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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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A PROBABILISTIC REPRESENTATION OF CONSTANTS IN

KESTEN’S RENEWAL THEOREM

NATHANAËL ENRIQUEZ, CHRISTOPHE SABOT, AND OLIVIER ZINDY

Abstract. The aims of this paper are twofold. Firstly, we derive a probabilistic representation for

the constant which appears in the one-dimensional case of Kesten’s renewal theorem. Secondly, we

estimate the tail of a related random variable which plays an essential role in the description of the

stable limit law of one-dimensional transient sub-ballistic random walks in random environment.

1. Introduction

In 1973, Kesten published a famous paper [9] about the tail estimates of renewal
series of the form

∑
i≥1A1 . . . Ai−1Bi, where (Ai)i≥0 is a sequence of non-negative

i.i.d. d × d random matrices and (Bi)i≥1 is a sequence of i.i.d. random vectors of
R

d. His result states that the tail of the projection of this random vector on every
direction is equivalent to Ct−κ, when t tends to infinity, where C and κ are positive
constants. The constant κ is defined as the solution of the equation k(s) = 1, with
k(s) := limn→∞ E(‖ A1 . . . An ‖s)1/n. The proof of his result in the one-dimensional
case, even if it is much easier than in dimension d ≥ 2, is already rather complicated.

Even though we are concerned by the one-dimensional case in this paper, let us
mention that a significant generalization of Kesten’s result, in the multi-dimensional
case, was recently achieved by de Saporta, Guivarc’h and Le Page [3], who relaxed
the assumption of positivity on Ai.

In 1991, Goldie [7] relaxed, in dimension d = 1, the assumption of positivity on the
Ai and simplified Kesten’s proof. Furthermore, he obtained a formula for the implicit
constant C in the special case where Ai is non-negative and κ is an integer.

In 1991, Chamayou and Letac [1] observed that, in dimension d = 1, if Ai has the
same law as (1−Xi)/Xi, with Xi following a Beta distribution on (0, 1), then the law
of the series itself is computable so that the constant C is explicit in this special case
also. The following question was then asked. How does one effectively compute the
constant C?

In our framework, we consider the case d = 1 and we make the following assump-
tions: ρi = Ai is a sequence of i.i.d. positive random variables, Bi = 1 and there exists
κ > 0 such that E(ρκ

1) = 1. Moreover, we assume a weak integrability condition and
that the law of log ρi, which has a negative expectation by the previous assumptions,
is non-arithmetic. In this context we are interested in the random series

R = 1 +
∑

k≥1

ρ1 · · · ρk.
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The previous assumptions ensure that the tail of the renewal series R is equivalent
to CKt

−κ, when t tends to infinity. We are now aiming at finding a probabilistic
representation of the constant CK .

Besides, this work is motivated by the study of one-dimensional random walks
in random environment. In [10], Kesten, Kozlov and Spitzer proved, using the tail
estimate derived in [9], that when the RWRE is transient with null asymptotic speed,
then the behavior depends on an index κ ≤ 1: the RWRE Xn normalized by n1/κ

converges in law to Cκ

(
1
Sκ

)κ

where Sκ is a positive stable random variable with index

κ. The computation of the explicit value of Cκ was left open. In [5], the authors derive
an explicit expression, either in terms of the Kesten’s constant CK when it is explicit,
or in terms of the expectation of a random series when CK is not explicit. To this
end, we need to obtain a tail estimate for a random variable Z, closely related to the
random series R, and to relate it to Kesten’s constant. This is the other aim of this
paper.

The strategy of our proof is based on a coupling argument in the (cf [4], 4.3). We first
interpret ρ1 . . . ρn as the exponential of a random walk (Vn , n ≥ 0), which is negatively
drifted, since E(log ρ1) < 0. We have now to deal with the series R :=

∑
n≥0 eVn . One

can write
R = eS

∑

n≥0

eVn−S,

where S is the maximum of (Vn , n ≥ 0). The heuristic is that S and
∑

n≥0 eVn−S are
asymptotically independent. The coupling argument is used to derive this asymptotic
independence. But, in order to implement this strategy, several difficulties have to
be overcome: we first need to condition S to be large. Moreover, we have to couple
conditioned processes: this requires us to describe precisely the part of the process
(V0, . . . , VTS

), where TS is the first hitting time of the level S.

To end this section, let us finally discuss our results and strategy. Let us first
remind that Kesten and Goldie’s proof were based on a clever use of the renewal
theorem but strongly relied on the renewal structure of the series, and also did not
lead to satisfying representations of the constant involved in its tail function. Later,
Siegmund [11] presented an interesting scheme of proof, inspired by a work on change-
point analysis of Pollak and Yakir [12]. He was able to derive formally a representation
of the constant, which enables simulation of the constant by Monte Carlo.

We would like to emphasize the flexibility of our proof that allows to study con-
ditioned variables which do not necessarily satisfy a renewal scheme like the variable
Z mentioned above, which plays a key role in the analysis of RWRE. This flexibility
could hopefully make also possible some generalizations to the d-dimensional case. As
explained above, the strength of this method is indeed to prove an asymptotic inde-
pendence between two different parts of the underlying random walk of step log(ρn),
when its maximum is large, namely : the maximum of the random walk and the part
of trajectory in the neighbourhood of the absolute maximum. As a consequence, the
tail constant of R is expressed as the product of the tail constant of the absolute
maximum of the random walk times the expectation of a functional of some random
walk which comes from the part of the trajectory near its maximum. One of the
central interests of this representation is that it is well suited for Monte-Carlo sim-
ulation. Compared to Siegmund’s formula, our formula is exact and not asymptotic
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(formula (3.6) of Siegmund [11] must be understood as a limit when j tends to in-
finity). Our asymptotic independence argument is reminiscent of the argument of
Siegmund which remained at a heuristic level, and we want to emphasize that this
asymptotic independence is the difficult part of our proof.

On the other hand, let us notice that the analytic expressions found by Goldie when
κ is an integer, and Chamayou and Letac in the case of Beta variables are strongly
based on the renewal scheme. It is therefore not surprising that the representation
found by our method do not recover these results. However, their identification a
posteriori leads to explicit formulas for the constants arising in the limit theorems for
RWRE in some very interesting special cases see [5].

2. Notation and statement of the results

Let (ρi)i∈Z be a sequence of i.i.d. positive random variables with law Q = µ⊗Z.
With the sequence (ρi)i∈Z we associate the potential (Vk)k∈Z defined by

Vn :=






∑n
k=1 log ρk if n ≥ 1,

0 if n = 0,

−
∑0

k=n+1 log ρk if n ≤ −1.

Let ρ have law µ. Suppose now that the law µ is such that there is κ > 0 satisfying

E
µ(ρκ) = 1 and E

µ(ρκ log+ ρ) <∞.(1)

Moreover, we assume that the distribution of log ρ is non-lattice. Then the law µ is
such that log ρ satisfies

E
µ(log ρ) < 0,(2)

which implies that, Q-almost surely,

lim
n→∞

Vn

n
=

∫
log ρ dµ < 0.

We set
S := max{Vk, k ≥ 0},

and
H := max{Vk, 0 ≤ k ≤ TR−

},

where TR−
is the first positive hitting time of R−:

TR−
:= inf{k > 0, Vk ≤ 0}.

The random variable S is the absolute maximum of the path (Vk)k≥0 while H is the
maximum of the first positive excursion. We also set

TS := inf{k ≥ 0, Vk = S}, TH := inf{k ≥ 0, Vk = H}.

We clearly have, Q-almost surely,

H ≤ S <∞, TH ≤ TS <∞.

The following tail estimate for S is a classical consequence of renewal theory, see
[6],

P
Q(eS ≥ t) ∼ CF t

−κ,(3)
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when t→ ∞, where

CF =
1 − E

Q(eκV (TR−
))

κEµ(ρκ log ρ)EQ(TR−
)
.

The tail estimate of H is derived by Iglehart, in [8],

P
Q(eH ≥ t) ∼ CIt

−κ,(4)

when t→ ∞, where

CI =
(1 − E

Q(eκV (TR−
)))2

κEµ(ρκ log ρ)EQ(TR−
)

= (1 − E
Q(eκV (TR−

)))CF .

Consider now the random variable

R :=

∞∑

n=0

eVn .

This random variable clearly satisfies the following random affine equation

R
law
= 1 + ρR,

where ρ is a random variable with law µ independent of R. In [9], Kesten proved
(actually his result was more general and concerned by the multidimensional version
of this one) that there exists a positive constant CK such that

P
Q(R ≥ t) ∼ CKt

−κ,(5)

when t → ∞. The constant CK has been made explicit in some particular cases: for

κ integer by Goldie, see [7], and when ρ
law
= W

1−W
where W is a beta variable, by

Chamayou and Letac [1]. One aim of this paper is to derive an expression of this
constant in terms of the expectation of a functional of the random walk V which is
more standard than R.

We need now to introduce some Girsanov transform of Q. Thanks to (1) we can
define the law

µ̃ = ρκµ,

and the law Q̃ = µ̃⊗Z which is the law of a sequence of i.i.d. random variables with
law µ̃. The definition of κ implies that∫

log ρ µ̃( dρ) > 0,

and thus that, Q̃-almost surely,

lim
n→∞

Vn

n
=

∫
log ρ dµ̃ > 0.

Moreover, Q̃ is a Girsanov transform of Q, i.e. we have for all n

E
Q (φ(V0, . . . , Vn)) = E

Q̃
(
e−κVnφ(V0, . . . , Vn)

)
,

for any bounded test function φ. Let us now introduce the random variable M defined
by

M =
∑

i<0

e−Vi +
∑

j≥0

e−Vj ,(6)

where (Vi)i<0 is distributed under Q(·|Vi ≥ 0, ∀i < 0) and independent of (Vj)j≥0

which is distributed under Q̃(·|Vj > 0, ∀j > 0).
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Theorem 2.1. i) We have the following tail estimate

P
Q(R ≥ t) ∼ CKt

−κ,

when t→ ∞, where
CK = CF E(Mκ).

ii) We have
P

Q(R ≥ t ; H = S) ∼ CKIt
−κ,

when t→ ∞, where
CKI := CIE(Mκ).

Remark 2.1 : The conditioning H = S means that the path (Vk)k≥0 never goes
above the height of its first excursion.

In [5], we need a tail estimate on a random variable of the type of R but with an
extra term. Let us introduce the event

I := {H = S} ∩ {Vk ≥ 0 , ∀k ≤ 0},(7)

and the random variable
Z := eSM1M2,

where

M1 :=

TS∑

k=−∞

e−Vk ,

M2 :=

∞∑

k=0

eVk−S.

Theorem 2.2. We have the following tail estimate

P
Q(Z ≥ t|I) ∼

1

PQ(H = S)
CU t

−κ,

when t→ ∞, where

CU = CIE(Mκ)2 =
CI

CF

(CK)2.

Remark 2.2 : The conditioning event I gives a nice symmetry property, which is
useful to return the path, cf Subsection 3.2.

Let us now discuss the case where the Bi’s are not necessarily equal to 1. Let (Bi)i≥0

be a sequence of positive i.i.d. random variables, which is independent of the sequence
(ρi)i≥0, and denote by RB the random series RB := B0 +

∑
k≥1Bkρ1 · · · ρk. The result

of Theorem 2.1, i), is then generalized into the following result.

Theorem 2.3. If there exists ε > 0 such that E(|B1|
κ+ε) <∞, then

P
Q(RB ≥ t) ∼ CKBt

−κ,

when t→ ∞, where
CKB = CF E((MB)κ)
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and where MB is defined by

MB =
∑

k<0

e−VkB̃k +
∑

k≥0

e−VkB̃k,

with (Vk)k<0 distributed under Q(·|Vk ≥ 0, ∀k < 0) and independent of (Vk)k≥0 which

is distributed under Q̃(·|Vk > 0, ∀k > 0) while (B̃k)k∈Z is a sequence of i.i.d. random
variables having the same distribution as B1 and independent of (Vk)k∈Z.

Sketch of the proof and organization of the paper

The intuition behind Theorem 2.1 and Theorem 2.2 is the following. Let us first
consider P

Q(R ≥ t|H = S). The law Q(·|I) has a symmetry property which implies
that the variable R = M2e

H has the same distribution as M1e
H (cf Subsection 3.2).

Then, the proof of Theorem 2.1 is based on the following arguments.

Firstly, we prove that the variables M1 and eH are asymptotically independent. To
this end, we use a delicate coupling argument which works only when H is conditioned
to be large. Therefore, we need to restrict ourselves to large values of H . To this
end, we need to control the value of R conditioned by H ; this is done in Section 4.
Then, a second difficulty is that we have to couple conditioned processes (namely, the
process (Vk) conditioned to have a first high excursion). We overcome this difficulty
by using an explicit description of the law of the path (V0, . . . , VTH

). Namely, the path

(V0, . . . , VTH
) behaves like V under Q̃(·|Vk > 0, ∀k > 0) stopped at some random time.

Secondly, we observe that the distribution of M1 is close to the distribution of M
as a consequence of the above description of the law of (V0, . . . , VTH

).

From these two facts, we deduce that P
Q(R ≥ t | I) ≃ P

Q(MeH ≥ t | I), where M
and H are roughly independent. Using the tail estimate for H we get the part ii) of
Theorem 2.1. For Theorem 2.2, we proceed similarly: the variable Z can be written
M1R and, for large H , the variables M1 and R are asymptotically independent and
the law of M1 is close to the law of M . Then the estimate on the tail of R allows us
to conclude the proof.

Let us now describe the organization of the proofs. Section 3 contains preliminary
results, whose proofs are postponed to the Appendix (see Section 7). In Subsection
3.1, we prove that M has finite moments of all orders and we estimate the rest of
the series M . Subsection 3.2 contains some preliminary properties of the law Q(·|I),
and Subsection 3.3 presents a representation of the law of the process (V0, . . . , VS) in

terms of the law Q̃. Section 4 contains crucial estimates which will allow us to restrict
ourselves to large values of H . In Section 5, we detail the coupling arguments which
roughly give the asymptotic independence of M1 and eHM2. Finally, in Section 6 we
assemble the arguments of the previous sections to prove Theorem 2.2 and Theorem
2.1. In the Appendix (see Section 7), we give the proof of the claims of Section 3 and
present a Tauberian version of the tail estimates, which is the version we ultimately
use in [5].

Let us finally explain the convention we use concerning constants. We denote by
c a positive constant with value changing from place to place, which only depends
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on κ and the distribution of ρ. The dependence on additional parameters otherwise
appears in the notation.

3. Preliminaries

In this section, we give preliminary results, whose proof are postponed to the Ap-
pendix (see Section 7).

3.1. Moments of M . Here is a series of three lemmas about the moments of the
exponential functional of the random walk M. In this section, we denote by {V ≥ −L}
the event {Vk ≥ −L, k ≥ 0}.

Lemma 3.1. There exists c > 0 such that, for all L ≥ 0,

E
Q̃
(∑

k≥0

e−Vk | V ≥ −L
)
≤ c eL.

Lemma 3.2. Under Q̃≥0 := Q̃(· | Vk ≥ 0 , ∀k ≥ 0), all the moments of
∑

k≥0 e−Vk are
finite.

We will need further a finer result than Lemma 3.1 as follows.

Lemma 3.3. For any κ > 0, there exists c = c(κ) > 0 such that, for all L > 0 and
for all ε′ > 0, we have

• if κ < 1,

E
Q̃
(∑

i≥0

e−Vi | V ≥ −L
)
≤ c e(1−κ+ε′)L,

• if κ ≥ 1,

E
Q̃
(∑

i≥0

e−Vi | V ≥ −L
)
≤ c eε′L.

Remark 3.1 : Analogous results as in Lemma 3.1, Lemma 3.2 and Lemma 3.3 apply
for
∑

k≥0 eVk under Q and conditionally on the event {Vk ≤ L , ∀k ≥ 0}.

3.2. A time reversal. Let us denote by QI the conditional law QI(·) := Q(·|I),
where I is defined in (7). The law QI has the following symmetry property.

Lemma 3.4. Under QI we have the following equality in law

(Vk)k∈Z

law
= (VTH

− VTH−k)k∈Z.

This implies that under QI , R has the law of eHM1. This last formula will be
useful since the asymptotic independence of eH and M1, in the limit of large H , is
more visible than the asymptotic independence of H and M2 and will be easier to
prove.
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3.3. The two faces of the mountain. It will be convenient to introduce the fol-
lowing notation: we denote by Q≤0 the conditional law

Q≤0(·) = Q(·|Vk ≤ 0, ∀k ≥ 0),

and by Q̃>0 the conditional law

Q̃>0(·) = Q̃(·|Vk > 0, ∀k > 0).

It will be useful to describe the law of the part of the path (V0, . . . , VTS
). Let

us introduce some notations. If (Yk)k≥0 is a random process under the law Q̃, then
Yk → +∞ a.s. and we can define its strictly increasing ladder times (ek)k≥0 by:
e0 := 0, and

ek+1 := inf{n > ek, Yn > Yek
}.

We define a random variable ((Yk)k≥0,Θ) with values in R
N×N as follows: the random

process (Yk)k≥0 has a law with density with respect to Q̃ given by

1

Z

( ∞∑

k=0

e−κYek

)
Q̃,

where Z is the normalizing constant given by

Z =
1

1 − EQ̃(e−κYe1 )
.

Then, conditionally on (Yk)k≥0, Θ takes one of the value of the strictly ladder times
with probability

P(Θ = ep | σ((Yk)k≥0)) =
e−κYep

∑∞
k=0 e−κYek

.

We denote by Q̂ the law of ((Yk)k≥0,Θ). Otherwise stated, it means that, for all test
functions φ,

E
Q̂(φ(Θ, (Yn)n≥0)) =

1

Z
E

Q̃
( ∞∑

k=0

e−κYekφ(ek, (Yn)n≥0)
)
.

Lemma 3.5. The processes (V0, . . . , VTS
) and (VTS+k

− VTS
)k≥0 are independent and

have the following laws: (VTS+k
− VTS

)k≥0 has the law Q≤0 and

(V0, . . . , VTS
)
law
= (Y0, . . . , YΘ),

where ((Yk)k≥0,Θ) has the law Q̂.

Denote now by Q̂>0 the law

Q̂>0 = Q̂(· | Yk > 0, ∀k > 0).

We will need the following result.

Lemma 3.6. There exists a positive constant c > 0 such that, for all positive test
functions ψ,

E
QI

(ψ(V0, . . . , VTH
)) ≤ cEQ̂>0

(ψ(Y0, . . . , YΘ)).
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4. A preliminary estimate

To derive the tail estimate of R or Z we need to restrict to large values of H : this
will be possible, thanks to the following estimate.

Lemma 4.1. For all η > 0 there exists a positive constant cη such that

E
QI

((M1)
η | ⌊H⌋) ≤ cη, QI- a.s.,

where ⌊H⌋ is the integer part of H.

Proof. Since (Vk)k≤0 is independent of H under QI , we have, for all p ∈ N,

E
QI

((M1)
η | ⌊H⌋ = p) ≤ 2η

(

E
Q≤0

(( ∞∑

k=0

eVk
)η
)

+ E
QI

(( TH∑

k=0

e−Vk
)η

| ⌊H⌋ = p

))

.

The first term on the right-hand side is finite for all η > 0 as proved in Subsection
3.1. Consider now the last term. Using Lemma 3.6, we get

E
QI

(( TH∑

k=0

e−Vk
)η

| ⌊H⌋ = p

)

≤
c

PQI(⌊H⌋ = p)
E

Q̂>0

(( TH∑

k=0

e−Yk
)η

1⌊H⌋=p

)

≤
c

PQI(⌊H⌋ = p)
E

Q̃>0

(( ∞∑

k=0

e−κYek 1Yek
∈[p,p+1[

)( ∞∑

j=0

e−Vj
)η
)
.

Now, using the Cauchy-Schwarz inequality in the last expression, we get

E
QI

(( TH∑

k=0

e−Vk
)η

| ⌊H⌋ = p

)

≤
c

PQI(⌊H⌋ = p)
E

Q̃>0

(( ∞∑

k=0

e−κYek1Yek
∈[p,p+1[

)2
) 1

2

E
Q̃>0

(( ∞∑

k=0

e−Vk
)2η
) 1

2

≤
c e−κp

PQI(⌊H⌋ = p)
E

Q̃>0

(( ∞∑

k=0

1Yek
∈[p,p+1[

)2
) 1

2

E
Q̃>0

(( ∞∑

k=0

e−Vk
)2η
) 1

2

.

But the last term is independent of p and finite by Lemma 3.2. On the other hand,
since Q̃(Vk > 0 , ∀k > 0) > 0 and from the Markov property, we obtain

E
Q̃>0

(( ∞∑

k=0

1Yek
∈[p,p+1[

)2
)

≤ cEQ̃

(( ∞∑

k=0

1Yek
∈[p,p+1[

)2
)

≤ cEQ̃

(( ∞∑

k=0

1Yek
∈[0,1[

)2
)
,

which is finite since (Yk)k≥0 has a positive drift under Q̃. Finally, using the tail
estimate on H, we know that

lim
p→∞

eκp
P

QI

(⌊H⌋ = p) = lim
p→∞

eκp
(

P
QI

(H ≥ p) − P
QI

(H ≥ p+ 1)
)

(8)

= CI(1 − e−κ).
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Hence, (eκp
P

QI

(⌊H⌋ = p))−1 is a bounded sequence (we do not have to consider the
cases where eventually P(⌊H⌋ = p) = 0 since it is a conditioning by an event of null
probability which can be omitted). �

Corollary 4.1. We have, QI-almost surely,

E
QI

(Z | ⌊H⌋) ≤ ec2e
⌊H⌋.

Proof. We have Z = M1M2e
H . Using the Cauchy-Schwarz inequality and Lemma 4.1

we get

E
QI

(Z | ⌊H⌋) ≤ e⌊H⌋+1
(
E

QI

((M1)
2 | ⌊H⌋)EQI

((M2)
2 | ⌊H⌋)

) 1
2

≤ ec2e
⌊H⌋,

since M1 and M2 have the same law under QI . �

Corollary 4.2. Let h : R+ 7→ R+ be a function such that

lim
t→∞

t−1eh(t) = 0.

Then, we have

P
QI

(R ≥ t, H ≤ h(t)) = o(t−κ),

P
QI

(Z ≥ t, H ≤ h(t)) = o(t−κ),

when t tends to infinity.

Proof. Let us do the proof for Z. Let η be a positive real such that

η > κ.

We have (all expectations are relative to the measure QI ; so, to simplify the reading,
we remove the reference to QI in the following)

P
QI

(Z ≥ t, H ≤ h(t)) = E (P (Z ≥ t, H ≤ h(t) | ⌊H⌋))

≤ E
(
1⌊H⌋≤⌊h(t)⌋P (Z ≥ t | ⌊H⌋)

)

≤ E
(
1⌊H⌋≤⌊h(t)⌋P

(
M1M2 ≥ te−(⌊H⌋+1) | ⌊H⌋

))

≤ eη
E
(
1⌊H⌋≤⌊h(t)⌋t

−ηeη⌊H⌋
E ((M1M2)

η | ⌊H⌋)
)

≤ eη
E
(
1⌊H⌋≤⌊h(t)⌋t

−ηeη⌊H⌋
E
(
(M1)

2η | ⌊H⌋
))
.

In the last formula, we used the Cauchy-Schwarz inequality and the symmetry prop-
erty of QI , see Lemma 3.4, to obtain

E((M2)
2η | ⌊H⌋) = E((M1)

2η | ⌊H⌋).

We can now use the estimate of Lemma 4.1, which gives

P
QI

(Z ≥ t, H ≤ h(t)) ≤ eηc2ηt
−η

⌊h(t)⌋∑

p=0

eηp
P(⌊H⌋ = p)

≤ ct−η

⌊h(t)⌋∑

p=0

e(η−κ)p.
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In the last formula, we used the fact that P(⌊H⌋ = p) = O(e−κp), see (8). Since we
chose η > κ we can bound uniformly

P
QI

(Z ≥ t, H ≤ h(t)) ≤ ct−ηe(η−κ)h(t) = ct−κ
(eh(t)

t

)η−κ

.

This gives the result for Z. Since R ≤ Z, we get the result for R. �

5. The coupling argument

We set
I(t) := P

QI (
eHM1M2 ≥ t

)
,

J(t) := P
QI (

eHM2 ≥ t
)
,

K(t) := P
QI (

eH ≥ t
)
.

From the estimate of Iglehart, see [8], we know that

K(t) ∼
1

PQ(H = S)
CIt

−κ,

when t→ ∞. Indeed, we have

P
QI (

eH ≥ t
)

=
1

PQ(H = S)
(PQ(eH ≥ t) − PQ(eH ≥ t, S > H)).

The second term is clearly of order O(t−2κ), the first term is estimated in [8], cf (4).

We will prove the following key estimates.

Proposition 5.1. For all ξ > 0 there exists a function ǫξ(t) > 0 such that limt→∞ ǫξ(t) =
0 and

e−3ξ
E
(
J(e3ξtM−1)

)
(1 − ǫξ(t)) ≤ I(t) ≤ e3ξ

E
(
J(e−3ξtM−1)

)
(1 + ǫξ(t)),

e−2ξ
E
(
K(e2ξtM−1)

)
(1 − ǫξ(t)) ≤ J(t) ≤ e2ξ

E
(
K(e−2ξtM−1)

)
(1 + ǫξ(t)),

where M is the random variable defined in (6).

We see that Theorem 2.1 ii) is a direct consequence of the second estimate and of
the tail estimate for K(t). Theorem 2.2 is a consequence of the estimate i) and of the
estimate for J .

Proof. Step 1: We first restrict the expectations to large values ofH . Let h : R+ 7→ R+

be any increasing function such that

lim
t→∞

t−1eh(t) = 0,(9)

h(t) ≥
9

10
log t.(10)

From Corollary 4.2, we know that

P
QI (

eHM1M2 ≥ t, H ≤ h(t)
)

= o(t−κ) = o(K(t)).(11)

Hence, we can restrict ourselves to consider

Ih(t) := P
QI (

eHM1M2 ≥ t | H ≥ h(t)
)
,

Jh(t) := P
QI (

eHM2 ≥ t | H ≥ h(t)
)
,
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Step 2: (Truncation of M1, M2). We need to truncate the sums M1 and M2 so that
they do not overlap. Under QI(·|H ≥ h(t)) we consider the random variables

M̃1 :=

t1∑

−∞

e−Vk ,(12)

M̃2 :=

∞∑

t2

eVk−S,(13)

where

t1 := inf{k ≥ 0, Vk ≥
1

3
log t} − 1,

t2 := sup{k ≤ TH , Vk ≤ H −
1

3
log t} + 1.

Since h(t) ≥ 9
10

log t, we have
0 ≤ t1 < t2 ≤ TH .

Clearly, by the symmetry property of QI , M̃1 and M̃2 have the same law under
QI(·|H ≥ h(t)). (Observe that the random variables M̃1 and M̃2 are implicitly defined
in terms of the variable t.)

Lemma 5.1. Let ξ be a positive real. There exists a constant cξ > 0 such that

P
QI
(
M̃1 ≤ e−ξM1 | H ≥ h(t)

)
≤

{
cξt

−κ/6 for κ ≤ 1,
cξt

−1/6 for κ ≥ 1.

Proof. We have, since M1 ≥ 1

P
QI
(
M̃1 ≤ e−ξM1 | H ≥ h(t)

)

≤ P
QI
(
M1 − M̃1 ≥ 1 − e−ξ | H ≥ h(t)

)

≤
1

1 − e−ξ
E

QI
(
M1 − M̃1 | H ≥ h(t)

)

≤ c
e−κh(t)

PQI(H ≥ h(t))
E

Q̃>0

(
∞∑

k=t1+1

e−Yk

( ∑

ep≥k,

Yep≥h(t)

e−κ(Yep−h(t))
))

,

where in the last expression we used the result of Lemma 3.6, and the notation of the
related section, and where c is a constant depending on ξ and on the parameters of
the model. Using the fact that P

QI

(H ≥ h(t)) ∼ Ce−κh(t), when t → ∞, the Markov
property and the fact that

E
Q̃>0

(
∑

ep≥k,

Yep≥h(t)

e−κ(Yep−h(t))

)

≤
1

PQ̃(Yn > 0, ∀n > 0)(1 − EQ̃(e−κYe1 ))
,

independently of k, we see that

P
QI
(
M̃1 ≤ e−ξM1 | H ≥ h(t)

)
≤ cEQ̃>0( ∞∑

k=t1+1

e−Yk
)

≤ cξt
−κ∧1

6 ,
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using the estimate of Lemma 3.3. �

Step 3: (A small modification of the conditioning.) We set

I
(t)
h := I ∩ {S ≥ h(t)} = {Vk ≥ 0 , ∀k ≤ 0} ∩ {S = H} ∩ {S ≥ h(t)},

the event by which we condition in Ih(t), Jh(t). We set

Ĩ
(t)
h := {S ≥ h(t)} ∩ {Vk ≥ 0 , ∀k ≤ 0} ∩ {Vk > 0, ∀0 < k < T 1

3
log t},

where

T 1
3

log t := inf{k ≥ 0, Vk ≥
1

3
log t}.

Clearly, we have I
(t)
h ⊂ Ĩ

(t)
h and

P(Ĩ
(t)
h \ I

(t)
h | Ĩ

(t)
h ) ≤ ct−κ/3,

for a constant c > 0 depending only on the parameters of the model. We set

Ĩh(t) := P
Q
(
eHM̃1M̃2 ≥ t | Ĩ

(t)
h

)
,

J̃h(t) := P
Q
(
eHM̃2 ≥ t | Ĩ

(t)
h

)
,

K̃h(t) := P
Q
(
eH ≥ t | Ĩ

(t)
h

)
.

From Step 2 (Lemma 5.1) and Step 3, we see that we have, for all ξ > 0, the following
estimate

Ih(e
2ξt) − cξt

−κ∧1
6 ≤ Ĩh(t) ≤ Ih(t) + ct−

κ
3 ,(14)

Jh(e
ξt) − cξt

−κ∧1
6 ≤ J̃h(t) ≤ Jh(t) + ct−

κ
3 .(15)

Step 4: (The coupling strategy.)

Let (Y ′
k)k≥0 and (Y ′′

k )k≥0 be two independent processes with law

Q̃(· | Yk > 0 , 0 < k ≤ T 1
3

log t).

Let us define, for all u > 0, the hitting times

T ′
u := inf{k ≥ 0, Y ′

k ≥ u}, T ′′
u := inf{k ≥ 0, Y ′′

k ≥ u}.

Set
N ′

0 := T ′
1
3

log t
, N ′′

0 := T ′′
1
3

log t
.

We couple the processes (Y ′
N ′

0+k)k≥0 and (Y ′′
N ′′

0 +k)k≥0 as in Durrett (cf [4], (4.3), p.

204): we construct some random times K ′ ≥ N ′
0 and K ′′ ≥ N ′′

0 such that

|Y ′
K ′ − Y ′′

K ′′| ≤ ξ,

and such that (Y ′
K ′+k − Y ′

K ′)k≥0 and (Y ′′
K ′′+k − Y ′′

K ′′)k≥0 are independent of the σ-
field generated by Y ′

0 , . . . , Y
′
K ′ and Y ′′

0 , . . . , Y
′′
K ′′. The method for this ξ-coupling is

the following: we consider some independent Bernoulli random variables (η′i)i∈N and
(η′′i )i∈N (with P(η′i = 1) = P(η′′i = 1) = 1

2
) and we define

(Z ′
k) = (Y ′

N ′
0+
∑k

i=1 η′
i
), (Z ′′

k ) = (Y ′′
N ′′

0 +
∑k

i=1 η′′
i
).

This extra randomization ensures that the process (Z ′
k −Z ′′

k ) is non arithmetic. Since
its expectation is null, there exists a positive random time for which Z ′

k and Z ′′
k are at
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a distance at most ξ (cf the proof of Chung-Fuchs theorem (2.7), p. 188 and theorem
(2.1), p. 183 in [4]). Then we define

Yk =

{
Y ′

k, when k ≤ K ′,
(Y ′′

K ′′+(k−K ′) − Y ′′
K ′′) + Y ′

K ′, when k > K ′.

Clearly, by construction, since the processes Y ′ and Y ′′ are no longer conditioned
when they reach the level 1

3
log t, (Yk)k≥0 has the law

Q̃(·| Yk > 0, ∀ 0 < k < T 1
3

log t).

We want that Y ′ and Y ′′ to couple before they reach the level 1
2
log t, so we set

A = {K ′ < T ′
1
2

log t
} ∩ {K ′′ < T ′′

1
2

log t
}.

Clearly, since the distribution of Y ′
N ′

0
− 1

3
log t converges (and the same for Y ′′, cf

limit theorem (4.10), p. 370 in [6]) and since for all starting points Y ′
N ′

0
and Y ′′

N ′′
0
, Z ′

and Z ′′ couple in a finite time almost surely, we have the following result (whose proof
is postponed to the end of the section).

Lemma 5.2.

lim
t→∞

P(Ac) = 0.

We set
η(t) := P(Ac),

and we choose h(t) in terms of η by

h(t) = (log t+
1

2κ
log η(t)) ∨ (

9

10
log t) ∨ ((1 −

1

7κ
) log t),(16)

where ∨ stands for the maximum of the three values. Clearly, h(t) satisfies the
hypotheses (9), (10).

Consider now two independent processes (Wk)k≥0 and (W ′
k)k≥0 (and independent

of Y ′, Y ′′) with the same law Q≤0 (cf Subsection 3.3). Let e be a strictly increasing
ladder time of Y and define the process V (W,W ′, Y, e) = (Vk)k∈Z by






(Vk)k≤0 = (−W−k)k≤0,

(Vk)k≥0 = (Y0, . . . , Ye, Ye +W ′
1, . . . , Ye +W ′

k, . . .).

If Ye ≥ h(t) then clearly (Vk)k∈Z belongs to the event Ĩ
(t)
h , and the functional M̃1

defined in (12) depends only on W and Y ′; we denote it by M̃1(W,Y
′). The functional

M̃2 depends only on Y,W ′, e; we denote it by M̃2(Y,W
′, e). Using Lemma 3.5, we see

that

Ĩh(t) =
1

Zh(t)
E

( ∞∑

p=0

e−κYep1Yep≥h(t)1M̃1(W,Y ′)M̃2(Y,W ′,ep)e
Yep ≥t

)
,

where (ep)p≥0 is the set of strictly increasing ladder times of Y (cf Subsection 3.3) and
where Zh(t) is the normalizing constant

Zh(t) = E

( ∞∑

p=0

e−κYep1Yep≥h(t)

)
.
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Clearly, Zh(t) ∼t→∞ ce−κh(t). The variable YTh(t)
− h(t) is indeed the residual waiting

time of the renewal process defined by the values of the process Y at the successive
increasing ladder epochs. Hence, it converges in distribution by the limit theorem
(4.10) in ([6], p. 370).

On the coupling event A, we have

Y ′′
ep−K ′+K ′′ − ξ ≤ Yep ≤ Y ′′

ep−K ′+K ′′ + ξ,

M̃2(Y,W
′, ep) = M̃2(Y

′′,W ′, ep −K ′ +K ′′),

for all ladder times ep such that Yep ≥ h(t) (indeed h(t) ≥ 9
10

log t) and where

M̃2(Y
′′,W ′, ep − K ′ + K ′′) is the functional obtained from the concatenation of the

processes Y ′′ and W ′ at time ep −K ′ +K ′′, as done for M̃2(Y,W
′, ep). The first set of

inequalities implies that, on the coupling event A, the set {ep −K ′ +K ′′, Yep ≥ h(t)}
is included in the set of strictly increasing ladder times of Y ′′ larger than h(t)− ξ. So
we have

Ĩh(t) ≤
eκξ

Zh(t)
E

(
1A

( ∞∑

p=0

e
−κY ′′

e′′p 1Y ′′

e′′p
≥h(t)−ξ1M̃1(W,Y ′)M̃2(Y ′′,W ′,e′′p) exp(Y ′′

e′′p
)≥te−ξ

))

+
e−κh(t)

Zh(t)
E

(
1Ac

( ∞∑

p=0

e−κ(Yep−h(t))1Yep≥h(t)

))
,

where (e′′p)p≥0 denote the strictly increasing ladder times for the process Y ′′. Since the
process {Yep, Yep ≥ h(t)} depends on the event A only through the value of YTh(t)

, we
see that the second term is less than or equal to

1

1 − EQ̃(e−κYe1 )

e−κh(t)

Zh(t)
P(Ac) ≤ cP(Ac).(17)

Now, the first term is lower than

eκξZh−ξ(t)

Zh(t)
P
(
eS′′

M̃1(W,Y
′)M̃ ′′

2 ≥ te−ξ
)
≤ e3κξ

P
(
eS′′

M̃1(W,Y
′)M̃ ′′

2 ≥ te−ξ
)
,(18)

for t large enough (using the equivalent of Zh(t)), where S ′′ and M̃ ′′
2 are relative to a

process V ′′ independent of W,Y ′ and with law Q(· | Ĩ
(t)
h−ξ). Moreover, let us introduce

M ′′
2 :=

∑∞
k=0 eV ′′

k −S′′

. We need now to replace the truncated sum M̃1 by M . Using the
fact that P(∃k > 0 : Y ′

k ≤ 0) ≤ ct−κ/3, we see that

P
(
eS′′

M̃1(W,Y
′)M̃ ′′

2 ≥ te−ξ
)

≤ P
(
eS′′

M ′′
2M ≥ te−ξ

)
+ ct−κ/6(19)

≤ E
(
Jh−ξ(e

−ξt/M)
)

+ c′t−κ/6,

the second inequality being a consequence of P(Ĩ
(t)
h \ I

(t)
h | Ĩ

(t)
h ) ≤ ct−κ/3 and M the

random variable defined in (6) and independent of V ′′. Finally, considering the choice
made for h(t) (cf (16)), we have

t−
κ∧1
6 P

QI

(H ≥ h(t)) = o(t−κ),

P(Ac)PQI

(H ≥ h(t)) ≤ ct−κ
√

P(Ac) = o(t−κ).
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Putting everything together (i.e., the estimates (11), (14), (17), (18), (19))

I(t) ≤ P(H ≥ h(t))Ih(t) + o(t−κ)

≤ P(H ≥ h(t))(Ĩh(e
−2ξt) + ct−

κ∧1
6 ) + o(t−κ)

≤ P(H ≥ h(t))(e3κξ
E(Jh−ξ(e

−3ξt/M)) + cP(Ac)) + o(t−κ)

≤ e3κξ
P
(
RM ≥ te−3ξ, H ≥ h(t) − ξ

)
+ o(t−κ),

where R and M are independent processes with laws defined in Section 2 (indeed,

in the last inequality, P(H ≥ h(t))P(Ac) ≤
√

P(Ac)t−κ = o(t−κ)). Now, proceeding
exactly as in Corollary 4.2, we see that

P(RM ≥ t, H < h(t) − ξ) = o(t−κ),

(indeed, the only difference is that M1 is replaced by M and that M and R are
independent). Finally, we proved that

I(t) ≤ e3κξ
E(J(e−3ξt/M)) + o(t−κ).

The lower estimate is similar. We first have, since the set {ep −K
′ +K ′′, Yep ≥ h(t)}

includes the set of strictly increasing ladder times of Y ′′ larger than h(t) + ξ:

Ĩh(t) ≥
e−κξ

Zh(t)
E

(
1A

( ∞∑

p=0

e
−κY ′′

e′′p 1Y ′′

e′′p
≥h(t)+ξ1M̃1(W,Y ′)M̃2(Y ′′,W ′,e′′p) exp(Y ′′

e′′p
)≥teξ

))
.

Hence, by the same argument as above

Ĩ
(t)
h ≥ e−3κξ

P
(
eS′′

M̃1(W,Y
′)M̃ ′′

2 ≥ eξt
)

+ cP(Ac),

where S ′′ and M̃ ′′
2 are relative to a process V ′′ independent of W and Y ′ and with law

Q(· | Ĩ
(t)
h+ξ). Using, now the fact that Y ′

k > 0 for all k > 0 with probability at least

1− ct−κ/3 and the fact that M̃2 ≥ e−ξM2 with probability at least 1− ct−κ/6, and the
estimate on the tail of the sum

∑
e−Y ′

k (of Subsection 3.1) we see that

Ĩ
(t)
h ≥ e−3κξ

P

(
MeS′′

M ′′
2 ≥ e3ξt

)
+ o(t−κ/6) + cP(Ac),

where M is the random variable defined in (6) and independent of V ′′. Then, we
conclude as previously.

To prove the estimate on J(t) and K(t) we proceed exactly in the same way: we
first remark that by the property of time reversal (see Lemma 3.4), we have

J(t) = P
QI

(eHM1 ≥ t).

The situation is then even simpler, we just have to decouple M1 and eH . �

Proof. (of Lemma 5.2). Denote by Fy′,y′′(u) the probability that Z ′ and Z ′′ couple
before the level 1

3
log t+ u knowing that Y ′

N ′
0

= 1
3
log t+ y′ and Y ′′

N ′′
0

= 1
3
log t+ y′′. By

the arguments above, Fy′,y′′(u) tends to 1 when u tends to infinity. Let A > 0; we first
prove that this convergence is uniform in y′, y′′ on the compact set y′ ≤ A, y′′ ≤ A.
For this we consider the set S = (N · ξ

4
) ∩ [0, A], and for y′, y′′ in S × S the function

F̂y′,y′′(u), the probability that Z ′ and Z ′′, starting from the points Y ′
N ′

0
= 1

3
log t + y′

and Y ′′
N ′′

0
= 1

3
log t+ y′′, couple at a distance ξ/2, before the level 1

3
log t+ u− ξ. Let

φ(u) = inf
y′∈S, y′′∈S

F̂y′,y′′(u).
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Clearly φ(u) → 1 when u→ ∞ and Fy′,y′′(u) ≥ φ(u), whenever y′ and y′′ are in [0, A].
This implies that

lim inf
t→∞

P(A) ≥ lim inf
A→∞

lim inf
t→∞

(
P(Y ′

N ′
0
−

1

3
log t ≤ A)

)2

.

Moreover, P
Q̃(Y ′

k > 0 , 0 < k ≤ T 1
3

log t) ≥ P
Q̃(Y ′

k > 0 , k ≥ 0) > 0 implies

P(Y ′
N ′

0
−

1

3
log t ≥ A) = P

Q̃(VT 1
3 log t

−
1

3
log t ≥ A | V > 0) ≤ cPQ̃(VT 1

3 log t
−

1

3
log t ≥ A),

where here V is the canonical process under Q̃. Therefore, since VT 1
3 log t

− 1
3
log t

converges in law (under Q̃) to a finite random variable when t tends to infinity (see
limit theorem (4.10), p. 370 in [6] or Example 4.4 part II, page 214 in [4]), this yields
lim inft→∞ P(A) = 1. �

6. Proof of Theorem 2.1,Theorem 2.2 and Theorem 2.3

Proof. (of Theorem 2.1, ii) and Theorem 2.2). Let ξ > 0. By Proposition 5.1, we
have, for all A > 0 and for t large enough,

J(t) ≤ e3ξ
(
E(K(e−2ξtM−1)1M≤A) + E(K(e−2ξtM−1)1M>A)

)
.

On the first term, for t large enough, we can bound K(e−2ξtM−1) from above by
( CI

PQ(H=S)
+ ξ)(te−2ξM−1)−κ. For the second term we can use a uniform bound K(t) ≤

ct−κ. Thus we get

J(t) ≤ e3(1+κ)ξ(
CI

PQ(H = S)
+ ξ)t−κ(E(Mκ)1M≤A) + ct−κ

E(Mκ1M>A)).

Since Mκ is integrable, letting A tend to ∞, then ξ tend to 0, we get the upper bound

lim sup
t→∞

tκJ(t) ≤
CKI

PQ(H = S)
.

For the lower bound it is the same. The proof of Theorem 2.2 is the same: we use
the estimate i) of Proposition 5.1 and the tail estimate for J . �

Proof. (of Theorem 2.1, i)).

Let us first recall (5) and Theorem 2.1, ii), which tells us that

Q(R > t ; H = S) =
CKI

tκ
+ o(t−κ), t→ ∞,(20)

where CKI = CIE(Mκ). Then, introducing

KI :=
∑

0≤k≤TR−

eVk , O1 := −VTR−
,

Theorem 2.1, i) is a consequence of Theorem 2.1, ii) together with the two following
lemmas.

Lemma 6.1. We have

Q(KI > t) =
CKI

tκ
+ o(t−κ), t→ ∞.(21)
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Proof. Firstly, observe that KI ≤ R implies Q(KI > t ; H = S) ≤ Q(R > t ; H = S).
Moreover, Corollary 4.2 implies Q(KI > t ; eH = eS ≤ t2/3) = o(t−κ), t → ∞, since
KI ≤ R. Furthermore, we have 0 ≤ Q(KI > t ; eH > t2/3) − Q(KI > t ; eH = eS >
t2/3) ≤ Q(H 6= S ; eH > t2/3) = o(t−κ), t→ ∞. Therefore, we obtain, when t→ ∞,

Q(R > t ; H = S) ≥ Q(KI > t ; eH > t2/3) + o(t−κ).(22)

Since, by Corollary 4.2, Q(KI > t ; eH ≤ t2/3) = o(t−κ), t→ ∞, we get

Q(KI > t ; eH > t2/3) = Q(KI > t) + o(t−κ),(23)

when t→ ∞. Then, assembling (22) and (23) yields

Q(R > t ; H = S) ≥ Q(KI > t) + o(t−κ), t→ ∞.(24)

On the other hand, observe that Corollary 4.2 implies that Q(R > t ; H = S) =
Q(R > t ; eH = eS > t2/3)+ o(t−κ), t→ ∞. Moreover, since we have R = KI +eO1R′,
with R′ a random variable independent of KI and O1, having the same law as R, we
obtain that Q(R > t ; eH = eS > t2/3) ≤ Q1 +Q2, where

Q1 := Q(KI ≤ t− t2/3 ; R′ > t2/3 ; eH > t2/3),

Q2 := Q(KI > t− t2/3 ; R > t ; eH = eS > t2/3).

Now, since R′ and H are independent, we get Q1 ≤ Q(eH > t2/3)Q(R′ > t2/3) =
o(t−κ), t→ ∞. Moreover, we easily have Q2 ≤ Q(KI > t− t2/3). Therefore

Q(R > t ; H = S) ≤ Q(KI > t− t2/3) + o(t−κ), t→ ∞.(25)

Recalling (20) and assembling (24) and (25) concludes the proof of Lemma 6.1. �

Lemma 6.2. CKI satisfies

CKI = (1 − E
Q(e−κO1))CK .

Proof. First, observe that Q(R > t) = Q(KI > t) + P1 + P2, where

P1 := Q(KI + e−O1R′ > t ; t1/2 < KI ≤ t),

P2 := Q(KI + e−O1R′ > t ; KI ≤ t1/2),

with R′ a random variable independent of KI and O1, with the same law as R.

Now, let us prove that P1 is negligible. Observe first that, since O1 ≥ 0 by definition,
we have P1 ≤ Q(R′ > t−KI ; t1/2 < KI ≤ t). Therefore 0 ≤ P1 ≤ P ′

1 + P ′′
1 , where

P ′
1 := Q(R′ > t−KI ; t− t2/3 < KI ≤ t),

P ′′
1 := Q(R′ > t−KI ; t1/2 < KI ≤ t− t2/3).

Since R′ and KI are independent, (5) and (21) yield P ′′
1 ≤ Q(R′ > t2/3)Q(KI >

t1/2) = o(tκ), t→ ∞. Furthermore, we have

P ′
1 ≤ Q(t− t2/3 < KI ≤ t)

≤ Q(KI > t− t2/3) −Q(KI > t)

= Q(KI > t)

(
Q(KI > t− t2/3)

Q(KI > t)
− 1

)
.
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Therefore (21) implies P ′
1 = o(t−κ), t→ ∞. Then, we obtain P1 = o(t−κ), t→ ∞.

Now, let us estimate P2. Observe that P 2 ≤ P2 ≤ P 2, where

P 2 := Q(e−O1R′ > t ; KI ≤ t1/2),

P 2 := Q(e−O1R′ > t− t1/2).

Since R′ and O1 are independent, (5) yields

P 2 =
E

Q(e−κO1)CK

tκ
+ o(t−κ), t→ ∞.(26)

Therefore, it only remains to estimate P 2. Since R′ is independent of KI and O1, we
obtain for any ε > 0 and t large enough,

(1 − ε)CKE
Q

(
1{KI≤t1/2}

e−κO1

tκ

)
≤ P 2 ≤ (1 + ε)CKE

Q

(
1{KI≤t1/2}

e−κO1

tκ

)
.

Moreover,

E
Q

(
1{KI≤t1/2}

e−κO1

tκ

)
=

E
Q(e−κO1)

tκ
− E

Q

(
1{KI>t1/2}

e−κO1

tκ

)
,

and the second term on the right-hand side is less or equal than t−κQ(KI > t1/2) =
o(t−κ), t→ ∞. Thus

P 2 =
E

Q(e−κO1)CK

tκ
+ o(t−κ), t→ ∞.(27)

Assembling (26) and (27) yields P2 = E
Q(e−κO1 )CK

tκ
+o(t−κ), t→ ∞. Therefore, recalling

(5), (21) and Q(R > t) = Q(KI > t)+P1 +P2, we obtain CKI = (1−E
Q(e−κO1))CK ,

which concludes the proof of Lemma 6.2. �

Since Theorem 2.1, ii) together with Lemma 6.1 and Lemma 6.2 yield CKI =
CIE

Q[Mκ] = (1 − E
Q[e−κO1])CK , we get CK = CIE

Q[Mκ](1 − E
Q[e−κO1])−1. Now,

recalling that CI = (1 − E
Q[e−κO1])CF , this concludes the proof of Theorem 2.1,

i). �

Proof. (of Theorem 2.3).

The proof of Theorem 2.3 is based on the same arguments as in the proof of Theorem
2.1, i). We mainly have to check analogous statements to Lemma 4.1 and Corollary
4.2. Namely, we check that there exists c > 0 such that

E
QI

((MB
1 )κ+ ε

2 | ⌊H⌋) ≤ c, QI- a.s.,

where MB
1 :=

∑TS

k=−∞ e−VkB̃k. Using the Hölder inequality instead of the Cauchy-
Schwarz inequality in the proof of Lemma 4.1 we are led to check the integrability of
(MB)κ+ε. This is used in the proof of

P
QI (

RB ≥ t, H ≤ h(t)
)

= o(t−κ),

when t tends to infinity, which is analogous to the proof of Corollary 4.2 (in its R
version), choosing η = κ + ε

2
.

Now, it only remains to check the integrability of (MB)κ+ε. To this aim, we prove

that E
Q̃>0

((
∑

k≥0 e−VkB̃k)
κ+ε) <∞, the case of E

Q>0
((
∑

k<0 e−VkB̃k)
κ+ε) being similar.
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If κ ≥ 1, the Minkowski inequality yields

E
Q̃>0
(
(
∑

k≥0

e−VkB̃k)
κ+ε
)

≤

(
∑

k≥0

E
Q̃>0
(
(e−VkB̃k)

κ+ε
) 1

κ+ε

)κ+ε

≤ c

(
∑

k≥0

E
Q̃>0

(e−(κ+ε)Vk)
1

κ+ε

)κ+ε

≤ c

(
∑

k≥0

E
Q̃>0

(e−Vk)
1

κ+ε

)κ+ε

,(28)

the second inequality being a consequence of the independence between (B̃i)i≥0 and

(Vi)i≥0, while the third inequality is due to the fact that Vi ≥ 0 for i ≥ 0 under Q̃>0

together with κ+ ε ≥ 1. Choosing p such that p/(κ+ ε) > 1, let us write

E
Q̃>0

(e−Vk) ≤
1

kp
+ P

Q̃>0

(e−Vk ≥ k−p).

Now, as in the proof of Lemma 3.1, since large deviations do occur, we get from

Cramer’s theory, see [2], that the sequence (PQ̃>0
(e−Vk ≥ k−p))k≥1 is exponentially

decreasing. This yields that the sum in (28) is finite.

If κ < 1, observe that we can restrict our attention to the case where κ + ε < 1.
Then, let us write

E
Q̃>0
(
(
∑

k≥0

e−VkB̃k)
κ+ε
)

≤ E
Q̃>0
(∑

k≥0

(e−VkB̃k)
κ+ε
)

≤ c
∑

k≥0

E
Q̃>0

(e−(κ+ε)Vk),

the second inequality being a consequence of the independence between (B̃i)i≥0 and
(Vi)i≥0. Now, the conclusion is the same as in the case κ ≥ 1. �

7. Appendix

7.1. Preliminaries’ proofs. We give here the proofs of the claims from Section 3.

Proof of Lemma 3.1. Using the Markov inequality, we get

E
Q̃
(∑

k≥0

e−Vk | V ≥ −L
)
≤ 1 +

∑

k≥1

1

k2
+
∑

k≥1

Q̃
(
e−Vk ≥

1

k2
| V ≥ −L

)
eL.

Since P
Q̃(V ≥ −L) ≥ P

Q̃(V ≥ 0) > 0, for all L ≥ 0,

Q̃
(
e−Vk ≥

1

k2
| V ≥ −L

)
= Q̃(Vk ≤ 2 log k | V ≥ −L) ≤ c Q̃(Vk ≤ 2 log k).

Now, since large deviations do occur, we get, from Cramer’s theory, see [2], that

E
Q̃(log ρ0) > 0 implies that the sequence Q̃(Vk ≤ 2 log k) is exponentially decreasing.

The sum
∑

k≥1 Q̃
(
e−Vk ≥ 1

k2 | V ≥ −L
)

is therefore bounded uniformly in L, and
the result follows. �
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Proof of Lemma 3.2. Let us treat, for more readability, the case of the second moment.
Observe first that

E
Q̃≥0

((∑

i≥0

e−Vi

)2
)

≤ 2E
Q̃≥0

(∑

i≥0

e−2Vi

(∑

j≥i

e−(Vj−Vi)
))

.

Applying the Markov property to the process V under Q̃ at time i, we get

E
Q̃≥0

((∑

i≥0

e−Vi

)2
)

≤ 2E
Q̃≥0

(∑

i≥0

e−2ViE
Q̃
[∑

l≥0

e−V ′
l | V ′ ≥ −Vi

])
,

where V ′ is a copy of V independent of (Vk)0≤k≤i. Now, we use Lemma 3.1 to get the
upper bound

cE
Q̃≥0
(∑

i≥0

e−2Vi × eVi

)
≤ cE

Q̃≥0
(∑

i≥0

e−Vi

)
,

which is finite, again by applying Lemma 3.1. This scheme is then easily extended to
higher moments. �

Proof of Lemma 3.3. Let α ∈ [0, 1] and define T(−∞,−αL] := min{i ≥ 0 : Vi ≤ −αL}.
Let us write∑

i≥0

e−Vi =
(∑

i≥0

e−Vi

)
1{V >−αL}

+

( T(−∞,−αL]−1∑

i=0

e−Vi +
∞∑

i=T(−∞,−αL]

e−Vi

)
1{T(−∞,−αL]<∞}.

Now, since Q̃(V ≥ −A) is uniformly bounded below, for A > 0, by Q̃(V > 0) > 0,

we obtain that E
Q̃
(∑

i≥0 e−Vi | V ≥ −L
)

is less than or equal to

cE
Q̃
(∑

i≥0

e−Vi | V ≥ −αL
)

(29)

+ cE
Q̃

( ∑

i<T(−∞,−αL]

e−Vi ; T(−∞,−αL] <∞ ; V ≥ −L

)

+ cE
Q̃

( ∑

i≥T(−∞,−αL]

e−Vi ; T(−∞,−αL] <∞ ; V ≥ −L

)
.

Lemma 3.1 bounds the first term in (29) from above by ceαL, for all L > 0. Further-

more, i < T(−∞,−αL] implies e−Vi ≤ eαL. Therefore, ceαL
E

Q̃(T(−∞,−αL]1{T(−∞,−αL]<∞})

is an upper bound for the second term in (29), which is treated as follows,

E
Q̃
(
T(−∞,−αL]1{T(−∞,−αL]<∞}

)
≤

∑

k≥0

kQ̃
(
T(−∞,−αL] = k

)

≤
∑

k≥0

kQ̃
(
Vk ≤ −αL

)

≤
∑

k≥0

ke−kθĨ(−αL
k

)e−k(1−θ)Ĩ(−αL
k

),

where 0 < θ < 1 and Ĩ denotes the rate function associated with P̃ which is pos-
itive convex and admits a unique minimum on R+. We can therefore bound below
all the terms Ĩ(−αh

k
) by Ĩ(0) > 0. Moreover, a more sophisticated result yields
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supx≤0 Ĩ(x)/x ≤ −κ (see definition of κ and formula (2.2.10) in ([2], p. 28)). There-
fore, we obtain

E
Q̃
(
T(−∞,−αL]1{T(−∞,−αL]<∞}

)
≤ e−θκαL

∑

k≥0

ke−k(1−θ)Ĩ(0) ≤ c e−θκαL.

As a result, the second term in (29) is bounded by ce(1−θκα)L, for all L > 0.

Finally, concerning the third term in (29), we have that

cE
Q̃

( ∑

i≥T(−∞,−αL]

e−Vi ; T(−∞,−αL] <∞ ; V ≥ −L

)

≤ cE
Q̃

(
e
−VT(−∞,−αL]

∑

i≥T(−∞,−αL]

e
−(Vi−VT(−∞,−αL]

)
; T(−∞,−αL] <∞ ; V ≥ −L

)

≤ cE
Q̃

(
e
−VT(−∞,−αL]1{T(−∞,−αL]<∞}E

Q̃
(∑

i≥0

e−V ′
i | V ′ ≥ −(L+ VT(−∞,−αL]

)
))

,

where V ′
i := VT(−∞,−αL]+i − VT(−∞,−αL]

, for i ≥ 0. The last inequality is a consequence

of the strong Markov property applied at T(−∞,−αL], which implies that (V ′
i , i ≥ 0) is

a copy of (Vi, i ≥ 0) independent of (Vi, 0 ≤ i ≤ T(−∞,−αL]). Then, Lemma 3.1 yields
that the third term in (29) is less than

cE
Q̃

(
e
−VT(−∞,−αL]1{T(−∞,−αL]<∞}e

L+VT(−∞,−αL]

)

≤ c eLQ̃(T(−∞,−αL] <∞) ≤ c e(1−κα)L.

Since θ < 1 implies 1 − θκα ≥ 1 − κα, we optimize the value of α by taking α =
−ακθ+ 1, i.e. α = 1/(1 + κθ). As a result, we get already a finer result than Lemma

3.1 with a bound e
L

1+κθ instead of eL.

Now, the strategy is to use this improved estimation instead of Lemma 3.1 and
repeat the same procedure. In that way, we obtain recursively a sequence of bounds,
which we denote by ceunL. The first term in (29) is bounded by ceαunL whereas the
second and the third term are still bounded respectively by ce(1−καθ)L and ce(1−κα)L.

Optimizing in α again, one chooses αun = −ακθ + 1, i.e. α = 1
un+κθ

. The new
exponent is therefore un+1 = αun = un

un+κθ
. Thus, the sequence un is monotone and

converges to a limit satisfying l = l
l+κθ

. For κθ ≤ 1, the limit is l = 1 − κθ and for
κθ ≥ 1, the limit is 0. Since this result holds for any 0 < θ < 1, it concludes the proof
of Lemma 3.3. �

Proof of Lemma 3.4. Let φ be a positive test function. We have

E
QI

(φ((VTH
− VTH−k)k≥0))

=
∞∑

p=0

E
QI

(1TH=pφ((Vp − Vp−k)k≥0))

=
1

PQ(I)

∞∑

p=0

E
Q(1{Vk≥0 ,∀k≤0}1{Vk≤Vp , ∀k≥p}1{0<Vk<Vp ,∀0<k<p}φ((Vp − Vp−k)k≥0)).
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By construction we have, for all p ≥ 0,

(Vp − Vp−k)k∈Z

law
= (Vk)k∈Z.

This implies that

E
QI

(φ((VTH
− VTH−k)k≥0))

=
1

PQ(I)

∞∑

p=0

E
Q(1{Vk≥0 ,∀k≤0}1{Vk≤Vp , ∀k≥p}1{0<Vk<Vp ,∀0<k<p}φ((Vk)k≥0))

= E
QI

(φ((Vk)k∈Z)).

�

Proof of Lemma 3.5. Let ψ, θ be positive test functions. Let us compute

E
Q (ψ((VTS+k − VTS

)k≥0)θ((V0, . . . , VTS
)))

=
∞∑

p=0

E
Q (1TS=pψ((Vp+k − Vp)k≥0)θ((V0, . . . , Vp)))

=
∞∑

p=0

E
Q
(
1{Vk<Vp ,∀0≤k<p}1{Vk≤Vp , ∀k≥p}ψ((Vp+k − Vp)k≥0)θ((V0, . . . , Vp))

)

=
∞∑

p=0

E
Q
(
1{Vk<Vp ,∀k<p}θ((V0, . . . , Vp))

)
E

Q
(
1{Vk≤0 ,∀k≥0}ψ((Vk)k≥0)

)
,

using the Markov property at time p. The second term is equal to

P
Q(Vk ≤ 0 , ∀k ≥ 0) E

Q≤0

(ψ((Vk)k≥0)) .

Let us now consider only the first term. Using the Girsanov property of Q and Q̃ we
get
∞∑

p=0

E
Q
(
1{Vk<Vp ,∀k<p}θ((V0, . . . , Vp))

)
=

∞∑

p=0

E
Q̃
(
1{Vk<Vp ,∀k<p}e

−κVpθ((V0, . . . , Vp))
)

=

∞∑

p=0

E
Q̃
(
e−κVepθ((V0, . . . , Vep))

)
,

where (ep)p≥0 are the strictly increasing ladder times of (Vk , k ≥ 0) as defined in
Subsection 3.3. The last formula is exactly the one we need, and also implies that

1

Z
= P

Q(Vk ≤ 0 , ∀k ≥ 0) = 1 − E
Q̃(e−κVe1 ),

(which can also be obtained directly). �
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Proof of Lemma 3.6. Let Ψ be a positive test function. Thanks to the previous lemma,
we have

E
QI

(Ψ(V0, . . . , VTH
))

=
1

PQ(H = S)
E

Q(1H=SΨ(V0, . . . , VTH
))

=
1

ZPQ(H = S)

∞∑

p=0

E
Q̃(1Yk>0 , ∀0<k≤epe

−κYep Ψ(Y0, . . . , Yep))

=
1

ZPQ(H = S)

∞∑

p=0

E
Q̃(1Yk>0 , ∀k>0

1

PQ̃(Vk > −Yep , ∀k > 0)
e−κYep Ψ(Y0, . . . , Yep))

≤
1

ZPQ(H = S)PQ̃(Vk > 0 , ∀k > 0)

∞∑

p=0

E
Q̃(1Yk>0 , ∀k>0e

−κYepΨ(Y0, . . . , Yep))

≤
1

PQ(H = S)PQ̃(Vk > 0 , ∀k > 0)
E

Q̂>0

(Ψ(Y0, . . . , YΘ)),

using the Markov property at time ep in the fourth line. This is exactly what we
want. �

7.2. A Tauberian result.

Corollary 7.1. Let h : R+ → R+ be such that

lim
λ→0

λeh(λ) = 0, lim
λ→0

h(λ) = ∞.

Then, for κ < 1,

E
Q
(
1 −

1

1 + λZ
| I

(λ)
h

)
∼

1

PQ(H ≥ h(λ))

πκ

sin(πκ)
CUλ

κ,

when λ→ 0, where I
(λ)
h is the event

I
(λ)
h = I ∩ {H ≥ h(λ)} = {Vk ≥ 0 , ∀k ≤ 0} ∩ {H = S ≥ h(λ)}.

Proof. Clearly, we have

E
Q
(
1 −

1

1 + λZ
| I

(λ)
h

)
=

P
Q(H = S)

PQ(H = S ≥ h(λ))
E

QI
(
1H≥h(λ)

(
1 −

1

1 + λZ

))
.

Since P
Q(H = S ≥ h(λ)) ∼ P

Q(H ≥ h(λ)) we consider now

E
QI
(
1H≥h(λ)

(
1 −

1

1 + λZ

))

We will omit in the following the reference to the law QI , and simply write E for the
expectation with respect to QI . We have

E

(
1H≥h(λ)

(
1 −

1

1 + λZ

))
(30)

= E

(
1Z≥eh(λ)

(
1 −

1

1 + λZ

))
− E

(
1eH<eh(λ)≤Z

(
1 −

1

1 + λZ

))
.
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For κ < 1, the second term can be bounded by

E

(
1eH<eh(λ)≤Z

(
1 −

1

1 + λZ

))
≤

⌊h(λ)⌋∑

p=0

E

(
1⌊H⌋=p

λZ

1 + λZ

)

=

⌊h(λ)⌋∑

p=0

E

(
1⌊H⌋=p E

( λZ

1 + λZ
| ⌊H⌋ = p

))

≤

⌊h(λ)⌋∑

p=0

E

(
1⌊H⌋=p

cλep

1 + cλep

)
,

where, in the last inequality, we used the Jensen inequality and Corollary 4.1, and
where c denotes a constant independent of λ (which may change from line to line).
Now, since P(⌊H⌋ = p) ≤ ce−κp for a positive constant c, we get that

E

(
1eH<eh(λ)≤Z

(
1 −

1

1 + λZ

))
≤ cλ

⌊h(λ)⌋∑

p=0

e(1−κ)p ≤ c′λe(1−κ))h(λ)

≤ cλκ(λeh(λ))1−κ = o(λκ),

for κ < 1, since λeh(λ) → 0, λ→ 0.

By integration by parts, we see that the first term of (30) is equal to

E

(
1Z≥h(λ)

(
1 −

1

1 + λZ

))

=
[ λz

1 + λz
P(Z ≥ z)

]∞
eh(λ)

+

∫ ∞

eh(λ)

λ

(1 + λz)2
P(Z ≥ z) dz.

The first term is lower than

cλe(1−κ)h(λ) = cλκ(λeh(λ))1−κ = o(λκ),

for κ < 1. For the second term, let us suppose first that

h(λ) → ∞.

We can estimate P(Z ≥ z) by

(
CU

PQ(H = S)
− η)z−κ ≤ P(Z ≥ z) ≤ (

CU

PQ(H = S)
+ η)z−κ,

for any η, when λ is sufficiently small. Hence we are led to compute the integral
∫ ∞

eh(λ)

λ

1 + λz
z−κ dz = λκ

∫ 1

λeh(λ)

1+λeh(λ)

x−κ(1 − x)κ dx,

(making the change of variables x = λz/(1 + λz)). For κ < 1 this integral converges,
when λ→ 0, to

Γ(κ+ 1)Γ(−κ + 1) =
πκ

sin(πκ)
.

�

Remark 7.1 : Let us make a final remark useful for [5]. If we truncate the series
M1 on the right and on the left when Vk reaches the level A > 0, and if we truncate
M2 when H − Vk reaches the level A then the results of Theorem 2.2 and Corollary
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7.1 remain valid just by replacing in the tail estimate M by the the random walk M
truncated at level A. More precisely, let A > 0 and consider

M1 =

t+1∑

k=t−1

e−Vk , M 2 =

t+2∑

k=t−2

eVk−H

where
t−1 = sup{k ≤ 0, Vk ≥ A}, t+1 = inf{k ≥ 0, Vk ≥ A} ∧ TH

t−2 = sup{k ≤ TH , H − Vk ≥ A} ∨ 0, t+2 = inf{k ≥ TH , Vk ≥ A}

then the results of Theorem 2.2 and Corollary 7.1 remain valid when we consider
Z = eHM 1M2 instead of Z, if we replace in the tail estimate M by M =

∑t+
t−

e−Vk

where t− and t+ are the hitting times of the level A on the left and on the right.
Indeed, in the proof of Theorem 2.2 we see that considering the truncated M 1 and
M 2 only simplifies the proof: we don’t need to truncate M1 and M2 as we did. In
particular, it implies that in Corollary 7.1 we can truncate M1 and M2 at a level
h(λ) ≤ h(λ): if h(λ) tends to ∞, we have exactly the same result.
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Lyon, 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex

E-mail address : sabot@math.univ-lyon1.fr
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Paris 6, 4 place Jussieu, 75252 Paris Cedex 05

E-mail address : zindy@ccr.jussieu.fr


