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On implementing Omega in systems with
weak reliability and synchrony assumptions

Marcos K. Aguilera1 Carole Delporte-Gallet2 Hugues Fauconnier2 Sam Toueg3

November 26, 2007

Abstract

We study the feasibility and cost of implementing Ω — a fundamental failure detector at the core of
many algorithms — in systems with weak reliability and synchrony assumptions. Intuitively, Ω allows
processes to eventually elect a common leader.

We first give an algorithm that implements Ω in a weak system S where (a) except for some unknown
timely process s, all processes may be arbitrarily slow or may crash, and (b) only the output links of s are
eventually timely (all other links can be arbitrarily slow and lossy). Previously known algorithms for Ω
worked only in systems that are strictly stronger than S in terms of reliability or synchrony assumptions.

We next show that algorithms that implement Ω in system S are necessarily expensive in terms
of communication complexity: all correct processes (except possibly one) must send messages forever;
moreover, a quadratic number of links must carry messages forever. This result holds even for algorithms
that tolerate at most one crash.

Finally, we show that with a small additional assumption to system S — the existence of some un-
known correct process whose links can be arbitrarily slow and lossy but fair — there is a communication-
efficient algorithm for Ω such that eventually only one process (the elected leader) sends messages.

Some recent experimental results indicate that two of the algorithms for Ω described in this paper
can be used in dynamically-changing systems and work well in practice [ST07].
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3Department of Computer Science, University of Toronto, Toronto, Canada, sam@cs.toronto.edu
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1 Introduction

Failure detectors are basic tools of fault-tolerant distributed computing that can be used to solve funda-
mental problems such as consensus, atomic broadcast, and group membership. For this reason there has
been growing interest in the implementation of failure detectors [vRMH98, LAF99, DT00, LFA00, LFA01,
ADGFT01, FRT01, CTA02, BMS02, MMR03, ADGFT04, MOZ05, HMSZ05, FR06].

One failure detector of particular interest is Ω [CHT96]. Roughly speaking, with Ω every process p has
a local variable, denoted leader p, that contains the identity of a single process that p currently trusts to be
operational (p considers this process to be its current leader). Initially, different processes may have different
leaders, but Ω guarantees that there is a time after which all processes have the same, non-faulty leader.

Failure detector Ω is important for both theoretical and practical reasons: it is the weakest failure detector for
solving consensus and consensus-like problems such as atomic broadcast [CHT96], and it is at the core of
several consensus algorithms that are used in practice [Lam98, GL03, CGR07]. It is also used in the solution
of other problems, such as non-blocking atomic commit [DGFG+04], In this paper, we study the problem of
implementing Ω in systems with weak reliability and synchrony assumptions. We also investigate in which
systems such implementations can be communication-efficient.

Our starting point is a system where (a) all processes can be arbitrarily slow and crash, but they have a max-
imum execution speed, and (b) all links can be arbitrarily slow and lossy. We denote such a system by S−.
Since all messages can be lost or arbitrarily delayed in S−, it is clear that Ω cannot be implemented in S−.

Thus, we consider a system that is slightly stronger than S−, namely a system S− with the following
additional assumption: there is at least one process that is timely and whose output links are eventually
timely. Roughly speaking, this means that the process has a minimum execution speed, and there is a
bound δ and a time after which every message sent from that process is delivered within δ time. We call
such a process an eventually timely source, and we denote by S a system S− with at least one eventually
timely source. Note that in system S processes do not know the identity of the eventually timely source(s),
the time after which the output links of the eventually timely source(s) become timely, or the corresponding
bounds on message delivery time.

S is a very weak type of partially synchronous system in terms of the timeliness of processes and the
timeliness and reliability of links. In S, only the links from the eventually timely source(s) are reliable;
all other links, including those to the eventually timely source(s), can drop messages arbitrarily. Thus,
processes cannot use eventually timely sources as “forwarding nodes” to communicate reliably with each
other. Moreover, in S, the timeliness assumptions apply only to the unknown eventually timely source(s)
and their output links. All other processes and links can be arbitrarily slow.

Can one implement Ω in system S? Note that Ω requires that processes eventually agree on a common
leader, and it is not obvious how to achieve such an agreement when some processes cannot even communi-
cate, as it may happen in system S. For example, consider a system S with 5 processes, denoted s1, s2, s3,
p and q, that behaves as follows (see Figure 1): (a) all the processes are correct and timely, (b) all the output
links of p and q are lossy and drop every message that p and q send (hence p and q cannot communicate
at all), (c) all the output links of s2 are timely, i.e., they are reliable and deliver all the messages sent by
s2 in a timely way (so s2 is a an eventually timely source), (d) all the output links of s1 are timely, except
for the link from s1 to q which loses all messages, and (e) all the output links of s3 are timely, except for
the link from s3 to p which loses all messages. Note that for process p, the natural leader candidates are
the two processes from which it gets timely messages, namely s1 and s2. Symmetrically, for q the natural
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Figure 1: Processes p and q cannot communicate but must agree on the leader among s1, s2 and s3.

leader candidates are s2 and s3. Any implementation of Ω must ensure that p and q eventually agree on the
same leader — a non-trivial task here since p and q cannot communicate with each other (or with any other
process).

Our first result is an algorithm that implements Ω in system S. Previously known implementations of Ω
in partially synchronous systems require stronger reliability or synchrony assumptions [Lam98, PLL00,
LFA00, ADGFT01]. In fact, these implementations assume systems that are strong enough to support the
implementation of the eventually perfect failure detector 3P .1 In contrast, it is easy to see that S is too
weak for implementing 3P .

Our algorithm that implements Ω in system S, however, has a serious drawback: all the processes periodi-
cally send messages forever. This communication overhead is undesirable, and a natural question is whether
it can be avoided. Intuitively, after a process becomes the common leader,2 it must periodically send mes-
sages forever (because if it crashes, processes must be able to notice this failure and choose a new leader);
but thereafter no other process needs to be monitored. Thus, after processes agree on a common leader, no
process other than the leader should have to send messages. This motivates the following definition and
leads us to a related question. An algorithm for Ω is communication-efficient if there is a time after which
only one process sends messages. Is there a communication-efficient algorithm for Ω in system S?

To answer this question we investigate the communication complexity of algorithms for Ω in system S, and
we derive two types of lower bounds: one on the number of processes that must send messages forever, and
one on the number of links that must carry messages forever. Specifically, we show that for any algorithm for
Ω in system S, (a) in every run all correct processes, except possibly one, must send messages forever; and
(b) in some run at least (n2 − 1)/4 links must carry messages forever, where n is the number of processes
in S. These lower bounds hold even for algorithms that tolerate only one process crash (and even if we
assume that all the processes in S are synchronous). We conclude that there is no communication-efficient
algorithm for Ω in S that tolerates one process crash.

We next consider how to strengthen system S so that communication efficiency can be achieved. Specifi-
cally, since our complexity lower bounds are based on the lack of reliable communication in S, we make
the following additional assumption: there is at least one unknown correct process such that the links to and
from that process are fair. A fair link may lose messages, but it satisfies the following property: messages

1Informally, 3P ensures two properties: (a) any process that crashes is eventually suspected by every correct process, and (b)
there is a time after which correct processes are never suspected.

2Note that processes may never know whether this has already occurred.
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System Properties

S− Links can be arbitrarily slow and lossy
Processes can be arbitrarily slow and can crash, but they have a maximum execution speed

S S− with at least one eventually timely source
(i.e., a timely correct process whose output links are eventually timely)

S+ S− with at least one eventually timely source and at least one fair hub
(i.e., a correct process whose input and output links are fair)

S++ S− with at least one eventually timely source and such that all the links are fair

Table 1: Systems considered in this paper (in increasing order of strength).

System Ω algorithm Communication-efficient
Ω algorithm

S− No No
S Yes No

S+, S++ Yes Yes

Table 2: Existence of algorithms and communication-efficient algorithms for Ω in different systems.

can be partitioned into types, and if messages of some type are sent infinitely often, then messages of that
type are also received infinitely often [ADGFT]. A correct process whose input and output links are fair is
called a fair hub. Note that a fair hub need not be a timely process: it can be arbitrarily slow. We denote by
S+ a system S with at least one fair hub (whose identity is not known).3

S+ is a weak type of partially synchronous system because it does not ensure timely communication be-
tween every pair of processes. In fact, in S+ only messages sent from the eventually timely source(s) are
guaranteed to be eventually timely. All other messages, including all those sent to the eventually timely
sources, can be arbitrarily delayed (thus, processes cannot use eventually timely sources as intermediate
nodes to communicate with each other in a timely way). This is in contrast to the partially synchronous
systems defined in [DLS88, CT96] in which every pair of processes is connected by a link that is eventually
timely in both directions.

Our next result is a communication-efficient algorithm for Ω in system S+. We derive this algorithm in two
stages: we first give a simpler algorithm that works in a system denoted S++ that is stronger than S+, and
then modify it so that it works in S+. System S++ is a system S where all the links are fair. Tables 1 and 2
summarize our results on the existence and communication efficiency of algorithms for Ω in systems S−,
S, S+, and S++.

In summary, we investigate the feasibility and cost of implementations of Ω — a fundamental failure de-
tector at the core of many algorithms — in systems with weak reliability and synchrony assumptions. Our
contributions are the following:

1. We give the first algorithm that implements Ω in a weak partially synchronous system where only one
unknown correct process needs to be timely (all other processes can be arbitrarily slow) and only the

3So S+ is a system S− with at least one eventually timely source and at least one fair hub, whose identities are not known.
Note that the eventually timely source and the fair hub could be the same process.
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links from that process need to be eventually reliable and timely (all other links can be arbitrarily slow
and lossy). Previous algorithms for Ω required stronger reliability or synchrony assumptions.

2. We show that algorithms for Ω in this weak system are inherently expensive: all correct processes
(except possibly one) must send messages forever; moreover, a quadratic number of links must carry
messages forever. This holds even for algorithms for Ω that tolerate at most one process crash.

3. We then show that with a small additional assumption — the existence of some unknown correct
process whose links can be arbitrarily slow and lossy but fair — there are efficient algorithms for Ω
such that eventually only one process (the elected leader) sends messages.

It is worth noting that the results of this paper partially answer some questions questions posed by Keidar
and Rajsbaum in their 2002 PODC tutorial [KR02] (this is explained in Section 7).

As a final remark, two of the algorithms presented in this paper (namely, the algorithms in Sections 4 and 6.1)
were implemented and evaluated in a dynamically-changing system, where application processes may join,
leave, crash or recover, and communication links may lose messages or disconnect for extended periods of
time [ST07]. Experimental results presented in [ST07] indicate that the algorithms work well in practice:
they are quite robust and inexpensive to run even in dynamic systems with high processor and link failure
rates.

The rest of the paper is organized as follows. We first describe related work (Section 2). We next give an
informal model of systems S−, S, S+, and S++ (Section 3). We then describe an algorithm for Ω in S
(Section 4), and show that algorithms for Ω in S cannot be communication efficient (Section 5). We next
give a communication-efficient algorithm for Ω in a system S++ (Section 6.1). Finally, we modify this
algorithm so that it works in a system S+ (Section 6.2). A brief discussion concludes the paper (Section 7).

2 Related work

Related work concerns the use of Ω to solve agreement problems and the implementation of Ω in various
types of partially synchronous systems. Our paper is also related to the seminal work in [DDS87, DLS88]
that identifies (weak) partial synchrony assumptions under which one can solve consensus. In [DDS87,
DLS88], however, partial synchrony assumptions are uniform (i.e., they apply to all processes and/or all
links) and message-efficiency is not a concern.

As we mentioned earlier, Ω is necessary to solve consensus and atomic broadcast [CT96, CHT96, DGFG03,
EHT07] and it is used in several consensus algorithms [Lam98, MR01, LFA01, Lam01, DG02, CL02, GL03,
MOZ05]. It is also a component of the weakest failure detector for the non-blocking atomic commit prob-
lem [DGFG+04]. .

A simple implementation of Ω consists of implementing 3P first and outputting the smallest process cur-
rently not suspected by 3P [Lam98, PLL00]. However, this approach has serious drawbacks. In particular,
it requires a system that is strong enough to implement 3P (a failure detector that is strictly stronger than
Ω), and it requires all processes to send messages forever (just to implement 3P).

Several papers have focused on reducing the communication overhead of failure detector implementations.
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The algorithm in [LAF99] implements the failure detector 3S 4 in a way that only n links carry messages
forever. However, this algorithm requires very strong system properties, namely, that no message is ever
lost, all links are eventually timely in both directions, and all correct processes are timely. [LFA00] has an
algorithm for Ω, but the paper assumes some strong system properties: all links are eventually reliable and
timely, and all correct processes are timely.

Another communication-efficient implementation of Ω was given in [ADGFT01]. In that implementation,
all correct processes need to be timely, but only the links to and from some (unknown) correct process need
to be eventually timely, all other links can be arbitrarily slow and lossy. This system assumption is weaker
than the ones in [LAF99, LFA00]. But it is stronger than the one we assume here for S+: indeed it is strong
enough to allow the implementation of 3P (which cannot be implemented in S+).

[MMR03] gives an implementation of Ω that works under an assumption on the ordering of message replies.
More precisely, the implementation uses a query-response mechanism, with which a process broadcasts a
query message and then waits for responses. Links are reliable and the implementation works provided that
the query-response mechanism satisfies the following property: there exist a correct process p, a set S of
f + 1 processes (where f is a bound on the number of faulty processes), and a time after which, if a process
q ∈ S broadcasts a query, then q receives a reply from p among the first n− f replies that q receives.

The results in our paper first appeared in an extended abstract [ADGFT03]. Since then, several papers
have proposed implementations of Ω that work under weak synchrony assumptions [ADGFT04, MOZ05,
HMSZ05, MRT06, FR06], as we now briefly explain.

In [ADGFT04], all links are fair and the algorithm for Ω works with the following synchrony assumption:
there is some correct process p with f outgoing links that are eventually timely, where f is a bound on the
number of faulty processes (such a process is called an eventual f -source).

In [MOZ05], all links are reliable and the Ω implementation uses query-response mechanism with the fol-
lowing synchrony assumption: there exist δ, a correct process p and a time after which, if p broadcasts a
query then p receives replies from at least f other processes within δ time. Note that the f processes that
reply to p in a timely fashion can vary over time.

In [HMSZ05], all links are fair and the Ω implementation uses a send-to-all primitive with the following
synchrony assumption: there exist δ, a correct process p and a time after which, if p sends a message to all
then at least f recipients receive the message within δ time. Note that the f recipients may change from
message to message of p.

In [MRT06], all links are reliable and the Ω implementation is based on the query-response mechanism of
[MMR03]. The implementation works under the conditions in [MMR03] or the system has an eventual
f -source.

In [FR06], all links are reliable and all the correct processes regularly broadcast an ALIVE(r) message,
where r is an increasing integer (a ”round number”). The synchrony assumption is defined in terms of the
ALIVE(r) messages: there exist a δ, a correct process p, and a suitable subset R of integers such that, for
each r ∈ R, there is a set S(r) of f processes such that p 6∈ S(r) and for each process q ∈ S(r), either (1)
q has crashed, or (2) the ALIVE(r) message sent by p is received by q within δ time, or (3) the ALIVE(r)
message sent by p is received by q among the first n− f ALIVE(r) messages received by q.

4Informally, 3S ensures two properties: (a) any process that crashes is eventually suspected by every correct process, and
(b) there is a time after which some correct process is never suspected.
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All the implementations of Ω in the above papers assume that every pair of correct processes can commu-
nicate via reliable or fair links. In contrast, the first algorithm that we present in this paper (for system S)
works even if most processes cannot communicate with each other.

As a final remark, note that one can implement Ω in a given system by first implementing 3S in that system,
and then transforming 3S to Ω using the algorithm in [Chu98]. This approach, however, cannot be used to
implement Ω in system S: this is because the transformation algorithm in [Chu98] requires all processes to
reliably communicate with each other (which may not be possible in S). Furthermore, this approach does
not seem to help deriving a communication-efficient algorithm for Ω in system S+: to use it, one must first
derive a communication-efficient algorithm for 3S in S+, and it is not clear that this algorithm would be
significantly simpler than our algorithm for implementing Ω in S+.

3 Informal model

We consider distributed systems with n ≥ 2 processes Π = {0, . . . , n− 1} that can communicate with each
other by sending messages through a set of directed links. In our model, time values are taken from the set
R

+ of positive real numbers; time interval (t1, t2] is the set of times {t ∈ R
+ : t1 < t ≤ t2}.

Processes. Processes are (finite or infinite) deterministic automata that execute by taking steps. In each
step, a process p can do one of the following three things (according to p’s state transition function): (1) p
tries to receive a message from another process (as explained below) and then changes state, or (2) p sends
a message to another process and then changes state, or (3) p just changes state.5 A step need not be
instantaneous, but we assume that each step takes effect at some instantaneous moment during the execution
of the step.

A process p is correct if it executes infinitely many steps. If p executes only a finite number of steps, we say
that p crashes.

We assume that processes have a maximum speed, i.e., there is an upper bound on the rate of execution of
every process. More precisely, in every run every process p satisfies the following property:

• [Maximum Rate of Execution]: There exists M1 > 0 such that for every time t, p executes at most
one complete step during time interval (t, t + M1].

There may be a lower bound on the rate of execution of some processes. More precisely, we say that a
process p is timely (in a run) if it satisfies the following property (in that run):

• [Minimum Rate of Execution]: There exists M2 > 0 such that for every time t, p executes at least one
complete step during time interval (t, t + M2].

Note that a timely process takes an infinite number of steps, and hence it must be correct. If a process is not
timely, it may be intermittently or arbitrarily slow, or it may crash. Also note that M1 and M2 can vary per
run and are not known to processes.

5Our lower bounds also hold in a stronger model in which each process can receive, change state, and send a message in a single
atomic step.
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Links. Processes can send messages over a set of directed links. The network is fully connected, that
is, there is a directed link from each process to every other process. The directed link from process p to
process q, denoted p→ q, is an output link of p and an input link of q.

A message m carries a type T in addition to its data D: m = (T, D) ∈ {0, 1}∗ × {0, 1}∗. For each input
link q → p of process p and each type T, p has a message buffer, denoted bufferp[q, T], that can hold a
single message of type T. Initially, bufferp[q, T] is empty, denoted bufferp[q, T] = ⊥. If q sends a message
m of type T to p, and the link q → p does not lose m, then eventually bufferp[q, T] is set to m. When this
happens, we say that message m is delivered to p from q. If bufferp[q, T] was already set to some previous
message from q, that message is overwritten by m.

When a process p takes a step, it may choose a process q and a type T to read the contents of bufferp[q, T].
If bufferp[q, T] has a message m 6= ⊥ then we say that p receives message m from q, and bufferp[q, T] is
automatically reset to⊥. Otherwise p does not receive any message at that step. In either case, p may change
its state to reflect the outcome.

Note that even if a message m of type T is delivered to p from q, there is no guarantee that p will eventually
receive m. First, it is possible that p never chooses to check bufferp[q, T]. Second, it is also possible that
bufferp[q, T] is overwritten by a subsequent message from q of type T before p checks bufferp[q, T].

To define link properties, it is convenient to assume that messages are unique (this can be achieved by
associating a sequence number and sender id to each message).

Every link p→ q satisfies the following property in every run:

• [Integrity]: A message m is delivered to q from p at most once, and only if p previously sent m to q.

Some links may satisfy additional properties which are described below.

We say that a link p→ q is eventually timely (in a run) if it satisfies the following property (in that run):

• [Eventual timeliness]: There exists a δ and a time t such that if p sends a message m to q at a time
t′ ≥ t, then m is delivered to q from p by time t′ + δ.

The maximum message delay δ and the time t above can vary per run and are not known to processes.

A link that is not eventually timely can be arbitrarily slow and/or it can lose messages. A lossy link may
satisfy the following fairness property: if a process sends an infinite number of messages of a type through
a link then the link delivers an infinite number of messages of that type.6

More precisely, we say that a link p→ q is fair (in a run) if it satisfies the following property (in that run):

• [Type Fairness]: For every type T, if p sends infinitely many messages of type T to q, then infinitely
many messages of type T are delivered to q from p.

Eventually timely sources and fair hubs. A process p is an eventually timely source in a run if in that run
(1) p is timely, and (2) the output links of p are eventually timely. Only the output links need to be eventually

6This kind of fairness property of links, which we call “type fairness”, is new and is further discussed in [ADGFT].
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timely, hence the word “source”. A process p is fair hub in a run if in that run (1) p is correct, and (2) the
input and output links of p are fair. Note that a fair hub and its input and output links can be arbitrarily slow.

Systems. We consider four systems, denoted S−, S, S+ and S++, which differ on the properties of their
processes and links. All these systems have the following properties: in every run, every process satisfies
the Maximum Rate of Execution property and every link satisfies the Integrity property. System S− has no
other requirements. In system S, in every run, there is at least one eventually timely source. In system S+,
in every run, there is at least one eventually timely source and at least one fair hub. In system S++, in every
run, there is at least one eventually timely source and all the links are fair.

3.1 Failure detector Ω

The formal definition of failure detector Ω is given in [CT96, CHT96]. Informally, Ω outputs, at each
process p, a single process denoted leader p, such that the following property holds:7

• There is a correct process ` and a time after which, for every correct process p, leader p = `.

Note that, at any given time, processes do not know if there is a commonly agreed leader; they only know
that eventually there will be a common leader.

3.2 Communication efficiency

We are interested in failure detector algorithms that minimize the usage of communication links. Note that in
any reasonable implementation of a failure detector, some process needs to send messages forever. However,
not every process needs to do that. We say that an implementation of failure detector Ω is communication-
efficient if there is a time after which only one process sends messages.

4 Implementing Ω in system S

We now describe an algorithm that implements Ω in S. This algorithm, shown in Figure 2, ensures that
processes eventually agree on a common leader, even though most pairs of processes may be unable to
communicate with each other (recall that in S all links can be arbitrarily slow and lossy, except for the
output links of some timely process whose identity is unknown).

In all the algorithms described in this paper, process uses some local timers. In particular, each process p uses
a local timer denoted SendAliveTimer to periodically send ALIVE messages to other processes. Moreover,
for each process q 6= p, p uses a local timer denoted timer[q] to determine whether it has “recently” received
an ALIVE message from process q. Process p implements its local timers as simple count-down counters
as follows. Process p can “turn on” a local timer T by setting it to any non-negative integer k, that is, by
executing the statement T ← k, where k ≥ 0 is the “timeout” constant. As long as T > 0, process p
periodically decrements T by one, and it does so at p’s own pace. So, unless p first resets T , the value of T
eventually reaches 0. When this occurs, we say that timer T expires.

7Henceforth, when we say that there is a time after which some property C holds, we mean that there is a time t such that for
every time t′ ≥ t, property C holds at time t′.
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A naı̈ve attempt at implementing Ω is as follows. Each process periodically (a) sends ALIVE messages to
the other processes, (b) computes the set of currently “alive” processes, as the set of processes from which
it directly received an ALIVE message recently, and (c) selects as its leader the process with the smallest id
in this set. But this algorithm does not work: in system S almost all links may suffer from arbitrary delays
and/or losses, and this gives rise to several problems. In particular, (1) different processes may have different
views of which processes are currently alive, and the different views may never converge, (2) a process with
a small id may repeatedly alternate between appearing to be alive and crashed, and continue to do so forever.
Such problems complicate the task of selecting a common and permanent leader: problem (1) may cause
different processes to have different leaders (forever), and problem (2) may cause a process to repeatedly
change its leader forever.

To overcome these and other similar difficulties, we use the following ideas. First, instead of selecting
the leader according to the smallest process id, processes keep track of (roughly) how many times each
process was previously suspected of having crashed, and they select as their leader the process with the
fewest number of suspicions so far (among a set of alive processes). Second, the set of alive processes
from which each process selects its leader is constructed in two stages. In the first stage, every process p
periodically: (1) sends an ALIVE message to the other processes, (2) recomputes the set processes from
which it directly received an ALIVE message recently (this set is denoted active), and (3) selects its “local”
leader, denoted localLeader[p], among the processes in its active set. In the second stage, every process p
periodically: (1) sends its current localLeader[p] to the other processes, (2) recomputes the set localLeaders
of the local leaders of the processes in its active set, and (3) selects its (global) leader among the processes
in localLeaders. These two stages are actually done concurrently. We now explain the algorithm in more
detail.

The algorithm, shown in Figure 2, is structured as a repeat forever loop. In this loop, p first executes
the updateLeader procedure to recompute its local leader and its (global) leader as described above. More
precisely, p maintains a vector of “accusation” counters, denoted counter, where counter[q] is p’s rough
estimate of how many times q’s was previously suspected of having crashed. In the updateLeader procedure,
p first selects its local leader as the process r with the smallest (counter[r], r) tuple, in lexicographical order,
among the processes in its active set. Then p forms the set localLeaders consisting of all the local leaders
of the processes in its active set. Finally, p selects its (global) leader as the process ` with the smallest
(counter[`], `) tuple among the processes in its localLeaders set.

After updating its local and global leaders, p checks whether its SendAliveTimer has expired, i.e., whether
SendAliveTimer = 0. If it has expired, then (a) p sends an ALIVE message to every process q 6= p (each
such message contains p’s current local leader, the counter of this local leader according to p, and p’s own
counter), and (b) p resets its SendAliveTimer to some constant integer η ≥ 1. Constant η is a “message
efficiency” parameter that controls the rate at which p sends its ALIVE messages: p sends them once every
η iterations of its repeat forever loop.

Then, for each process q, process p checks whether an ALIVE message was delivered from q, i.e., whether
the corresponding buffer from q is non-empty. If so, p receives this message, it adds q to its active set, and
it stores the local leader of q in the variable localLeader[q]. Process p also updates the counters of q and of
the local leader of q. Finally, p resets timer[q] by setting it to timeout[q] (intuitively, p expects to receive the
next ALIVE message from q within timeout[q] iterations of its repeat forever loop).

If timer[q] expires (before p receives another ALIVE message from q), then p removes q from its active set,
and it sends an ACCUSATION message to q to tell q that it suspects q of having crashed. Process p also
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Variable Intuitive description

active set of processes that p considers to be currently alive
counter[q] p’s estimate of q’s accusation counter

(the number of times processes previously timed out on q)
SendAliveTimer count-down timer used to send an ALIVE message every η iterations of the repeat forever loop

timer[q] count-down timer used to determine whether q is currently alive
(timer[q] is initialized to timeout[q] and it is decremented by one in each iteration
of the repeat forever loop; if/when timer[q] reaches 0, it is reset to timeout[q])

timeout[q] length of p’s timeout on q
localLeader[q] p’s estimate of q’s local leader

(q chooses its local leader to be the process r with the smallest tuple (counter[r], r)
among all the processes in q’s active set)

localLeaders p’s estimate of the set of local leaders of all the processes in p’s active set
leader the leader of p

(p chooses its leader to be the process ` with the smallest tuple (counter[`], `)
among all the processes in p’s localLeaders set)

Table 3: Local variables of process p in the algorithm of Figure 2.

increments timeout[q], and it restarts timer[q] with this larger timeout. Intuitively, p increases the timeout on
q because it does not know the speed of the eventually timely sources and the delay of their output links.

Then p checks whether an ACCUSATION message was delivered. If so, p receives it, and p increases its
own accusation counter counter[p]. Finally, at the end of the repeat forever loop, p decrements by one every
timer that it uses, namely, SendAliveTimer and timer[q] for every q 6= p.

Note that this algorithm uses only two message types: ALIVE and ACCUSATION.

Figure 2 describes the algorithm by giving the pseudo-code of an (arbitrary) process p, and Table 3 describes
the local variables of p. Recall that in our model, p is a deterministic automaton that takes steps, but it is
easy to translate the pseudo-code of p given here into such an automaton. Without loss of generality, we
can assume that: (1) for some integer b, each iteration of the repeat forever loop (lines 8–29) takes at most
b automaton steps (this is because there are no infinite loops, waiting statements, or similar constructs in
lines 9–29), and (2) each iteration of the repeat forever loop takes at least two complete automaton steps.

We now show that the algorithm in Figure 2 implements Ω in system S. Henceforth, we consider an arbitrary
run of this algorithm in system S, and s is an eventually timely source in this run.

In the following, the local variable var of a process p is denoted by varp. The value of varp at time t is
denoted by vart

p.8

Lemma 1 For every correct process p and every process q 6= p, the following holds:

(a) If q ∈ activep holds infinitely often9then p receives ALIVE messages from q infinitely often.

(b) If q ∈ localLeadersp holds infinitely often then p receives ALIVE messages from q infinitely often, or p
receives (ALIVE, q,−,−) messages infinitely often.

8If a step of p takes effect at time t, then vart
p is the value of varp just after this step.

9A condition C holds infinitely often if for every time t, there is a time t′ > t such that C holds at time t′. Note that “C holds
infinitely often” is the opposite of “there is a time after which C does not hold”.
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CODE FOR EACH PROCESS p:

procedure updateLeader()
1 localLeader[p]← r such that (counter[r], r) = min{(counter[q], q) : q ∈ active}
2 localLeaders ← {localLeader[q] : q ∈ active}
3 leader ← ` such that (counter[`], `) = min{(counter[q], q) : q ∈ localLeaders}

main code
{ Initialization }

4 for each q ∈ Π do counter[q]← 0 ; localLeader[q]← {q}
5 for each q ∈ Π \ {p} do timeout[q]← η + 1; timer[q]← timeout[q]
6 active ← {p}
7 SendAliveTimer ← 0 { p sets SendAliveTimer = 0 to start sending ALIVE messages }

8 repeat forever

9 updateLeader()

10 if SendAliveTimer = 0 then
11 send (ALIVE, localLeader[p], counter[localLeader[p]], counter[p]) to every process except p
12 SendAliveTimer ← η

13 for each q ∈ Π \ {p} do

14 if receive (ALIVE, r, rcntr, qcntr) from q then
15 active ← active ∪ {q}
16 localLeader[q]← r
17 counter[q]← max{counter[q], qcntr}
18 counter[r]← max{counter[r], rcntr}
19 timer[q]← timeout[q]

20 if timer[q] = 0 then
21 send ACCUSATION to q
22 active ← active − {q}
23 timeout[q]← timeout[q] + 1
24 timer[q]← timeout[q]

25 if receive ACCUSATION from q then
26 counter[p]← counter[p] + 1

27 if SendAliveTimer > 0 then SendAliveTimer ← SendAliveTimer − 1
28 for each q ∈ Π \ {p} do
29 if timer[q] > 0 then timer[q]← timer[q]− 1

Figure 2: Implementation of Ω for system S.
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PROOF. Consider two processes p and q such that p is correct and q 6= p.

(a) Assume that q ∈ activep holds infinitely often. Since q 6= p, p receives at least one ALIVE from q that
causes p to first insert q in activep. If there is a time after which p does not receive ALIVE from q, then
eventually timerp[q] expires (i.e., timerp[q] reaches 0), p removes q from activep, and p never inserts q
back into this set again — a contradiction that shows part (a).

(b) Assume that q ∈ localLeadersp holds infinitely often. Since p resets localLeadersp to {localLeaderp[u] :
u ∈ activep} infinitely often (in the updateLeader procedure that p executes in line 9), there must be
at least one process r such that localLeaderp[r] = q and r ∈ activep infinitely often. There are two
possible cases:

(1) r = p. In this case, localLeaderp[p] = q infinitely often. Since p resets localLeaderp[p] infinitely
often to a process in activep, then q ∈ activep infinitely often. By part (a) of the lemma, p receives
ALIVE messages from q infinitely often.

(2) r 6= p. Suppose, for contradiction, that there is a time t after which p does not receive
(ALIVE, q,−,−) messages. Since r ∈ activep infinitely often and r 6= p, by part (a) of the
lemma, p receives ALIVE messages from r infinitely often. After time t, none of these messages are
(ALIVE, q,−,−) message. So there is a time after which localLeaderp[r] 6= q — a contradiction.
Thus, p receives (ALIVE, q,−,−) messages infinitely often.

Observation 2 For all processes p and q, counterp[q] is monotonically nondecreasing with time.

Lemma 3 For every two processes p 6= q, if

(a) p receives ALIVE messages from q infinitely often, or

(b) p receives (ALIVE, q,−,−) messages infinitely often

then (c) q is correct, and for every time t, there is a time after which counterp[q] ≥ countert
q[q].

PROOF.

Part 1: (a)⇒ (c). Consider two processes p 6= q, and suppose that p receives ALIVE messages from q
infinitely often. Then q sends such messages infinitely often, and so q is correct. Consider any
time t. Eventually p receives a message m = (ALIVE,−,−, qcntr) that is sent by q after time t.
Since q sends m after time t and counterq[q] is monotonically nondecreasing, qcntr ≥ countert

q[q].
So, when p receives m from q, p sets counterp[q] to a value v ≥ qcntr ≥ countert

q[q]. Thereafter,
counterp[q] ≥ countert

q[q] (because counterp[q] is monotonically nondecreasing).

Part 2: (b)⇒ (c). Consider two processes p 6= q, and suppose that p receives (ALIVE, q,−,−) messages
infinitely often. Then, for some process r, p receives (ALIVE, q,−,−) from r infinitely often. If
r = q then condition (c) holds by part 1 of this proof, and we are done.
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Now assume r 6= q. Consider any time t, and let C = countert
q[q]. Note that r sends (ALIVE, q,−,−)

to p infinitely often. Each time r sends such a message in line 11, localLeaderr[r] = q, and so
q ∈ activer at that time (this is because r resets localLeaderr[r] to a process in activer just before r
sends (ALIVE, q,−,−)). Thus, q ∈ activer holds infinitely often. Since r 6= q, then by Lemma 1
part (a), r receives ALIVE messages from q infinitely often. By part 1 of this proof, q is correct
and there is a time after which process r has counterr[q] ≥ C . So p eventually receives a message
m = (ALIVE, q, qcntr,−) from r such that qcntr ≥ C . When p receives m, p sets counterp[q] to a
value v ≥ qcntr ≥ C . Thereafter, counterp[q] ≥ countert

q[q] (because counterp[q] is monotonically
nondecreasing).

Lemma 4 For every correct process p and every process q, if

(a) q ∈ activep holds infinitely often, or

(b) q ∈ localLeadersp holds infinitely often

then (c) q is correct, and for every time t, there is a time after which counterp[q] ≥ countert
q[q].

PROOF. If p = q, condition (c) holds because p is correct and counterp[p] is monotonically nondecreasing.

Now assume that p 6= q. If (a) or (b) holds, then by Lemma 1, p receives ALIVE messages from q infinitely
often, or p receives (ALIVE, q,−,−) messages infinitely often. By Lemma 3, condition (c) holds.

Recall that s is an eventually timely source in the run under consideration.

Lemma 5 There is a constant α > 0 such that, for all k ≥ 0 and every time t, process s executes at least k
complete iterations of its repeat forever loop during time interval (t, t + kα].

PROOF. The lemma follows directly from two facts: (1) there is an integer b such that each complete
iteration of the repeat forever loop of s takes at most b automaton steps, and (2) s satisfies the Minimum
Rate of Execution property (because s is a timely process).

Definition 6 Let α > 0 be a constant that satisfies Lemma 5.

Recall that η ≥ 1 is the “timeout” value of SendAliveTimer (see line 12).

Definition 7 Let ∆′ = (η + 1)α.

Lemma 8 For every process p 6= s, if s sends an ALIVE message to p at some time t, then s sends another
ALIVE message to p during time interval (t, t + ∆′].
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PROOF. Suppose s sends an ALIVE message to p 6= s at some time t (this occurs in line 11). Then,
when s executes line 12 (in the same iteration of its repeat forever loop) s sets SendAliveTimer to η ≥ 1.
Since s decrements SendAliveTimer by one in each iteration of its repeat forever loop (in line 27), s sets
SendAliveTimer to 0 by the time it completes η such iterations. By Lemma 5, this takes at most ηα units of
time. So by time t + ηα, s sets SendAliveTimer to 0. Thus, by the time s completes one more iteration of
the repeat forever loop, i.e., by time t + ηα + α = t + ∆′, s executes line 10 with SendAliveTimer = 0 and
sends another ALIVE message to p.

Lemma 9 For every process p 6= s, there is a time t′ such that for every t ≥ t′, s sends an ALIVE message
to p during time interval (t, t + ∆′].

PROOF. Let p 6= s. When s executes its initialization code (lines 4-7), s sets its SendAliveTimer to 0. Thus,
in its first execution of the repeat forever loop (lines 8-29), s executes line 10 with SendAliveTimer = 0 and
sends an ALIVE message to p at some time t1. By Lemma 8, s sends another ALIVE message to p at time
(t1, t1 + ∆′]. The lemma follows by repeated applications of Lemma 8.

Lemma 10 There is a constant ∆ and a time t∆ such that, for all processes p, if s sends a message m to p
at some time t ≥ t∆, then m is delivered to p from s by time t + ∆.

PROOF. This follows immediately from the fact that s is an eventually timely source, and therefore all its
output links are eventually timely.

Definition 11 Let ∆ be a constant that satisfies Lemma 10.

Lemma 12 For every process p 6= s, there is a time t′ such that for every t ≥ t′, there is an ALIVE message
delivered to p from s during time interval (t, t + ∆′ + ∆].

PROOF. Follows directly from Lemmas 9 and 10.

Lemma 13 There is a constant ε > 0 such that, for every k ≥ 1 and every process p, p takes at least kε time
to execute k complete iterations of its repeat forever loop.

PROOF. The lemma follows from the following facts: (1) each complete iteration of p’s repeat forever loop
takes at least two complete automaton steps, and (2) p satisfies the Maximum Rate of Execution property.
We now explain this proof in more detail.

Let k ≥ 1 and consider some process p . To execute a complete iteration of the repeat forever loop, p takes
at least two complete automaton steps. Thus, to execute k complete iterations of the loop, p takes at least
2k complete steps. By the Maximum Rate of Execution property, there exists a constant M1 > 0 such that
for every time t, p executes at most one complete step during time interval (t, t + M1]. Thus, for every
time t and every k ≥ 1, p executes at most 2k − 1 complete steps during time interval (t, t + kM1]. Let
ε = M1. We conclude that p takes at least kM1 = kε time to execute k complete iterations of the repeat
forever loop.
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Definition 14 Let ε be a constant that satisfies Lemma 13.

Note that, by Lemma 13, p takes at least ∆′ + ∆ time to execute d(∆′ + ∆)/εe complete iterations of the
repeat forever loop.

Definition 15 Let ζ = d(∆′ + ∆)/εe+ 2.

Lemma 16 For every correct process p 6= s, there is a time after which p receives an ALIVE message from
s at least once every ζ consecutive iterations of p’s repeat forever loop.

PROOF. Consider a correct process p 6= s. By Lemma 12, there is a time t′ such that for every t ≥ t′, there
is an ALIVE message delivered to p from s during time interval (t, t + ∆′ + ∆].

Thus, there are infinitely many ALIVE messages that are delivered to p from s. Since p is correct, it executes
its repeat forever loop infinitely often. In each iteration of this loop, p tries to receive an ALIVE message
from every process q 6= p (including s), so p receives ALIVE messages from s infinitely often.

Suppose p receives an ALIVE message from s at some time t > t′. From Lemma 12, another ALIVE

message is delivered from s during the period (t, t + ∆′ + ∆]. Thus, by Lemma 13, this ALIVE message is
delivered to p before p completes d(∆′ + ∆)/εe + 1 consecutive iterations of its repeat forever loop. So p
receives this ALIVE message by the time it completes d(∆′ + ∆)/εe+ 2 iterations of the loop.

We conclude that there is a time after which p receives an ALIVE message from s at least once every
ζ = d(∆′ + ∆)/εe+ 2 consecutive iterations of its repeat forever loop.

Observation 17 For every correct process p, there is a time after which p ∈ activep.

PROOF. When p executes its initialization code, it sets activep to {p}. Thereafter, p never removes itself
from activep.

Lemma 18 For every correct process p, there is a time after which s ∈ activep.

PROOF. Let p be any correct process. If p = s then, by Observation 17, there is a time after which
s ∈ activep. Now assume that p 6= s. By Lemma 16, there is a time t1 after which p receives an ALIVE

message from s at least once every ζ consecutive iterations of its repeat forever loop. Each time p receives
such a message, p adds s to activep. We claim that p removes s from activep only a finite number of
times, which concludes the proof. Suppose, for contradiction, that p removes s from activep infinitely often
(line 22). Then, p increments timeoutp[s] infinitely often (line 23), and so there is a time t2 after which
timeoutp[s] > ζ . We now consider p’s execution after time t = max(t1, t2).

After time t, each time p receives an ALIVE message from s, p resets timerp[s] to timeoutp[s] > ζ . After
each iteration where timerp[s] is reset this way, timerp[s] can decrease to 0 only if p completes at least ζ
consecutive iterations of its repeat forever loop without receiving any ALIVE message from s (in each such
iteration p decreases timerp[s] by one). But after time t process p receives an ALIVE message from s at least
once every ζ consecutive iterations of its repeat forever loop. So there is a time after which timerp[s] 6= 0.
Note that p removes s from activep only if it executes line 20 with timerp[s] = 0. Thus there is a time after
which p does not remove s from activep — a contradiction.
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Lemma 19 counters[s] is bounded.

PROOF. Consider any correct process p 6= s. Each time p sends an ACCUSATION message to s, p re-
moves s from activep. By Lemma 18, there is a time after which p does not remove s from activep. So
there is a time after which p does not send any ACCUSATION messages to s. Moreover, s never sends
ACCUSATION messages to itself. Thus there is a time after which no process (whether correct or faulty)
sends ACCUSATION messages to s. Since s increases counters[s] only when it receives such messages,
counters[s] is bounded.

Definition 20 For every process p, let cp be the largest value of counterp[p] in the run that we con-
sider (cp = ∞ if counterp[p] is unbounded). Let ` be the process such that (c`, `) = min{(cp, p) :
p is a correct process}.

By definition, ` is a correct process. Furthermore, by Lemma 19, counters[s] is bounded, i.e., cs < ∞.
Thus, c` <∞, i.e., counter`[`] is bounded.

Lemma 21 For every correct process p,

(a) if there is a time after which ` ∈ activep then there is a time after which localLeaderp[p] = `, and

(b) if there is a time after which ` ∈ localLeadersp then there is a time after which leaderp = `.

PROOF.

(a) Let p be any correct process, and suppose that there is a time after which ` ∈ activep. We claim
that for every q 6= `, (i) there is a time after which q 6∈ activep, or (ii) there is a time after which
(counterp[`], `) < (counterp[q], q). From the way p sets localLeaderp[p] in the updateLeader procedure,
this claim implies there is a time after which localLeaderp[p] = `.

To show the claim, consider any process q 6= `, and suppose that condition (i) does not hold, i.e., suppose
that q ∈ activep holds infinitely often. We now show that condition (ii) is satisfied. By Lemma 4 part (a),
q is correct, and for every time t, there is a time after which counterp[q] ≥ countert

q[q]. There are two
cases:

(1) counterq[q] is bounded. In this case, cq < ∞, and so there is a time t when countert
q[q] = cq. So

there is a time after which counterp[q] ≥ cq. Recall that q is correct and q 6= `, and so by the
definition of `, we have (c̀ , `) < (cq, q). Since counterp[`] ≤ c` (always), there is a time after
which (counterp[`], `) ≤ (c`, `) < (cq, q) ≤ (counterp[q], q).

(2) counterq[q] is unbounded. In this case, counterp[q] is also unbounded. So there is a time after which
counterp[`] ≤ c` < counterp[q].

So, in both cases, there is a time after which (counterp[`], `) < (counterp[q], q), i.e., condition (ii) holds.

(b) (Similar to the proof of part (a).)

Let p be any correct process, and suppose that there is a time after which ` ∈ localLeadersp. We claim
that for every q 6= `, (i) there is a time after which q 6∈ localLeadersp, or (ii) there is a time after which
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(counterp[`], `) < (counterp[q], q). From the way p sets leader p in the updateLeader procedure, this
claim implies there is a time after which leader p = `.

To show the claim, consider any process q 6= `, and suppose that condition (i) does not hold, i.e., suppose
that q ∈ localLeadersp holds infinitely often. We now show that condition (ii) is satisfied. By Lemma 4
part (b), q is correct, and for every time t, there is a time after which counterp[q] ≥ countert

q[q]. The
rest of the proof now proceeds identically to cases (1) and (2) of part (a) above.

We now proceed to show that for every correct process p there is a time after which ` ∈ localLeaders p (and
hence, by the above lemma, there is a time after which leaderp = `).

Lemma 22 There is a time after which ` ∈ actives.

PROOF. If ` = s then, by Observation 17, there is a time after which ` ∈ actives. Now suppose ` 6= s.
There are three possible cases: (1) there is a time after which ` ∈ actives, (2) ` is added to and removed
from actives infinitely often, or (3) there is a time after which ` 6∈ actives. We now show that cases (2) or (3)
cannot occur. In case (2), every time s removes ` from actives, s sends an ACCUSATION message to `, and
so s sends ACCUSATION messages to ` infinitely often. In case (3), there is a time after which s does not
receive ALIVE messages from `. Thus, timers[`] expires infinitely often at s (this is because s initially sets
timers[`] to some positive value, and each time this timer expires, s resets it to a positive value). Therefore,
s sends ACCUSATION messages to ` infinitely often. So, in both cases (2) and (3), s sends ACCUSATION

messages to ` infinitely often. Since the output links of s are eventually timely, and ` tries to receive an
ACCUSATION message from s infinitely often (specifically once in each iteration of its repeat forever loop),
` receives ACCUSATION messages from s infinitely often. Thus, ` increments counter̀ [`] infinitely often,
and so counter`[`] is not bounded — a contradiction. Thus, only case (1) is possible.

Lemma 23 There is a time after which localLeaders[s] = `.

PROOF. By Lemma 22, there is a time after which ` ∈ actives. So, by Lemma 21 part (a), there is a time
after which localLeaders[s] = `.

Lemma 24 For every correct process p, there is a time after which localLeaderp[s] = `.

PROOF. Consider any correct process p. If p = s then the result is immediate from Lemma 23 . Now
assume that p 6= s. In this case, from Lemma 16, p receives ALIVE messages from s infinitely often. By
Lemma 23, there is a time t after which localLeaders[s] = `. So after time t, all the ALIVE messages that s
sends to p are of the form (ALIVE, `,−,−). Thus, there is a time after which all the ALIVE messages that
p receives from s are of the form (ALIVE, `,−,−). So there is a time after which localLeaderp[s] = `.

Corollary 25 For every correct process p, there is a time after which ` ∈ localLeadersp.
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PROOF. From Lemmas 18 and 24, there is a time after which s ∈ activep and localLeaderp[s] = `.
Since p repeatedly sets localLeadersp to {localLeaderp[q] : q ∈ activep}, there is a time after which ` ∈
localLeadersp.

Lemma 26 For every correct process p, there is a time after which leaderp = `.

PROOF. Immediate from Lemma 21 part (b) and Corollary 25.

From Lemma 26 and the fact that ` is a correct process, we have

Theorem 27 The algorithm in Figure 2 implements Ω in system S.

5 Impossibility of communication-efficient Ω in system S

We now consider the communication complexity of implementations of Ω in system S. Specifically we give
two types of lower bounds: one is on the number of processes that send messages forever, and the other is
on the number of links that carry messages forever. A corollary of these lower bounds is that there is no
communication-efficient implementation of Ω in system S. The lower bounds that we derive here hold even
if we assume that all processes in S are synchronous (i.e., all processes have the same, constant execution
speed) and at most one process may crash.

Theorem 28 Consider any algorithm A for Ω in a system S with n ≥ 2 processes such that all processes
are synchronous and at most one process may crash.

1. In every run of A, all correct processes, except possibly one, send messages forever.

2. In some run of A, at least bn2

4
c links carry messages forever.

PROOF. Henceforth we consider an algorithm A that implements Ω in a system S with n ≥ 2 processes
such that all processes are synchronous and at most one them may crash. We first observe the following:

Lemma 29 For any run of A and any correct process p, if there is a time after which p does not receive any
message from other processes, then there is a time after which the leader of p is p.

To prove this lemma, suppose there is a run R of A, a correct process p, and a time t after which p does
not receive any message. Without loss of generality, we can assume that no process crashes in R. This
is because if some process f crashes at some time t′ (i.e., f stops taking steps after time t′) in R, we can
modify R to get a similar run where f never crashes, but all its output links crash permanently at time t ′

(i.e., they lose all the messages that f sends after time t′); this modified run is indistinguishable from R to
all processes, except for process f who is now correct.

Since R is a run of an algorithm that implements Ω, and process p is correct, in run R there is a correct
process q and a time after which the leader of p is q. We claim that q = p (which proves the lemma).
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Suppose, for contradiction, that q 6= p. Let R′ be a run of A that is identical to R up to time t, and such that
after time t: (a) process q crashes, and (b) all the input links of p crash permanently, while the output links
of p become timely and stop losing messages (p is the eventually timely source in run R ′). Since process p
receives exactly the same messages at the same times in R and R′, p cannot distinguish between R and R′,
and so it behaves exactly the same way in R and R′.10

Thus, in run R′ ofA there is a time after which the leader of p is q, even though q crashes — a contradiction
that concludes the proof of Lemma 29.

We now prove part (1) of the theorem. Let R be an arbitrary run of algorithm A, and correct(R) be the
number of correct processes in R. To prove Part (1) of the theorem, we must show that at least correct(R)−1
correct processes send messages forever (*). To do so, consider the following two cases:

(a) correct(R) ≤ 1. In this case, (*) trivially holds.

(b) correct(R) ≥ 2. Suppose, for contradiction, that (*) does not hold, i.e., at most correct(R) − 2 correct
processes send messages forever. Thus in R there are at least two distinct correct processes that do not send
messages forever. In other words, in R there are two distinct correct processes p and q and a time t such that
p and q do not send any message after time t.

Without loss of generality, we can assume that in R: (a) all the output links of p and q are eventually timely
(and so both p and q are eventually timely sources in R), and (b) no process crashes (the argument is as
before: we can “replace” the crash of a process, by the simultaneous and permanent crash of all its output
links).

We first show that in R there is a time after which the leader of q is not p. To see this, let R′ be a run of
A that is identical to R except that p crashes in R′ after time t. Note that, except for p, processes cannot
distinguish between runs R and R′, and so they behave the same in R and R′. Since p is faulty in R′, in R′

there is a time after which the leader of q is not p; thus, in R there is a time after which the leader of q is
not p.

Now let R′′ be a run of A that is identical to R, except that in R′′ after time t, (1) all the output links of p
crash permanently, and (2) all the input links of p crash permanently, except for the link from q to p which,
as in run R, is eventually timely (so q is the eventually timely source of run R ′′). Note that, except for p,
processes cannot distinguish between runs R and R′′, and so they behave the same in R and R′′. Thus, in
R′′ there is a time after which the leader of q is not p (as it was the case in run R). In R ′′, p ceases to receive
messages, and so, by Lemma 29, there is a time after which the leader of p is p. Thus, in run R ′′ ofA correct
processes p and q do not reach agreement on a common leader — a contradiction. So (*) holds, and this
concludes the proof of part (1) the theorem.

We now prove part (2) of the theorem. Partition the set of processes of S into set A with d n
2
e processes, and

set B with bn
2
c processes. Consider run R of A such that: (a) all the n processes are correct, (b) all the links

between processes in A are eventually timely, (c) A has an eventually timely source s, so all the links from s
to processes in B are eventually timely, (d) for every process r 6= s in A, all the links from r to processes in
B are permanently crashed, and (e) all the output links of every process in B are permanently crashed. So in
run R, any process p ∈ B can receive messages only from process s: all messages sent by other processes
to p are lost.

10Note that even if the algorithm A that p executes is non-deterministic, we can chose run R′ such that p behaves the same in R′

and in R.
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Note that in run R, for every process q ∈ A and every process p ∈ B, there is a time after which the leader
of q is not p. Intuitively, this is because p may eventually crash, and since p’s output links are permanently
crashed, q would not be able to notice p’s crash (we omit this proof as it is similar to one given above).

We claim that in R, every process in A sends messages forever to every process in B. Suppose, for contra-
diction, that in R some process q ∈ A does not send messages forever to some process p ∈ B. We consider
two possible cases.

Suppose q = s. Recall that in R, p can receive messages only from q (= s). Since in R there is a time
after which q does not send messages to p, then eventually p stops receiving messages. So, by Lemma 29,
in R there is a time after which the leader of p is p. Recall that in R there is a time after which the leader
of q is not p. Thus, in run R correct processes p and q do not reach agreement on a common leader — a
contradiction.

Now suppose q 6= s. Let R′ be a run of A which is similar to R, except that the eventually timely source
is q rather than s. More precisely, R′ is like R, except that all the links from s to processes in B are
permanently crashed, and all the links from q to processes in B are eventually timely. Since no process in
B can communicate with anyone (their output links are permanently crashed in both R and R ′), processes
in A cannot distinguish between runs R and R′, and so they behave the same in R and R′. Thus, in R′ (as
in R) there is a time after which (a) the leader of q is not p, and (b) q does not send messages to p. Since the
link from q to p is the only input link of p that is not permanently crashed in R ′, then there is a time after
which p does not receive any message in R′. So, by Lemma 29, in R′ there is a time after which the leader
of p is p. Thus, in run R′ of A correct processes p and q do not reach agreement on a common leader — a
contradiction.

Thus we proved our claim that in run R every process in A sends messages forever to every process in B.
Since |A| = dn

2
e and |B| = bn

2
c, this implies that at least dn

2
e · bn

2
c = bn

2

4
c links carry messages forever in

run R.

From Theorem 28 part (1), we immediately get the following result:

Corollary 30 There is no communication-efficient algorithm for Ω in a system S with n ≥ 3 processes,
even if we assume that all processes are synchronous and at most one process may crash.

6 Communication-efficient implementations of Ω

We now seek algorithms for Ω that require only one process to send messages forever (this also implies that
the number of links that carry messages forever is linear rather than quadratic in n). In order to achieve
this, Theorem 28 implies that we must strengthen the system model S. In this section, we first give a
communication-efficient algorithm for Ω for system S++ (i.e., a system S where all links are fair), and then
we modify this algorithm so that it works in system S+ (i.e., a system S where only the links to and from
some unknown timely process are fair).
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6.1 Implementing Ω in system S++

We now give a communication-efficient algorithm for Ω in system S++. Recall that in S++ there is an
eventually timely source and all the links are fair.

One simple attempt to get communication efficiency is as follows. Each process (a) sends ALIVE messages
only if it thinks it is the leader, (b) maintains a set of processes, called active, from which it received an
ALIVE message recently (an adaptive timeout is used to determine the current set of active processes), and
(c) chooses as leader the process with smallest id in its set active.11 Such a simple algorithm would work
in a system where all correct processes are eventually timely sources. But in system S++, it would fail:
for example, if S++ has only one eventually timely source and this process happens to have a large id, the
leadership could forever oscillate among the correct processes that have a smaller id.

To fix this problem, we use a similar technique as in our previous algorithm (in Figure 2): a process uses
accusation counters, not process ids, to select the leader among processes in its active set. More precisely,
each process keeps a counter of the number of times it was previously suspected of having crashed, and
includes this counter in the ALIVE messages that it sends. Every process keeps the most up-to-date counter
that it received from every other process, and picks as its leader the process with the smallest counter among
processes in its active set (using the process ids to break ties). If a process p times out on a process q in
activep, p removes q from activep and it sends an “accusation” message to q, which causes q to increment its
own accusation counter. The hope here is that, as with the previous algorithm, the counter of each eventually
timely source remains bounded (because it is timely and all its output links are eventually timely), and so
the correct process with the smallest bounded counter is eventually selected as the leader by all.

The above algorithm, however, does not work in system S++: this is because the accusation counter of
all correct processes may keep increasing forever, causing the leadership to keep oscillating forever. To see
this, consider the following scenario in a system with n = 2 processes, namely, p and s. (We can extend
this scenario to any number of processes.) Process s is the eventually timely source, while process p is
correct but its output links are not always timely. Suppose that the accusation counters of p and s are 1
and 3, respectively, but, because s has not received a recent message from p, s considers itself to be the
leader. Then, s receives an ALIVE message from p, and so p joins s’s active set. Since p’s accusation
counter is smaller than the counter of s, the leader of s becomes p. When s gives up the leadership, it stops
sending ALIVE messages (for communication efficiency). Unfortunately, this triggers p to time out on s
and so p sends an ACCUSATION message that causes s to increment its accusation counter to 4. Now p’s
ALIVE messages become slow, causing the following chain of events: (a) s times out on p, (b) s sends an
ACCUSATION to p, causing p to increment its accusation counter to 2, (c) s removes p from its active set,
causing s to consider itself to be the leader again. Now, the accusation counters of p and s are 2 and 4,
respectively, and this scenario can repeat itself forever. This results in a run where the accusation counters
of p and s keep increasing and the leader of s keeps oscillating between p and s.

To fix this problem, a process p should increment its own accusation counter only if it receives a “legitimate”
accusation, i.e., one that was caused by the delay or loss of one of the ALIVE messages that it previously
sent (and not by the fact that p voluntarily stopped sending them). To determine whether an accusation is
legitimate, each process p keeps track of the number of times it has voluntarily given up the leadership in
the past — this is its current phase number — and it includes this number in each ALIVE message that it

11A process always considers itself to be active, so if it does not have recent ALIVE messages from any other process, the process
picks itself as leader.
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Variable Intuitive description

active set of processes that p considers to be currently competing for leadership
counter[q] p’s estimate of q’s accusation counter

(the number of times processes previously timed out on q)
phase[q] p’s estimate of the number of times that q voluntarily relinquished the leadership

SendAliveTimer count-down timer used to periodically send ALIVE messages
(if it is set to −1 it is deactivated)

timer[q] count-down timer used to determine whether q is currently active
(if it is set to −1 it is deactivated)

timeout[q] length of p’s timeout on q
leader the leader of p

(p chooses its leader to be the process ` with the smallest tuple (counter[`], `)
among all the processes in p’s active set)

newleader temporary variable for storing a newly computed leader of p

Table 4: Local variables of process p in the algorithm of Figure 3.

sends. If any process q times out on p and wants to accuse p, it must now include its own view of p’s current
phase number in the ACCUSATION message that it sends to p; p considers this ACCUSATION message to be
legitimate only if the phase number that it contains matches its own. Furthermore, whenever p gives up the
leadership and stops sending ALIVE messages voluntarily, p increments its own phase number (and it does
not communicate this new phase number to any process): this effectively causes p to ignore all the spurious
ACCUSATION messages that may result if/when p voluntarily stops sending ALIVE messages.

As we mentioned above, as long as a process p considers itself to be the leader, p periodically sends an
ALIVE message to every process except itself. If p considers that some other process is the leader, it does
not send any ALIVE messages. This is done using a timer, denoted SendAliveTimer, as follows. When-
ever p changes its active set or the accusation counter of a process, p recomputes its leader by executing
the updateLeader() procedure. If the leader of p changes, p checks whether it has just gained or lost the
leadership.

1. If p gained the leadership, p turns on its SendAliveTimer by setting it to 0 (in line 4). Note that p
periodically checks whether SendAliveTimer = 0 (line 15). If it is, then p sends an ALIVE message to
every process q 6= p, and it resets SendAliveTimer to η to schedule its next sending of ALIVE messages
(lines 16-17).

2. If p lost the leadership, p increases its phase number and p turns off its SendAliveTimer by setting it
to −1 (line 7) — this causes p to stop sending ALIVE messages.

Figure 3 describes the algorithm by giving the pseudo-code of an (arbitrary) process p, and Table 4 describes
the local variables of p. It is easy to translate the pseudo-code of p into an automaton for p. Without loss of
generality, we can assume that: (1) for some integer b, each iteration of the repeat forever loop (lines 13–34)
takes at most b automaton steps (this is because there are no infinite loops, waiting statements, or similar
constructs in lines 14–34), and (2) each iteration of the repeat forever loop takes at least two complete
automaton steps.

We now show that the algorithm in Figure 3 implements Ω in system S++ and that it is communication-
efficient. Henceforth, we consider an arbitrary run of this algorithm in system S++, and s is an eventually
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CODE FOR EACH PROCESS p:

procedure updateLeader()
1 newleader ← ` such that (counter[`], `) = min{(counter[q], q) : q ∈ active}
2 if newleader 6= leader then { if the leader of p changes then }
3 if newleader = p then { if p gains the leadership then }
4 SendAliveTimer ← 0 { p sets SendAliveTimer = 0 to start sending ALIVE messages }
5 if leader = p then { if p loses the leadership then }
6 phase[p]← phase[p] + 1 { p increases its phase number and }
7 SendAliveTimer ← −1 { p sets SendAliveTimer = −1 to stop sending ALIVE messages }
8 leader← newleader { p updates its leader variable }

main code
{ Initialization }

9 for each q ∈ Π do counter[q]← 0; phase[q]← 0
10 for each q ∈ Π \ {p} do timeout[q]← η + 1; timer[q]← −1
11 active ← {p}
12 leader ← ⊥

13 repeat forever

14 updateLeader()

15 if SendAliveTimer = 0 then
16 send (ALIVE, counter[p], phase[p]) to every process except p
17 SendAliveTimer ← η

18 for each q ∈ Π \ {p} do
19 if receive (ALIVE, qcntr, qph) from q then
20 active ← active ∪ {q}
21 counter[q]← max{counter[q], qcntr}
22 phase[q]← max{phase[q], qph}
23 timer[q]← timeout[q]

24 if timer[q] = 0 then
25 send (ACCUSATION, phase[q]) to q
26 active ← active − {q}
27 timeout[q]← timeout[q] + 1
28 timer[q]← −1

29 if receive (ACCUSATION, ph) from q then
30 if ph = phase[p] then
31 counter[p]← counter[p] + 1

32 if SendAliveTimer > 0 then SendAliveTimer ← SendAliveTimer − 1
33 for each q ∈ Π \ {p} do
34 if timer[q] > 0 then timer[q]← timer[q]− 1

Figure 3: Communication-efficient implementation of Ω for a system S where all links are fair.
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timely source in this run.

Lemma 31 For every correct process p and every process q 6= p, if q ∈ activep holds infinitely often then p
receives ALIVE messages from q infinitely often.

PROOF. Identical to part (a) of the proof of Lemma 1.

Observation 32 For all processes p and q, counterp[q] and phasep[q] are monotonically nondecreasing with
time.

Lemma 33 For every two processes p 6= q, if p receives ALIVE messages from q infinitely often then q
is correct, and for every time t, there is a time after which counterp[q] ≥ countert

q[q] and phasep[q] ≥
phaset

q[q].

PROOF. (Similar to the proof of Lemma 3 part 1.) Consider two processes p 6= q, and suppose that p
receives ALIVE messages from q infinitely often. Then q sends such messages infinitely often, and so q
is correct. Consider any time t. Eventually p receives a message m = (ALIVE, qcntr, qph) that is sent
by q after time t. Note that counterq[q] and phaseq[q] are monotonically nondecreasing. Since q sends m
after time t, qcntr ≥ countert

q[q] and qph ≥ phaset
q[q]. When p receives m from q, p sets counterp[q]

to a value v ≥ qcntr ≥ countert
q[q], and p sets phasep[q] to a value v′ ≥ qph ≥ phaset

q[q]. Thereafter,
counterp[q] ≥ countert

q[q] and phasep[q] ≥ phaset
q[q] (because counterp[q] and phasep[q] are monotonically

nondecreasing).

Lemma 34 For every correct process p and every process q, if (a) q ∈ activep holds infinitely often then
(b) q is correct, and for every time t, there is a time after which counterp[q] ≥ countert

q[q] and phasep[q] ≥
phaset

q[q].

PROOF. (Similar to the proof of Lemma 4.) If p = q, condition (b) holds because p is correct, and
counterp[p] and phasep[p] are monotonically nondecreasing. Now assume that p 6= q and q ∈ activep

holds infinitely often. By Lemma 31, p receives ALIVE messages from q infinitely often. By Lemma 33,
condition (b) holds.

Lemma 35 For every distinct correct processes p and q, if p sends a message of type T to q infinitely often,
then q receives a message of type T from p infinitely often.

PROOF. Let p and q be distinct correct processes, and suppose that p sends a message of type T to q
infinitely often. Since the link p → q is fair, a message of type T is delivered to q from p infinitely often.
Since q is correct, q executes an infinite number of iterations of its repeat forever loop. In each such iteration,
q tries to receive one message of each type from every process other than q, including p. Therefore, q receives
a message of type T from p infinitely often.

Recall that s is an eventually timely source in the run under consideration.
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Lemma 36 There is a constant α > 0 such that, for all k ≥ 0 and every time t, process s executes at least
k complete iterations of its repeat forever loop during time interval (t, t + kα].

PROOF. Identical to the proof of Lemma 5.

Definition 37 Let α > 0 be a constant that satisfies Lemma 36.

Recall that η ≥ 1 is the “timeout” value of SendAliveTimer (see line 17).

Definition 38 Let ∆′ = (η + 1)α.

Lemma 39 For every process p 6= s and every k ≥ 0, if s sends an (ALIVE,−, k) message to p at some
time t then s sends another (ALIVE,−, k) message to p during time interval (t, t + ∆ ′], or phases[s] > k
holds at time t + ∆′.

PROOF. After s executes its initialization code (lines 9-12), s starts its first execution of the repeat forever
loop (lines 13-34). Suppose that s sends an (ALIVE,−, k) message to a process p 6= s at some time t
(line 16). Note that phases[s] = k at time t, and that in line 17 of the same iteration of its repeat forever
loop, s sets SendAliveTimers to η ≥ 1.

Consider the first (η+1) iterations of the repeat forever loop that s finishes to execute after time t (including
the iteration that s is executing at time t). Let t′ be the time when s completes the last one of these iterations.
By Lemma 36, for every time t, s executes at least (η + 1) complete iterations of its repeat forever loop
during time interval (t, t + (η + 1)α]. And so, we have t′ ≤ t + (η + 1)α, i.e., t′ ≤ t + ∆′. Now consider
time interval [t, t′]. There are two possible cases:

1. During [t, t′], s does not set SendAliveTimers to −1 in line 7 in the updateLeader procedure. In this
case, it is clear that s does not modify its phases[s] during [t, t′] (this is because s modifies phases[s]
only in line 6 in the updateLeader procedure), and so phases[s] = k during the entire time interval
[t, t′].

We claim that by the end of the η-th iteration of the (η + 1) iterations that we are considering, s sets
SendAliveTimers ← 0. In fact, either s does this by executing line 4 of the updateLeader procedure
in one of the first η iterations, or s decrements its SendAliveTimers from η by 1 (in line 32) in each one
of the first η iterations. In either case, by the end of the η-th iteration, s sets SendAliveTimers ← 0.

Thus, by the end of the (η +1)-th iteration, s finds that SendAliveTimers = 0 (in line 15), and it sends
an (ALIVE,−, k) message to p (in line 16). This sending must occur at least one step after s sends
the (ALIVE,−, k) message to p at time t, so, by the Maximum Rate of Execution property, it must
occur after time t. Moreover, this sending occurs by time t′ ≤ t + ∆′. So s sends an (ALIVE,−, k)
message to p during interval (t, t + ∆′].

2. During [t, t′], s sets SendAliveTimers to −1 in line 7 in the updateLeader procedure. Note that during
the execution of this procedure, s increments phases[s] in line 6. This increment must occur at least
one step after s sends the (ALIVE,−, k) message to p at time t (because after sending and before
incrementing, s executes steps to try to receive ALIVE and ACCUSATION messages). Thus, by the
Maximum Rate of Execution property, the incrementing must occur after time t. Moreover, this
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increment must occur by time t′, so it happens during time interval (t, t′], which is contained in
interval (t, t+∆′]. Since phases[s] = k at time t, phases[s] is incremented during interval (t, t+∆′],
and it is monotonically nondecreasing, we have phases[s] > k at time t + ∆′.

From the above, we conclude that s sends an (ALIVE,−, k) message to p during interval (t, t + ∆ ′], or
phases[s] > k holds at time t + ∆′.

Lemma 40 There is a constant ∆ and a time t∆ such that, for all processes p, if s sends a message m to p
at some time t ≥ t∆, then m is delivered to p from s by time t + ∆.

PROOF. This follows immediately from the fact that s is an eventually timely source, and therefore all its
output links are eventually timely.

Lemma 41 There is a constant ε > 0 such that, for every k ≥ 1 and every process p, p takes at least kε time
to execute k complete iterations of its repeat forever loop.

PROOF. Identical to the proof of Lemma 13.

Definition 42 Let ∆, t∆ and ε be constants that satisfy 40 and 41, respectively.

Definition 43 Let ζ = d(∆′ + ∆)/εe+ 3.

We now show that at the eventually timely source s, counters[s] is bounded. To prove this, (1) we note that s
increments counters[s] only if a process times out on s, (2) we distinguish two types of such timeouts on s,
which we call “‘proper” and “improper”, (3) we prove that proper timeouts on s do not affect counter s[s]
(so only improper timeouts on s can cause s to increment counters[s]), and (4) we show that the number of
improper timeouts on s is finite. We now proceed with this proof (Lemmas 45-48).

Suppose that a process p times out on s. If this timeout was started after time t∆ and its value was at least ζ ,
we say that it is “proper”; otherwise we say it is “improper”. More precisely,

Definition 44 Suppose that

(1) a process p executes line 24 with q = s and timerp[s] = 0 at some time te,

(2) p sets timerp[s] to timeoutp[s] in line 23 at some time ts ≤ te, and

(3) p does not set timerp[s] in line 23 during time interval (ts, te].

We say this timeout of p on s is proper if and only if (a) ts ≥ t∆ and (b) timeoutp[s] ≥ ζ at time ts. A
timeout that is not proper is improper.

Lemma 45 For every process p, the number of improper timeouts of p on s is finite.
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s ksends (ALIVE,–, )

timer [s]=timeout [s]p p

timer [s]=0p

p ksends (ACCUSATION, )

timet ts te ta

Figure 4: Timeline of events in proof of Lemma 47.

PROOF. Let p be any process. If p times out on s only finitely often, the lemma trivially holds. Now suppose
p times out on s infinitely often, i.e., p executes line 24 with timerp[s] = 0 infinitely many times. Note that
each time this occurs, p increases timeoutp[s] (in line 27). So there is a time after which timeoutp[s] > ζ .
Thus, there is a time after which every timeout of p on s is proper.

Definition 46 An (ACCUSATION, ph) message that is sent to s is outdated if ph < phases[s] at the time this
message is sent.

Note that any outdated (ACCUSATION, ph) message that s receives does not affect counters[s]. In fact, if s
receives an (ACCUSATION, ph) message that is outdated, then phases[s] > ph at the time t this message was
sent to s, so phases[s] > ph also holds at the time when s executes line 30 of its code (because phases[s] is
monotonically nondecreasing). Thus, s does not execute line 31, i.e., it does not modify counter s[s].

Lemma 47 Suppose a process p times out on s (in line 24). If this timeout is proper, then the
(ACCUSATION,−) message that p sends to s as a consequence of this timeout (in line 25) is outdated.

PROOF. Suppose some process p times out on s, and that this timeout is proper. More precisely, suppose
that

(1) p executes line 24 with q = s and timerp[s] = 0 at some time te,

(2) p sets timerp[s] to timeoutp[s] in line 23 at some time ts ≤ te,

(3) p does not set timerp[s] in line 23 during time interval (ts, te], and

(4) ts ≥ t∆ and timeoutp[s] ≥ ζ at time ts.

Suppose that the above timeout causes p to send some (ACCUSATION, k) message to s, and let ta ≥ te be
the time when this occurs (in line 25). Figure 4 shows a timeline with times ts, te, and ta. We must prove
that this (ACCUSATION, k) is outdated, that is, we must show that phases[s] > k at time ta. Suppose, for
contradiction, that phases[s] ≤ k at time ta. Since phases[s] is monotonically nondecreasing and te ≤ ta,
phases[s] ≤ k also holds at time te.

We first note that p executes at least ζ − 1 complete iterations of its repeat forever loop during time interval
[ts, te]. This follows from assumptions (1), (2), (3) and (4) above, and the fact that p decreases timerp[s] by
exactly 1 in each repeat forever loop iteration (in line 34).

By Lemma 41, p takes at least ε(ζ−1) time to execute (ζ−1) complete iterations of its repeat forever loop.
Thus, from the above, te ≥ ts + ε(ζ − 1). Since ζ = d(∆′ + ∆)/εe+ 3, we have te ≥ ts + ∆′ + ∆ + 2ε.
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CLAIM 1: p does not receive any (ALIVE,−,−) messages from s during time interval (ts, te]. To see this,
note that such a receipt would cause p to set timerp[s] in line 23, and this would happen during (ts, te] since,
at time te, p executes line 24. This would violate assumption (3).

Since p sends an (ACCUSATION, k) message to s at time ta in line 25, phasep[s] = k at time ta. So
phasep[s] = k also holds at time te when p executes line 24.

CLAIM 2: p receives at least one (ALIVE,−, k) message from s by time ts. Indeed, if k > 0 then the
only way for p to have phasep[s] = k at time te is by receiving (ALIVE,−, k) from s by time te. By
Claim 1, p must receive such a message by time ts. For k = 0, note that by time ts, p must receive some
(ALIVE,−, k′) message from s that causes p to set timerp[s] in line 23 at time ts. Moreover, k′ cannot
be greater than 0 otherwise phasep[s] > 0 at time ts, so phasep[s] > 0 at time te (since phasep[s] is
monotonically nondecreasing), contradicting that phasep[s] = k = 0 at time te. Thus k′ = 0. This proves
Claim 2.

From Claim 2, s sends an (ALIVE,−, k) message to p at some time t ≤ ts. This implies that phases[s] = k
at time t. Since phases[s] ≤ k at time te (where te > ts ≥ t), and phases[s] is monotonically nondecreasing,
we conclude that phases[s] = k during the entire time interval [t, te].

Thus, by repeated applications of Lemma 39 starting at time t, it is clear that from time t and up to time te,
s sends an (ALIVE,−, k) message to p at least once every ∆′ time; more precisely, s sends at least one
(ALIVE,−, k) message to p during each time interval (τ, τ + ∆′] contained in interval [t, te].

Since time interval (ts, ts + ∆′] is contained in interval [t, te] (because t ≤ ts and ts + ∆′ ≤ te), s sends
an (ALIVE,−, k) message to p during (ts, ts + ∆′] . By assumption (4), ts ≥ t∆. Thus, by Lemma 40
and the definitions of t∆ and ∆, this (ALIVE,−, k) message is delivered to p from s during time interval
(ts, ts + ∆′ + ∆].

CLAIM 3: p executes at least one complete iteration of its repeat forever loop during time interval [ts+∆′+
∆, te]. To see this, recall that p executes at least ζ − 1 complete iterations of its repeat forever loop during
time interval [ts, te]. Moreover, during time interval [ts, ts+∆′+∆], p executes at most d(∆′+∆)/εe = ζ−3
complete iterations of its repeat forever loop (this follows from the definition of ε). This implies Claim 3.

Since an (ALIVE,−, k) message is delivered to p from s during time interval (ts, ts + ∆′ + ∆], and p
executes at least one complete iteration of its repeat forever loop during time interval [ts + ∆′ + ∆, te], we
conclude that p receives some (ALIVE,−,−) message from s during interval (ts, te] — a contradiction to
Claim 1.

Lemma 48 counters[s] is bounded.

PROOF. Note that s increases its counters[s] only if it receives an (ACCUSATION,−) message (lines 29-
31). There are two kinds of such (ACCUSATION,−) messages: (a) those that are sent to s as a consequence
of a proper timeout on s, and (b) those that are sent to s as a consequence of an improper timeout on s.
By Lemma 47, all the (ACCUSATION,−) messages of kind (a) are outdated. As we previously observed,
such messages do not affect counters[s]. Thus only those messages of kind (b) may cause s to increment
counters[s]. By Lemma 45, the number of improper timeouts on s is finite. Since each timeout on s causes
at most one (ACCUSATION,−) message to be sent to s, the number of (ACCUSATION,−) messages of
kind (b) is finite. Therefore counters[s] is bounded.
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Definition 49 For every process p, let cp be the largest value of counterp[p] in the run that we con-
sider (cp = ∞ if counterp[p] is unbounded). Let ` be the process such that (c`, `) = min{(cp, p) :
p is a correct process}.

By definition, ` is a correct process. Furthermore, by Lemma 48, counters[s] is bounded, i.e., cs < ∞.
Thus, c` <∞, i.e., counter`[`] is bounded.

Lemma 50 For every correct process p, if there is a time after which ` ∈ activep, then there is a time after
which leaderp = `.

PROOF. (Similar to the proof of Lemma 21.) Let p be any correct process, and suppose that there is a time
after which ` ∈ activep. We claim that for every q 6= `, (i) there is a time after which q 6∈ activep, or (ii) there
is a time after which (counterp[`], `) < (counterp[q], q). From the way p sets leaderq in the updateLeader
procedure, this claim implies there is a time after which leaderp = `.

To show the claim, consider any process q 6= `, and suppose that condition (i) does not hold, i.e., suppose
that q ∈ activep holds infinitely often. We now show that condition (ii) is satisfied. By Lemma 34, q is
correct, and for every time t, there is a time after which counterp[q] ≥ countert

q[q]. There are two cases:

(1) counterq[q] is bounded. In this case, cq < ∞, and so there is a time t when countert
q[q] = cq . So there

is a time after which counterp[q] ≥ cq . Recall that q is correct and q 6= `, and so by the definition of `,
we have (c`, `) < (cq, q). Since counterp[`] ≤ c` (always), there is a time after which (counterp[`], `) ≤
(c`, `) < (cq, q) ≤ (counterp[q], q).

(2) counterq[q] is unbounded. In this case, counterp[q] is also unbounded. So there is a time after which
counterp[`] ≤ c` < counterp[q].

So, in both cases, there is a time after which (counterp[`], `) < (counterp[q], q), i.e., condition (ii) holds.

Observation 51 For every correct process p, there is a time after which p ∈ activep.

PROOF. When p executes its initialization code, it sets activep to {p}. Thereafter, p never removes itself
from activep.

Corollary 52 There is a time after which leader` = `.

PROOF. By Observation 51, there is a time after which ` ∈ active`. The result now follows from Lemma 50.

Corollary 53 There is a time after which phase`[`] stops changing.

PROOF. Note that ` changes phase`[`] only when it considers that it lost the leadership (in lines 5-6), and
each time this occurs ` sets leader` 6= ` (in line 8). By Corollary 52, this can happen only a finite number of
times.
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Definition 54 Let `phase be the final value of phasè [`].

Note that since phase`[`] is monotonically nondecreasing, `phase is also the largest value of phase `[`].

Lemma 55 For every correct process q, there is a time after which ` ∈ activeq.

PROOF. Let q be any correct process. If q = ` then, by Corollary 52, there is a time after which ` ∈ active `.
Now suppose q 6= `. By Corollary 52 and the definitions of `phase and `, ` sends messages of form
(ALIVE,−, `phase) to q infinitely often, and these are the only messages of type ALIVE that ` sends to q
infinitely often. By Lemma 35, q receives messages of type ALIVE from ` infinitely often. Thus, q receives
messages of form (ALIVE,−, `phase) from ` infinitely often. Therefore, (*) there is a time after which q
has phaseq[`] = `phase. Moreover, q adds ` to activeq infinitely often. We claim that q removes ` from
activeq only finitely often, and so the lemma follows. Suppose, for contradiction, that q removes ` from
activeq infinitely often. Then, q sends (ACCUSATION,−) messages to ` infinitely often. By Lemma 35,
` receives (ACCUSATION,−) messages from q infinitely often. By (*), there is a time after which the
only (ACCUSATION,−) messages that q sends are (ACCUSATION, `phase) messages. Thus, ` receives
(ACCUSATION, `phase) messages from q infinitely often. So, ` eventually increments counter̀ [`] to a value
greater than c` — a contradiction to the definition of c `.

By Lemmas 50 and 55, we have

Lemma 56 For every correct process q, there is a time after which leaderq = `.

Lemma 57 There is a time after which only ` sends messages.

PROOF. There are only two types of messages: ALIVE and ACCUSATION. When a process p considers
that it lost the leadership, it stops sending ALIVE messages (by setting its SendAliveTimer to −1 in line 7).
Furthermore, p resumes sending messages only if it considers itself to be the leader again (lines 3-4) and it
sets leaderp = p (in line 8). So, by Lemma 56, there is a time after which only ` sends ALIVE messages.

We claim that only a finite number of ACCUSATION messages are sent. To see this, note that when a process
p sends an ACCUSATION message to a process q (in line 25), p “turns off” timerp[q] by setting it to −1 (in
line 28). After this occurs, p can send another ACCUSATION message to q only if p “turns on” timerp[q]
again (in line 23), and this happens only if p receives an ALIVE message from q (in line 19). Thus, p can
send an infinite number of ACCUSATION messages to q only if p receives an infinite number of ALIVE

messages from q. Since there is a time after which only ` sends ALIVE messages, p can send an infinite
number of ACCUSATION messages only to `. But p sends only a finite number of ACCUSATION messages
to `: This is because each time p sends an ACCUSATION message to `, p removes ` from activep, and from
Lemma 55, this can happen only a finite number of times. Thus each process p sends only a finite number
of ACCUSATION messages to every process.

From Lemmas 56 and 57, we get the following result:

Theorem 58 The algorithm in Figure 3 implements Ω in system S++, and it is communication-efficient.
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Figure 5: Partitioning that may occur if we run the algorithm of Figure 3 in system S+.

6.2 Implementing Ω in system S+

We now describe a communication-efficient algorithm for Ω for system S+. Recall that in S+ there is an
eventually timely source and a correct process whose input and output links are fair.

Our starting point is the algorithm for system S++ that we gave in the previous section (Figure 3). We first
note that this algorithm does not work in system S+ because in S+ some links can experience arbitrary
message losses (in contrast to S++ where all the links are fair). The most obvious problem, and also the
easiest one to solve, is that the ACCUSATION messages sent by a process p to another process q may never
reach q, because the link p→ q may have crashed. The obvious solution is for p to send each ACCUSATION

of q to all processes (including the unknown fair hub); any process that receives such a message relays it
once to q. This scheme preserves communication efficiency: after the permanent leader emerges, there are
no new accusations, and so the relaying stops.

A more subtle problem, and a tougher one to solve, is that two leader contenders p and q may partition
the processes in two sets Πp and Πq, such that processes in Πp (including p) and those in Πq (including
q) have p and q as their permanent leader, respectively. This scenario, illustrated in Figure 5, can occur as
follows: (a) the eventually timely source s and the fair hub h are in Πp, and they are distinct from p, (b)
processes in Πq receive timely ALIVE messages from q, but they never hear from p, (c) processes in Πp

receive timely ALIVE messages from p, but, except for h, they never hear from q, and (d) h receives timely
ALIVE messages from both p and q, but chooses p as its permanent leader. In this scenario, nobody ever
sends ACCUSATION messages to p or q. Moreover, p and q never hear from each other. So both p and q
keep thinking of themselves as the leader, forever.

One attempt to solve this problem is to relay all the ALIVE messages (like the ACCUSATION messages)
so that the contenders for leadership, such as p and q in the above scenario, can all hear from each other.
Although this solution works, it is not communication-efficient because it forces all processes to send mes-
sages forever: the elected leader does not stop sending ALIVE messages, and each ALIVE is relayed by
all.

To prevent partitioning while preserving communication efficiency, we use the following idea: roughly
speaking, if a process r has p as its current leader, but receives an ALIVE message from a process q 6= p,
then r sends a CHECK message telling q about the existence of p (and some other relevant information about
p). CHECK messages can be lost, but if (a) r is the fair hub h, (b) q keeps sending ALIVE messages to h,
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and (c) h continues to prefer p as its leader, then q will eventually receive a CHECK message from h and
find out about its “rival” p. If this happens, q “challenges” the leadership of p by sending accusations to p if
p does not appear to be timely. This scheme prevents the problematic scenario mentioned above, and it can
be shown to work while preserving communication efficiency: after the common leader is elected, all the
ALIVE messages come from that leader, and so there are no more CHECK messages.

The algorithm that incorporates the above ideas is shown in Figure 6. In this algorithm, there are n + 2
message types: ALIVE, CHECK, and ACCUSATION-p for each process p.

Figure 6 describes the algorithm by giving the pseudo-code of an arbitrary process p, and Table 4 describes
the local variables of p (this algorithm has the same variables with the same meaning in as in the previous
algorithm). It is easy to translate the pseudo-code of p into an automaton for p. Without loss of generality,
we can assume that: (1) for some integer b, each iteration of the repeat forever loop (lines 13–43) takes at
most b automaton steps (this is because there are no infinite loops, waiting statements, or similar constructs
in lines 14–43), and (2) each iteration of the repeat forever loop takes at least two complete automaton steps.

We now show that the algorithm in Figure 6 implements Ω in system S+, and that it is communication-
efficient. Henceforth, we consider an arbitrary run of this algorithm in system S+. Let s be an eventually
timely source and h be a fair hub, in this run.

Lemma 59 For every correct process p and every process q 6= p, if q ∈ activep holds infinitely often then p
receives ALIVE messages from q infinitely often.

PROOF. Identical to part (a) of the proof of Lemma 1.

Observation 60 For all processes p and q, counterp[q] and phasep[q] are monotonically nondecreasing with
time.

Lemma 61 For every two processes p 6= q, if p receives ALIVE messages from q infinitely often then q
is correct, and for every time t, there is a time after which counterp[q] ≥ countert

q[q] and phasep[q] ≥
phaset

q[q].

PROOF. Identical to the proof of Lemma 33.

Lemma 62 For every correct process p and every process q, if (a) q ∈ activep holds infinitely often then
(b) q is correct, and for every time t, there is a time after which counterp[q] ≥ countert

q[q] and phasep[q] ≥
phaset

q[q].

PROOF. (Similar to the proof of Lemma 34.) If p = q, condition (b) holds because p is correct, and
counterp[p] and phasep[p] are monotonically nondecreasing. Now assume that p 6= q and q ∈ activep holds
infinitely often. By Lemma 59, p receives ALIVE messages from q infinitely often. By Lemma 61, condition
(b) holds.

Lemma 63 For every correct process p 6= h, (1) if p sends a message of type T to h infinitely often, then h
receives a message of type T from p infinitely often, and (2) if h sends a message of type T to p infinitely
often, then p receives a message of type T from h infinitely often.
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CODE FOR EACH PROCESS p:

procedure updateLeader()
1 newleader← ` such that (counter[`], `) = min{(counter[q], q) : q ∈ active}
2 if newleader 6= leader then { if the leader of p changes then }
3 if newleader = p then { if p gains the leadership then }
4 SendAliveTimer← 0 { p sets SendAliveTimer = 0 to start sending ALIVE messages }
5 if leader = p then { if p loses the leadership then }
6 phase[p]← phase[p] + 1 { p increases its phase number and }
7 SendAliveTimer← −1 { p sets SendAliveTimer = −1 to stop sending ALIVE messages }
8 leader← newleader { p updates its leader variable }

main code
{ Initialization }

9 for each q ∈ Π do counter[q]← 0; phase[q]← 0
10 for each q ∈ Π \ {p} do timeout[q]← η + 1; timer[q]← −1
11 active← {p}
12 leader← ⊥

13 repeat forever

14 updateLeader()

15 if SendAliveTimer = 0 then
16 send (ALIVE, counter[p], phase[p]) to every process except p
17 SendAliveTimer← η

18 for each q ∈ Π \ {p} do
19 if receive (ALIVE, qcntr, qph) from q then
20 active← active ∪ {q}
21 counter[q]← max{counter[q], qcntr}
22 phase[q]← max{phase[q], qph}
23 timer[q]← timeout[q]
24 if q 6= leader and p 6= leader then
25 send (CHECK, leader, phase[leader]) to q

26 if receive (CHECK, r, rph) from q then
27 if timer[r] = −1 then
28 phase[r]← max{phase[r], rph}
29 timer[r]← timeout[r]

30 if timer[q] = 0 then
31 send (ACCUSATION-q, phase[q]) to every process except p
32 active← active− {q}
33 timeout[q]← timeout[q] + 1
34 timer[q]← −1

35 for each r ∈ Π do
36 if receive (ACCUSATION-r, ph) from q then
37 if r = p then
38 if ph = phase[p] then
39 counter[p]← counter[p] + 1
40 else send (ACCUSATION-r, ph) to r

41 if SendAliveTimer > 0 then SendAliveTimer← SendAliveTimer− 1
42 for each q ∈ Π \ {p} do
43 if timer[q] > 0 then timer[q]← timer[q]− 1

Figure 6: Communication-efficient implementation of Ω for system S+.34



PROOF. (Similar to the proof of Lemma 35.) Let p be a correct process such that p 6= h. (1) First, suppose
that p sends a message of type T to h infinitely often. Since h is fair hub, h is correct and link p → h is
fair. Thus, a message of type T is delivered to h from p infinitely often. Since h is correct, h executes an
infinite number of iterations of its repeat forever loop. In each such iteration, h tries to receive one message
of each type from every process other than h, including p. Therefore, h receives a message of type T from
p infinitely often.

(2) Now suppose that h sends a message of type T to p infinitely often. This case is identical to case (1)
except that we exchange the roles of p and h.

Recall that s is an eventually timely source in the run under consideration.

Lemma 64 There is a constant α > 0 such that, for all k ≥ 0 and every time t, process s executes at least
k complete iterations of its repeat forever loop during time interval (t, t + kα].

PROOF. Identical to the proof of Lemma 5.

Definition 65 Let α > 0 be a constant that satisfies Lemma 64.

Recall that η ≥ 1 is the “timeout” value of SendAliveTimer (see line 17).

Definition 66 Let ∆′ = (η + 1)α.

Lemma 67 For every process p 6= s and every k ≥ 0, if s sends an (ALIVE,−, k) message to p at some
time t then s sends another (ALIVE,−, k) message to p during time interval (t, t + ∆ ′], or phases[s] > k
holds at time t + ∆′.

PROOF. (Similar to the proof of Lemma 39 noting that, in case 1 of that proof, s cannot modify phases[s]
in line 28 because no process ever sends (CHECK, s,−) to s.)

After s executes its initialization code (lines 9-12), s starts its first execution of the repeat forever loop
(lines 13-43). Suppose that s sends an (ALIVE,−, k) message to a process p 6= s at some time t (line 16).
Note that phases[s] = k at time t, and that in line 17 of the same iteration of its repeat forever loop, s sets
SendAliveTimers to η ≥ 1.

Consider the first (η+1) iterations of the repeat forever loop that s finishes to execute after time t (including
the iteration that s is executing at time t). Let t′ be the time when s completes the last one of these iterations.
By Lemma 64, for every time t, s executes at least (η + 1) complete iterations of its repeat forever loop
during time interval (t, t + (η + 1)α]. And so, we have t′ ≤ t + (η + 1)α, i.e., t′ ≤ t + ∆′. Now consider
time interval [t, t′]. There are two possible cases:

1. During [t, t′], s does not set SendAliveTimers to −1 in line 7 in the updateLeader procedure. In
this case, s does not modify its phases[s] during [t, t′]: the only places where s could possibly modify
phases[s] is in lines 6 or 28, but s does not execute line 6 during [t, t′] since s does not execute line 7 by
assumption, and s does not modify phases[s] in line 28 because no process ever sends (CHECK, s,−)
to s due to the check in line 24. Therefore, phases[s] = k during the entire time interval [t, t′].
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We claim that by the end of the η-th iteration of the (η + 1) iterations that we are considering, s sets
SendAliveTimers ← 0. In fact, either s does this by executing line 4 of the updateLeader procedure
in one of the first η iterations, or s decrements its SendAliveTimers from η by 1 (in line 41) in each one
of the first η iterations. In either case, by the end of the η-th iteration, s sets SendAliveTimers ← 0.

Thus, by the end of the (η +1)-th iteration, s finds that SendAliveTimers = 0 (in line 15), and it sends
an (ALIVE,−, k) message to p (in line 16). This sending must occur at least one step after s sends
the (ALIVE,−, k) message to p at time t, so, by the Maximum Rate of Execution property, it must
occur after time t. Moreover, this sending occurs by time t′ ≤ t + ∆′. So s sends an (ALIVE,−, k)
message to p during interval (t, t + ∆′].

2. During [t, t′], s sets SendAliveTimers to −1 in line 7 in the updateLeader procedure. Note that during
the execution of this procedure, s increments phases[s] in line 6. This increment must occur at least
one step after s sends the (ALIVE,−, k) message to p at time t (because after sending and before
incrementing, s executes steps to try to receive ALIVE and ACCUSATION messages). Thus, by the
Maximum Rate of Execution property, the incrementing must occur after time t. Moreover, this
increment must occur by time t′, so it happens during time interval (t, t′], which is contained in
interval (t, t+∆′]. Since phases[s] = k at time t, phases[s] is incremented during interval (t, t+∆′],
and it is monotonically nondecreasing, we have phases[s] > k at time t + ∆′.

From the above, we conclude that s sends an (ALIVE,−, k) message to p during interval (t, t + ∆ ′], or
phases[s] > k holds at time t + ∆′.

Lemma 68 There is a constant ∆ and a time t∆ such that, for all processes p, if s sends a message m to p
at some time t ≥ t∆, then m is delivered to p from s by time t + ∆.

PROOF. This follows immediately from the fact that s is an eventually timely source, and therefore all its
output links are eventually timely.

Lemma 69 There is a constant ε > 0 such that, for every k ≥ 1 and every process p, p takes at least kε time
to execute k complete iterations of its repeat forever loop.

PROOF. Identical to the proof of Lemma 13.

Definition 70 Let ∆, t∆ and ε be constants that satisfy 68 and 69 respectively.

Definition 71 Let ζ = d(∆′ + ∆)/εe+ 3.

Lemma 72 For all processes p and r and every k ≥ 0, if p receives a (CHECK, r, k) message at some time
t then r sends an (ALIVE,−, k) message by time t.

PROOF. Let p and r be processes and k ≥ 0. Suppose that p receives a (CHECK, r, k) message at some
time t. For contradiction, suppose r does not send an (ALIVE,−, k) message by time t. Let r ′ be the process
to first send a (CHECK, r, k) message, and let t′ be the time when this happens. Note that t′ ≤ t and, at time
t′, phaser′ [r] = k. Then r′ 6= r since a process does not send a CHECK message for itself due to the check
in line 24. There are now two possibilities.
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• If k > 0 then, at time t′, phaser′ [r] = k ≥ 1. There are only two places where r ′ can set phaser′ [r]
to k: line 22 or 28. In the first case, r′ previously receives (ALIVE,−, k) from r, which contradicts
the assumption that r does not send an (ALIVE,−, k) message by time t. In the second case, r ′

previously receives (CHECK, r, k), which means some process sends (CHECK, r, k) before time t ′,
which contradicts the choice of r′.

• If k = 0 then, at time t′, leaderr′ = r, and so r′ previously set leaderr′ to r. When this happened, r ∈
activer′ (because the leader is picked among processes in active). Since r ′ 6= r, r′ previously added r
to active, and so r′ previously received a (ALIVE,−, k′) message from r for some k′. Then, k′ = 0
(otherwise upon receiving such a message r ′ sets phase[r] > 0, and so at time t′, phaser′ [r] > 0,
contradicting the fact that at time t′, phaser′ [r] = k = 0). Thus, r′ receives a (ALIVE,−, k) message
from r by time t, which contradicts the fact that r does not send an (ALIVE,−, k) message by time t.

Definition 73 Suppose that

(1) a process p executes line 30 with q = s and timerp[s] = 0 at some time te,

(2) p sets timerp[s] to timeoutp[s] in line 23 or 29 at some time ts ≤ te, and

(3) p does not set timerp[s] in line 23 or 29 during time interval (ts, te].

We say this timeout of p on s is proper if and only if (a) ts ≥ t∆ and (b) timeoutp[s] ≥ ζ at time ts. A
timeout that is not proper is improper.

Lemma 74 For every process p, the number of improper timeouts of p on s is finite.

PROOF. Identical to the proof of Lemma 45.

Definition 75 An (ACCUSATION-s, ph) message is outdated if ph < phases[s] at the time this message is
sent.

Note that any outdated (ACCUSATION-s, ph) message that s receives does not affect counters[s]. In fact, if
s receives an (ACCUSATION-s, ph) message that is outdated, then phases[s] > ph at the time t this message
was sent to s, so phases[s] > ph also holds at the time when s executes line 38 of its code (because phases[s]
is monotonically non-decreasing). Thus, s does not execute line 39, i.e., it does not modify counter s[s].

Lemma 76 Suppose a process p times out on s (in line 30). If this timeout is proper, then every
(ACCUSATION-s,−) message that p sends in line 31 as a consequence of this timeout is outdated.

PROOF. Suppose some process p times out on s, and that this timeout is proper. More precisely, suppose
that

(1) p executes line 30 with q = s and timerp[s] = 0 at some time te,
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(2) p sets timerp[s] to timeoutp[s] in line 23 or 29 at some time ts ≤ te,

(3) p does not set timerp[s] in line 23 or 29 during time interval (ts, te], and

(4) ts ≥ t∆ and timeoutp[s] ≥ ζ at time ts.

Suppose that this timeout causes p to send some (ACCUSATION-s, k) message, and let ta ≥ te be the time
when this occurs (in line 31). We must prove that this (ACCUSATION-s, k) is outdated, that is, we must show
that phases[s] > k at time ta. Suppose, for contradiction, that phases[s] ≤ k at time ta. Since phases[s] is
monotonically nondecreasing and te ≤ ta, phases[s] ≤ k also holds at time te.

We first note that p executes at least ζ − 1 complete iterations of its repeat forever loop during time interval
[ts, te]. This follows from assumptions (1), (2), (3) and (4) above, and the fact that p decreases timerp[s] by
exactly 1 in each repeat forever loop iteration (in line 43).

By Lemma 69, p takes at least ε(ζ−1) time to execute (ζ−1) complete iterations of its repeat forever loop.
Thus, from the above, te ≥ ts + ε(ζ − 1). Since ζ = d(∆′ + ∆)/εe+ 3, we have te ≥ ts + ∆′ + ∆ + 2ε.

CLAIM 1: p does not receive any (ALIVE,−,−) messages from s, or any (CHECK, s,−) messages, during
time interval (ts, te]. To see this, note that such a receipt would cause p to set timerp[s] in line 23 or 29, and
this would happen during (ts, te] since, at time te, p executes line 30. This would violate assumption (3).

Since p sends an (ACCUSATION-s, k) message to s at time ta in line 31, phasep[s] = k at time ta. So
phasep[s] = k also holds at time te when p executes line 30.

CLAIM 2: s sends at least one (ALIVE,−, k) message at some time t ≤ ts. There are two possibilities:

• If k > 0 then the only way for p to have phasep[s] = k at time te is by receiving (ALIVE,−, k) from
s, or receiving (CHECK, s, k) from some process, and this must happen by time te. From Claim 1,
this receipt must actually happen by time ts. If p receives (ALIVE,−, k) from s by time ts then s
sends (ALIVE,−, k) at some time t ≤ ts. If p receives (CHECK, s, k) from some process by time ts

then, by Lemma 72, s also sends (ALIVE,−, k) at some time t ≤ ts.

• If k = 0 then note that initially timerp[s] = −1 and at time te, timerp[s] = 0. The only way for
p to change timerp[q] from −1 to a nonnegative value is for p to receive (ALIVE,−, k ′) from s or
(CHECK, s, k′) from some process, for some k′. This happens by time te, and so from Claim 1, it
happens by time ts. Moreover, k′ = 0, otherwise upon receiving such a message, p sets phasep[s] to a
positive value by time ts, and so phasep[s] 6= 0 at time ta, a contradiction. Thus, by time ts, p receives
(ALIVE,−, 0) from s or (CHECK, s, 0) from some process. In the first case, s sends (ALIVE,−, 0) at
some time t ≤ ts. In the second case, by Lemma 72, s also sends (ALIVE,−, 0) at some time t ≤ ts.

This shows Claim 2.

Claim 2 implies that phases[s] = k at time t. Since phases[s] ≤ k at time te (where te > ts ≥ t), and
phases[s] is monotonically nondecreasing, we conclude that phases[s] = k during the entire time interval
[t, te].

Thus, by repeated applications of Lemma 67 starting at time t, it is clear that from time t and up to time
te, s sends an (ALIVE,−, k) message to p at least once every ∆′ time; more precisely, s sends at least one
(ALIVE,−, k) message to p during each time interval (τ, τ + ∆′] contained in interval [t, te].
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Since time interval (ts, ts + ∆′] is contained in interval [t, te] (because t ≤ ts and ts + ∆′ ≤ te), s sends
an (ALIVE,−, k) message to p during (ts, ts + ∆′] . By assumption (4), ts ≥ t∆. Thus, by Lemma 68
and the definitions of t∆ and ∆, this (ALIVE,−, k) message is delivered to p from s during time interval
(ts, ts + ∆′ + ∆].

CLAIM 3: p executes at least one complete iteration of its repeat forever loop during time interval [ts+∆′+
∆, te]. To see this, recall that p executes at least ζ − 1 complete iterations of its repeat forever loop during
time interval [ts, te]. Moreover, during time interval [ts, ts+∆′+∆], p executes at most d(∆′+∆)/εe = ζ−3
complete iterations of its repeat forever loop (this follows from the definition of ε). This implies Claim 3.

Since an (ALIVE,−, k) message is delivered to p from s during time interval (ts, ts + ∆′ + ∆], and p
executes at least one complete iteration of its repeat forever loop during time interval [ts + ∆′ + ∆, te], we
conclude that p receives some (ALIVE,−,−) message from s during interval (ts, te] — a contradiction to
Claim 1.

The above lemma considers ACCUSATION messages sent in line 31. A process that receives such messages
may forward it in line 40. The next corollary says that if a timeout is proper then any ACCUSATION that it
generates (whether in line 31 or 40) is outdated.

Corollary 77 Suppose a process p times out on s (in line 30). If this timeout is proper, then every
(ACCUSATION-s,−) message that is sent to s (in line 31 or 40) as a consequence of this timeout is out-
dated.

PROOF. By Lemma 76, if a process p times out on s (in line 30) and this timeout is proper, then every
(ACCUSATION-s,−) message that p sends to all other processes in line 31 as a consequence of this timeout
is outdated. Let (ACCUSATION-s, ph) be the first such message that p sends, and let t be the time at which it
is sent. Since this message is outdated, then every (ACCUSATION-s, ph) that is sent at time t ′ ≥ t is also out-
dated (this is because phases[s] is monotonically non-decreasing). In particular, every (ACCUSATION-s, ph)
message that is sent by a process to s in line 40 (after receiving one of the (ACCUSATION-s, ph) messages
sent earlier by p in line 31) is also outdated.

Lemma 78 counters[s] is bounded.

PROOF. Note that s increases its counters[s] only if it receives an (ACCUSATION-s,−) message (lines 35-
40). There are two kinds of such (ACCUSATION-s,−) messages: (a) those that are sent to s as a consequence
of a proper timeout on s, and (b) those that are sent to s as a consequence of an improper timeout on s. By
Corollary 77, all the (ACCUSATION-s,−) messages of kind (a) are outdated. As we previously observed,
such messages do not affect counters[s]. Thus only those messages of kind (b) may cause s to increment
counters[s]. By Lemma 74, the number of improper timeouts on s is finite. Since each timeout on s causes
at most n− 1 (ACCUSATION-s,−) message to be sent to s, the number of (ACCUSATION-s,−) messages
of kind (b) is finite. Therefore counters[s] is bounded.

Definition 79 For every process p, let cp be the largest value of counterp[p] in the run that we con-
sider (cp = ∞ if counterp[p] is unbounded). Let ` be the process such that (c`, `) = min{(cp, p) :
p is a correct process}.
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By definition, ` is a correct process. Furthermore, by Lemma 78, counters[s] is bounded, i.e., cs < ∞.
Thus, c` <∞, i.e., counter`[`] is bounded.

Lemma 80 For every correct process p, if there is a time after which ` ∈ activep, then there is a time after
which leaderp = `.

PROOF. This proof is identical to the proof of Lemma 50 (except that it uses Lemma 62 instead of
Lemma 34), and hence we omit it here.

Observation 81 For every correct process p, there is a time after which p ∈ activep.

PROOF. When p executes its initialization code, it sets activep to {p}. Thereafter, p never removes itself
from activep.

Corollary 82 There is a time after which leader` = `.

PROOF. By Observation 81, there is a time after which ` ∈ active`. The result now follows from Lemma 80.

Corollary 83 There is a time after which phase`[`] stops changing.

PROOF. Note that ` changes phase`[`] only when it considers that it lost the leadership (in lines 5-6), and
each time this occurs ` sets leader` 6= ` (in line 8). By Corollary 82, this can happen only a finite number of
times.

Definition 84 Let `phase be the final value of phasè [`].

Note that since phase`[`] is monotonically nondecreasing, `phase is also the largest value of phase `[`].

Lemma 85 For every correct process p, there is a time after which if leaderp = ` then phasep[`] ≥ `phase.

PROOF. Let p be a correct process. If p = ` then the lemma follows by the definition of `phase. Now
suppose p 6= `. If there is a time after which leaderp 6= ` then the lemma follows vacuously. So, suppose
that leaderp = ` infinitely often. Then, by the way leaderp is computed, ` ∈ activep at the beginning of
infinitely many iterations of the repeat forever loop. Note that initially ` 6∈ activep since ` 6= p, and so ` is
added to activep at least once, and this happens in line 20.

We claim that ` is added to activep in line 20 infinitely often. Indeed, suppose not and consider the last
time when ` is added to activep. When this happens, timerp[`] is set to timeoutp[`]. Subsequently, each loop
iteration decrements timerp[`], until it finally reaches 0. Then, the next loop iteration removes ` from activep
and thereafter ` is never again in activep—a contradiction that shows the claim.

By the claim, p receives (ALIVE,−,−) messages from ` infinitely often. Note that ` only sends finitely
many (ALIVE,−, x) messages with x < `phase. Therefore, there is a time after which the only
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(ALIVE,−, y) messages received from ` are those with y ≥ `phase. When p receives one such message,
p sets phasep[`] to y ≥ `phase. Then, phasep[`] ≥ `phase forever after, since phasep[`] is monotonically
nondecreasing.

Lemma 86 A process p can send only finitely many (ACCUSATION-`, x) messages with x < `phase.

PROOF. Note that (1) ` only sends finitely many (ALIVE,−, x) messages with x < `phase. We now claim
that (2) only finitely many (CHECK, `, x) are sent with x < `phase. Indeed, when some correct process q
sends a (CHECK, `, x) message, leaderq = ` and phaseq[`] = x. By Lemma 85, there is a time after which
if leaderq = ` then phaseq[`] ≥ `phase. Thus, there is a time after which any (CHECK, `, x) message that q
sends has x ≥ `phase. This shows the claim.

Consider any process r. We now claim that r sends (ACCUSATION-`, x) only finitely many times with x <
`phase in line 31. This claim immediately implies the lemma, because a process can relay an ACCUSATION

message in line 40 only if another process previously sent this message in line 31. To show the claim,
suppose that process r sends (ACCUSATION-`, x) and (ACCUSATION-`, x′) in line 31 with x, x′ < `phase
at two different times t1 and t2. Then, between times t1 and t2, r must set timerr[`] to some value different
from −1. This can only happen in lines 23 and 29. Therefore, between t1 and t2, r must either receive
(ALIVE,−, x′′) from ` or receive (CHECK, `, x′′) from some process with x′′ < `phase. By (1) and (2), this
can only happen finitely many times. This shows the claim.

Lemma 87 No process sends (ACCUSATION-`, `phase) messages infinitely often in line 31.

PROOF. Suppose, for contradiction, that some process p sends infinitely many (ACCUSATION-`, `phase)
messages in line 31. Note that p 6= `, because a process never sends ACCUSATION messages to itself.
We claim that ` receives such messages infinitely often, which is a contradiction because (1) every time `
receives such a message, it increments counter`[`], and so (2) eventually counter`[`] becomes greater than
c`.

To show the claim, first assume that p 6= h. Then p sends (ACCUSATION-`, `phase) to h infinitely often.
By Lemma 86, and the easy fact that no process sends (ACCUSATION-`, y) with y > `phase, there is a time
after which (ACCUSATION-`, `phase) is the only ACCUSATION-` message that p sends. This implies, by
Lemma 63, that h receives (ACCUSATION-`, `phase) from p infinitely often. If h = ` then the claim follows.
Otherwise, every time h receives (ACCUSATION-`, `phase) from p, it sends (ACCUSATION-`, `phase) to
`. So h sends (ACCUSATION-`, `phase) to ` infinitely often. By Lemma 86, there is a time after which
these are the only ACCUSATION-` messages that h sends. This implies, by Lemma 63, that ` receives
(ACCUSATION-`, `phase) from h infinitely often, which shows the claim.

The argument for the case p = h is very similar.

Lemma 88 No process p adds and removes ` to and from its set activep infinitely often.

PROOF. Suppose, for contradiction, that some process p adds and removes ` to and from activep infinitely
often. This implies that (a) p receives (ALIVE,−,−) messages from ` infinitely often, and (b) p sends
(ACCUSATION-`,−) messages infinitely often in line 31. From (a) and the definition of `phase, p eventually
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receives an (ALIVE,−, `phase) from `. So, there is a time after which phasep[`] = `phase. Thus, from (b),
p sends infinitely many (ACCUSATION-`, `phase) messages in line 31 — a contradiction to Lemma 87.

Lemma 89 There is a time after which ` ∈ activeh and phaseh[`] = `phase.

PROOF. If h = ` the result follows by the definition of `phase and the fact that ` ∈ activè . Now assume
h 6= `. By Corollary 82 and the definition of `phase, ` sends an infinite number of (ALIVE,−, `phase)
messages to all processes except itself. Moreover, ` only sends a finite number of (ALIVE,−, y) with
y 6= `phase. Since h 6= `, this implies by Lemma 63 that h receives an infinite number of these
(ALIVE,−, `phase) messages from `. Therefore, there is a time after which h has phaseh[`] = `phase.
Moreover, h adds ` to activeh infinitely often. From Lemma 88, h removes ` from activeh only finitely
often, and so the lemma follows.

By Lemmas 80 and 89, we have

Lemma 90 There is a time after which leaderh = `.

Lemma 91 There is a time after which only ` sends ALIVE messages.

PROOF. Consider any correct process p 6= `. From Lemma 88, there are two possible cases:

1. There is a time after which ` ∈ activep. In this case, by Lemma 80, there is a time after which
leaderp = `. After this time, p does not send ALIVE messages.

2. There is a time after which ` 6∈ activep. This implies that (a) there is a time after which p does not re-
ceive any ALIVE message from ` and (b) p 6= h (by Lemma 89), and (c) h 6= ` (because if h = ` then,
by Corollary 82, h sends an infinite number ALIVE messages to p, and so by Lemma 63, p receives an
infinite number of ALIVE messages from h, which contradicts (a)). Now, suppose, for contradiction,
that p sends ALIVE messages infinitely often. By Lemma 63, h receives ALIVE messages from p in-
finitely often. By Lemmas 89 and 90, there is a time after which leaderh = ` and phaseh[`] = `phase.
After that time, each time h receives an ALIVE message from p, h sends a (CHECK, `, `phase) mes-
sage to p (since p 6= ` and h 6= `). Thus, h sends infinitely many (CHECK, `, `phase) messages to
p, and there is a time after which (CHECK, `, `phase) are the only (CHECK,−,−) messages that h
sends to p. By Lemma 63, this implies that p receives (CHECK, `, `phase) from h infinitely often.
Therefore, we have the following:

(i) There is a time after which p has phasep[`] = `phase,

(ii) p starts timerp[`] and times out on ` infinitely often (because of (a)), and

(iii) p sends infinitely many (ACCUSATION-`, `phase) messages to ` in line 31 — a contradiction to
Lemma 87.

Thus, in both cases (1) and (2) there is a time after which p does not send ALIVE messages.

Lemma 92 For every correct process p, there is a time after which leaderp = `.
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PROOF. Let p be any correct process. From Lemma 88, there are two possible cases:

1. There is a time after which ` ∈ activep. In this case, by Lemma 80, there is a time after which
leaderp = `.

2. There is a time after which ` 6∈ activep. Since a process q 6= p can remain in activep only if p keeps
receiving ALIVE messages from q, then, by Lemma 91 and the fact that p ∈ activep (always), there is
a time after which activep = {p}. So there is a time after which leaderp = p. From this time on, p
repeatedly sends ALIVE forever — a contradiction to Lemma 91.

Thus, only case (1) holds.

Lemma 93 There is a time after which only ` sends messages.

PROOF. There are n + 2 types of messages: ALIVE, CHECK, and ACCUSATION-q, for each process q.

1. By Lemma 91, there is a time after which only ` sends ALIVE messages.

2. Only a finite number of CHECK messages are sent. To see this, note that a process p sends a CHECK

message to another process q only if p receives an ALIVE message from q at a time when leaderp 6= q.
By Lemmas 91 and 92, there is a time after which this cannot occur.

3. For any process q, only a finite number of ACCUSATION-q messages are sent. To show this, let q
be a process. It is sufficient to prove that each process p sends a finite number of ACCUSATION-q
messages in line 31 (this is because p relays an ACCUSATION-q message in line 40 only if another
process previously sent this message in line 31 of its code).

When a process p sends an (ACCUSATION-q,−) message in line 31, p “turns off” timerp[q] by setting
it to−1 in line 34. After this occurs, p can send another (ACCUSATION-q,−) message in line 31 only
if p “turns on” timerp[q] again in line 23 or line 29, and this can happen only if (a) p receives an ALIVE

message from q (in line 19), or (b) p receives a (CHECK,−) message (in line 26). Thus, p can send an
infinite number of (ACCUSATION-q,−) messages in line 31 only if (a) p receives an infinite number of
ALIVE messages from q or (b) p receives an infinite number of (CHECK,−) messages. From (1) and
(2) above, we deduce that p can send an infinite number of (ACCUSATION-q,−) messages in line 31
only for q = `. But p sends only a finite number of (ACCUSATION-`,−) in line 31, because each
time p sends such a message, p removes ` from activep (in line 32), and from Lemma 92, there is a
time after which ` ∈ activep. Thus each process p sends only a finite number of (ACCUSATION-q,−)
messages in line 31 for every process q.

From Lemmas 92 and 93, we get the following result:

Theorem 94 The algorithm in Figure 6 implements Ω in system S+, and it is communication-efficient.
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7 Final remarks

In their 2002 PODC tutorial [KR02], Keidar and Rajsbaum propose several open problems related to the
implementation of failure detectors in partially synchronous systems. In particular, they ask what is the
“weakest timing model where 3S and/or Ω are implementable but 3P is not”. As a partial answer to this
question, we note that, in contrast to Ω, 3P is not implementable in system S. In fact, it is easy to show
that this holds even if we strengthen S by assuming that (a) all the links in S are reliable (i.e., no message is
ever lost), and (b) processes know the identity of the eventually timely source(s) in S. So S is an example
of a partially synchronous system that is strong enough to implement Ω but too weak to implement 3P .
Similarly, S+ is strong enough for an efficient implementation of Ω, but still too weak for implementing
3P . Intuitively, this is because the level of synchrony in S and S+ is not sufficient to get 3P: in both
systems only the output links of some correct process(es) are eventually timely. Note that if we strengthen
the synchrony of S by assuming that both the input and output links of some correct process are eventually
timely, then 3P becomes implementable [ADGFT01].

In [KR02], Keidar and Rajsbaum also ask: “When is building 3P more costly than 3S or Ω?”. Concerning
this question, note that any implementation of 3P (even in a perfectly synchronous system) requires all
alive processes to send messages forever, while Ω can be implemented such that eventually only the leader
sends messages (even in a weak system such as S+).

Finally, it is also worth pointing out that the above results provide an alternative proof that 3P is strictly
stronger than 3S: this can be deduced from the fact that Ω (and hence 3S) is implementable in system S
but 3P is not.
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