ8,1 + φ112,3) + t4(φ1,0 +
φ35,2 + φ210,4) + t4(φ8,1 + φ112,3) + t5(φ1,0 + φ35,2) + t6φ8,1 + t7φ1,0 and L(φ8,1) =
t2(φ8,1 + t(φ1,0 + φ28,8 + φ35,2) + t2(2φ8,1 + φ160,7) + t3(φ1,0 + φ28,8 + φ35,2) + t4φ8,1).

• h = 1/12, L(φ28,8) = t5(φ28,8 + t(φ8,1 + φ56,19) + t2φ28,8).

Remark 5.16. Consider a block A of defect 1. Then, A has at most one finite-dimensional
simple module. If A has a finite-dimensional simple module, it is L(E) where c′E is minimal
and we have | IrrA(W )| ≥ 1+dimV , since L(E) has a projective resolution over C[V ] of length
| IrrA(W )|.

Remark 5.17. It would be interesting to see if | IrrA(W )| ≤ 1+dimV for any block A satisfying
the assumption of Theorem 5.15. Also, in case of equal parameters with order e in C/Z, is it
true that | IrrA(W )| ≤ e?

6. Case W = Bn(d)

6.1. Combinatorics.

6.1.1. Let W be the complex reflection group of type Bn(d) (i.e., G(d, 1, n)) for some integers
n, d ≥ 1. This is the subgroup of GLn(C) of monomial matrices whose non-zero entries are
d-th roots of unity. The subgroup of permutations matrices is the symmetric group Sn. It
is generated by the transpositions s1 = (1, 2), . . . , sn−1 = (n − 1, n). Let s0 be the diagonal
matrix with diagonal coefficients (e2iπ/d, 1, . . . , 1). Then, W is generated by s0, s1, . . . , sn−1. We
identify its subgroup of diagonal matrices with the group of functions {1, . . . , n} → µd, where
µd is the group of d-th roots of unity of C. Let Hi be the reflecting hyperplane of si.

A partition of n is a non-increasing sequence (finite or infinite) α = (α1 ≥ α2 ≥ . . .) of non-
negative integers with sum n and we write |α| = n. We identify two partitions that differ only
by zeroes. We denote by tα the transposed partition. We denote by P(n) the set of partitions
of n.

A multipartition of n is a d-tuple of partitions λ = (λ(1), . . . , λ(d)) with
∑

i |λ
(i)| = n. We

denote by lr the largest integer such that λ
(r)
lr

6= 0. We put

Iλ(r) = {
r−1∑

i=1

|λ(i)| + 1,
r−1∑

i=1

|λ(i)| + 2, . . . ,
r∑

i=1

|λ(i)|}.
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Given i, j ≥ 1, we put

b
(r)
i,j =

{
(tλ

(r)
)j − i if (tλ

(r)
)j > i

0 otherwise
and d

(r)
i,j =

{
λ

(r)
i − j if λ

(r)
i > j

0 otherwise.

We put Sλ = SIλ(1) × · · ·SIλ(d) and Bλ(d) = µ
{1,...,n}
d ⋊ Sλ. We denote by P(d, n) the set of

multipartitions of n.

Given α ∈ P(n), we denote by χα the corresponding irreducible character of Sn. Given
λ ∈ P(d, n), we denote by χλ the corresponding irreducible character of Bn(d). Let us recall
its construction. We denote by φ(r) the one-dimensional character of (µd)

Iλ(r)
⋊ SIλ(r) whose

restriction to (µd)
Iλ(r) is detr−1 and whose restriction to SIλ(r) is trivial. Then,

χλ = Ind
Bn(d)
Bλ(d)(φ

(1)χλ(1) ⊗ · · · ⊗ φ(d)χλ(d)).

Lemma 6.1. Let λ ∈ P(d, n). Then, given 0 ≤ l ≤ d− 1, we have

1

χλ(1)
〈(χλ)|〈s0〉, detl〉 =

|λ(l+1)|

n

and
1

χλ(1)
〈(χλ)|〈s1〉, det〉 =

1

2
+

1

n(n− 1)

∑

r

∑

i,j

(b
(r)
i,j − d

(r)
i,j ).

Proof. By Frobenius reciprocity and Mackey’s formula, we have

Res〈s0〉 χλ =
d∑

i=1

|λ(i)|(n− 1)!
∏d

r=1 |λ
(r)|!

(
d∏

r=1

χλ(r)(1)

)
· deti−1

hence

1

χλ(1)
Res〈s0〉 χλ =

1

n

d∑

i=1

|λ(i)| · deti−1.

We have

Res〈s1〉 χλ =
∑

1≤r≤d,|λ(r)|>1

|λ(r)|(|λ(r)| − 1)(n− 2)!
∏d

i=1 |λ
(i)|!

(
∏

1≤i≤d,i6=r

χλ(i)(1) · ResS2 χλ(r)

)
+

+

d∑

r=1

|λ(r)|(n− |λ(r)|)(n− 2)!

2
∏d

i=1 |λ
(i)|!

(
d∏

i=1

χλ(i)(1)

)
(1 + det)

hence

1

χλ(1)
Res〈s1〉 χλ =

1

n(n− 1)

(
∑

1≤r≤d,|λ(r)|>1

|λ(r)|(|λ(r)| − 1)

χλ(r)(1)
· ResS2 χλ(r)+

+

d∑

r=1

|λ(r)|(n− |λ(r)|)

2
· (1 + det)

)
.
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Now, we have (cf Remark 3.3 and [GePfe, Theorem 10.5.2] for the generic degrees)

1

χλ(r)(1)
〈ResS2 χλ(r) , det〉 =

1

2
+

1

|λ(r)|(|λ(r)| − 1)

∑

i,j

(b
(r)
i,j − d

(r)
i,j )

and the second result follows. �

6.1.2. Assume d 6= 1 and n 6= 1. The braid group BW has generators σ0, σ1, . . . , σn−1 and
relations [BrMaRou, Theorem 2.26]

σiσj = σjσi if |i− j| > 1, σ0σ1σ0σ1 = σ1σ0σ1σ0 and σiσi+1σi = σi+1σiσi+1 for i ≥ 1.

The canonical morphism BW →W is given by σi 7→ si.
Put xi = xH0,i, x = xH1,0 and put xH1,1 = −1. Similarly, we will write hi = hH0,i, h = hH1,0

and assume hH1,1 = 0.
The Hecke algebra H is the quotient of Z[q±1,x±1

0 , . . . ,x±1
d−1][BW ] by the ideal generated by

(σ0 − x0)(σ0 − x1) · · · (σ0 − xd−1) and (σi − q)(σi + 1) for 1 ≤ i ≤ n− 1 (this differs from the
algebra H of §3.1.1 since we have already specialized xH1,1 to −1).

When d = 1, then BW has generators σ1, . . . , σn−1 and relations

σiσj = σjσi if |i− j| > 1 and σiσi+1σi = σi+1σiσi+1 for i ≥ 1.

The canonical morphism BW →W is given by σi 7→ si.
Put x = xH1,0 and assume xH1,1 = −1. Similarly, let h = hH1,0 and assume hH1,1 = 0.
The Hecke algebra H is the quotient of Z[q±1][BW ] by the ideal generated by (σi−q)(σi +1)

for 1 ≤ i ≤ n− 1.

When n = 1, then BW is an infinite cyclic group with one generator σ0. The canonical
morphism BW → W is given by σ0 7→ s0.

Put xi = xH0,i and hi = hH0,i.
The Hecke algebra H is the quotient of Z[x±1

0 , . . . ,x±1
d−1][BW ] by the ideal generated by

(σ0 − x0)(σ0 − x1) · · · (σ0 − xd−1).

We denote by Ti the image of σi in H. Note that Q(q,x0, . . . ,xd−1)H is split semi-simple
[ArKo].

From Lemma 6.1, we obtain

Proposition 6.2. Let λ ∈ P(d, n). We have

cχλ
= d

∑

2≤r≤d

|λ(r)|(hr−1 − h0) − d

(
n(n− 1)

2
+
∑

r,i,j

(b
(r)
i,j − d

(r)
i,j )

)
h.

We put the dominance order E on P(d, n) : λE µ if

r−1∑

i=1

|λ(i)| +
s∑

j=1

|λ
(r)
j | ≤

r−1∑

i=1

|µ(i)| +
s∑

j=1

|µ
(r)
j |

for all 1 ≤ r ≤ d and s ≥ 0.

Lemma 6.3. Let λ, µ ∈ P(d, n). Then, λ ⊳ µ and there is no λ′ ∈ P(d, n) with λ ⊳ λ′ ⊳ µ if
and only if one (or more) or the following holds :

(a) there is s < d with
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– µ(r) = λ(r) for r 6= s, s+ 1

– µ(s) = (λ
(s)
1 , . . . , λ

(s)
ls
, 1)

– µ
(s+1)
1 = λ

(s+1)
1 − 1 and µ

(s+1)
j = λ

(s+1)
j for j > 1.

(b) there are s and i with
– µ(r) = λ(r) for r 6= s,

– µ
(s)
j = λ

(s)
j for j 6= i, i+ 1, µ

(s)
i = λ

(s)
i + 1 and µ

(s)
i+1 = λ

(s)
i+1 − 1.

(c) there are s and i < i′ with
– µ(r) = λ(r) for r 6= s,

– µ
(s)
j = λ

(s)
j for j 6= i, i′ and µ

(s)
i − 1 = µ

(s)
i′ + 1 = λ

(s)
i = λ

(s)
i′ .

Proof. Assume λ ⊳ µ and there is no λ′ ∈ P(d, n) with λ ⊳ λ′ ⊳ µ. Take s minimal such that
λ(s) 6= µ(s).

Assume first that |λ(s)| < |µ(s)|. We denote by ms the largest integer such that µ
(s)
ms 6= 0. If

µ
(s)
ms 6= 1, then λ ⊳ ν ⊳ µ, where ν(r) = µ(r) for r 6= s and ν(s) = (µ

(s)
1 , . . . , µ

(s)
ms−1, µ

(s)
ms − 1, 1),

and this is a contradiction. So, µ
(s)
ms = 1. Let ξ ∈ P(d, n) be given by ξ(r) = µ(r) for r 6= s, s+1,

ξ(s) = (µ
(s)
1 , . . . , µ

(s)
ms−1) and ξ(s+1) = (µ

(s+1)
1 + 1, µ

(s+1)
2 , µ

(s+1)
3 , . . .). Then, λE ξ ⊳ µ. So, λ = ξ

and we are in the case (a).
Assume now |λ(s)| = |µ(s)|. Let ξ = (µ(1), . . . , µ(s), λ(s+1), . . . , λ(d)). Then, λ ⊳ ξ E µ, hence

ξ = µ. Now, it is a classical fact about partitions that (b) or (c) holds (cf e.g. [JamKe, Theorem
1.4.10]).

The other implication is clear. �

Proposition 6.4. Assume h ≤ 0 and hs − hs−1 ≥ (1 − n)h for 1 ≤ s ≤ d− 1.
Let λ, µ ∈ P(d, n). If λE µ, then cχλ

≥ cχµ.

Proof. It is enough to prove the Proposition in the case where λ 6= µ and there is no λ′ with
λ ⊳ λ′ ⊳ µ. We use the description of Lemma 6.3.

Assume we are in case (a). Then,

cχλ
− cχµ = d(hs − hs−1) + dh(ls + λ

(s+1)
1 − 1).

In case (b), we have

cχλ
− cχµ = −dh(µ

(s)
i − µ

(s)
i+1)

and in case (c), we have
cχλ

− cχµ = −dh(i′ − i+ 1).

The Proposition follows easily. �

Remark 6.5. One should compare the above order on P(d, n) depending on h and the hi’s to
the order given by Jacon’s a-function [Jac3, Definition 4.1] and to the order defined by Yvonne
[Yv, §3.3].

6.2. The “classical” q-Schur algebras.

6.2.1. We recall here a generalization of Dipper and James’ construction (cf [Do3]) of q-Schur
algebras for type An−1 (case d = 1 below). As a first generalization, q-Schur algebras of type
Bn (case d = 2 below) have been introduced by Dipper, James, and Mathas [DiJaMa1], and Du
and Scott [DuSc2]. The constructions have been then extended by Dipper, James, and Mathas
to the complex reflection groups Bn(d) [DiJaMa2].
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6.2.2. The subalgebra of H generated by T1, . . . , Tn−1 is the Hecke algebra of Sn, viewed as a
Coxeter group with generating set (s1 = (1, 2), . . . , sn−1 = (n − 1, n)). Given w = si1 · · · sir ∈
Sn, we put Tw = Ti1 · · ·Tir . We put Li = q1−iTi−1 · · ·T1T0T1 · · ·Ti−1.

Let λ ∈ P(d, n). We put mλ =
(∑

w∈Sλ
Tw

) (∏d
i=2

∏ai

j=1(Lj − xi)
)
, where ai = |λ(1)|+ · · ·+

|λ(i−1)|.
We put M(λ) = mλH, a right H-module, and P =

⊕
λ∈P(d,n)M(λ). Let S = S(d, n) =

EndHopp(P )opp (Dipper, James, and Mathas consider a Morita equivalent algebra, where in the
definition of P the sum is taken over all multicompositions of n).

Theorem 6.6. (S, P ) is a quasi-hereditary cover of H, for the order given by the dominance
order on P(d, n).

Assume k is a complete discrete valuation ring such that

(q + 1)
∏

i6=j

(xi − xj) ∈ k× and
n∏

i=1

(1 + q + · · ·+ qi−1)
∏

1≤i<j≤d
−n<r<n

(qrxi − xj) 6= 0.

Then (kS, kP ) is a 1-faithful quasi-hereditary cover of kH.

Proof. The first assertion is known [Mat2, Theorems 4.14 and 5.3]. The non-vanishing assump-
tion is exactly the condition required to ensure that KH is split semi-simple [Ar1], where K
is the field of fractions of k. By [Mat1, Corollary 6.11 and Theorem 6.18], given T a tilting
module for kS, there is some kH-module M such that HomkH(HomkS(kP, kS),M) ≃ T . The
second part follows now from Propositions 4.40 and 4.42. �

Remark 6.7. In type A, these results are classical. Under the assumption that (1 + q)(1 +
q + q2) 6= 0 and k is a field, then kS(1, n) is a 1-faithful cover [HeNa, Theorem 3.8.1]. See also
[Do4, §10] for a different approach.

We put S(λ) = HomS(P,∆(λ)).

6.3. Comparison. In §6.3, we take k, k′ as in §5.2.1.

6.3.1. The following result identifies category O under certain assumptions.

Theorem 6.8. Assume (q+ 1)
∏

i6=j(xi − xj) 6= 0. Assume h ≤ 0 and hs+1 −hs ≥ (1−n)h for
0 ≤ s ≤ d− 2.

Then, kO and kS-mod are equivalent highest weight covers of kH : there is an equivalence
kO

∼
→ kS-mod sending the standard object associated to χ ∈ Irr(Sn) to the standard object

associated to χ.

Proof. By Theorems 5.3 and 6.6, O and k′S-mod are 1-faithful highest weight covers of k′H.
The order on irreducible characters in k′H coming from k′S is a refinement of the one coming
from O, by Proposition 6.4. The Theorem follows now from Theorem 4.49. �

Note that, under the assumptions of the Theorem, O and k′S-mod are equivalent highest
weight covers of k′H as well.

Remark 6.9. Using Proposition 5.8, we obtain other parameter values for which kO is equiv-
alent to kS-mod (for example, replacing h by −h in the Theorem). The Theorem should hold
without the assumption (q + 1)

∏
i6=j(xi − xj) 6= 0, but the methods developed here cannot

handle this general case.
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Remark 6.10. This suggests to look for a construction similar to that of §6.2 of q-Schur
algebras of type Bn(d) for orders on P(d, n) coming from other choices of h and hi’s. Recent
work of Gordon [Go] provides an order based on the geometry of Hilbert schemes that is
probably more relevant that the orders used here.

It might be possible to produce explicit “perverse complexes” and obtain the other q-Schur
algebras by perverse tilts (cf Conjecture 5.6).

6.3.2. Let us restate the previous Theorem in the case W = Sn. In that case, S(1, n) is the
q-Schur algebra of Sn, Morita equivalent to a quotient of the quantum group Uq(gln). The
following result solves a conjecture of [GGOR, Remark 5.17] (under the assumption h 6∈ 1

2
+Z).

Theorem 6.11. Assume h 6∈ 1
2

+ Z. Then, there is an equivalence of highest weight categories

kO
∼
→ kS(1, n)-mod sending the standard object associated to χ ∈ Irr(Sn) to the standard

object associated to

{
χ if h ≤ 0

χ⊗ det if h > 0.

This shows the characters of simple objects of O are given by canonical basis elements in the
Fock space for ŝlr, where r is the order of k in C/Z, according to Varagnolo-Vasserot’s proof
[VarVas1] of Leclerc-Thibon’s conjecture [LeTh] (a generalization of Ariki’s result [Ar2] proving
Lascoux-Leclerc-Thibon’s conjecture [LaLeTh]). Cf §6.5 for a conjectural generalization to the
case d > 1.

Gordon and Stafford [GoSt2, Proposition 6.11] deduce from this result a description of the
maximal dimensional components of the characteristic cycle of the simple objects (a cycle in
Hilbn C2). If these characteristic cycles were equidimensional, they would thus be known and
one could deduce what are the support varieties in C2n/Sn of the simple objects in O.

Remark 6.12. One can expect to obtain a different proof of Theorem 6.11 via the work
of Suzuki [Su], which relates representations of rational Cherednik algebras of type A with
representations at negative level of affine Lie algebras of type A.

Note that an analog of Theorem 6.11 has been proven by Varagnolo and Vasserot for trigono-
metric (or elliptic) Cherednik algebras [VarVas2].

6.4. Orbit decomposition. Let s ∈ {0, . . . , d−1} such that (qixr−q
i′xr′) ∈ k× for 0 ≤ r < s,

s ≤ r′ < d and 0 ≤ i, i′ ≤ n. There is a bijection
n∐

m=0

P(s,m) × P(d− s, n−m)
∪
−→
∼

P(d, n)

(α(1), . . . , α(s)), (β(1), . . . , β(d−s)) 7→ (α(1), . . . , α(s), β(1), . . . , β(d−s)).

We write Hx0,...,xd−1
(n) for the algebra kH (which depends further on q).

In [DiMa, Theorem 1.6], Dipper and Mathas construct an equivalence

F :

(
n⊕

m=0

Hx0,...,xs−1(m) ⊗ Hxs,...,xd−1
(n−m)

)
-mod

∼
→ Hx0,...,xd−1

(n)-mod

with the property that F (S(α) ⊗ S(β)) = S(α ∪ β) [DiMa, Proposition 4.11].

Assume we are in the setting of §5.2.1. We write Oh0,...,hd−1
(n) for the category kO.
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Theorem 6.13. Assume (q+1)
∏

i6=j(xi−xj) 6= 0. Let s ∈ {0, . . . , d−1} such that qixr 6= qi′xr′

for 0 ≤ r < s, s ≤ r′ < d and 0 ≤ i, i′ ≤ n. Then, there is an equivalence of highest weight
categories

(
n⊕

m=0

Oh0,...,hs−1(m) ⊗Ohs,...,hd−1
(n−m)

)
-mod

∼
→ Oh0,...,hd−1

(n)-mod .

It sends ∆(α) ⊗ ∆(β) to ∆(α ∪ β) and it is compatible with F .

Proof. Fix m and consider α ∈ P(s,m) and β ∈ P(d− s, n−m). We have

cχα

s
+

cχβ

d− s
=
∑

2≤r≤s

|α(r)|(hr−1 − h0) +
∑

s+1≤r≤d

|β(r−s)|(hr−1 − hs)−

−

(
m(m− 1) + (n−m)(n−m− 1)

2
+
∑

r,i,j

(b
(r)
i,j − d

(r)
i,j )

)
h

so

d(
cχα

s
+

cχβ

d− s
) = cχα∪β

+ d(n−m)(h0 − hs) +m(n−m).

We deduce that if χα ≤ χα′ and χβ ≤ χβ′, then χα∪β ≤ χα′∪β′ .
The result follows now from Theorems 5.3 and 4.49. �

Remark 6.14. The Theorem should hold without the assumption (q + 1)
∏

i6=j(xi − xj) 6= 0.

Remark 6.15. Note that this Theorem applies to more general 1-faithful highest weight covers
(in particular, to the classical one, where we recover [DiMa, Theorem 1.5], with the additional
assumption that (q + 1)

∏
i6=j(xi − xj) ∈ k×).

Remark 6.16. We put an equivalence relation on {0, 1, . . . , d − 1}: r and r′ are equivalent if
there is a ∈ {−n, . . . , n} such that xr′ = qaxr. Then, O is equivalent to

⊕

m:({0,...,d−1}/∼)→Z≥0∑
I m(I)=n

⊗

I∈{0,...,d−1}/∼

O{hi}i∈I
(m(I)).

6.5. Uglov’s higher level Fock spaces. Let e > 1 be an integer and let s. = (s0, . . . , sd−1) ∈
Zd. Let h = 1

e
and hj =

sj

e
− j

d
. Uglov [Ug] has introduced a q-deformed Fock space of

level d associated to the multicharge s., together with a standard and a canonical basis, both
parametrized by d-multipartitions.

Yvonne [Yv] conjectured that, for suitable values of the si’s, the multiplicities of simple
modules in standard modules for classical q-Schur algebras are equal to the corresponding
coefficients of the transition matrix between the standard and the canonical basis. He showed
that this is compatible with the Jantzen sum formula.

Now, Theorem 6.8 shows that Yvonne’s conjecture can be restated for category O and par-
ticular values of the si’s. We conjecture that, for arbitrary si’s, the multiplicities of simple
modules in standard modules in O are equal to the corresponding coefficients of the transition
matrix between the standard and the canonical basis. We also expect that the q-coefficients
measure the level in the filtration induced by the Shapovalov form. It should be possible to
prove a sum formula for Cherednik algebras and obtain a result similar to Yvonne’s.
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Remark 6.17. In order to prove the conjecture (in the case “(q + 1)
∏

i6=j(xi − xj) 6= 0”), it

would suffice to construct a (deformation of a) highest weight cover of the Hecke algebra of a
geometrical nature, where character formulas can be computed.
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