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Orbifold construction of the modes

of the Poincaré dodecahedral space

Marc Lachièze-Rey and Jeffrey Weeks
APC 15 Farmer Street

(Astroparticule et Cosmologie) Canton NY
CNRS-UMR 7164, France USA

January 24, 2008

Abstract

We provide a new construction of the modes of the Poincaré dodecahedral space S3/I∗.
The construction uses the Hopf map, Maxwell’s multipole vectors and orbifolds. In par-
ticular, the *235-orbifold serves as a parameter space for the modes of S3/I∗, shedding
new light on the geometrical significance of the dimension of each space of k-modes, as
well as on the modes themselves.

Keywords: Poincaré dodecahedral space, spherical 3-manifold, eigenmodes of the Laplace
operator, Hopf fibration, multipole vectors, orbifold

1 Introduction

Cosmological motivations [1] have inspired recent progress in understanding the eigen-
modes of the spherical spaces S3/Γ∗, i.e., the quotients of the three-sphere S3 by a binary
polyhedral group Γ∗. Such modes may be seen as the Γ∗-invariant solutions of the Helmoltz
equation in the universal cover S3. Their numeration and degeneracy were given by Ikeda
[2]. Recent works [3, 4, 5] have provided various means to calculate them.

Here we give a new point of view, using the Hopf map, multipole vectors and orbifolds
to construct the modes of S3/Γ∗ and shed additional light on the geometrical significance
of Ikeda’s formula. Section 2 reviews the Hopf map and uses it to lift eigenmodes from
S2 to S3. Section 3 uses twist operators to extend the lifted modes to a full eigenbasis
for S3. Section 4 generalizes the preceding results from the modes of S3 to the modes
of a spherical space S3/Γ∗, showing that the latter all come from the lifts of the those
eigenmodes of S2 that are invariant under the corresponding (non-binary) polyhedral group
Γ. We then turn to a detailed study of the Γ-invariant modes of S2. Section 5 recalls
Maxwell’s multipole vector approach and uses it to associate each mode of S2/Γ to a
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Γ-invariant set of multipole directions. Restricting attention to the case that Γ is the
icosahedral group, Section 6 introduces the concept of an orbifold and re-interprets a Γ-
invariant set of multipole directions as a (much smaller) set of points in the *235-orbifold,
which serves as the parameter space. Section 7 pulls together the results of the preceding
sections to summarize the construction of the modes of the Poincaré dodecahedral space
and state the dimension of the mode space for each k.

2 From S2 to S3: lifting with the Hopf map

2.1 Spheres

We parameterize the circle S1 as the set of points α ∈ C of unit norm αᾱ = 1. The
relationship between the complex coordinate α and the usual Cartesian coordinates (x, y)
is the natural one: α = x + iy.

We parameterize the 2-sphere S2 as the set of points (x, y, z) ∈ R
3 of unit norm x2 +

y2 + z2 = 1.
We parameterize the 3-sphere S3 as the unit sphere in C

2: the set of points (α, β) ∈ C
2

of unit norm αᾱ+ββ̄ = 1. Hereafter, we will always assume that this normalization relation
holds. The relationship between the complex coordinates (α, β) and the usual Cartesian
coordinates (x, y, z, w) is the natural one: α = x + iy and β = z + iw.

2.2 The Hopf fibration

In S3, simultaneous rotation in the α- and β-planes defines the Hopf flow Ht : S3 → S3,

Ht(α, β) ≡ ( eitα, eitβ ). (1)

The Hopf flow is homogeneous in the sense that it looks the same at all points. An orbit

{ (eitα, eitβ) | 0 ≤ t < 2π}. (2)

is a great circle on S3 called a Clifford parallel (Figure 1). Collectively the Clifford paral-
lels comprise the Hopf fibration of S3. The fibers carry Clifford’s name because William
Kingdon Clifford (1845 – 1879) discovered them before Heinz Hopf (1894 – 1971) was born.
However, while Clifford understood the fibration quite well, he did not, as far as we know,
go on to consider the quotient map (Eqn. (3)).

As we walk along any given Clifford parallel (eitα, eitβ), the ratio of its coordinates eitα
eitβ

remains a constant α
β , independent of t. The ratio α

β labels uniquely each Clifford parallel,
taking values in the extended complex numbers C ∪ {∞}, where ∞ represents the ratio
α
β = 1

0 . The extended complex numbers may be visualized as a Riemann sphere, proving
that the Clifford parallels are in one-to-one correspondence with the points of a topological
2-sphere S.
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Figure 1: A computer generated view of the Clifford parallels in S3

The Hopf map is defined as sending any point (α, β) of S3 to the fiber its belong to, i.e.,
the point of S labelled by α

β . Composing with a natural map from S to the unit 2-sphere

S2 gives an explicit formula for the Hopf map:

p : S3 → S2

(α, β)→ p(α, β) = (x, y, z) =
(

αβ̄ + ᾱβ, −i (αβ̄ − ᾱβ), ββ̄ − αᾱ
)

. (3)

It is easy to check that x2 + y2 + z2 = 1, confirming that the Hopf map p sends S3 to the
the unit 2-sphere.
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2.3 Lifts of functions

Any given function f on S2 lifts to a function F on S3 by composition with the Hopf map p
from Equation (3),

F : S3 p
−→ S2 f

−→ R. (4)

In other words, F = p∗f is the pull-back of f by p: explicitly,

F (α, β) ≡ f(p(α, β)) = f
(

αβ̄ + ᾱβ, −i (αβ̄ − ᾱβ), ββ̄ − αᾱ
)

. (5)

For example, the quadratic polynomial

f(x, y, z) = x2 − y2, (6)

lifts to the quartic polynomial

F (α, β) = (αβ̄ + ᾱβ)2 − (−i (αβ̄ − ᾱβ))2

= 2(α2β̄2 + ᾱ2β2). (7)

Definition 2.3.1. We call a function F : S3 → R vertical if it is constant along every
Clifford parallel (Formula (2)).

For every function f : S2 → R, the construction of the lift F (α, β) = f(p(α, β)) guarantees
that F is vertical.

Proposition 2.3.2. The Hopf map lifts a polynomial f : S2 → R of degree ℓ to a polyno-
mial F : S3 → R of degree 2ℓ.

Proof. The lifting formula (5) doubles the degree of any polynomial. �

3 Eigenmodes

3.1 Basic definitions

Definition 3.1.1. An ℓ-eigenmode is an eigenmode f : S2 → R of the Laplacian, with
eigenvalue λℓ = ℓ(ℓ + 1).

An ℓ-eigenmode is a solution of the Helmholtz equation

∆S2f = ℓ(ℓ + 1)f. (8)

The index ℓ takes values in the set {0, 1, 2, . . .}. For each ℓ, the ℓ-eigenmodes (which are
the usual spherical harmonics) form a vector space V ℓ of dimension 2ℓ + 1.
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Definition 3.1.2. A k-eigenmode is an eigenmode F : S3 → R of the Laplacian with
eigenvalue λk = k(k + 2).

A k-eigenmode is a solution of the Helmholtz equation

∆S3F = k(k + 2) F. (9)

The index k takes values in the set {0, 1, 2, . . .}. For each k, the k-eigenmodes form a vector
space V k of dimension (k + 1)2.

3.2 Eigenmodes of S2 define eigenmodes of S3

Proposition 3.2.1. An ℓ-eigenmode f on the unit 2-sphere lifts to a k-eigenmode F on
the unit 3-sphere, with k = 2ℓ.

Proof. It is well-known that the ℓ-eigenmodes are precisely the homogenous harmonic
polynomials of degree ℓ on R

3, with domain restricted to the unit 2-sphere. Similarly the
k-eigenmodes are the homogeneous harmonic polynomials of degree k on R

4, with domain
restricted to the unit 3-sphere. A harmonic function on IR4 satisfies

∆R4F ≡ 4 (∂α ∂ᾱ + ∂β ∂β̄ )F = 0. (10)

When F is the pull-back of f given by (5), direct calculations give

∆R4F (α, β) = (∂x ∂x + ∂y ∂y + ∂z ∂z)f(x, y, z) = ∆R3f(x, y, z). (11)

Thus, the pull-back of a harmonic function on IR3 is a harmonic function on IR4, and
therefore the pull-back of an eigenmode of ∆S2 is an eigenmode of ∆S3 . Together with
Proposition 2.3.2, this completes the proof. �

Notation 3.2.2. Let Yℓm denote the usual spherical harmonics on S2. For example, the
Y2,m may be expressed as harmonic polynomials as follows

trigonometric polynomial

Y2,+2

√

15
32π sin2 θ e2iϕ

√

15
32π (x + iy)2

Y2,+1

√

15
8π cos θ sin θ eiϕ

√

15
8π z(x + iy)

Y2,0

√

5
16π (1− 3 cos2 θ)

√

5
16π (x2 + y2 − 2z2)

Y2,−1

√

15
8π cos θ sin θ e−iϕ

√

15
8π z(x− iy)

Y2,−2

√

15
32π sin2 θ e−2iϕ

√

15
32π (x− iy)2
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Let Ykm0 = Yℓm ◦ p, with k = 2ℓ, denote the pullback of Yℓm under the action of
the Hopf map (3). In accordance with Proposition 2.3.2, its degree is k. For example,

Y2,0 =
√

5
16π (x2 + y2 − 2z2) lifts to Y4,0,0 =

√

5
4π (α2ᾱ2 − 4αᾱββ̄ + β2β̄2), of degree 4.

The Ykm0 are simply the realization of the Yℓm on the abstract 2-sphere S of Clifford
parallels. As such, the linear independence of the Yℓm immediately implies the linear
independence of the Ykm0 as well.

3.3 Twist

Each Ykm0 is constant along Clifford parallels, but more general functions are not. As
we take one trip around a Clifford parallel (eitα0, e

itβ0), 0 ≤ t ≤ 2π, the value of the
monomial αaᾱbβcβ̄d varies as ei(a−b+c−d) times the constant α a

0 ᾱ b
0 β c

0 β̄ d
0 . In other words,

the value of a typical monomial αaᾱbβcβ̄d rotates counterclockwise (a − b + c − d) times
in the complex plane as we take one trip around any Clifford parallel. The graph of the
monomial is a helix sitting over the Clifford parallel, motivating the following definition.

Definition 3.3.1. The twist of a monomial αaᾱbβcβ̄d is the power of the unbarred vari-
ables minus the power of the barred variables, i.e. a− b + c− d. The twist of a polynomial
is the common twist of its terms, in cases where those twists all agree; otherwise it is
undefined.

Proposition 3.3.2. The polynomials of well-defined twist (including all monomials) are
precisely the eigenmodes of the operator

α∂α − ᾱ∂ᾱ + β∂β − β̄∂β̄ , (12)

with the twist as eigenvalue.

Proof. Apply the operator to αaᾱbβcβ̄d and observe the result. �

Geometrically, operator (12) is essentially the directional derivative operator in the di-
rection of the the Clifford parallels, the only difference being that the directional derivative
includes a factor of i that operator (12) does not, because the complex-valued derivative is
90◦ out of phase with the value of the function itself.

Because we consider modes of even k only, the twist will always be even. Henceforth,
for notational convenience, we shall take our twist-measuring operator to be

Z =
1

2
(α∂α − ᾱ∂ᾱ + β∂β − β̄∂β̄). (13)

The ad hoc factor of 1/2 transforms the range of eigenmodes from even integers to all
integers.
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3.4 Siblings and the twist operators

The twist operators

twist ≡ −β̄ ∂α + ᾱ ∂β

twist ≡ −β ∂ᾱ + α ∂β̄ (14)

(defined in [6]) increase and decrease a function’s twist. That is, the twist operator converts
an n-eigenmode of Z to an (n + 1)-eigenmode of Z, and inversely for twist. Here is the
proof: It is easy to check that the commutator [Z, twist] = twist, so given ZF = λF it
follows that

Z(twistF ) = (Ztwist)F = (twistZ + twist)F = (λ + 1)(twistF ).

Thus the operator twist increases by one unit the eigenvalue of an eigenfunction of Z, and
similarly twist decreases it by one unit.

Because ∆S3 and twist commute (see [6]), the twist operator transforms each k-
eigenmode into another k-eigenmode.

Being vertical, each Ykm0 is an eigenmode of Z with eigenvalue 0. Repeatedly applying
the operator twist gives eigenmodes of Z with eigenvalues 1, 2, . . . , k/2 (k is even), while
repeatedly applying the operator twist gives modes with eigenvalues -1, -2, . . . , -k/2.
Why do the sequences stop at n = ±k/2? The explanation is as follows. When written
as a polynomial in the complex variables {α, ᾱ, β, β̄}, the original vertical mode Ykm0

contains equal powers of the barred variables ᾱ and β̄ and the unbarred variables α and
β. The operator twist replaces a barred variable with an unbarred one, keeping the degree
constant while increasing the difference #unbarred−#barred by two. After k

2 applications

of the twist operator, the polynomial twistk/2 Ykm0 contains unbarred variables alone: it
has maximal positive twist and further application of the twist operator collapses it to
zero. Analogously, the twist operator converts unbarred variables to barred ones, until

twist
k/2
Ykm0 consists of barred variables alone, after which further applications of twist

collapse it to zero.
Let Ykmn be the resulting modes. That is, for n = 1, 2, . . . , k/2, define

Yk,m,+n = twistn Ykm0

Yk,m,−n = twist
n
Ykm0 (15)

Each Yk,m,n is simultaneously a k-eigenmode of the Laplacian and an n-eigenmode of Z.
The modes {Yk,m,n}n=−k/2...k/2 , being eigenmodes with different eigenvalues, are lin-

early independent [6]. Conclusion: each Yℓm generates, via the lift from S2 to S3 (Sections
2.3 and 3.2) and the twist operators, a (k + 1)-dimensional vector space Vkm· of k-modes,
with basis {Yk,m,n}n=−k/2...k/2 (see Table 1). Thus the 2ℓ + 1 = k + 1 spherical harmonics
Yℓm generate the complete vector space of k-eigenmodes of S3,

Vk =
⊕

m

Vkm·,

7



Yk,+ℓ,−k/2 ← · · · ← Yk,+ℓ,−1 ← Yk,+ℓ,0 → Yk,+ℓ,+1 → · · · → Yk,+ℓ,+k/2

⇑
Yℓ,+ℓ

...
...

...
...

...

Yk,+1,−k/2 ← · · · ← Yk,+1,−1 ← Yk,+1,0 → Yk,+1,+1 → · · · → Yk,+1,+k/2

⇑
Yℓ,+1

Yk,0,−k/2 ← · · · ← Yk,0,−1 ← Yk,0,0 → Yk,0,+1 → · · · → Yk,0,+k/2

⇑
Yℓ,0

Yk,−1,−k/2 ← · · · ← Yk,−1,−1 ← Yk,−1,0 → Yk,−1,+1 → · · · → Yk,−1,+k/2

⇑
Yℓ,−1

...
...

...
...

...

Yk,−ℓ,−k/2 ← · · · ← Yk,−ℓ,−1 ← Yk,−ℓ,0 → Yk,−ℓ,+1 → · · · → Yk,−ℓ,+k/2

⇑
Yℓ,−ℓ

Table 1: Each ℓ-eigenmode Yℓ,m of S2 (i.e. each spherical harmonic; middle column, lower

entries) lifts via the Hopf map (⇑) to a 0-twist k-eigenmode Yk,m,0 of S3 (middle column,

upper entries), with k = 2ℓ. The positive twist operator (→) then takes Yk,m,0 to its k
2

positively twisted siblings (right side) while the negative twist operator (←) takes Yk,m,0

to its k
2 negatively twisted siblings (left side), for a total of (k + 1)2 linearly independent

modes.
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with basis {Yk,m,n}m=−k/2...k/2, n=−k/2...k/2, and thus of dimension (k + 1)2.

Proposition 3.4.1. Yk,m,n = Yk,−m,−n.

Proof. Each Yk,+m,0 is conjugate to the corresponding Yk,−m,0 because they are lifts of the
standard 2-dimensional spherical harmonics Yℓ,+m and Yℓ,−m which have this symmetry.
The twist operators (14) are complex conjugates of one another by construction. Therefore
when n ≥ 0,

Yk,m,n = twistn Yk,m,0 = twist
n
Yk,−m,0 = Yk,−m,−n, (16)

and similarly when n ≤ 0. �

Proposition 3.4.2. By choosing complex-conjugate coefficients ck,m,n = ck,−m,−n one
may recover the real-valued modes of S3 as

ckmn Yk,m,n + ckmn Yk,−m,−n (17)

In particular, whenever m and n are not both zero, the modes

Yk,m,n + Yk,−m,−n (18)

i Yk,m,n − i Yk,−m,−n (19)

are independent real-valued modes, analogous to cosine and sine, respectively.

Proof. The mode (17) is its own complex conjugate,

ckmn Yk,m,n + ckmn Yk,−m,−n = ckmn Yk,m,n + ckmn Yk,−m,−n (20)

and therefore real. �

Convention 3.4.3. For the remainder of this article we will assume that all coefficients
are chosen in complex-conjugate pairs ck,m,n = ck,−m,−n and therefore all modes are real-
valued.

4 Eigenmodes of spherical spaces S3/Γ∗

A spherical space is a quotient manifold M = S3/G, with G a finite subgroup of SO(4).
An eigenmode of M with eigenvalue k (k + 2) corresponds naturally to a k-eigenmode of
S3 that is G-invariant. The set of all such modes forms a subspace Vk

M of the vector space
Vk of all k-eigenmodes of S3. In the present article we focus on the case that G is a binary
polyhedral group Γ∗, because those spaces holds the greatest interest for cosmology as well
as being technically easier.
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4.1 Vertical modes of S3/Γ∗ generate all modes of S3/Γ∗

We will now show that when searching for Γ∗-invariant eigenmodes, we may safely restrict
our attention to the vertical ones.

Proposition 4.1.1. Every Γ∗-invariant mode of S3 may be obtained from vertical Γ∗-
invariant modes by applying the twist operators and taking a sum.

Proof. Let F be an arbitrary Γ∗-invariant mode of S3 (not necessarily vertical). Express
F relative to the basis Ykmn (Table 1) as

F =
∑

kmn

ckmnYkmn =
∑

kn

(

∑

m

ckmnYkmn

)

=
∑

kn

Fkn, (21)

where Fkn ≡
∑

m ckmnYkmn is the component of F that is simultaneously a k-eigenvalue of
the Laplace operator ∆S3 and an n-eigenvalue of the twist-measuring operator Z (Equa-
tion (13)). By assumption each element γ ∈ Γ∗ preserves F . Because γ commutes with
both ∆S3 and Z, it must preserve each Fkn individually. (Unlike an arbitrary element
of SO(4), the isometry γ commutes with Z because γ takes Clifford parallels to Clifford
parallels.) Thus each Fkn is Γ∗-invariant.

Because Fkn has constant twist, it is easily obtained by applying the twist operator to
a vertical function,

Fkn =
∑

m

ckmnYkmn =
∑

m

ckmn twistnYkm0 = twistn

(

∑

m

ckmnYkm0

)

, (22)

where for negative n, twistn means twist
|n|

. Because the twist operators twist and twist
commute with each γ, each vertical function

∑

m ckmnYkm0 is Γ∗-invariant, thus complet-
ing the proof. �

Like for S3, the search for the eigenmodes of S3/Γ∗ reduces to a search for the vertical
ones, since each vertical Γ∗-invariant k-eigenmode generates, through the action of the
twist operators, a (k + 1)-dimensional vector space of generic Γ∗-invariant k-eigenmodes.

4.2 Modes of S2/Γ generate all vertical modes of S3/Γ∗

Section 3.2 showed that the vertical modes of S3 are the pullbacks of the modes of S.
Thus in a direct geometrical sense, the modes of S2 are the vertical modes of S3, and
Γ∗-invariance on S3 corresponds directly to Γ-invariance on S2.

Conclusion 4.2.1. The search for Γ∗-invariant eigenmodes of S3 reduces to the search
for Γ-invariant eigenmodes of S2.
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5 Γ-invariant eigenmodes of S2

5.1 Multipole vectors

Consider V ℓ, the vector space of ℓ-eigenmodes. According to Maxwell’s multipole vector
decomposition of modes [7, 8, 9, 10, 11, 12, 13], we may write each eigenmode fℓ ∈ V ℓ as

fℓ(x, y, z) = c r2ℓ+1 ∇vℓ
· · · ∇v2

∇v1

1

r
, (23)

where r =
√

x2 + y2 + z2 and the decomposition is well defined up to flipping the signs of
the direction vectors {v1, . . . , vℓ} and the scale factor, two at a time. The ordering of the
direction vectors is irrelevant.

Define an equivalence relation on V ℓ setting two functions f and f ′ to be equivalent
whenever they are nonzero real multiples of each other:

f ≃ f ′ ⇔ f = cf ′, c ∈ R− {0}.

All the elements of each equivalence class [f ] share the same decomposition (23) up to the
choice of signs for the direction vectors {v1, . . . , vℓ} and the leading constant c. Therefore
each equivalence class [f ] is uniquely represented by a set of directions {d1, ..., dℓ}, where
each direction di represents a line ±vi, with no concern for the sign. The set of all possible
directions forms a real projective plane IRP 2 = S2/±Id.

5.2 Invariant sets of directions

A class [f ] of modes is Γ-invariant iff the associated set {d1, ..., dℓ} is Γ-invariant. Note
that although each symmetry γ ∈ Γ is nominally a map γ : S2 → S2, its action on IRP 2

is well defined. To understand the possible classes [f ] of Γ-invariant modes, we need to
understand the possible Γ-invariant sets {d1, ..., dℓ} of directions.

6 Eigenmodes of the Poincaré dodecahedral space S3/I∗

Let us now further restrict our attention to the Poincaré dodecahedral space, because of
the interest it holds in cosmology as well as its greater technical ease. In other words,
let Γ be the icosahedral group I comprising the 60 orientation-preserving symmetries of
a regular icosahedron. We will consider sets of directions {d1, ..., dℓ} that are invariant
under I. Because each direction di is automatically invariant under the antipodal map,
the set {d1, ..., dℓ} will be invariant under the full group Ih of 120 symmetries of a regular
icosahedron, reflections included.
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(a) (b) (c)

Figure 2: How to construct the *235 orbifold. (a) Begin with an icosahedrally symmetric
pattern on the 2-sphere. (b) Locate all lines of mirror symmetry. Each is a great circle,
and together they divide the sphere into 120 congruent triangles. (c) Fold the sphere
along all mirror lines simultaneously, so that the whole sphere maps 120-to-1 onto a single
triangle. The resulting quotient is the *235 orbifold. The Conway notation *235 may be
understood as follows: the ‘*’ denotes the mirror-symmetric origin of the triangle’s sides,
while the 2, the 3 and the 5 denote the fact that 2, 3 and 5 mirror lines met at each corner,
respectively.

6.1 The orbifold

The quotient S2/Ih is an orbifold consisting of a spherical triangle with mirror boundaries
and corner reflectors with angles π/2, π/3 and π/5 (see Figure 2). In Conway’s notation
this orbifold is denoted *235.

• Each point in the interior of the triangle lifts to an invariant set of 120 points on S2,
which in turn defines an invariant set of 60 directions.

• However, each point on a mirror boundary lifts to only 60 points on S2, defining
only 30 directions. For this reason it’s convenient to think of a point on the mirror
boundary as a “half-point”.

• A point at the corner reflector of angle π/2 lifts to 30 points on S2 or 15 directions,
so it’s convenient to think of it as a “quarter point”.
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• Similarly, the points at the corner reflectors of angle π/3 and π/5 may be considered
a 1/6 point and a 1/10 point, respectively.

In all cases, a 1
F fractional (F = 1, 2, 4, 6 or 10) point of S2/Ih represents an invariant

set of ℓ = 60
F directions. Another way to think about it is that a half-point on the mir-

ror boundary lifts to 120 half-points on S2, and then each pair of identically positioned
half-points combines to form a single full point, and similarly for the other fractional points.

Definition 6.1.1. Let

C 1

10

denote the number of 1
10 points at the vertex of angle π/5,

C 1

6

denote the number of 1
6 points at the vertex of angle π/3,

C 1

4

denote the number of 1
4 points at the vertex of angle π/2,

C 1

2

denote the number of half points on the triangle’s perimeter, and

C1 denote the number of whole points in the triangle’s interior.

The preceding discussion has shown that

Proposition 6.1.2. Each I-invariant equivalence class [f ] of modes of S2 corresponds to
a unique choice of ℓ I-invariant multipole vectors. The degree of a representative mode f
is

ℓ = 6C 1

10

+ 10C 1

6

+ 15C 1

4

+ 30C 1

2

+ 60C1. (24)

Some care is required here: knowing that an equivalence class [f ] of modes is I-invariant
does not immediately imply that each representative f of that class is I-invariant. It is
a priori possible that some symmetry γ ∈ I could send f to −f . The next proposition
shows that this does not happen.

Proposition 6.1.3. If an equivalence class [f ] of modes of S2 is invariant under the icosa-
hedral group I, then each representative f is also invariant under I.

Proof. Let {d1, ..., dℓ} be the set of I-invariant directions defining the class [f ] (Section 5.2),
and let γ ∈ I be a symmetry of the icosahedron. By the assumed I-invariance of [f ], we
know that γ sends each di to ±dj (for some j). To prove that f itself is invariant, it suffices
to prove that γ sends di to −dj (rather than to +dj) for an even number of the di.
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First consider the case that a given di lies in the “interior” of the *235-orbifold (Fig-
ure 2c). This implies that 59 other di (for different values of i) lie in the interiors of other
copies of the fundamental triangle (Figure 2b), arranged symmetrically . Each right-handed
copy of the fundamental triangle lies antipodally opposite a left-handed copy (Figure 2b).
If we make the convention to orient each of the 60 di in question so that it points toward a
right-handed copy of the triangle and away from a left-handed copy, then every γ ∈ I will
preserve those di exactly, always sending a di to a +dj , never to a −dj .

Next consider the case that some di lies on the perimeter (the mirror boundary) of
the *235-orbifold’s fundamental triangle. In this case it has only 30 translates under the
group (including itself). The icosahedral group I consists entirely of rotations, each about
some vertex of the tiling (Figure 2b). Let γ be some such rotation. In the generic case
that none of the 30 di lies exactly 90◦ from the rotation axis of γ, we may orient all 30 di

to point towards the “northern hemisphere” (relative to γ’s rotation axis) and away from
the “southern hemisphere”. In this case γ sends each di to a +dj , never to a −dj . In the
non-generic case that some of the di lie exactly on the “equator” relative to γ’s rotation
axis, consider the three sub-cases that the rotation γ has order 2, 3 or 5. When γ is a
rotation of order 3 or 5, easy ad hoc conventions serve to orient the equatorial di so that
γ respects their orientations. When γ is a rotation of order 2, it perforce takes each di to
−di, but there are exactly two such di, so the net effect is still that γ maps the mode f to
+f , not −f .

Finally, consider the case that some di lies isolated at one of the fundamental triangle’s
vertices. According to whether the vertex is a corner reflector of order 2, 3 or 5, di will
have 15, 10 or 6 translates (including itself), respectively. Imitating the method of the
preceding paragraph, we consider a rotation γ ∈ I, and wherever possible orient the di

to point towards the northern hemisphere and away from the southern hemisphere, thus
ensuring that γ permutes such di respecting orientation. It remains to consider only the di

that lie on the equator relative to γ’s rotation axis. When γ has order 3 or 5, its equator
contains corner reflectors of order 2 only, and an ad hoc convention serves to orient them
consistently. When γ has order 2, it maps each equatorial di to −di, but the equator
contains exactly four corner reflectors of order 2, four corner reflectors of order 3 and four
corner reflectors of order 5, so in each sub-case the equator contains exactly two of the
directions di (from among the complete set of 15, 10 or 6 directions under consideration),
and because exactly two directions get flipped, we conclude that γ maps the mode f to
+f , not −f . �

Corollary 6.1.4. Any value of ℓ not expressible in the form (24), for example ℓ = 14,
cannot be the degree of an eigenmode of S2/I.

Corollary 6.1.5. The nontrivial I-invariant mode of S2 of least degree has degree l = 6.
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6.2 Dimension of the space of modes

Proposition 6.2.1. The I-invariant mode of degree l = 6 is unique up to a constant
multiple. Thus dim(V 6) = 1.

Proof. To construct this mode, take the *235 orbifold and place a single 1/10 point at
the corner reflector of angle π/5. This 1/10 point lifts to 12 points of S2 which in turn
define 6 directions. According to Maxwell’s formula (23), those 6 directions define an I-
invariant class of modes [f ] of degree 6. By Proposition 6.1.3, each representative f of [f ]
is I-invariant. Assuming a fixed realization of the icosahedral group I, the 6 directions are
well defined — they align with the vertices of an icosahedron or the face centers of a dodec-
ahedron. Therefore the class [f ] is also well defined, and the only degree of freedom for the
mode f is the scale factor inherent in the equivalence class [f ]. Thus V 6 is of dimension 1. �

The method of the preceding proposition lets us construct I-invariant modes of degree
10 (place a 1/6 point at the corner reflector of angle π/3) and degree 15 (place a 1/4 point
at the corner reflector of angle π/2), while proving that I-invariant modes of most other
low degrees cannot exist. V 10 and V 15 have dimension 1.

The case of degree 30, realized by placing a half-point on the *235 orbifold’s mirror
boundary, is more interesting because we have an extra degree of freedom corresponding
to where we choose to place the half-point. Allowing for the scale factor inherent in the
equivalence class [f ] gives a total of two real degrees of freedom: V 30 has dimension 2.

The case of degree 60, corresponding to one full point in the *235 orbifold, is more
interesting still, because now we have a choice as to how we realize that one full point:

• Case 1. We may place a single full point anywhere in the orbifold.

• Case 2. We may place two half-points on the orbifold’s mirror boundary. In the
special case that the two half-points coincide, we get a single full point as in Case 1.

• Case 3. We may place any combination of fractional points at the orbifold’s corner
reflectors, just so the fractions sum to one. However it turns out that the only ways
to do this are to place a full point at a single corner (for example realized as ten
1/10 points at the corner of angle π/5) or to place a half-point at each of two corners
(for example realized as five 1/10 points at the corner of angle π/5 plus three 1/6
points at the corner of angle π/3). The full point corresponds to Case 1 while the two
half-points correspond to Case 2, so nothing new arises here and we will henceforth
ignore this Case 3.

• Case 4. We may place a half-point on the mirror boundary and a half-point’s worth
of fractional points at the corner reflectors, but as in Case 3 nothing new arises here
so we may ignore this possibility.

15



Proposition 6.2.2. The I-invariant classes [f ] of modes of S2 of degree l = 60 are pa-
rameterized by a real projective plane.

Proof. Each class [f ] of degree 60 corresponds to 60 directions {d1, ..., d60} that are invariant
under the icosahedral group I, which in turn correspond either to a single point in the *235
orbifold (Case 1 above) or to a pair of half-points on the mirror boundary (Case 2 above).

The possible locations for a whole point are obviously parameterized by the points of
the orbifold itself, which is topologically a disk.

The possible locations for a pair of points on the orbifold’s mirror boundary are param-
eterized by a Möbius strip. To see why, first note that the mirror boundary is topologically
a circle S1. Parameterize this circle in some arbitrary but fixed way, with the parameter
angle defined modulo 2π, and then for any pair of points define

θ = the position of the two points’ “center of mass” (θ ∈ S1 = R/2π)
φ = the separation between the two points (φ ∈ [0, π])

At first glance this gives a cylinder parameterized by (θ, φ). But (θ, π) and (θ + π, π)
define the same pair of points, so we must identify opposite points on the cylinder’s upper
boundary circle (θ, π) ∼ (θ +π, π), which transforms the cylinder into a Möbius strip. The
cylinder’s lower boundary circle (θ, 0) becomes the Möbius strip’s edge.

The Möbius strip’s edge, parameterized by (θ, 0), corresponds to the case that the two
half-points fuse together to form a single whole point on the triangle’s perimeter. This
corresponds exactly to the boundary of the disk in the whole point parameter space. In
other words, the total parameter space is the union of a disk and a Möbius strip glued
together along their boundary circles, which yields a real projective plane. �

It’s no surprise that the parameter space is a real projective plane. The space of Γ-
invariant harmonic functions f on S2 of any fixed degree ℓ is a vector space of some finite
dimension n. When we pass from functions f to equivalence classes [f ] we identify each
line through the origin to a single point, giving in all cases a real projective space RPn−1.
In the case just considered, with degree ℓ = 60, we found the projective space to be RP 2

meaning the total function space, including the scale factor, is R
3.

To construct a generic I-invariant mode, we may place any combination of whole points
(anywhere in the orbifold), half points (on the orbifold’s mirror boundary), and other frac-
tional points (isolated at the orbifold’s corner reflectors). Each whole point contributes
two degrees of freedom to the space of modes (corresponding to the point’s location in the
2-dimensional triangle), each half point contributes one degree of freedom (corresponding
to its location along the triangle’s 1-dimensional perimeter), and each isolated fractional
point contributes nothing. The overall scaling factor contributes one more degree of free-
dom for any nontrivial mode. In summary,

Proposition 6.2.3. The dimension of the space of I-invariant ℓ-eigenmodes of S2 is given
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by
dim(V ℓ) = 1 + C 1

2

+ 2C1. (25)

Note that no matter how many half points may or may not combine into whole points,
the half and whole points together contribute C 1

2

+ 2C1 degrees of freedom.

6.3 Improved dimension formula

The dimension formula (25) is nice, but we would much rather have a formula in terms
of ℓ, to save us the trouble of manually decomposing ℓ into a linear combination of the Ci.
Here is the improved formula,

Proposition 6.3.1. The dimension of the space of I-invariant ℓ-eigenmodes of S2 is given
by

dim(V ℓ) = 1 + ⌊
ℓ

2
⌋+ ⌊

ℓ

3
⌋+ ⌊

ℓ

5
⌋ − ℓ. (26)

Proof. Recall that

ℓ = 6C 1

10

+ 10C 1

6

+ 15C 1

4

+ 30C 1

2

+ 60C1. (27)

and consider how the Ci depend on ℓ.
First consider C 1

10

, the number of 1
10 points. Taking Equation (27) modulo 5 we get

ℓ ≡ C 1

10

(mod 5).

But the number of isolated 1
10 points may only be 0, 1, 2, 3 or 4, because if we had 5 or

more 1
10 points they would combine to form half points and acquire an additional degree of

freedom. So the number of isolated 1
10 points must be C 1

10

= ℓ−5⌊ ℓ
5⌋. The same argument,

repeated mod 3 and mod 2, gives C 1

6

= ℓ− 3⌊ ℓ
3⌋ and C 1

4

= ℓ− 2⌊ ℓ
2⌋, respectively.

Rearranging Equation (27) now gives

C 1

2

+ 2C1 =
1

30

[

ℓ− 6C 1

10

− 10C 1

6

− 15C 1

4

]

=
1

30

[

ℓ− 6

(

ℓ− 5⌊
ℓ

5
⌋

)

− 10

(

ℓ− 3⌊
ℓ

3
⌋

)

− 15

(

ℓ− 2⌊
ℓ

2
⌋

)]

= ⌊
ℓ

5
⌋+ ⌊

ℓ

3
⌋+ ⌊

ℓ

2
⌋ − ℓ (28)

Substituting Equation (28) into Equation (25) gives the final result (26) as stated above. �

This agrees with Ikeda’s formula [2], while at the same time providing a concrete con-
struction of the modes and shedding additional light on the formula’s geometrical origins,
as degrees of freedom in an orbifold.
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7 Conclusion

Returning to the 3-dimensional Poincaré dodecahedral space S3/I∗, the results of the pre-
ceding sections may be summarized as follows. Keep in mind that S3/I∗ admits k-modes
for even k only; odd k-modes cannot exist because I∗ contains the antipodal map.

Theorem 7.1 To construct the modes of the Poincaré dodecahedral space S3/I∗,

• Each mode of S3/I∗ corresponds to an I∗-invariant mode of S3 (elementary).

• Each I∗-invariant mode of S3 is a sum of twists of I∗-invariant vertical modes of S3

(Proposition 4.1.1).

• Each I∗-invariant vertical k-mode of S3 is the pull-back, under the Hopf map, of an
I-invariant ℓ-mode of S2, with k = 2ℓ (Proposition 3.2.1).

• The I-invariant ℓ-modes of S2 are parameterized by ℓ/60 points on the *235-orbifold,
possibly including fractional points (Section 6.1).

Theorem 7.2 The space of k-modes of the Poincaré dodecahedral space S3/I∗ has dimen-
sion

(k + 1)(1 + ⌊
k/2

2
⌋+ ⌊

k/2

3
⌋+ ⌊

k/2

5
⌋ −

k

2
). (29)

Proof. The space of I-invariant k/2-modes of the 2-sphere has dimension 1 + ⌊k/2
2 ⌋ +

⌊k/2
3 ⌋+ ⌊

k/2
5 ⌋−

k
2 (Proposition 6.3.1) and thus the space of vertical I∗-invariant k-modes of

the 3-sphere has this same dimension (Theorem 7.1). The twist operators then take each
vertical mode to a (k + 1)-dimensional space of generic I-invariant modes (Table 1 and
Proposition 4.1.1,), completing the proof. �
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