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Abstract

Let (M, g) be a compact Riemannian—manifold, n > 3. We prove the existence of
multiple solutions for equations like

Au + au = fu?, u>0

wherea € RT*, f € C°° (M) is positive, and the exponeptakes critical and overcritical
values. General results are obtained and specific exam@leiseussed, lik&™, S*(t) x
S™~t andS*(a) x S%(b) x S™75.
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1 Introduction

Let(M, g) be a compact Riemannian manifold of dimensior 3. Our paper is concerned
with the question of the existence of multiple smooth sohsifor the equation

Au+au = fu?, u>0 (Ep)

whereA = —div (V) is theg—Laplacian,c € R™*, f € C*(M) is positive andp >
Z—jg. We say that the equatiaiE, ) is critical whenp = Z—fg and overcritical whemp >
Z—jg. Indeed, the exponeéﬁj—% is the classical critical Sobolev growth exponent. It appea
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in particular in the equation one has to solve in the presdrizalar curvature problem :

(n—2)5, nt2
A — n—3 1.1
u+ =1 u= fun=2, u>0 (1.1)

where S, is the scalar curvature af. More precisely, if forf € C°°(M) there exists
u € C>(M) a positive solution of[(I}1), thefiis the scalar curvature of theconformal
metricu 2 g. We are here interested in two particular cases of equ@m (@On the stan-
dard spherésS™, h,,), this problem is referred to as the Nirenberg problem. Itsltg®n is
equivalent to the resolution df (1.1) wih,, = n(n — 1). For references on the Nirenberg
problem, see Hebey [[L1], Kazdan-Warnle [15] and[L] [16]. fEhie also the intensively
studied Yamabe problem, which consists in the search fdiocoral metrics with constant
scalar curvature. It corresponds to the resolutiof of (@itt) f = 1. The Yamabe problem
is completly solved.

Concerning muItipIicity and uniqueness of positive saus for such equations, we re-
fer to Aubin [1,[2], Bidaut-Véron and Vérof[3], Esposif#][ Hebey-Vaugor[[313], Obata
(71, PoIIack 18], Schoer{[19] and [RO]. In particular, adbhat the Yamabe equation pos-
sesses a unique solution if there exists [g] such thatS; < 0 or if there exists an Einstein
metricg € [¢], where[g] stands for the conformal class @fWe are here especially inter-
ested on results of Hebey-Vaug[lS] (see also Scn [Biheir work, the manifold
is assumed to have big enough isometry groups and solutitengquired to be invariant
under the action of subgroups. Besides, all groups are fititeh implies that the quotient
space of all orbits can be equiped with a structure of mashifod our results, this condi-
tion is not required. This is made possible thanks to thermemdvances of Hebey-Vaugon
[@] and Faget|]7ﬂ8] concerning the influence of isometryugon Sobolev spaces and
Sobolev inequalities.

GivenG an isometry groupy € R*™* andf € C*> (M) positive andZ-invariant, we
considerG-invariant solutions of the equation

—k

Aquauffun -k u >0, (ng)

wherek > 0 is the minimum dimension of th&é'-orbits. The energy of a solutiom of
(EY ) is defined by

E(u) = /M fui( = dvy. (1.2)

We obtain multiplicity of energies for solutions Qng) where each solution is invariant
by the action of an isometry grou@; such that all theZ;—orbits have the same mini-
mal dimensiork. Whenk = 0, the equatior(ng) is critical and wherk > 0, one has

a2 > 2 and(E!,) turns out to be overcritical. The study of equatidty: ;) is
strongly related to the notion of first and second best cotsia the Sobolev inequalities
presented in sectioﬂ 2. The first best constant appears td ingoortance in existence

results and the second in multiplicity results.



Multiplicity for critical and overcritical equations 3

2 Preliminaries

Let (M, g) be a compact Riemannianmanifold, /s(M, g) its isometry group{s(M, g)
is a compact Lie group), an@ a subgroup of s(M, g). By taking its closures for the
standard topology, we can assume ifias compact. We note for anye [0, +o0],

CL(M) = {ueCP?(M)VoecGuoo=u}
H?o(M) = {uec H}M)\VocGuoo=u}

where the Sobolev spadé? (M) is the completion of>>° (M) with respect to the norm
[ull32 = |Vull5 + [Jul|3. When no confusion is possible, we writé,, H, H?  instead

of C2(M), H} (M), H? o(M). If n— k > 2, we let2f = 2% ‘and Hebey-Vaugor{[14]
proved that for any < ¢ < 2%, the embeddlngiLG C L% is continuous, and compact if
q < 2% Forp < 2% — 1, compactness of the embeddiﬁfj)c C LP*! implies, thanks to

the variational method, that there exist§'& solution for the equation
Au+au = fu?, u>0 (Ep)

whereA = — div(V ) is theg—Laplacian € R™*, andf € C is positive. Wherp =
2% _ 1, the existence of solutions is more difficult to obtain beesnfdack of compactness.

For convenience in what follows, we recall some results attmaction of an isometry
groupG on a compact manifold. We refer to Bredc[h [4], Gallot-Huliafontaine [19] and
Hebey-Vaugon|E4] for more details. Since we can cha@seompact, for anyr € M,
0% = {o(z),0 € G} the G-orbit of z is a compact submanifold dff andSS = {o €
G,o(x) = x} the isotropy group of: is a Lie group ofG. A G-orbit O¢ is principal
if foranyy € M, Sf possesses a subgroup which is conjugatg%o Principal orbits
are of maximum dimension but the converse is false in genkal() be the union of all
principal orbits. Ther is a dense open subset df, andQ2/G is a quotient manifold.
More precisely, ifr is the associated submersion, thenQ2, Q/G) is a fibration where
each fiber is &-orbit. Note that if allG-orbits are principal, there exists a unique manifold
structure on the topological spadé/G and the metrigy induces a quotient metri¢ on
M/G such thatr; : M — M/G is a Riemannian submersion.

We consider her€y solutions of(E,) for p = 2¢ — 1. The equation is written as

lc

Au—l—au—fun = u > 0. (E(’if)

Whenk > 0, namely when there is no finitg-orbit, then®£3=% > 242 and(E% ) is

in some sense, overcritical. The study((ﬂ‘kf) is strongly related to the problem of the
attainability of sharp constants in functional inequaltiassociated with the continuous
embeddinngG c L%, Following Faget [[B], we introduce two assumptiofi$;) and

(H2) given by :

(H1) : for any orbitOS of minimum dimensiont and minimum volumeA, there
existsH a subgroup of s(M, ¢g) andd > 0 such that
)in Oy5 = {z € M/dy(z,05)) < 6}, all H-orbits are principal,
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i) forany z € Oy,.5, OF c OF andOf = O,
iii) for any @ € O,,5, A = vol,0F < vol,OF .

and

(Hz) : for any orbitOS of minimum dimensiont and minimum volumeA, there
existsH a normal subgroup af andé > 0 such that
)in Og5 ={z € M/dy(z,0,,) < 6}, all H-orbits are principal,
iy O = 0O¢.

iii) forany « € O, 5, € OF., dimOS > k = dimOS,,

o)

iv) foranyz € O,,, « is a critical point of the functiom; (y) = vol,OF.
Faget [] shows that :

Theorem F [Faget [E]] Let (M, g) be a compact Riemannian n-manifold, G a com-
pact subgroup of Is(M, g), k the minimum G-orbit dimension, and A the minimum
volume of G-orbits of dimension k. Assume that n — k > 2. If at least one of the
assumptions (H1) or (Hz) holds true, then there exists B > 0 such that for any
u€eH 127G,

Kn—k
[lull3: < 7 [IVull3 + Bllull3] , (2.1)

n—

where K, _ = 4 =y > ond wp—k 15 the volume of the standard sphere
(n—k)(n—2—Fk)w,

(S hp_i). The value K, _j AT7E s the best possible in @), i.e. the smallest
constant such that @) holds true for all u € H127G.

When assumption&;) or (H2) hold true for a subgroupl we use in the sequel the
following notations : 7y is the canonical submersidf,, s — O,,.s/H andg is the
quotient metric induced by on O, s/H such thatry is a Riemannian submersion. For
anyz € Oy, .5, We notez = 7y (OX) andvy the function defined for any € O,., s/ H
by G (y) = voly(m5 ().

When inequalityl) holds true, we define the second bestaat by

Bo,c(M, g) := inf{B > 0,Yu € Hi ¢, (-1) is valid with B}.
If (E) holds true, we can takB = By ¢ (M, g) in (E), so that for any, € H12_G,

2 K,k G,o,
lullze < == (IVull3 + Bo.c(M, g) ||ull3) (I5"")

An—k

This inequality is optimal with respect to the first and to $eeond constants, i.e. none of
them can be improved. When no confusion is possible we \ijte instead ofBy (M, g).
Note that Hebey-Vaugof [[L2] proved earlier that witer: {Id}, then(Iéd"’pt) holds true
on every compact Riemannianmanifold,n > 3. As a remark,(]?"’pt) is true if all G-
orbits are principal of constant volume, since we can tdke G in (H;). We then easily
see that

BO7G(Mag) = BO,Id(M/Gvg)' (2'2)
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Now we discuss the role of the first best constar(tl@?t) with respect to the existence
of solutions of(Efo). G-invariant solutions o(ng) can be obtained by the variational
method by minimizingl onP where :

[Vull3 + aful3

- (f]\/[ f|u|2lj dvg)2/2u ,

and
P = {uerG, f|u|2m dvg >0}.
M

We noteY'¢ := inf,cp I(u). The main difficulty is the lack of compactness coming from
the critical exponen??, but this is by now a classical problem. It was firstly solved fo
the Yamabe problem by working with subcritical exponent trah by passing to the limit
exponent. Fageﬂ[?] proves that

Yo < A 2.3
¢ = K, (max f)2/27 (2:3)
and that, if
AR
Te < (2.4)

Ko—r (max )2/

then there exists a solutian € Cg for (E% ;) such thafl = I(u). Such a solution is

said to beG-minimizing. Let(E¥) be (Eif) when f = 1. Propositions 1 and 2 below
follow from the work of Faget||7].

Proposition 2.1 Let (M, g) be a compact Riemannian n-manifold , n > 3, G an
isometry group, k be the minimum G-orbit dimension. Assume that n —k > 2 and
that (Ig’Opt) holds true. If a €]0, By [, then there exists a C& and G-minimizing
solution for the equation (EX).

Proof. By the definition ofB, ¢, the strict inequality(@) holds true, and we can apply
the results in Fagef][7]. [

Proposition 2.2 Let (M, g) be a compact Riemannian n-manifold , n > 4, G an
isometry group, k be the minimum G-orbit dimension, and A be the minimum
volume of G-orbits of dimension k. Assume that n — k > 4. Let xo € M such that
dimOﬁ) =k and volgOg*; = A and let f € CZ& mazimal at xo. Assume that one
of the assumptions (H1) or (Hza) holds true for a subgroup H. With the notations
introduced above, if

(n—4— k) Agf (o) = 0
(2.5)

n—2— 3A30m(Zo) ~
a < 4(n—21—kk) ( : : + S@(zo)) )

then there exists a G-minimizing C& solution for the equation (ng)
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Proof. For anye > 0, let i, be defined o0, s by @ic = (¢ + 72)1=N/2 — (e + §2)1-N/2
wherer = d;(., Zo) andN = n—k. We setu. = 4. oy, and after lengthy computations,
we get that

A2/N
I(u€) S KNf(Io)Q/Zn

€ a 4(N-1 N—-4)A T 3A;0g (T ~ .
x [1+ N(N=1) ( N+ Sy - PR *Sg(%)) +O(6)} if N >4
X [14—%(Sg(io)—i—%w—(ia)—i—o(elne)} if N =4.

Thanks to[(2]5), inequality (3.4) holds true and we can afigyesults in Fagef|[7]. Propo-
sition[2.2 is proved. ]

Now we briefly discuss estimates @y ¢ (M, g). At the moment, the only compact
Riemannian manifold where one knows its explicit value & standard sphere™, h,,)
when no isometry invariance is requiered, i.e. wiién= {Id}. Noting B, instead of
By, 14, One has that

-2
By(s", ) = "2 (2.6)
Lower bounds forBy (MM, g) have recently been obtained by Fa@t [8] : on a compact
Riemanniam-manifold,n > 4, with the same&>, k£, A and notations as aboveyif-k > 4
and if (H1) or (H2) holds true, then

AT=F  n-2-k . 30gUn(&)
> 5 — :
BO,G(Mag) _maX{VanK k74(n*k71) (Sg(l'())+ A (2 7)
g9 n—

whereV, is the volume of(}, g). We do not know yet upper bounds &% ¢ (M, g) in
the general case. Hebey—VaugEl [13] computed upper bounsigeazific conformally flat
manifolds. On(S1(t) x S"~! hy x h,_1), with t > 0,n > 3 and when no isometry
invariance is requiered, i.& = {Id} :

(n—2)
1

_ 2
< Bo(SY(t) x 8™, by X hny) < 1, =27

442 4 (28)

Note that this approximationis optimal wher- oo. On the quotient manifolds™ /G, §),

n > 3,whereG C O(n+ 1) is a cyclic group of ordeA and acts freely o8™ andg is the
quotient metric induced by,,,

A?n(n —2) < Bo(S"/G, §) < (1 + A—Q) ("+ 1) 14 M=) (2.9)

4 4 2 4

As we will see, these estimates &4 ¢, especially the upper bounds, are fundamental in
the problem of multiplicity of solutions.
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3 Multiplicity results 1

Assuming that there exists two invariant solutions Gﬁﬁf), we give general conditions
to separat the energies in Theorgms 4.1.8[arjd 4.1.b. Thelustesite these theorems on
specific examples where existence and multiplicity are cttibje. We postpone the proof
of Theoreml.a a@.l.b to sect[bn 4.

Theorem la Let (M,g) be a compact Riemannian n-manifold, n > 4, G1 and Go
be two isometry groups such that the minimum dimensions of G1- and Ga-orbits
are the same. We denote by k > 0 this common minimum orbit dimension, and let
A; > 0 be the minimum volume of G;-orbits of dimension k,i € {1,2}. We suppose
that n — k > 2, A1 < Ay and that (152’0pt) is wvalid. Assume that for a € RY
and f € Cg g, positive there exist two solutions of (Eﬁf) s uy € CF which is
G1-minimizing and us € C&OZ which is Go-minimizing. If

l) (0% < BO7G2 (]\47 9)7 (31)
n(n —4)
i1) o 2z =22 By(M,g), and (3.2)
Ao\ ToF PR G
11 2 2 n—k
1i1) a > Bog,(M,g)— <A_1> -1 e !
Vg(n*k)(n*Z) Kﬁb72
_n_ 2(n—2-k)_
TL(TL — 4) n—2 maxf (n—k)(n—2) (3 3)
(n—2)? <f> ’ :

where < f > stands for the average value of f, then E(uy) < E(uz). In particular,
w1 and ug are distinct.

With similar global arguments, and basically only one técainvariation in the proof,
we can prove a slightly different result :

Theorem 1b Let (M, g) be a compact Riemannian n-manifold, n > 4, G1 and G4
be two isometry groups such that the minimum dimensions of G1- and Ga-orbits
are the same. We denote by k > 0 this common minimum orbit dimension, and let
A; > 0 be the minimum volume of G;-orbits of dimension k,i € {1,2}. We suppose
that n — k > 4, Ay < Ay and that (Igz’Opt) is valid. Assume that for o € RY
and f € CZ g, positive, there exist two solutions of (Eif) s uyp € O which is
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G1-minimizing and uz € Cg, which is Ga-minimizing. If

2) a < BO,GQ (M7 9)7 (34)
g (n—k)(n—4—k)
> B M .
i7) a > n—2—%) 0,G.(M, g), and (3.5)
A\ TF AT
n—k n—
iii) o > Bog,(M,g)— <—2> 1| ——
Ay VoF
g n—k

(T

where < f > stands for the average value of f, then E(u1) < E(uz). In particular,
w1 and ug are distinct.

As a remark, if in Theorems 1.a and 1.b, one of the solutigner u- satisfies4),
then inequalityiii) is not necessarily strict. We refer to the proof of Theor@safland
k.1.b for more details on this claim. As a remark, the contiiiétti of conditionsi), i)
andiii) is not automatic. In our examples, we chogssuch that the right side ifii) is
nonpositive so thati) is valid. Then multiplicity holds true whem belongs to the interval
defined byi) andii). In the following Corollary of Theorelﬂ.l.a, we give geneandi-
tions in order to separate energies of an infinity of solugion

Corollary 3.1 Let (M,g) be a compact Riemannian n-manifold with n > 3, and
(Gi)ier a family of isometry groups of Is(M, g) such that for any i € I, (Igi’om) 18
valid. For any i € I, let k; be the minimum dimension of G;—orbits, and A; be the
minimum volume of G;-orbits of dimension k;. We assume thatVi € I, k; = k. Given
acRT™, and f € CS?EIGZ' positive, we suppose that for any i € I, there exists a G;-

minimizing solution u; € Cg. for (EX;). If a € [ZYS;? By(M, g); minieI(BO,Gi)}
and if for any i € I and j € I such that A; < A; we have that

_n

2 _n_ 2(n—2—k)
A\ 7% K2 4 (n _ 2)2 n—2 f f dv n—R)(n—2)
— > 14(Byg —a) = ATPe= (1072 Ju ) MY ,
(Aj) +( 0,G; CY)K% i n(n74) max f

n—k

then E(uj) < E(uyg).

Now we discuss specific examples. The two first examples corrcétical equations
and the third example concerns overcritical equations.

Example3.1 Let (S™, hy,) be the standard sphere of odd dimension n > 5 and
G1 and G5 be two finite subgroups of O(n + 1) acting freely on S™ of respective
cardinal 1 < A; < As. Let f € C'E;OIUG2 positive and maximal at zg € S™ such that
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the derivatives at xg are zero up to the order n — 3, and let < f > be the average
value of f. If

()"
(s~ 5030) (5525) ™ e |(8) ]

then there exist at least two C'*° solutions of different energies for the critical equa-
tion
nt2
Au+au = fun—2, u >0, (E2f)

when a belongs to the interval

@€ [T(Ef_;)); n(n; 2)] '

One of these solutions is GGq-invariant and the other is Go-invariant.

As a remark, whem = "(”4’2), (ng) is the Nirenberg equation and we recover a
result of Hebey-Vaugorf [13].

Proof of Example @ SinceG; acts freely,S™/G; is a manifold. with a quotient metric
induced byh,, notedg;. As mentioned in sectioﬂ 2, since tlig-orbits are principal of
constant cardinal/$"°"") holds true and with[(Z.2) anfi (2.9), we have that

n(n — 2)'

Bo,c,(S™, hy) = Bo(S" /G, Gi) > 1

(3.7)
We claim that fory < % there exist two solutions; € Cg’, i = 1,2, G;-minimizing
for (ng). The existence foxr = # is given by Hebey-VaugorL_U.B] since the deriva-
tives of f are zero up to the order — 3. Besides, thanks to Propositipn 2.2, there exists
u; € Cg solution of (EY ;) if

n—2 n _n(n—2)

a<m59i(5 /Gl)— 4 .

Our claim is proved. Now according to Theorfm| 4. L.aandu, are distinct if the three
assumptions[(31)[(3.2) anfi (3.3) hold true. The first diowif3.]) holds true ifx <
2n=2) thanks to[(3]7). Conditior] (3.2) is stated here, sifgeS™, h,) = 22 as

n?(n —4)

= Am 2

With this lower bound omy, in order to get3), it suffices that
n%(n —4) (142)721 . n(n — 2) (n(n4))"n2 (maxf)i
A ) o) —2)2 <f>
1 4A2( ) (n ) f

-~ ‘' >B n —
4(TL72> e 07G2(S 7hn)
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with a inequality which is not strict, thanks to the remarktdwing Theorel.b. This is
exactly the assumption made gnThuswu; andus exists and are distinct when
n*(n—4) n(n—2)

4(n—2)"’ 4

and Exampl¢ 3]1 is proved. [ |

Now we discuss the following example. Here, we apply Thedéelb and Theorem
B.3.a does not provide the result.

Example3.2 On (S'(t) x §"7', hy x hy_1) with n > 4, and ¢ > /3050 let
G1 = Ry xIdgn-1 and G3 = Ry X Idgn-1 be two isometry groups, where R; and R,
are finite subgroups of SO(2) with respective cardinal A; < Ag. Let f € C& ¢,
positive and maximal at zy with derivatives at x¢ equal to 0 up to the order n — 2
and such that

<maxf)2/n N <(n— 2° L) K AT (2mtw,_1)?/" <(n— 2)2)5‘2
<f> - 4 4¢2 4, )2/ n(n —4) '
(%) -
(3.8)

Then there exist at least two C°° solutions of different energies for the critical
equation (E? f) when « belongs to the interval

c [n(n—4)((n—2)2 1) ; M]

(n—2)2 4 412 4

One of these solutions is Gi-invariant and the other is Go-invariant.

Proof of Ezample 3.3. TheG;-orbits are finite and principal and thus

(S'(t) x 8" 1)/ (R; x Idgn-1) = S* (Ai) x §n1

with quotient metrich; x h,,_1. As already mentioned in sectiﬁh Ql,gi"’pt) holds true

and with [2.R) and[(2]8)

(n—2?

BO.,G-; (Sl(t) X Sn_l,hl X hnfl) Z 1

(3.9)

We claim now that for )

a < (n% (3.10)
there exist twaC> solutions for(ng), minimizing for G;, i € 1,2. Since the second
derivatives off atz, are zero andy, xp,,_, (S*(t/A;) x S ') = (n — 1)(n — 2), the

existence conditior[(3.5) of Propositipn|2.2 is writtemas. "=2° If o = (=2° (ES;)
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is the equation of the prescribed scalar curvature probledhitais solved by Escobar-
Schoen[{b] on compact conformally flat manifoldgihas derivatives at a maximum point
which turn out to be zero up to the order 2. Thus on(S*(t/A;) x S"~ 1 hy X hp_1)
there existg:; a minimizing solution of the equation

(n—2)°
1

. n+2
Aty + U; = fﬁ;72, u; > 0.
If m; : S(t) x S*~t — SY(t/A; x S"~1) is the canonical submersion, then= a; o 7;
2
is aG;-minimizing solution of(E ;) with o = ("=2)_ Our claim is proved. Then one has

E(u1) < E(uy) if the three assumptionmAm.S) apd](3.6) of Thedrerbhold true.
B.4) is valid by [3]) ifo < @. [B.3) holds true thanks to the upper boundin](2.8) if

nn—4) (1 (n—2)?
(0% Z m (E + 4 ) . (3.11)

By (.8) and [3.8), the right side df (B.6) is nonpositiveefil{3.) is valid. Thus existence
and multiplicity are compatible ifv satisfies 0) and (3[11) which is possiblée if>

1/2
(%) . Exampld 3]2 is proved. o

Now we discuss an example where there are non constant donsrog orbits and the
minimum dimension is.

Example 3.3 On (S'(a) x S%(b) x 873, hy X hg X hy,_3) with n > 10 and

1 (n—5)?
— < }p?
P (n —7)(3n2% — 26n + 57)’

(3.12)

we consider the following isometry groups:
G = Idsl(a)XS2(b) X O(TL — 6) X 0(4) and Go = 0(2) X 0(3) X Idsnfs.

Let 29 = (0, Ogn—s, z9) where 6 € S*(a) x S*(b) and 2o € S* and let f € CZ ¢, be
a positive function maximal at xo such that Af(z¢) = 0 and

(n—3)2

rja}xi‘ N ((4ab2)2/(n—3) B 1)—"’%3 (%) e (3.13)

Then there exist at least two C*° solutions with different energies for the over
critical equation (E? ) when « belongs to the interval

| e g (R oo )} |

One of these solutions is Gi-invariant and the other is Gs-invariant.
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Proof of Ezample [3.3. TheGo-orbits areS*(a) x S2(b) x {2}, wherez € S"~3, and thus
they are principal of constant dimensi®@and constant volume&r2ab?. The quotient met-
ric on (S'(a) x S2%(b) x S"—%Gg = 573 is h,,_3. According to sectioff] 2(15*"")
holds true and with[(2]2) anl (2.6)

(n73)(n75)'

Bo., = Bo(8" 2, hpp_3) = 1

TheG;-orbitof x = (6,y,2) € R? x R"~6 x R* wheref) € S*(a) x S?(b), and(y, z) €
Sn3is

Og = {0} x S""(llyll) x S*(|l])-
If ||yl # 0 and|z|| # 0,dimOS* = n — 4 is maximum. Forrg = (0, 0gn—s, 29), Where
0 € S'(a) x S%(b) andzy € S3, we have

OS5 = {0} x {Ogn—c} x S*

anddimOS! = 3 is minimum (thusOS! is not a principal orbit) andolOS! = 272,
We setl = Idgi(q)xs2)xrn-s X O(4). H is a normal subgroup of;, and for any
x = (0,y, z) such that # 0,

05" = {0} x {y} x $°(||]),

where||z|| €]0, 1]. The maximum volume foH -orbit is archieved at,. Moreover theH -
orbits are principalan®@Z = OS:.If 2 ¢ OS1, thenOS = {6} x S"~"(||ly|) x S3(||=|)
with ||ly|| # 0 and||z| # 0 anddimOS* = n — 4 > 3. Finally assumptior{#,) is true
with H and(]?l"’pt) is valid. Now in order to get;-invariant and -minimizing solutions
of (E3;), we use Propositiop 3.2. The conditign (2.5) &y is

(n—3)(n-5)

e 3.14
a< 1 ( )

For G, we haveAiy (i) > 0 and thus[(2]5) holds true if

n—>5 -
o < msf}(wo)

Thanks to Propositio@.l below, this inequality holds ffue

a< 4(”?154) (b—22+(n6)(n7)). (3.15)

Energies of both solutions obtained under conditigns Ji3ab¢l (3.15) are different if the
three multiplicity conditions of Theorefn 4.1.b hold trueheTfirst condition [(3]4) is <

(n=3)(n=5) and holds true if[(3.34) does. The second dnd (3.5) is statesids

(n—3)*(n—7)

a > 4(n— 5) (3.16)
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The last condition[(3]6) is stated here as

o >

n—3)(n— n—3)n— = max £\ /(3
e o) (4525:2) (5]

By ( ), the right side of this inequality is nonpositive that ) holds true. Finally
.14), [3.1b) and[(3.16) guarantee existence and muitiplof two solutions for(ng)

when

e [(n;gz?(z;ﬂ;min{(n—s{‘x(n—ts)%gl—i) (b%””‘ﬁ)(”‘”)}{'

This interval is not empty thanks tp (3]12). Exampl¢ 3.3 sved. [

Propositior] 3]1 below was used in the above proof.

Proposition 3.1 On a product manifold (V™ x S"™™ g X hy—m) where (V™ g) is a
compact Riemannian m-manifold, we consider the isometry groups

G = Idv X O(’I“l) X O(TQ), and H = Idv X Id]Rm X O(TQ)

where r1 > ro et vy + 1o = n—m+ 1. Let gy = (00,0grr1,20) with g € V and
20 € S™71. Then assumption (Hz) holds true and with the notations used above,
we have that

Sg(jo) > Sg((go) + 7“1(7‘1 -1).

We postpone the proof of Propositipn|3.1 to secfion 7.

4 Proofs of Theorems 1.a and 1.b

For convenience, we introduce a general inequality :cfeét > 2 fixed, 3P > 0,3D >
0,Yu € HC H}(M),
[ullZse < P [IVull3 + Dllull3] (Irp)

crit —

where H C H? is a functional space such that the inclusiinc L<"* is critical in
sense of being continuous but not compact. Theorems 1.a.anard direct corollaries
of the following Theorenj 4}1. In order to get Theorem 1.a fibheoren 411, it suffices
to setH = HZ, crit = %, P = K,,andD = By(M,g). In this case(Ipp) is the
optimal Sobolev inequalitYIéd’OPt) which holds true according to Hebey—Vaug%[ljZ] on
every compact Riemanian—manifold,n > 3. To get Theorem 1.b from Theor A, it

sufficesto sell = H} ,,, crit =2¢, P = K,_ A, " ", andD = By g, (M, g). In this

case Ipp) is the optimalG2-Sobolev inequalit)(Ig””’t) which holds true according to
Theorem [F] when we assunfé{; ) or (Hs).
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Theorem 4.1 Let (M, g) be a compact Riemannian n—manifold, n > 3, G1 and Go
be two isometry groups such that the minimum dimensions of G1- and Ga-orbits
are the same. We denote by k > 0 this common minimum orbit dimension, and let
A; > 0 be the minimal volume of G;-orbits of dimension k, i = 1,2. We suppose
that n — k > 2, Ay < Ay and that (Igz’om) holds true. Assume that for o € RT*
and f € CZ g, positive, there erist two solutions of (Eif) s uyp € CF which is
G1—minimizing and uz € Cg, which is Ga—minimizing. If

i) a < By (M,g) (4.1)
4 — crit)erit
W) o > %D (4.2)
A ik AZ;irkit Kcrz;—Z
2\ """ 2 n—k
iii) a > Bog,(M,g)— <A_1> -1 (crit—2)(n—2—k) N
va (n—k) pesit
crit (crit—2)(n—2—k)
4 — erit)erit\ 2 e
(( cz@ Yeri ) (zlz}xi) (43)

then £(u1) < E(uz). In particular uy and uz are distinct.

Proof of Theorem [.]. Sinceu, is G;-minimizing, the strict inequalit (u;) < &(uz) is
equivalent to the strict inegalit¥ ¢, < Y¢,. According to ), it suffices then to prove
that
_2
At
K, (max f)2/Z
Note that ifu; satisfies[(2]4), then the equality [n (4.4) is sufficient to&e:;) < &(uz).
Let us now search for a lower bound f6¢;, . Sinceus is Ge-minimizing and with(I?Z’(”’t),
we get that

< TGQ. (4.4)

1 max f)2/% K,_
Lo @axTE Bk Q)2 + Bo o, lual2]

TG2 - Té;k AQnTk
Thus
1 ¢ Kok Bo.g, — o
T < (max )Y =2 1 2 3] (4.5)
G2 A" Te,

Since by [411)Bo.c, —« > 0, we search for an upper bound ffrs ||3. Multiplying (Eif)
A1 . . .
by us* ~ and integrating ovel/ gives :

2 4 of oy 4 4
V orit ||2 — crit d _ crit d .
[Vus™|3 7@“2’15(4 ~erit) </M fuy Ug Q/M U ”9)

Then by Holder’s inequality

#_ 4 __4
Ry 2-orit

f_ _4_ of of
/ fus Ty, < ( fuZ dvg) < / fdvg>
M M M
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and by(Ipp)

1 : :
32 S5 2 — D [lug™

2
[Vus™ 5

In particular, we have that

ofl oy 4 2 4

crit crit

1, =2 ., 4 of 2 / 21
- crit G d d
PHUQ crit — CTit(4*CT7:t> (/M qu Uf]) ( Mf Vg

4o 4
D _ crit d .
+ ( crit(4 — cm't)) /M Uz

Now by ) and since; is aGs-minimizing solution we obtain that

crit crit—2

4P 2 crit—24n—k 2f
2<— T 2 / d
lualz < ((4 - crit)crit) Gz M J dvg

Reporting this inequality in[ (4] 5)

1 <
ng -
2/211 Kn—k 1 B _ 4P e Tcri572 / J ~of
(max.f) Anik +(Bog: — ) (4 — erit)crit Gz Mf Yo
2

and with the upper bound fof ¢, given by [2.B),

1 K, _
< (max f)2/2ﬁ —zk X
TGQ AQn—k

crit crit—2

crit—2 PCTQ“ 4 2 fdv 2of
L+ (Bocs — )4, ( ) (L)
K

=2 \ (4 — crit)erit max f

Note that ifu; satisfies[(2]4), the above inequality is strict. Finallyrtksto {4.4) we have
E(ur) < E(us) if

K, _ K, _
)2/2u—2k > (maXf)Q/Qu—sz

n—k n—k
Al AQ

(max f

crit—2

crit—2 P%” 4 it dv Zz—ﬁ
L+ (Bog, - )4y ( ) (L)
K

=2 \ (4 — crit)erit max f

n—k
or isolatinga: and introducing< f > the average value gf :

A\ F
(%) -

which is exactly [4]3). Theorefn 4.1 is proved. Note that #mark following Theorem
E.b is also proved since if; or uy satisfies 4), then the previous inequality is not
necessarily strict. [ ]

crit—2 crit crit—2
Aﬁykit K, 3 (4 — crit)erit\ 2 max f 2F
2 pest 4 Vo< f>

o > B07G27
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5 Multiplicity results 2

We provide another general result for multiplicity in The below. Then we illustrate
the Theorem on specific examples. We postpone the proof aerE to sectioﬂ 6.

Theorem 5.1 Let (M, g) be a compact Riemannian n-manifold, n > 3, G1 and G
be two isometry groups such that the minimum dimensions of G1- and Ga-orbits
are the same. We denote by k > 0 this common minimum orbit dimension, and let
A; > 0 be the minimum volume of G;-orbits of dimension k, i = 1,2. We suppose
that n—k > 2 and A; < As, and that (IgQ’Opt) holds true. Assume that for a € R
and f € CZ g, positive, there exist two solutions of (Eif) s uyp € CF which s
G1-minimizing, and uz € Cg,, which is Ga-minimizing. If

1) a < Byg,(M,g), and (5.1)
2 2
Ar=F — AF inf f

2 2 2
Ko V7 F max f2f < f >n-F

”’) a > BO,G2 (Mag) - ; (52)

where < f > stands for the average value of f, then E(u1) < E(usz). In particular,
uy and ug are distinct.

Here again, ifu; satisfies |(2]4), then inequality) is not necessarily strict. In the
following Corollary to Theoren) 5.1f = 1 and we obtain three different solutions for
(E5)-

Corollary 5.1 Let (M,g) be a compact Riemannian n-manifold, n > 3, G1 and Gs
be two isometry groups such that the minimum dimensions of G1- and Ga-orbits
are the same. We denote by k > 0 this common minimum orbit dimension, and let
A; > 0 be the minimum volumes of G;-orbits of dimension k, i = 1,2. We suppose
that n — k > 2 and Ay < As, and that (Igl’oz’t) and (IgZ’Opt) hold true. Then :

1) If

2 2
Azt At
BO,GQ(Mvg) - 2 < BO,Gl(Mvg) - 2 (53)
ank Vgnfk ank Vgnfk
then there exist two solutions of different energies for the equation
Au+ au = REE (EY)

when a belongs to the interval

_2 _2
AR — AT ,
a € | Bog:(M,g) = ——————; min Bog,(M9g) |- (5.4)
K, V5 F =

One of these solutions is non constant and G1-invariant, the other is Go-invariant.
2) If moreover

Anfk
——2—— < min Bo¢,(M,g) (5.5)
anngnik ’L:l,?
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then the constant solution U, = Q" it of (E¥) is different from the two previous

solutions given in 1) when o belongs to the interval

i
a € |max BO,G‘Z (Mag) -2 ; ) 2 — o 5 I£11n BO,Gi (Mag)
ank Vgn—k Knik‘/gn—k i=1,2
(5.6)

Proof of Corollary [p.]. Partl) is a corollary of Theorerfi §.1 whefi = 1 and where
existence of solutions is given by Proposit@ 2.1. We haareh < By ;. In particular
([@-4) holds true and by the remark following TheorEnj 5.1giradity ii) in Theoren{5]1
is not necessarily strict. Theorgm|5.1 claims that the twotiems have different energies
whena belongs to the interval i.4). In particular, Wi@.\wp have that
Q" Vv, > éik .
K 2,

n—

n—2—k —k

Buta"z;kvg is the energy of constant solutieri . Since& (u;) < AlK;_nkT, we get

that&(u1) < E(a#) andu; is not constant. Patft) is proved and

n—k n—k

5(U1)<5(U2):T22 <A2 K;_kT

2

Then(us) < E(@™ ) if a > —2 " This is compatible with[(5]4), thanks to
Kp_p VR
(6.3), and parp) is proved. [

Now we discuss specific examples. In the three following eplam the manifold is
S1(t) x S™~! and we fixf = 1. The first example concerns the critical equatidry))
and the two other examples concern the overcritical equéfity) with & = 1. In the first
example, we pass from the Yamabe multiplicity to an inteofahultiplicity.

EX&mpleS.l On (Sl(t> X Snil,hl X hn71)7n > 3, let G1 = Ry X Idsn—l and
G2 = Ry X Idgn—1 be two isometry groups, where Ry and Rs are finite subgroups
of SO(2) with respectif cardinals 4; < As. If

; Aswy, n \"? . A3 (27rwn,1)2/” D)
> max 2 ) ’ 2/n 2/n 2/n
MTWhn—1 \ N (A" — A7) n(n — 2)wy

then there exist at least three C°° solutions of different energies for the critical
equation (E%) when « belongs to the interval

2 2
n_An _ 2/n
(“‘2 Al)"(" D™ 2wt | (e2)?

4(2mtwn —1)2/™ Vo 4(2mtw, )2/ )

2
« € |max @Jr

A
a2

(5.7)
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One of these solutions is Gi-invariant, the other is Gs-invariant and the third one
is the constant solution %, = « "2

As a remark, when = ("=2" 2) ,(E?) is the Yamabe equation ¢t (¢) x S"~! and we
recover a multiplicity result of Hebey VaugoE[13]

Proof of Example @ The actions of the groups are already presented in Exajmgle 3.
)h

In particular,(1"°’) holds true and witi (2} 2) anff (2.8) we have that
(n—2)? 1 n—1 A7 (n—2)?
T < BO,Gi (S (t) x S ,hl X hn—l) < E + T (58)
We claim that there exist two solutioms € Cg for (EY) if
(n —2)?
< :
‘="
The double existence far < (" is indeed given by.5) Far = ("_42)2 this is

given by the the resolution of the Yamabe problem$iit/A;) x S*~1 and with similar
arguments to the one used in Examplé 3.2. Now Coro[lafy 5ataguees that;, u» and
the constant solution have different energief if|(5.3) &§)(hold true. First by{(5]8)[(§.3)
holds true if

A3 (n-2?% A" (22 A"
42 4 K, (2mtw, _1)2/™ 4 K, (2ntw, 1)/
namely if

A3 (271w, _1)%/" oy
t> 2/n 2/ny 2/n :
n(n—2)(4"" — A7 wn

SinceBy g, > ("_42)2, (6-3) holds true if

A" n(n = 2w (n—2)”
4(2mtwy,—1)?/" 4

. Aswn, n n/2
2Mwp—1 \n— 2 '
Under these two conditions anCorollary[5.]L gives the triple multiplicity whem belongs

to the interval in [(5]6) which contains the interval jn [Sti7anks to [5.)8). Example $.1 is
proved. |

namely if

The next example involves the Hopf fibration and concernsaitical equations on
SL(t) x S3.



Multiplicity for critical and overcritical equations 19

Example5.2 On (S'(t) x S3,hy x h3), where t > 1, let
G, = Idsl(t) X {(0’7 0’)/0’ S 50(2)} and Gs = 0(2) x Idgs
be two isometry groups. There exist at least two C'*° solutions of different energies

for the overcritical equation

Au + ou = u°, u >0 (EL)

when « belongs to the interval

3 3
o€ {m,z[ (59)

One of these solutions is Gi-invariant and nonconstant, the other is Go-invariant.
Besides if us is not the constant solution, then there exist at least three different
solutions when « belongs to the interval in @) On the other hand, if us is the
constant solution, the interval of multiplicity for « extends to | 1.

Proof of Ezample [.4. The Go-orbits areS'(t) x {6}, whered e S3. Thus they are
principal of dimensionl and constant volument and we have thatS* (t) x 5%) /G2 =
S3 with quotient metridhz. As already mentioned[§2’0pt) holds true and with[(2]2) and
®.9)

3 .
4 $2/39

Bu.ca (S (1) x %, x hg) = 5.

The group{(c,o),0 € SO(2)} gives the Hopf fibratiors® — S2(1/2) with fiber S* and
hs as quotient metric o1$?(1/2). The G;-orbits are{p} x S wherep € S*(t). Thus
they are principal of dimensiohand constant volum2r and we havéS® (t) x S3)/G; =
S™(t) x S?(1/2) with quotient metridy, x ho. Here agair(I5*°"") holds true and

Bo,c, (S*(t) x S3, hy x ha) = Bo(S*(t) x S*(1/2), h1 x ha).

Part1) of Corollary[5.1 gives a multiplicity interval for if (.3) holds true. We easily
check that

42/3
Bog, — —2— =0
K3Vh1/><h3
and that
A?/g 1 2 3
Byg, ———————————— = By(S (t) x S?(1/2),hy X hy) — ——.
ST Ky Vhy x hy?P? o570 X 5°(1/2), n x ha) = g

Thus (5.B) becomes here
3
B()7G1 > m

By (.7) we know thatBy ¢, > max { 25,1} = 1sincet > 1, and thus[(5]3) holds
true. Partl) of Corollary guarantees then a double multiplicity whebelongs to the
interval in (5.4). We easily see that this interval is here

33
“Claerial
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In this example, -5) does not hold true, so @rof Corollary-. does not apply. The
constant solutiom,, = ot exists for any > 0. If us # @, then there exist at least three
solutions of different energies whenbelongs to the interval n@ 9). Now ify = @,
thenu, exists for any > 0. The solutionu,; exists wher < 1 < By ¢, and its energy

verifies&(uy) < A1 Ky : . Thusu; is not constant if

2 S g(aa) - a%Vh1><h3

namely ifa > —2-. The interval of double multiplicity is her[if—g, 1[. Exampld 5P is
3
proved. |

The last example involves infinite non principal orbits.

n—1

Example5.3 On (S'(t) x 8"~ 1 hy X hy,—1) with n > 4 and t > (" 1) : , let

G1 = Idsi(y) X O(n—2)x0(2) and G2 = O(2) x Idgn—
be two isometry groups. There exist at least two C'*° solutions of different energies
for the overcritical equation

n41

Au+ au = un3 (EL)
when a belongs to the interval

(n—1)(n—-3) (n— 3)?
«c 4tﬁ ' 4

One of these solutions is GGy-invariant and nonconstant, the other one is Go-invariant.

Proof of Example [p.3. The groqu2 is the same as in Exampe]6.2. Tée-orbits are
S1(t) x {6} where§ € S"~1, of dimensionl and constant volumert. The quotient

manifold is(S™ 1, h,—1) and(IG2 °P*y holds true with

(n—1)(n—3)

B()yG2 (Sl(t) X Snil,hl X hnfl) = 1

We easily check that
A
BO7G2 - Q—L == 0
Kn_kvhq;khn71
The G, -orbits are sphere products possibly reduced to a point :
Vo = (0,y,2) € St(t) x R"2 x R? C St(¢) x S"~ 1,

Og = {0} x S"*(llyll) x S*(l1=]).
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Forazg = (6,0pn-2,20), whered € S'(t), andz, € S', we have thaDS! = {6} x
{Ogn—2} x S'. ThusdimOS = 1 is minimum andvolOS? = 2. Similar arguments as
in the proof of Examplg 3|3 show thék(») holds true if we choose the normal subgroup
H of Gy asH = Idgiyxrn—2 X O(2). Thus(]?l"’pt) holds true. Now assumptiof (b.3)
of Corollary[5.} becomes

Bog, > "= D=3
g7t
By [@.7) we know that
(n—1)(n—3) (n—3) . 3A;0(F)
BO,G1 Z max{ 4t2/(n71) ) 4(71 — 2) Sg(ﬂ)) + gT .

Sincevol O = volOS! is maximal onH-orbits we haveA ;35 (Z9) > 0 and according
to Propositior] 3]15; () > (n — 2)(n — 3). In particular

(n-D(-3) (-3 _ (n—37
BO’GlzmaX{ /-0 1 [T

n—1
sincet > (Z—:;)) ° . Thus [5:B) holds true. Finally pat) of Corollary[5.} guarantees a
double multiplicity whenx belongs to the interval ir@A) whose endpoints are

G

Bo.gz — 2 - 4ti
Kn1Vy s, o "
and . 2
- -1 — _
win{Bocr. Boc,} > min § 3L =V =31 (=37
: : I 0 .
Example[5]3 is proved. .

6 Proof of Theorem (.1

The proofs of Theorenis 4.1 afd]5.1 are similar but with an ingmo difference in the way
we find an upper bound fdjus || In order to prove Theorefn $.1 it suffices, as in the proof
of Theoren{4]1, to prove that

AT
K, (max f)2/%

<Yq,. (6.1)

We search for a lower bound faf¢, and similar arguments as in proof of Theoren] 4.1
lead us to inequality| (4 5)

1 K, B -
< (max f)/¥ Dnck gy 206G Z 4y, 2| (6.2)

n—k

ng AQnTk TGZ

2
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Thanks to [G]1)Bo.¢, — @ > 0, and we search now for an upper boundffas | ». Here is
where the proof diverges from the proof of Theo@ 4.1. Waiohwith Holder’s inequal-
ity and sinceus is Go-minimizing that

n—2—~k
5 —

/ 2 d < TGQ (/ f d ) nok
uy dvg, < - ) .
M 2 min f M J

Reporting this inequality inf (§.2) and isolating, gives :
ATE (f,, f dv )ﬁ
Yo, > 2 —(Bog, —a) ~M 97
G2 = (max f)2/2 K,y (Bo,g, = @) minyy f

Finally (6.1), and thus also the strict inequalityu;) < €(u2), hold true if

(IM f dvg) T

min f

R v
(max f)2/2uKn—k (maxf)2/2uKn—k

or else

— (Bo,g, — @)

)

_2 2
AZr — AP min f
Kook (max f2r2° (v, < f >)77
The last inequality is not necessarily strict whersatisfies[(2]4). Theorem b.1 is provilid.

o > B()yG2 —

7 Proof of Proposition 3.1

We start with the following Lemma.

Lemma7.1 Let (M,g) be a compact Riemannian n-manifold, n > 3, of constant
sectional curvature Kqo(M), and G be an isometry group such that all G-orbits are
principal, and thus of constant dimension k. Assume that k < n. Then

S5(y) = Ky(M) (n—k)(n—k —1), (7.1)
for ally € M/G, where § is the quotient metric induced by g on M/G.
As a remark, if the5-orbits are finite, the canonical submersion M — M /G is a

local isometry and inequality (7.1) is an equality.

Proof of Lemma [I. On(M/G, §), which has dimension — k, we have the following
relation between the section&l; and the scalar curvaturs

S3(y) = > K;(é:,€5) (7.2)
(4,9)E€[L,n—Fk]? i)
forall y € M/G, where(éy, ..., é,—) is an orthonormal basis &, (M/G). O'Neil's
formula links the sectional curvaturés, of M andK; of (M/G) by

L 3 02
Kj(éi,€;) = Kgy(ei, e5) + Z“ei e]°|" = Kyles, e5)
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wheree; = (dﬂ'm\(Kerﬂ-m)L)71 (&) € (Ker dm,)™, and wherde; e;]" € Ker dmy is

the vertical composant ¢; e;] € T..(M). SinceK, is constant and witH (7.2), we finally
obtain
Sg(y) = Kg(M) (n = k)(n =k —1)

and Lemmd 7]1 is proved. [ |

Now we prove Propositiop 3.1.

Proof of Proposition [3.]. On the open set
Q={z=00,y,2z) e V" x S"7™ ||z]| # 0},

all H-orbits are principal an@H-) holds true. We have th&t containsOZ = {6,}
{0g~ } x S™~1; thus there exist an open s@; > 6, of V™ and an open st
{Ogr } x S™2~1 of S»~™ such that

w X

OF ey x
and we have
(Ql X QQ)/H: Ql X (QQ/ HI)

where H' = Idg~ x O(rz). The metric on(Q; x ) /H is the quotient metrig =
g X hp_m Whereh,, _,, is the quotient metric induced by, _,,, on S~ /H’'. Now

To=TH ({90} X {O]Rm} X ST271) = {90} X {to}

with to = 7 ({0, } x S™71) € Q2 /H’ and wherery, : Q; — Qy/H' is the canonical
submersion. Thus
S3(Zo) = S¢(o) + 55, (to)-

Since thef{’-orbits are principal of2, C S™~ ™, thanksto Iemmﬁ.l, and sinéan Q, /H'
n—m-—re+1=r;andKy.—m(S""™) =1, we haveS;Lni (to) > r1(r1 — 1). Finally

m

S5(Z0) = Sg(00) +r1(r1 — 1),
Propositior{ 3]1 is proved. |

References

[1] T. Aubin, Equations différentielles non linéaires et probléme de Yamabe concernant
la courbure scalaire, J. Math. Pures et ap@5 (1976), 269—296.

[2] T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ameequations, Grundlehren der
Mathematischen Wissenschaften 252, Springer-Verlag.1982

[3] M.F. Bidaut-Véron, and L. VéronNonlinear elliptic equations on compact Riemannian
manifolds and asymptotics of Emden equations, Invent. Math.106 (1991) 489-539.

[4] G.E.Bredon, Introduction to Compact Transformatioro@s, Academic press, New York-
London, 1972.



24 M. Dellinger

[5] J. Escobar , and R. Schoefipnformal metrics with prescribed scalar curvature, Invent.
Math.,86 no. 2 (1986) 243-254.

[6] P. Esposito,Uniqueness and multiplicity for perturbations of the Yamabe problem on
S™, Rend. Istit. Mat. Univ. Triest82 (2001) 139-146.

[7] Z. Faget,Optimal constants in critical Sobolev inequalities on Riemannian manifolds
in the presence of symmetries, Ann. Global Anal. Geom24 (2003) 161—-200.

[8] Z. Faget,Second-best constant and extremal functions in Sobolev inequalities in the
presence of symmetries, Adv. Differential Equation® (2004) 745-770.

[9] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian GetmeThird edition, Universitext,
Springer-Verlag, 1993.

[10] G. Gilbart, and N.S. Trudinger, Elliptic Partial Diffential Equations of Second Order, Sec-
onde édition, Grundlehren der Mathematischen Wissefitseth224, Springer, Berlin-New
York, 1983.

[11] E.Hebey,Changements de métriques conformes sur la sphere. Le probléme de Niren-
berg , Bull. Sci. Math.114 no. 2 (1990) 215-242.

[12] E. Hebey, and M. VaugonMeilleures constantes dans le théoréme d’inclusion de
Sobolev, Ann. Inst. H. Poincaré Anal. Non Linéaile3 (1996) 57-93.

[13] E. Hebey, and M. VaugonMeilleures constantes dans le théoréme d’inclusion de
Sobolev et multiplicité pour les problémes de Nirenberg et Yamabe, Indiana Univ. Math.
J.41 (1992) 377-407.

[14] E. Hebey, and M. Vaugorfjobolev spaces in the presence of symmetries, J. Math. Pures
Appl. 76 (1997) 859-881.

[15] J.L. Kazdan, and F.W. Warne§calar curvature and conformal deformations of Rie-
mannian structure, J. Diff. Geom.10 (1975) 113-134.

[16] Y.Y. Li, On Nirenberg’s problem and related topics, Top. Meth. Non. Lin. An.3 (1994)
221-233.

[17] M. Obata, The conjectures on conformal transformations of Riemannian manifolds,
J. Diff. Geom.6 (1971) 247-258.

[18] D. Pollack, Nonuniqueness and high energy solutions for a conformally invariant
scalar equation, Comm. Anal. Geoml (1993) 347-414.

[19] R. Schoen, Variational Theory for the Total Scalar Giwve Functional for Riemannian
Metrics and Related Topics, Topics in Calculus of Variati¢h987), 120-154, Lecture Notes
in Math., 1365, Springer, Berlin, 1989.

[20] R. Schoen, On the Number of Constant Scalar Curvatureidden a Conformal Class, Pit-
man Monogr. Surveys Pure Appl. Math2, Longman Sci. Tech., Harlow, 1991.



