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Universal cumulants of the current

in diffusive systems on a ring
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We calculate exactly the first cumulants of the integrated current and of the activity (which is the total number
of changes of configurations) of the symmetric simple exclusion process (SSEP) on a ring with periodic bound-
ary conditions. Our results indicate that for large system sizes the large deviation functions of the current and
of the activity take a universal scaling form, with the same scaling function for both quantities. This scaling
function can be understood either by an analysis of Bethe ansatz equations or in terms of a theory based on
fluctuating hydrodynamics or on the macroscopic fluctuationtheory of Bertini, De Sole, Gabrielli, Jona-Lasinio
and Landim.

PACS numbers: 82.70.Dd,64.70.Dv

I. INTRODUCTION

The symmetric simple exclusion process (SSEP) [1, 2, 3, 4]
is one of the simplest lattice gas models studied in the theory
of non-equilibrium systems. It consists of hard-core particles
hopping with equal rates to either of their nearest neighbor
sites, on a regular lattice. At equilibrium, when isolated,the
system reaches in the long time limit an equilibrium where all
accessible configurations are equally likely. Also, when equi-
librium is achieved by contact with one or several reservoirs
at a single densityρ, all sites are occupied with this densityρ
and the occupation numbers of different sites are uncorrelated.

As soon as the system is maintained out of equilibrium, by
contact with reservoirs at unequal densities, there is a current
of particles and one observes long range correlations in the
steady state [5]. In this out of equilibrium case several ap-
proaches have been developed to calculate steady state prop-
erties, such as the fluctuations or the large deviations of the
density or of the current [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18].

A lot of progress has been made over the last decades on
the study of the fluctuations and the large deviation func-
tions of the current in equilibrium or non equilibrium sys-
tems. The large deviation function of the current can be
viewed as the dynamical analog of a free energy, as dis-
cussed by Ruelle in the early seventies [19]. The idea back
then was to build up a thermodynamic formalism based upon
probabilities over time realizations rather than over instanta-
neous configurations. Generic properties of these large de-
viation functions were later discovered such as the fluctua-
tion theorem which determines how the large deviation func-
tion of the current is changed under time reversal symmetry
[20, 21, 22, 23, 24, 25, 26, 27, 28].

In the present work, we obtain exact expressions for the first
cumulants of the integrated current and of the activity (which
is the number of changes of configurations) during a long time

t for the SSEP consisting ofN particles on a ring ofL sites.
For large system sizes, these cumulants and the associated
large deviation functions take universal scaling forms. We
show how these scaling forms can be calculated for the SSEP
by the Bethe ansatz or for more general diffusive systems on
a ring by a theory based on fluctuating hydrodynamics or on
the macroscopic fluctuation theory developed by Bertini, De
Sole, Gabrielli, Jona-Lasinio and Landim [9, 10, 16, 17, 18].
In the Bethe ansatz approach these scaling forms can be ex-
tracted from a detailed analysis of finite size effects similar to
what was developed recently for quantum spin chains in the
context of string theory [29, 30]. In the fluctuating hydrody-
namics approach, it results from the discreteness of the wave
vectors of the fluctuating modes on the ring.

Universal distributions of the current characteristic of the
universality class of the KPZ (Kardar-Parisi-Zhang) equation
[31, 32, 33, 34], have been calculated in the past [35, 36, 37,
38] for the asymmetric exclusion process (ASEP). The distri-
butions obtained in the present paper are different and belong
to the Edwards-Wilkinson universality class [39].

We begin by presenting in Sec.II exact expressions of the
first cumulants of the current and of the activity for the SSEP
on a ring . This is where we see that the cumulants of the
integrated current and of the activity take scaling forms when
the size of the ring becomes large and where emerges the idea
that the large deviation function of the current and of the ac-
tivity obey the same universal scaling function. This is con-
firmed in Sec.III by Bethe ansatz calculations. By resortingto
fluctuating hydrodynamics in Sec.IV we are able to formulate
the particular case of the SSEP within a more general frame-
work using the Bertini, De Sole, Gabrielli, Jona-Lasinio and
Landim approach and to show that the same universal distri-
bution of the current fluctuations of the current are presentin
a larger family of diffusive systems.
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II. EXACT EXPRESSIONS OF THE FIRST CUMULANTS

We consider a system ofN particles on a one-dimensional
lattice ofL sites with periodic boundary conditions. Each site
is either empty or occupied by a single particle. A microscopic
configurationC = {ni}i,1,...,L can be specified byL occupa-
tion numbersni (whereni = 1 if site i is occupied andni = 0
if site i is empty). In the simple symmetric exclusion process,
SSEP, each particle hops to its right neighbor at rate1 or to
its left neighbor at rate 1, provided the target site is empty.
In the present paper we try to determine the distribution of
the total integrated currentQ(t) and of the total numberK(t)
of changes of configuration (that we will call the activity [40])
during a time interval(0, t). To do so we define the generating
functions of the cumulants ofQ andK as

ψQ(s) = lim
t→∞

ln〈e−sQ〉
t

, ψK(s) = lim
t→∞

ln〈e−sK〉
t

, (1)

where the brackets denote an average over the time evolutions
during the time interval(0, t). As the evolution is an irre-
ducible Markov process with a finite number of states, the
long time limits in (1) do not depend on the initial configu-
ration and the generating functions defined in (1) can be cal-
culated as the largest eigenvalue of a matrix [20, 36, 41].

Because the calculations are very similar for both observ-
ablesK andQ, we shall first focus on the activityK and
explain how to calculate the cumulant generating function
ψK(s) as a perturbation series in powers ofs. We will then
present only the results forψQ(s).

A. The cumulants of the activityK(t)

In order to determineψK , as in [36], one can write a Mas-
ter equation for the probabilityP (C,K, t) to find the system
in configurationsC at time t, given that the activity at time
t is K (i.e. given that the system has changedK times of
configurations during the time interval(0, t)).

∂tP (C,K, t)=−r(C)P (C,K, t)+
∑

C′

W (C′ → C)P (C′,K−1, t)

(2)
whereW (C → C′) is the transition rate from configurationC
to C′, andr(C) =

∑
C′ W (C → C′) is the escape rate from

configurationC.
If one introduces the generating function̂P (C, s, t) =∑
K e−sKP (C,K, t), its evolution satisfies

∂tP̂ (C, s, t) =
∑

C′

WK(C, C′)P̂ (C′, s, t) (3)

where

WK(C, C′) = e−sW (C′ → C) − r(C)δC,C′ . (4)

In the long time limit, P̂ (C, s, t) grows (or decays) expo-
nentially with time, with a rate given by the eigenvalue with
largest real part [36] of the modified matrixWK . ThusψK(s)

can be calculated as this largest eigenvalue ofWK . Fors = 0,
WK reduces to the evolution operator of the Master equa-
tion W for the symmetric simple exclusion process, and this
largest eigenvalue (which is 0) as well as the related eigenvec-
tor are known. We now present a way of obtaining the large
deviation functionψK , by a perturbative expansion [41, 42]
in powers ofs.

The idea is to start from the eigenvalue equation forψK and
its eigenvector̃P ,

ψK(s)P̃ (C, s) =
∑

C′

WK(C, C′)P̃ (C′, s) (5)

normalized such that
∑

C P̃ (C, s) = 1. One can then define
the average〈A(C)〉s of an observableA(C) in the correspond-
ing eigenstate, (i.e.〈A(C)〉s =

∑
C A(C)P̃ (C, s) and this

is the same as averaging, in the limit of a long time interval
(0, t), over all trajectories weighted by a coefficient e−sK(t)).
Note that, though the value ofK(t) is defined on trajectories
running from0 to t, the observableA(C) is evaluated at the
final timet. From the eigenvalue equation, one gets

ψK(s)〈A(C)〉s = e−s
〈
∑

C′

W (C → C′)A(C′)

〉

s

−〈A(C)r(C)〉s

(6)
where the escape rater(C) is twice the number of clusters of
adjacent particles in the system

r(C) =
∑

C′

W (C → C′) = 2
L∑

j=1

nj(1 − nj+1) . (7)

ChoosingA(C) = 1 in (6) leads to

ψK(s) = (e−s − 1)〈r(C)〉s = 2L(e−s − 1)(ρ− Cs(1)) (8)

whereCs(r) = 〈nini+r〉s is the correlation function (which
by translational invariance does not depend oni) computed
within the eigenstatẽP (C, s), andρ = N/L is the average
density.

For the leading contribution ass → 0, we can use the fact
that ats = 0 the eigenvector is known (this is the equilibrium
distribution, for which all allowed microscopic configurations

are equally likely), so thatψK(s) = −2N
(
1 − N−1

L−1

)
s +

O(s2). In order to compute theO(s2) contribution from (8),
we need to evaluateCs(1) at orders, which can be done by
choosingA(C) = ninj in (6). This requires the knowledge
of the correlation functionCs(r) = 〈nini+r〉s at orderO(s).
ForA(C) = ninj in (6) one gets

Cs(1) − Cs(2) = sAN,L + O(s2)

where AN,L =
N(N − 1)(L−N)(L−N − 1)

L(L− 1)2(L− 2)

Cs(r + 1)+Cs(r − 1)−2Cs(r)=s
2AN,L
L− 3

+O(s2) (9)

for 2 ≤ r ≤ L− 2,
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which have the following solution

Cs(r) =
N(N − 1)

L(L− 1)
−sAN,L

6r(L − r) − L(L+ 1)

6(L− 3)
+O(s2) .

(10)
We can therefore extractψK up toO(s2) and 〈K2〉c/t fol-
lows.

To obtain higher cumulants, we have repeated the same pro-
cedure, with the observablesA(C) = ninjnk andA(C) =
ninjnknl. The calculations are longer but very similar. We

found that the first cumulants ofK, limt→∞〈Kn〉c/t =

(−1)n dnψK

dsn

∣∣∣
s=0

, when expressed in terms of the system size

L and of

σ(ρ) = 2ρ(1 − ρ) =
2N(L−N)

L2
(11)

are given by (in thet→ ∞ limit)

〈K〉
t

= L2 σ

L− 1
,

〈K2〉c
t

=
L2σ(L2σ + 4L− 4)

6(L− 1)2

〈K3〉c
t

=
L2σ

[
− L5σ2 + L4σ(2 + 3σ) − 2L3σ + 48(L− 1)2

]

60(L− 1)3

〈K4〉c
t

= L2σ
(
σ3L6(10L3 − 70L2 + 175L− 153)− 4σ2L4(L − 1)(11L3 − 69L2 + 154L− 126)

+16σL2(L− 1)2(3L3 − 17L2 + 46L− 63) + 2112(L− 1)3(L − 3)
)(

2520(L− 1)4(L− 3)
)−1

. (12)

WhenL becomes large, whileρ = N/L is kept fixed, the
asymptotic behavior of the above cumulants reads

〈K〉
t

≃ σL,
〈K2〉c
t

≃ σ2

6
L2, (13)

〈K3〉c
t

≃ −σ
3

60
L4,

〈K4〉c
t

≃ σ4

252
L6

One might have expected the derivatives ats = 0 of the eigen-
valueψK to become extensive for a large system sizeL (after
all, as we shall see it in section III, it is always possible to
view ψK as the ground state energy of a short range Hamil-
tonian). Yet this is not the case since the second and higher
cumulants grow faster than linearly withL at fixed density
ρ. This suggests that, in the largeL limit, ψK/L becomes a
singular function ofs ats = 0.

Also one can guess from (13) that forn ≥ 2

〈Kn〉c
t

∼ σnL2n−2

and that forL → ∞ ands → 0, the eigenvalueψK takes a
scaling form

lim
L→∞

L2

[
ψK(s) + s

〈K〉
t

]
= FK

(σ
2
L2s

)

(14)

where the scaling functionFK is given by

FK(u) =
1

3
u2 +

1

45
u3 +

1

378
u4 + O(u5) . (15)

We shall see in sections III and IV that this scaling function
can be fully determined and written as

FK (u) = −4
∑

n≥1

[
nπ
√
n2π2 − 2u− n2π2 + u

]
(16)

or equivalently (see appendix A) as

FK (u) =
∑

k≥2

B2k−2

(k − 1)! k!
(−2u)k (17)

where the Bernoulli numbersBn are known to be simply the
coefficients of the expansionx(ex − 1)−1 =

∑
nBnx

n/n!.
As a consequence, the generalization of (13) will be forn ≥ 2

〈Kn〉c
t

≃ B2n−2

(n− 1)!
σnL2n−2 . (18)

B. The cumulants of the current

The same procedure can be followed for the total integrated
currentQ (which can be defined byQ =

∑N
j=1 xj(t) where

xj(t) is the total displacement of thejth particle during the
time interval(0, t)). Its cumulant generating functionψQ de-
fined in (1) is the eigenvalue (with largest real part) of the
matrix

WQ(C, C′) = W (C′ → C)e−sj(C
′,C) − r(C)δC,C′ (19)

wherej(C′, C) is +1 or −1 depending on whether a particle
has moved to the right or to the left when the system jumps
from configurationC′ to configurationC. Using an expansion
in powers ofs as in II A we have obtained (in the limitt→ ∞)
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〈Q2〉
t

=
L2σ

L− 1
,

〈Q4〉c
t

=
1

2

L4σ2

(L− 1)2
(20)

〈Q6〉c
t

= −L
6σ2

(
(L2 − L+ 2)σ − 2(L− 1)

)

4(L− 1)3(L − 2)

〈Q8〉c
t

=
L8σ2

(
(10L4 − 2L3 + 27L2 − 15L+ 18)σ2 − 4(L− 1)(11L2 − L+ 12)σ + 48(L− 1)2

)

24(L− 1)4(L − 2)(L− 3)
(21)

with the corresponding largeL behaviors (forρ = N/L fixed)

〈Q2〉c
t

≃ σL,
〈Q4〉c
t

≃ σ2

2
L2,

〈Q6〉c
t

≃ −σ
3

4
L4,

〈Q8〉c
t

≃ 5σ4

12
L6 . (22)

As forK, these results indicate that forn ≥ 2

〈Q2n〉c
t

∼ σnL2n−2

and thatψQ takes a scaling form, in the limitL → ∞ and
s→ 0

lim
L→∞

L2

[
ψQ(s) − s2

2

〈Q2〉c
t

]
= FQ

(
−σ

4
L2s2

)
(23)

where, according to (22), the expansion ofFQ(u) in powers
of u coincides with the expansion (15) ofFK(u), at least up
to the4th order inu.

We will see, in section IV, that these two scaling functions
(which appear in (14) and in (23)) are in fact the same. There-
fore the formula which generalizes (22) will be forn ≥ 2

〈Q2n〉c
t

≃ (2n)! B2n−2

2n (n− 1)! n!
σnL2n−2 . (24)

III. BETHE ANSATZ

It is well known that the Bethe ansatz allows one to cal-
culate the eigenvalues of matrices such asWK(C, C′) and
WQ(C, C′) defined in (4,19) for exclusion processes [35, 36,
37, 38, 43, 44, 45, 46, 47, 48, 49, 50]. In this section we show
how to obtain the scaling forms (14,23) from the Bethe ansatz
equations.

A. Relation to spin chains

It is possible to write the matricesWK(C, C′) and
WQ(C, C′) as quantum spin-chain Hamiltonians [51]. We use
the correspondence in which thez component of a two state
spin operator is up when a particle is present at sitei, and is

down otherwise. In this basis one finds that

ĤK =
L

2
− 1

2

L∑

i=1

[
e−s(σxi σ

x
i+1 + σyi σ

y
i+1)

+σzi σ
z
i+1

]
= −WK

ĤQ =
L

2
− 1

2

L∑

i=1

[
cosh s (σxi σ

x
i+1 + σyi σ

y
i+1) + σzi σ

z
i+1(25)

−i sinh s (σxi σ
y
i+1 − σyi σ

x
i+1)

]
= −WQ

where we have resorted to the Pauli matricesσx,y,zi . In this
language, the quantitiesψK andψQ are the ground state en-
ergies of these operators. It also suggests that the methodsof
one-dimensional exactly solvable models apply in our case,
such as the Bethe ansatz, as was exploited for similar systems
in the past [36, 52, 53].

As the number of particles on the ring is fixed, we
need to find the ground state with a fixed particle density
ρ, that is, at fixed transverse magnetization

∑
i σ

z
i . The

quantum operators appearing in (25) have of course been
extensively studied [54], including within the framework
of stochastic dynamics [55]. For instance, following the
notations of Baxter [54] the operator esĤK is the ferro-
magneticXXZ chain with anisotropy parameter∆ = es.
Similarly, ĤQ corresponds to anXXZ chain with additional
Dzyaloshinskii-Moriya interactions. A study of an operator
closely related toĤQ was carried out by Kim [52] in 1995.
His results will be recalled at the end of the present section.

The Bethe ansatz consists in looking for the ground state
of ĤK orQ in the form of a linear combination ofN -particle
plane waves (see [43, 52]). We denote by{xj}j=1,...,N the
positions of theN particles and we postulate that the right
eigenvector ofWK can be cast in the form

P ({xj}, s) =
∑

P
A(P)

N∏

i=j

[
ζp(j)

]xj (26)

whereP = (p(1), · · · , p(N)) is a permutation over the first
N integers, and theζj ’s are a priori complex numbers. This
is an exact eigenstate provided these parameters satisfy the
so-called Bethe equations. These take different forms forK
andQ. We now discuss how to implement the Bethe ansatz to
calculateψK(s) andψQ(s) defined in (1). Technical details
have been gathered in the appendices.
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B. Bethe ansatz forK

For the expression (26) to be an eigenvector ofĤK or WQ

the ζj ’s have to satisfy a number of constraints [56], the so-
called Bethe (see for example [49]) equations

ζLi =

N∏

j=1
j 6=i

[
− 1 − 2esζi + ζiζj

1 − 2esζj + ζiζj

]
, (27)

The expression ofψK(s) is given by

ψK(s) = e−s
N∑

j=1

(
ζj +

1

ζj

)
− 2N (28)

Our goal is to obtain (14) from (27) and (28) in the double
limit s → 0 andL → ∞ keepingsL2 andN/L = ρ fixed.
Because of the particle-hole symmetry the discussion below
is limited to the caseρ ≤ 1

2 .
In the largeL limit, the ζj ’s accumulate on a curve which

depends ons and ass → 0− becomes a finite arc of the unit
circle (see [54, 56] and references therein). Note however that
thes > 0 case can be approached by similar methods.

If one writes

es = cos δ (29)

and

ζj = eikjδ (30)

(27) becomes

ki =
1

L

N∑

j=1
j 6=i

U(ki, kj) (31)

where

U(ki, kj) =
1

iδ
ln

[
−1 − 2eikiδ cos δ + ei(kj+ki)δ

1 − 2eikjδ cos δ + ei(kj+ki)δ

]
(32)

In the limit δ → 0, one can check that whenki−kj = O(1)

U(ki, kj) = 2
1 − kikj
ki − kj

+ O(δ2) . (33)

In the largeL limit, however, the distance between consecu-
tive ki becomes of order1/L ∼ δ and fori− j of order1 one
should use instead

U(ki, kj) =
1

iδ
ln

[
ki − kj + iδ(1 − k2

i ) + iδki(ki − kj) − δ2ki(1 − k2
i )

ki − kj − iδ(1 − k2
i ) − iδki(ki − kj) + δ2ki(1 − k2

i )

]
(34)

Therefore one can rewrite (31) as

Lki ≃
∑

i−n0≤j≤i+n0

j 6=i

1

iδ
ln

[
ki − kj + iδ(1 − k2

i ) + iδki(ki − kj) − δ2ki(1 − k2
i )

ki − kj − iδ(1 − k2
i ) − iδki(ki − kj) + δ2ki(1 − k2

i )

]
+

∑

j /∈[i−n0,i+n0]

2
1 − kikj
ki − kj

(35)

wheren0 is a fixed large number1 ≪ n0 ≪ L, so that one
can use expression (33) for|j− i| > n0 and (34) for|j− i| ≤
n0. As shown in appendix B, the two sums (89,100) in (35)
depend on the cut-offn0 but this dependence disappears when
the two terms in the right hand side of (35) are added.

In the largeL limit, the ki become dense on an interval
(−θ, θ) of the real axis, with some densityg(k). In what fol-
lows we will assume that theki are regularly spaced according
to this density, meaning that

L

∫ kj

ki

g(k)dk = j − i and L

∫ θ

−θ
g(k)dk = N . (36)

Replacing the two sums in (35) by their expressions (89,100)
obtained in Appendix B, one gets that fork = ki the density

g(k) should satisfy

k = 2P
∫ θ

−θ
dk′g(k′)

1 − k′2

k − k′
1

L

[(
g′(k)(1 − k2)

g(k)
− 2k

)

×π(1 − k2)g(k)Lδ coth[π(1 − k2)g(k)Lδ]

]

(37)

If we make the change of variablek′ = θy, k = θx, and

g(k)(1 − k2) = φ(x) (38)

equation (37) becomes

P
∫ 1

−1

dy
φ(y)

y − x
= f(x) (39)
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where

f(x) = −θx
2

+
π(1 − θ2x2)φ′(x)

2θ
δ coth [Lδπφ(x)] + ...

(40)
As explained in (101,102) of Appendix C one can invert

(39) and expressφ(x) in terms off(x)

φ(x) =
C√

1 − x2
− 1

π2
√

1 − x2
P
∫ 1

−1

√
1 − y2

y − x
f(y)dy

(41)
where the constantC is so far an arbitrary constant.

For smallδ, one can write (28), using (30,38,41), as

ψK(s) ≃
N∑

j=1

δ2(1 − k2
i ) ≃ Lδ2

∫ θ

−θ
g(k)(1 − k2)dk

= Lδ2θ

[∫ 1

−1

dx
C√

1 − x2
− 1

π2
√

1 − x2
P
∫ 1

−1

√
1 − y2

y − x
f(y)dy

]

which gives using (113,115)

ψK(s) ≃ Lδ2θCπ (42)

Also, as (36)
∫ θ

−θ
g(k)dk = ρ

one has (38,41)

ρ = θ

∫ 1

−1

dx

[
C

(1 − θ2x2)
√

1 − x2

− 1

π2(1 − θ2x2)
√

1 − x2
P
∫ 1

−1

√
1 − y2

y − x
f(y)dy

]

which can be simplified using (116,120)

ρ =
Cθπ√
1 − θ2

+
θ3

π
√

1 − θ2

∫ 1

−1

f(y)y
√

1 − y2

1 − θ2y2
dy . (43)

C. The leading order in the largeL limit

For largeL (at fixedLδ), (40) reduces tof(x) = −θx/2,
so that (41) becomes to leading order using (110)

φ(x) =
4πC − θ

4π
√

1 − x2
+

θ

2π

√
1 − x2 + O

(
1

L

)
(44)

whereas (43) becomes using (120)

ρ =
Cθπ√
1 − θ2

+
1

2
+

θ2 − 2

4
√

1 − θ2
(45)

Therefore for a fixed densityρ of particles, the constantC
in (41,44) and the eigenvalue (42) are given, to leading order
in 1

L , by

C =
1

πθ

[(
ρ− 1

2

)√
1 − θ2 +

2 − θ2

4

]
(46)

and

ψK(s) = Lδ2
[(
ρ− 1

2

)√
1 − θ2 +

2 − θ2

4

]
(47)

So far, the constantC remains undetermined.
The leading order corresponds to using expression (33) in

(31) even wheni andj differ by a few units. For the contin-
uum description to be valid, we are now going to argue that
φ(x) should remain finite asx→ ±1, or, in terms of the orig-
inal densityg, thatg(k) remains finite ask → ±θ. This will
impose (see (44)) that

C =
θ

4π
.

Indeed if we order theN solutionski and focus on the ones
closest toθ, . . . < kN−1 < kN ≤ θ, then we may estimate
using (36) the difference betweenkN andθ, or betweenkN−1

andkN . If C 6= θ
4π , theng(k) ∼ (θ − k)−1/2 ask → θ

implies thatkN − kN−1 ∼ L−2 . This is not compatible with
kN > 2

L
1−θ2

kN−kN−1
(which follows from (31,33)), where the

right hand side of this inequality would beO(L) in contradic-
tion with the fact thatkN ≤ θ. Hence we must have4πC = θ,
in which casekN − kN−1 ∼ L−2/3 and there is no contradic-
tion.

It then follows that

θ = 2
√
ρ(1 − ρ) (48)

and thereforeψK(s) = Lδ2ρ(1 − ρ) and (44)

φ(x) =
θ
√

1 − x2

2π
+ O

(
1

L

)
(49)

D. The next order

Onceφ is known to leading order (49), one can update the
expression (40)

f(x) = −θx
2

− (1 − θ2x2)x

4
√

1 − x2
δ coth

[
Lδθ

√
1 − x2

2

]
+ ...

(50)
and one gets from (43)

ρ =
Cθπ√
1 − θ2

+
1

2
− θ2 − 2

4
√

1 − θ2

− θ3δ

4π
√

1 − θ2

∫ 1

−1

y2 coth

[
Lδθ

√
1 − y2

2

]
dy

(51)

Then using the fact that (see (80) in appendix A)
∫ 1

−1

y2 coth(u
√

1 − y2)dy =
π

2u
+

π

2u3
F
(
−u

2

2

)
(52)

we get

ρ =
Cθπ√
1 − θ2

+
1

2
+

θ2 − 2

4
√

1 − θ2
− θ2

4L
√

1 − θ2

− 1

L3δ2
√

1 − θ2
F
(
−L

2δ2θ2

8

) (53)



7

and this gives (42)

ψK(s) = Lδ2Cπθ = Lδ2
[(
ρ− 1

2

)√
1 − θ2 +

2 − θ2

4

+
θ2

4L
+

1

L3δ2
F
(
−L

2δ2θ2

8

)]

(54)

The leading order (the first two terms of (54)) has a mini-
mum forθ given by (48). Therefore to obtainψK(s) at first
order in 1

L one can simply replaceθ by (48) in (54) and one
gets

ψK(s) =
Lδ2θ2

4

(
1 +

1

L

)
+

1

L2
F
(
−L

2δ2θ2

8

)
(55)

which is equivalent (see (29,48)) to (14).

It is shown in (85) of appendix A that for large negative
u

FK(u) ≃ 27/2

3π
(−u)3/2, u→ −∞ (56)

This implies that (14) becomes for small negatives (but large
negativeL2s)

ψK(s) ≃ L

[
−2sρ(1 − ρ) +

27/2

3π

(
− sρ(1 − ρ)

)3/2
+ ...

]

(57)
So fors small, butL2s large, the extensivity ofψK(s) is re-
covered and (57) gives the beginning of the smalls expansion
in the largeL limit.

One can also notice that the functionF(u) (16) becomes
singular asu → π2

2 . This indicates the occurrence of a phase

transition discussed at the end of section IV: foru > π2

2 the
optimal profile to reduceK is no longer flat and the system
adopts a deformed profile as in [16] . In fact in the limits →
+∞ the configurations which dominate are those formed of a
single cluster of particles and the activity is limited to the two
boundaries of this cluster.

The result (55) or equivalently (14) withF given by (16)

FK (u) = −4
∑

n≥1

[
nπ
√
n2π2 − 2u− n2π2 + u

]
(58)

gives the leading finite-size correction toψK(s). These finite
corrections have been calculated recently, starting from the
Bethe ansatz equations, for several spin chains in the context
of string theory and expressions very similar to ourF have
been obtained [29]. Note also that a more systematic approach
has been developed to calculate the next finite size correction
[30].

E. Bethe ansatz forQ

The eigenvector corresponding to the largest eigenvalue of
WQ can be written as in (26), with the Bethe equations (27)

replaced by

ζLi =

N∏

j=1
j 6=i

[
− es − 2ζi + e−sζiζj

es − 2ζj + e−sζiζj

]
, (59)

Given the solutionsζj to (59), the expression ofψQ reads

ψQ(s) = −2N + e−s
[
ζ1 + . . .+ ζN

]
+ es

[
1

ζ1
+ . . .+

1

ζN

]

(60)
By a method following closely the steps of the Bethe ansatz
forK, the basic ingredients of which are provided in appendix
E, we arrive at the following result forψQ,

ψQ(s) =
1

2
σ(ρ)s2(L+ 1) + L−2F

(
−L

2s2σ(ρ)

4

)
(61)

which leads to the asymptotic behavior asL→ ∞,

ψQ(s)

L
≃ 1

2
σ(ρ)s2 +

21/2

3π
σ3/2|s|3 (62)

The Bethe equations (59) are very close to that considered
by Kim [52] who worked out the asymmetric exclusion pro-
cess case. As outlined in appendix E, it seems that Kim’s
results cannot be extended to the SSEP. We think that this is
at the origin of the discrepancy between our expression (62)
and what was found earlier (expression (A.12) of [20]) for the
same quantityψQ(s).

Before concluding this section devoted to the Bethe ansatz,
let us mention that, both for the current or the activity, onecan
obtainψQ(s) orψK(s) in thes→ ∞ limit by directly solving
(59) or (27). We do not give these expressions here because
they are out of the universal regime.

IV. FLUCTUATING HYDRODYNAMICS AND THE
MACROSCOPIC FLUCTUATION THEORY

In this section we are going to show that the expressions
(14,23) can be recovered by a macroscopic theory based on
hydrodynamical large deviations [1, 2, 4].

A. Calculation of ψQ for a general diffusive system and
derivation of (23 )

The macroscopic fluctuation theory developed by Bertini,
De Sole, Gabrielli, Jona-Lasinio and Landim [6, 7, 8, 9, 10] is
based on the fact that, for a large system of sizeL, the density
and the current of a diffusive system take scaling forms. If one
defineŝρi(t), the density averaged in the neighborhood of site
i at timet, andQ̂i(t), the total flux between sitei andi + 1
during timet, these quantities take scaling forms [17, 18]

ρ̂i(t) = ρ

(
i

L
,
t

L2

)
(63)
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Q̂i(t) = LQ

(
i

L
,
t

L2

)
(64)

This allows one to define a rescaled currentj(x, τ) as

j(x, τ) =
∂Q(x, τ)

∂τ
= L

d

dt
Q̂Lx

(
L2τ

)
.

The average microscopic current between sitei andi + 1 is
related to the rescaled currentj by

dQ̂i(t)

dt
=

1

L
j

(
i

L
,
t

L2

)

From the macroscopic fluctuation theory [6, 7, 8, 17, 18],
the probability of observing a rescaled currentj(x, τ) and a
density profileρ(x, τ) over a timet = TL2 is given by

Pro({ρ(x, τ), j(x, τ)}) ∼

exp

[
−L
∫ T

0

dτ

∫ 1

0

dx
[j(x, τ) +D(ρ(x, τ))ρ′(x, τ)]2

2σ(ρ(x, τ))

]

(65)

where the currentj(x, τ) and the density profileρ(x, τ) sat-
isfy the conservation law

dρ

dτ
= − dj

dx
. (66)

and the diffusive system under study is characterized by the
two functionsD(ρ) andσ(ρ). For the SSEP, these functions
are known:D(ρ) = 1 andσ(ρ) = 2ρ(1 − ρ) (see [2]).

Note that (65) can be seen as the fact that the macroscopic
densityρ(x, τ) and the macroscopic currentj(x, τ) satisfy in
addition to the conservation law (66) a Langevin equation of
the form [5].

j(x, τ) = −∂xρ(x, t) + ξ(x, τ) (67)

whereξ(x, τ) is a Gaussian white noise

〈ξ(x, τ)ξ(x′, τ ′)〉 = L−1σ(ρ(x, τ))δ(x−x′)δ(τ−τ ′) . (68)

The contribution of a small time dependent perturbation to
a constant profileρ0 and a constant rescaled currentj0,

ρ(x, τ) = ρ0 + δρ(x, τ)

j(x, τ) = j0 + δj(x, τ)

to the quadratic form in (65) is

[j(x, t) +D(ρ(x, t))ρ′(x, t)]2

2σ(ρ(x, t))
=
j20
2σ

+
j0
σ
δj − j20σ

′

2σ2
δρ

+
j0D

σ
δρ′ +

δj2 + 2Dδjδρ′ +D2δρ′2 + 2j0D
′δρδρ′

2σ

− j0σ
′(δjδρ+Dδρδρ′)

σ2
+ j20

(
σ′2

2σ3
− σ′′

4σ2

)
δρ2

(69)

where the functionsD,σ, σ, σ′′ are evaluated at the density
ρ0.

If one considers a fluctuation of the form

δρ = k[ak,ωe
iωτ+ikx + a∗k,ωe

−iωt−ikx] (70)

one has

δρ′ = ik2[ak,ωe
iωτ+ikx − a∗k,ωe

−iωt−ikx]

and due to (66)

δj = −ω[ak,ωe
iωτ+ikx + a∗k,ωe

−iωt−ikx] .

The ring geometry (x ≡ x+1) imposes that the wave numbers
k are discrete

k = 2πn with n ≥ 1

Also because one considers a finite time intervalT , the fre-
quenciesω are also discrete and

ω =
2πm

T
with m ∈ Z

Integrating over the time interval0 < τ < T and over
space, one gets one has

〈δρ2〉 = 2k2|ak,ω |2T

〈δρ′2〉 = 2k4|ak,ω|2T

〈δj2〉 = 2ω2|ak,ω|2T

〈δjδρ〉 = −2kω|ak,ω|2T

〈δρδρ′〉 = 〈δjδρ′〉 = 0

Therefore the superposition of all the fluctuations (70) leads
to

Pro(j0, {ak,ω}) ∼ exp

[
− j20

2σ

t

L

− t

L

∑

ω,k

|ak,ω|2
(

(σω + j0σ
′k)2

σ3
+
D2k4

σ
− j20σ

′′k2

2σ2

)



where some terms independent ofj0 have been forgotten (they
will be fixed later by normalization). After integrating over
the Gaussian fluctuations and if one replaces the sum overω
by an integral one gets

Pro(j0) ∼ exp

[
− j20

2σ

t

L

− t

2πL2

∑

1≤k≤kmax

∫ ωmax

−ωmax

dωln

(
(ωσ + j0σ

′k)2

σ3
+
D2k4

σ
− j20σ

′′k2

2σ2

)


(71)
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where we have introduced cut-offskmax andωmax. The rea-
son for these cut-offs is that the macroscopic fluctuation the-
ory (65) is valid only on hydrodynamic space and time scales.
For x = O(L−1) or τ = O(L−2) it has no validity at
all, meaning that the cut-offs should satisfykmax < L and
ωmax < L2.

For largeL, i.e. for largekmax andωmax, one can see by
integrating overω that only the constant term and the term
proportional toj20 depend on the cut-offs so that

1

2π

∑

1≤k≤kmax

∫ ωmax

−ωmax

dω ln

(
(ωσ + j0σ

′k)2

σ3
+
D2k4

σ
− j20σ

′′k2

2σ2

)

≃ A(kmax, ωmax) +B(kmax, ωmax)j
2
0

+

∞∑

n=1

{√
D2(2πn)4 − j20σ

′′

2σ
(2πn)2 − 4π2n2D +

j20σ
′′

4Dσ

}

= A(kmax, ωmax) +B(kmax, ωmax)j
2
0 −DF

(
j20σ

′′

16D2σ

)

(72)

where we have used the definition (16) ofF .
If the averaged rescaled current isj0 over a macroscopic

timeT , the sum of the microscopic flux over all the bonds is

Q = TL2j0 = tj0. Thus aslimt→∞
〈Q2〉
t = L2

L−1σ (see (21))
one can determine the cut-off dependent constants and get

Pro(j0) ∼ exp

[
− j

2
0(L − 1)

2σL2

t

L
+

t

L2
DF

(
j20σ

′′

16D2σ

)]

(73)
whereF is defined in (16). This becomes, at order1/L2,
using the fact thatψQ(s) = maxj0 [−j0s+ t−1 ln Pro(j0)]

ψQ(s) − s2〈Q2〉
2t

=
1

L2
DF

(
σσ′′

16D2
L2s2

)
. (74)

This formula is in principle valid for arbitrary diffusive sys-
tems, i.e. for arbitrary functionsσ(ρ) andD(ρ). As σ =
2ρ(1 − ρ), D = 1, σ′′ = −4 for the SSEP this leads to the
announced result (23,16).

For a general diffusive system the expressions of the cumu-
lants (22) would therefore become

lim
t→∞

〈Q2n〉c
t

= B2n−2
(2n)!

n! (n− 1)!
D

(−σσ′′

8D2

)n
L2n−2

(75)
whereσ(ρ) andD(ρ) are the two functions which appear in
(65) and theBn’s are the Bernoulli numbers.

B. Calculation of ψK for the SSEP and derivation of (14 )

To obtain (14), one can first write the activityK as

K = 2L3

∫ T

0

dτ

∫ 1

0

dxρ(x, τ)(1 − ρ(x, τ)).

Then one has

K − 〈K〉 ≃ 2L3

∫ T

0

dτ

∫ 1

0

dx[〈δρ2〉 − δρ(x, τ)2]

Then one can proceed as above (69-74) and get, up to terms
constant or proportional tos, in the exponential

〈e−s(K−〈K〉)〉 ∼
∫
dj0

∫
dak,ω exp

[
− j20

2σ

t

L

− t
L

∑

ω,k

|ak,ω|2
(

(σω + j0σ
′k)2

σ3
+
D2k4

σ
− j20σ

′′k2

2σ2
+4k2sL2

)


The rest of the calculation is the same as (72-74), with a max-
imum overj0 achieved atj0 = 0, and one finally gets

ψK(s) = −s 〈K〉
t

+ L−2FK
(σ

2
L2s

)
(76)

which is exactly (14).

C. Calculation of ψQ in the case of a weak asymmetry

One can also repeat the above calculation in the case of
weakly driven systems, i.e. for systems where there is an ad-
ditional driving force of strength1/L. This would in partic-
ular be the case for the weakly asymmetric exclusion process
(WASEP) [16] for which the hopping rates to the right and to
the left are respectivelyexp ν

L andexp(− ν
L ).

For such systems, (65) becomes

Pro({ρ(x, τ), j(x, τ)}) ∼

exp

[
−L
∫ T

0

dτ

∫ 1

0

dx
[j(x, τ)+D(ρ(x, τ))ρ′(x, τ)−νσ(ρ(x, τ)]2

2σ(ρ(x, τ))

]

(77)

Following exactly the same steps as before, one gets an ad-
ditional term ν2σ′′

4 δρ2 in (69), everything else remaining the
same. Then (73) becomes in this case:

Pro(j0) ∼ exp

[
− (j0 − νσ)2(L− 1)

2σL2

t

L

+
t

L2
DF

(
(j20 − ν2σ2)σ′′

16D2σ

)] (78)

where we have adjusted as in (73) the terms linear and
quadratic inj0 which are cut-off dependent.

D. Phase transitions

The functionF(u) becomes singular asu→ π2

2 (see (16)).
For systems for whichσ′′ < 0, this implies the occurrence
of a phase transition in the expression (76) ofψK(s) in or in
the large deviation function (78) of the current in the case of a
weak asymmetry. These phase transitions are exactly the same
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as the one discussed in [9, 10, 16, 17]: beyond the transition
the system does not fluctuate anymore about a flat density pro-
file, but the profile becomes deformed on a macroscopic scale.

For systems such as the Kipnis Marchioro Presutti model
[57, 58] which haveσ′′ > 0, a similar phase transition occurs
in ψQ even in absence of a weak asymmetry.

V. CONCLUSION

In the present paper we have obtained exact expressions
(12,21) of the first cumulants of the activityK and of the in-
tegrated currentQ for the SSEP. In the largeL limit, these
cumulants take scaling forms (13,22).

We have shown in section III that these scaling forms can be
understood starting from the Bethe ansatz equations (27,59),
by calculating the leading finite size corrections. These finite
size corrections are similar to the ones calculated recently for
spin chains in the context of quantum strings [29, 30].

We have also shown in section IV that they can also be
understood starting from the macroscopic fluctuation theory
(65) of Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim.
This enabled us to extend (74,73,75) our results for the SSEP
to arbitrary diffusive systems and to see that the occurrence
of phase transitions can be predicted from the scaling form
of the cumulants of the current. In order to better understand
these phase transitions it might be interesting to characterize
the eigenstate of thes-dependent evolution operator by,e.g.,
determining correlation functions in those states.

We have discussed here systems governed by diffusive dy-
namics with a single conserved field. How the universal scal-
ing forms would be modified for systems with several con-
served fields is an interesting open question.

We thank N. Gromov, H.J. Hilhorst, V. Kazakov, K.
Mallick, S. Prohlac, H. Spohn, P. Vieira, R.K.P. Zia, for
several useful discussions. This work was supported by
the French Ministry of Education through an ANR-05-JCJC-
44482 grant and LHMSHE.

APPENDIX A: SEVERAL REPRESENTATIONS OF THE
FUNCTIONF

In this appendix we show the equivalence between several rep-
resentations (16, 17,52) of the functionF defined in (16)

F (u) = −4
∑

n≥1

[
nπ
√
n2π2 − 2u− n2π2 + u

]
(79)

To do so consider the integralI

I =
2u3

π

∫ 1

−1

y2dy coth(u
√

1 − y2)

Then by using the fact that

coth z =
1

z
+

∞∑

n=1

2z

z2 + n2π2

and by integrating overy, one gets

I =
2u3

π

∫ 1

−1

y2dy coth(u
√

1 − y2)

=u2 +
∑

n≥1

[
2u2 + 4n2π2 − 4nπ

√
n2π2 + u2

]

=u2 + F
(
−u

2

2

)
(80)

This establishes (52). Now as

x

ex − 1
=
∑

n≥0

Bn
n!
xn = 1−x

2
+
x2

12
− x4

720
+

x6

30240
+... (81)

which is simply the definition of the Bernoulli numbersBn
(so thatB2 = 1

6 , B4 = − 1
30 , B6 = 1

42 , ...), one can show that

cothx =
1

x
+
∑

k≥2

22k−2x2k−3 B2k−2

(2k − 2)!
(82)

Therefore

I =
2u3

π

∫ 1

−1

y2dy coth(u
√

1 − y2)

=
2u2

π

∫ 1

−1

y2

√
1 − y2

dy

+
∑

k≥2

22k−1

π

B2k−2

(2k − 2)!
u2k

∫ 1

−1

y2(1 − y2)
2k−3

2 dy

i.e.

I = u2 +
∑

k≥2

B2k−2

Γ(k)Γ(k + 1)
u2k (83)

Comparing (80) and (83), one gets

F (u) =
∑

k≥2

B2k−2

Γ(k)Γ(k + 1)
(−2u)k =

u2

3
+
u3

45
+
u4

378
+

u5

2700
+...

(84)
so that (17) and (15) are consistent with (16).

For large negativeu, one gets, by replacing in (79) the sum
overn by an integral,

F (u) ≃ 27/2(−u)3/2
3π

. (85)

APPENDIX B: CALCULATION OF THE TWO SUMS
APPEARING IN (35)

In this appendix we calculate the two sums which appear in
(35) whenδ → 0 andL→ ∞ keepingLδ fixed.

The first sum in (35):
If the ki are distributed according to a densityg(k) on the
real axis one can write that

L

∫ ki+n

ki

g(k′)dk′ = n (86)
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Therefore forn fixed and largeL, one has

L(ki+n − ki)g(ki) + L(ki+n − ki)
2 g

′(ki)

2
+ ... = n

so that

ki+n − ki =
n

g(ki)L
− n2g′(ki)

2g(ki)3L2
+ ... (87)

Replacingkj by expression (87) into the first sum in (35) one
gets

i−1∑

j=i−n0

+

i+n0∑

j=i+1

U(ki, kj) ≃

n0∑

n=1

(
4ki −

2g′(ki)(1 − k2
i )

g(ki)

)
n2

n2 + (1 − k2
i )

2g(ki)2L2δ2
.

Using the fact that forn0 ≫ 1 (andb < O(1))

n0∑

n=1

1

n2 + b2
= − 1

2b2
+
π

2b
cothπb (88)

the first sum in (35) can be replaced by

i−1∑

j=i−n0

+

i+n0∑

j=i+1

U(ki, kj) ≃
(

4ki −
2g′(ki)(1 − k2

i )

g(ki)

)
n0

−
(

2ki −
g′(ki)(1 − k2

i )

g(ki)

)[
− 1

+π(1 − k2
i )g(ki)Lδ coth[π(1 − k2

i )g(ki)Lδ]
]

(89)

The second sum in (35):
Let us consider the following integral.

I = P
∫ θ

−θ
g(k′)dk′

1 − kik
′

ki − k′
(90)

We are now going to compare this integral with the sum

S =
∑

j /∈[i−n0,i+n0]

1 − kikj
ki − kj

We assume (86) that thekj are given by

L

∫ kj

−θ
g(q)dq = j − α (91)

and for the momentα is arbitrary. Therefore

kj+1 − kj ≃
1

g(ki)L
(92)

One can decompose the integralI as

I = P
∫ ki+n0

ki−n0

g(q)dq
1 − kiq

ki − q

+

i−n0−1∑

j=1

∫ kj+1

kj

g(q)dq
1 − kiq

ki − q
+

N−1∑

j=i+n0

∫ kj+1

kj

g(q)dq
1 − kiq

ki − q

+

∫ k1

−θ
g(q)dq

1 − kiq

ki − q
+

∫ θ

kN

g(q)dq
1 − kiq

ki − q
(93)

As kj+1−kj is small and of order1/L and because of (91,92)

∫ kj+1

kj

g(q)dq
1 − kiq

ki − q
≃ 1

L

1 − kikj
ki − kj

+
g(kj)(kj+1 − kj)

2

2

d

dkj

(
1 − kikj
ki − kj

)

≃ 1

L

1 − kikj
ki − kj

+
1

2L2g(kj)

d

dkj

(
1 − kikj
ki − kj

)

≃ 1

L

1 − kikj+1

ki − kj+1
− 1

2L2g(kj+1)

d

dkj+1

(
1 − kikj+1

ki − kj+1

)
(94)

Therefore using (94) in the sum1 ≤ j ≤ i − n0 − 1 and
(94) in the sumi+ n0 ≤ j ≤ N − 1, one can rewrite (93) as

I ≃ P
∫ ki+n0

ki−n0

g(q)dq
1 − kiq

ki − q
+

1

L

i−n0−1∑

j=1

1 − kikj
ki − kj

+
1

L

N∑

j=i+n0+1

1 − kikj
ki − kj

+
1

2L2

i−n0−1∑

j=1

1

g(kj)

d

dkj

(
1 − kikj
ki − kj

)

− 1

2L2

N∑

j=i+n0+1

1

g(kj)

d

dkj

(
1 − kikj
ki − kj

)

+

∫ k1

−θ
g(q)dq

1 − kiq

ki − q
+

∫ θ

kN

g(q)dq
1 − kiq

ki − q

This becomes

I ≃ P
∫ ki+n0

ki−n0

g(q)dq
1 − kiq

ki − q
+

1

L

i−n0−1∑

j=1

1 − kikj
ki − kj

+
1

L

N∑

j=i+n0+1

1 − kikj
ki − kj

+
1

2L

[
1 − kiki−n0−1

ki − ki−n0−1

+
1 − kiki+n0+1

ki − ki+n0+1
− 1 − kik1

ki − k1
− 1 − kikN

ki − kN

]

+

∫ k1

−θ
g(q)dq

1 − kiq

ki − q
+

∫ θ

kN

g(q)dq
1 − kiq

ki − q
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which can be rewritten as

I ≃ P
∫ ki+n0

ki−n0

g(q)dq
1 − kiq

ki − q
+

1

L

i−n0−1∑

j=1

1 − kikj
ki − kj

+
1

L

N∑

j=i+n0+1

1 − kikj
ki − kj

+
1

2L

[
1 − kiki+n0+1

ki − ki+n0+1
+

1 − kiki−n0−1

ki − ki−n0−1

]

+
1 − kik1

ki − k1

[
− 1

2L
+

∫ k1

−θ
g(q)dq

]
(95)

+
1 − kikN
ki − kN

[
− 1

2L
+

∫ θ

kN

g(q)dq

]

From (87) one can show that

P
∫ ki+n0

ki−n0

g(q)dq
1 − kiq

ki − q
≃ 2kin0

L
− kin0(1 − k2

i )g
′(ki)

Lg(ki)

(96)
and that

1 − kiki+n0

ki − ki+n0

+
1 − kiki−n0−1

ki − ki−n0−1
≃ 2ki−(1−k2

i )
g′(ki)

g(ki)
+O

(
1

L

)

(97)
Lastly because one expects the symmetrykj = −kN+1−j and

becauseL
∫ θ
−θ g(q)dq = N , one gets thatα = 1/2 in (91) and

therefore the last two terms of (95) vanish.
Then using (96,97) into (95), one gets that

1

L

i−n0−1∑

j=1

1 − kikj
ki − kj

+
1

L

N∑

j=i+n0+1

1 − kikj
ki − kj

≃ I − 1

L

(
2ki − (1 − k2

i )
g′(ki)

g(ki)

)(
n0 +

1

2

) (98)

where the integralI is defined in (90). Lastly using the fact
thatg(k) = g(−k), one can rewrite the integralI in (90) as

I = P
∫ θ

−θ
g(k′)dk′

1 − k′2

ki − k′
(99)

so that (98) becomes

1

L

i−n0−1∑

j=1

1 − kikj
ki − kj

+
1

L

N∑

j=i+n0+1

1 − kikj
ki − kj

≃ P
∫ a

−a
g(k′)dk′

1 − k′2

ki − k′

− 1

L

(
2ki − (1 − k2

i )
g′(ki)

g(ki)

)(
n0 +

1

2

)

(100)

Note that (91) is not accurate fori close to1 or N , i.e. near
the singularities ofg(k). A more detailed analysis of these
two neighborhoods would only contribute to higher orders in
the1/L expansion [30].

APPENDIX C: SOLUTION OF THE AIRFOIL EQUATION
(39)

In this appendix we show, in the spirit of [59], that the solution
φ(x) of

f(x) = P
∫ 1

−1

dy
φ(y)

y − x
(101)

is

φ(x) =
C√

1 − x2
− 1

π2
P
∫ 1

−1

dy

√
1 − y2

1 − x2

f(y)

y − x
(102)

This solution is used to obtain (41) as the solution of (39).
Let us choose

φ(x) =

√
1 − x2

x− α
(103)

Then forx /∈ [−1, 1] andα /∈ [−1, 1] one can see using (111)

∫ 1

−1

dy
φ(y)

y − x
= π

[√
α2 − 1

α− x
−

√
x2 − 1

α− x
− 1

]
(104)

and therefore

f(x) = P
∫ 1

−1

dy
φ(y)

y − x
= π

[√
α2 − 1

α− x
− 1

]
(105)

Now the following integral of this functionf(x) can be com-
puted (using (109,111) for forx /∈ [−1, 1]

− 1

π2

∫ 1

−1

dy

√
1 − y2

y − x
f(y) =

√
α2 − 1

(√
α2 − 1

α− x

−
√
x2 − 1

α− x
− 1

)
+
√
x2 − 1 − x

(106)

so that

− 1

π2
P
∫ 1

−1

dy

√
1 − y2

y − x
f(y) =

α2 − 1

α− x
−
√
α2 − 1 − x

= α−
√
α2 − 1 − 1 − x2

α− x
(107)

Comparing with (103) we see that

− 1

π2
P
∫ 1

−1

dy

√
1 − y2

1 − x2

f(y)

y − x
=
α−

√
α2 − 1√

1 − x2
+

√
1 − x2

x− α

=
α−

√
α2 − 1√

1 − x2
+ φ(x)

(108)

Therefore (102) is the solution of (101) with a constantC
which depends throughα on φ(x) when one chooses (103)
for φ(x).
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As the inversion formula (102) is valid for arbitraryα, it
would also be valid whenf(x) is any polynomial inx, and
as the polynomials are dense in the set of continuous func-
tions on(−1, 1), one can consider that (101,102) are valid for
”arbitrary functions”f(x).

APPENDIX D: USEFUL INTEGRALS

In this appendix we list a few integrals which are used in var-
ious places of the paper.

First forx /∈ [−1, 1] one has

1

π

∫ 1

−1

√
1 − y2

y − x
dy =

√
x2 − 1 − x (109)

so that

1

π
P
∫ 1

−1

√
1 − y2

y − x
dy = −x (110)

As a consequence of (111) one has forx /∈ [−1, 1] and
α /∈ [−1, 1]

1

π

∫ 1

−1

√
1 − y2

y − x

dy

y − α
=

√
α2 − 1

α− x
−

√
x2 − 1

α− x
− 1 (111)

and thus forx ∈ [−1, 1] andα /∈ [−1, 1]

1

π
P
∫ 1

−1

√
1 − y2

y − x

dy

y − α
=

√
α2 − 1

α− x
− 1 (112)

One can also show that
∫ 1

−1

dx√
1 − x2

= π (113)

and that fory /∈ [−1, 1]

∫ 1

−1

dx√
1 − x2

1

y − x
=

π√
y2 − 1

(114)

As a consequence of (112,114), one has
∫ 1

−1

dx√
1 − x2

P
∫ 1

−1

dy

y − x
F (y) = 0 (115)

for an arbitrary functionF (y) as it is valid for any polynomial
.

Forθ < 1 one can show using (114) that
∫ 1

−1

dx

(1 − θ2x2)
√

1 − x2
=

π√
1 − θ2

(116)

one can also show
∫ 1

−1

√
1 − x2

(1 − θ2x2)
dx = π

1 −
√

1 − θ2

θ2
(117)

and that
∫ 1

−1

y2
√

1 − y2

1 − θ2y2
dy = π

(
1

θ4
− 1

2θ2
−

√
1 − θ2

θ4

)
(118)

and fory /∈ [−1, 1]

∫ 1

−1

1

(1 − θ2x2)
√

1 − x2

dy

y − x
=

π

(1 − θ2y2)
√
y2 − 1

− πθ2y

(1 − θ2y2)
√

1 − θ2

(119)

and therefore for any functionF (y)

∫ 1

−1

dx

(1 − θ2x2)
√

1 − x2
P
∫ 1

−1

dy

y − x
F (y) =

− πθ2√
1 − θ2

∫ 1

−1

yF (y)

1 − θ2y2
dy .

(120)

APPENDIX E: BETHE ANSATZ CALCULATION FOR
THE CURRENT LARGE DEVIATION FUNCTIONψQ(s)

This appendix describes how a Bethe ansatz calculation of
ψQ(s) similar to the one conducted forψK can be imple-
mented. The operatorWQ whose largest eigenvalue isψQ
reads, in the spin language already used in (25),

WQ(s) =

L∑

i=1

[
σzi σ

z
i+1 − 1

2
+ e−sσ+

i σ
−
i+1 + esσ−

i σ
+
i+1

]

(121)
The Bethe ansatz equation analogous to (27) take the form
(59)

ζLi =

N∏

j=1
j 6=i

[
− 1 − 2e−sζi + e−2sζiζj

1 − 2e−sζj + e−2sζiζj

]
(122)

In terms of theζj ’s, we have that

ψQ(s) = −2N + e−s
[
ζ1 + . . .+ ζN

]
+ es

[
1

ζ1
+ . . .+

1

ζN

]

(123)
Kim [52] has studied the spectrum ofH = −WQ/(cosh s/2)
by means of a Bethe ansatz calculation: in the notations of his
equation (1), the parameters̃∆ andS are given by

∆̃ =
1

cosh s
, S = tanh s (124)

but unfortunately his results do not apply to our particu-
lar case, which turns out to correspond to a critical point
of the related six-vertex model. The defining parameters of
the latter, denoted by∆, H andν, are related to Kim’s by
∆̃ = ∆/ cosh(2H), S = tanh(2H), ∆ = cosh ν. Thus, in
terms of our original parameters, we get that

∆ = 1 , 2H = s , ν = 0 (125)

a limiting case explicitly excluded by Kim which lies at the
critical point of the six-vertex model.



14

We choose to write thatζj = e−is(kj+2iρ). The two
main differences with the calculation ofψK is that theζj ’s
dependence ins is different. We have also shifted them by2iρ
for convenience. Just as was the case previously, thekj ’s will
be densely distributed on a connected curveC of the complex
plane that is invariant upon complex conjugation. Given
that the equations for theζj ’s are invariant under complex
conjugation, we expect the contourC to be symmetric with
respect to the vertical axis in the complexk plane. We shall
denote the end points ofC by−θ∗ andθ.

Given that (122) becomes

−i(ki + i2ρ) =
1

L

N∑

j=1,j 6=i
U(ki, kj), where

U(ki, kj) =
1

s
ln

[
− 1 − 2e−sζi + e−2sζiζj

1 − 2e−sζj + e−2sζiζj

] (126)

for |i− j| ≫ 1 we expect that

U(ki, kj) =
2i(ki + iα)(kj + iα)

ki − kj
, α = 2ρ− 1 (127)

while for i− j of order 1,s will be over order1/L andki−kj
as well. We defineg(k) as the root density along contourC,
so that

L

∫ kj

ki

g(k)dk = j − i

(note thatg(k) is in general complex but along the contour
g(k)dk is real). Ifkj andki aren roots apart, we have that

kj − ki = n
g(ki)L

− n2g′(ki)
2g(ki)3L2 + . . .. ExpandingU at fixed

sL in powers ofL−1 leads to

U(ki, kj) =
1

s
ln
n− ig(ki)(ki + iα)2sL

n+ ig(ki)(ki + iα)2sL

−i(ki + iα)

(
2 +

g′(ki)(ki + iα)

g(ki)

)
n2

n2 + [g(ki)(ki + iα)2(sL)]2

(128)

Equations (127) and (128) play a role analogous to (33) and
(32) in the study ofK. After using the methods of appendices
B and C we arrive at the following equation forg which we
express in terms ofφ(x) = (θx + iα)2g(θx) andr = θ∗/θ:

θ

(
x+ i

α+ 1

θ

)
= 2P

∫ 1

−r
dy
φ(y) − (y − x)(y + iαθ )−1φ(y)

y − x

− θ

L

(
x+ i

α

θ

)2 φ′(x)

φ(x)
[πφ(x)(sL)] coth[πφ(x)(sL)]

(129)

Let us denoteφ0(x) the solution of the above equation, in the
L→ ∞ limit

θx/2 + h =P
∫ 1

−r
dy
φ0(y)

y − x
(130)

whereh = i(α+1)/2+
∫

dyφ0(y)(y+ iα/θ)−1 is a density-
dependent constant to be determined. The general solution of
(130) can be written (see (101,102)) as

φ0(x) = − C√
(1 − x)(r + x)

− θ(r + 1)2

16π
√

(1 − x)(r + x)

+
θx2

2π
√

(1 − x)(r + x)
+

2h(r − 1 + x)

2π
√

(1 − x)(r + x)

+
θx(r − 1)

4π
√

(1 − x)(r + x)
(131)

The four unknownsC, θ, r andh are determined by requiring
thatφ0 remains finite asx→ 1 and asx→ −r, and by noting
that by definition

∫ +1

−r
dx

φ0(x)(
x+ iαθ

)2 = θρ (132)

while φ0 must verify the self-consistency equation
h = i(α + 1)/2 +

∫
dyφ0(y)(y + iα/θ)−1. After explicitly

evaluating the latter integral and that appearing in (132),we
arrive atr = 1, h = 0 and4πC = θ = 2

√
ρ(1 − ρ), which

leads toφ0(x) = −θ
√

1−x2

2π . Up to a sign, this is exactly the
same function as that found in the study ofK, and this is the
same end pointθ = 2

√
ρ(1 − ρ) for the contour on which

thekj ’s lie.

We may now simplify (129) into

θ

(
x+ i

α+ 1

θ

)
= 2P

∫
dy
φ(y) − (y − x)(y + iα/θ)−1φ(y)

y − x

+
1

θL

x(x + iα/θ)2

1 − x2

(
[θ
√

1 − x2(sL)/2] coth[θ
√

1 − x2(sL)/2]
)

(133)

whose solution readsφ(x) = φ0(x) + δφ(x),

δφ(x) = − δC√
1 − x2

+
2δhx

2π
√

1 − x2

− 1

π2

1√
1 − x2

P
∫

dy

√
1 − y2

y − x
δF (y)

(134)

We have denoted byδF (x) the function

δF (x) = − θ

2L

x(x + iα/θ)2

1 − x2

×
(
[θ
√

1 − x2(sL)/2] coth[θ
√

1 − x2(sL)/2]
)

= − θ

2L

x(x+ iα/θ)2

1 − x2




∑

p≥2

Bp
p!

(θsL)p(1 − x2)p/2 + 1





(135)

The new constantsδC and δh are determined by∫
δφ

(x+iα/θ)2 = 0 and δh =
∫

δφ
(x+iα/θ) . After performing
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explicit integrations along the lines of appendix D, we obtain
the final result through the following equality

ψQ(s)/L = −s2θ
∫

dxφ(x) =
θ2

4
s2 + s2δCθπ

+s2θ
1

π2

∫
dx

1√
1 − x2

P
∫

dy

√
1 − y2

y − x
δF (y)

(136)

where

δCθπ =
θ2

2πL

∫ 1

−1

dx x2



∑

p≥2

Bp
p!

(θsL)p(1 − x2)
p−1

2

+
1√

1 − x2

]

=
1

L3s2
F(−L2s2θ2/8) +

θ2

4L
(137)

After noting that, as before, we have

1

π2

∫
dx

1√
1 − x2

P
∫

dy

√
1 − y2

y − x
δF (y) = 0 (138)

it only remains to substitute the value ofδC into (136). This
allows us to conclude that

ψQ(s) =
θ2

4
s2(L+ 1) + L−2F(−L2s2θ2/8) (139)

which is the announced result of (61).
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