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1 Introduction

In numerous applications, one chooses to model a complex dynamical phenomenon by
stochastic differential equations or, more generally, by semimartingales, either because
random forces excite a mechanical system, or because time–dependent uncertainties dis-
turb a deterministic trend, or because one aims to reduce the dimension of a large scale
system by considering that some components contribute stochastically to the evolution of
the system. Examples of applications respectively concern mechanical oscillators submit-
ted to random loading, prices of financial assets, molecular dynamics.

Of course the calibration of the model is a crucial issue. A huge literature deals with
the statistics of stochastic processes, particularly of diffusion processes: Parametric and
non-parametric estimators of the coefficients of stochastic differential equations have been
intensively studied; see for example the books [6] and [7] of Prakasa Rao, in which a large
number of papers are quoted and analyzed. However, somewhat astonishingly, it seems
to us that most of the papers consider that the dimension of the noise is known by the
observer. This hypothesis is often questionable: there is no reason to a priori fix this
dimension when one observes a basket of assets, or a complex mechanical structure in
a random environment. Actually the last two authors of this paper were motivated to
study this question by modelling and simulation issues related to the pricing of contracts
based on baskets of energy prices (see O. Bardou’s thesis [3]). There was no determining
financial reason to fix the Brownian motion dimension to a particular value. In addition,
the interest to find an as small dimension as possible was two-fold: first, one then avoids
the calibration of useless diffusion matrix components; second, practitioners need that the
simulation of the model, and thus the computation of contract prices and of corresponding
risk measures by means of Monte Carlo simulations, are as quick as possible.

We thus try, in this paper, to tackle the question of estimating the Brownian dimension
of an Itô process from the observation of one trajectory during a finite time interval. More
precisely, we aim to build estimators which provide an “explicative Brownian dimension”
rB: a model driven by a rB Brownian motion satisfyingly fits the information conveyed
by the observed path, whereas increasing the Brownian dimension does not allow to fit
the data any better. Stated this way, the problem is obviously ill posed, hence our first
step consists in defining a reasonable framework to develop our study.

Suppose that we observe a continuous d–dimensional Brownian semimartingale X =
(Xi)1≤i≤d on some space (Ω,F , (Ft),P). The observation time interval is [0, T ] with T
finite. The process X is a continuous Itô process, meaning that it satisfies the following
assumption:

Hypothesis (H): We have

Xt = X0 +
∫ t

0
asds +

∫ t

0
σs dWs, (1)

where W is a standard q–dimensional BM, a is a predictable Rd–valued locally bounded
process, and σ is a d × q matrix–valued adapted and càdlàg processes (in (1) one can
replace σs by the left limit σs−, so as to have a predictable integrand, if one wishes).
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We say that we are in the “pure diffusion case” when σs = σ(Xs). We set cs = σsσ
?
s

(so cs = c(Xs) where c = σσ? in the pure diffusion case). The process c takes its values in
the set Md of all d× d symmetric nonnegative matrices. We denote by rank(Σ) the rank
of any Σ ∈Md.

As it is well known, the same process X can be written as (1) with many different
Wiener processes; namely if (Πs) is a progressively measurable process taking its values
in the set of q × q orthogonal matrices, then W ′

t =
∫ t
0 ΠsdWs is another q-dimensional

Wiener process and X is of the form (1) with W ′ and σ′s = σsΠ−1
s . Then the “Brownian

dimension” rB of our model is defined as being the smallest integer r such that, after such
a transformation, the last q − r columns of σ′s(ω) vanish (outside a P(dω)ds-null set, and
for s ≤ T of course). In this case, we can forget about the last q − r components of W ′

and in fact write (1) with an r-dimensional Wiener process. Obviously rB ≤ d always, so
one could start with a model (1) with q ≤ d always, but it is convenient for the discussion
in this paper to take q arbitrary.

Our aim is to make some kind of inference on this Brownian dimension rB, which is
also the maximal rank of cs (up to a P(dω)ds-null set), on the basis of the observation
of the variables XiT/n for i = 0, 1, . . . , n, where [0, T ] is the time interval on which the
process is available. Let us make some preliminary comments, in which we refer to the
“ideal” and “actual” observation schemes when one observes X completely over [0, T ], or
at times iT/n only, respectively.

1) Suppose we are in the pure diffusion case, that is cs = c(Xs) with c a continuous
function, and that the range of the process is the whole of Rd (that is, every open
subset of Rd is visited by X on the time interval [0, T ] with a positive probability).
Set r(x) := rank(c(x)), and let A(ω) be the subset of Rd which is visited by the path
(X(ω)t : t ∈ [0, T ]). The Brownian dimension is rB = supx∈Rd r(x), but in the ideal
scheme we observe R(ω) = supx∈A(ω) r(x) and so we can only assert that r ≥ R(ω).
The situation is similar to what happens in the non-parametric estimation of the
function c : in the ideal scheme this function c is known on A(ω) and hopelessly
unknown on Rd\A(ω).

2) More generally, the only relevant quantity we might hope to “estimate” is the (ran-
dom) maximal rank

R(ω) = sup
s∈[0,T )

rank(cs(ω)) (2)

(we should take the essential supremum rather than the supremum, but the two
agree since cs is right-continuous in s). The variable R is integer–valued, so its
“estimation” is more akin to testing that R = r for any particular r ∈ {0, . . . , d},
although it will not be a test in the ordinary sense because R is random. Note that
in many models we will have that rank(cs(ω)) is independent of s and ω; then R is
non–random, but this property does not really makes the analysis any easier.

3) In the actual scheme we will construct an integer–valued statistics R̂n which serves as
an “estimator” for R. We have to somehow maximize (and evaluate) the probability
that R̂n = R, or perhaps this probability conditional on the value taken by R,
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or conditional on the whole path of X over [0, T ]. That is, we perform a kind of
“conditional test”.

4) We might also take a different look at the problem. Considering the model (1), we
can introduce a kind of “distance” ∆r between the true process X and the class
of all processes X ′ of the same form, but with a diffusion coefficient c′s satisfying
identically rank(c′s) ≤ r. Then we construct estimators ∆n

r for ∆r, for all values of
r, and decide on the basis of these ∆n

r which Brownian dimension rB is reasonable
to consider for the model. The mathematical problem is then similar to the semi–
parametric estimation of a parameter in the diffusion coefficient for a discretely
observed diffusion with unknown drift: here the “parameter” is the collection of all
∆r, and the unknown (nuisance) parameters are the processes as and cs (or σs).

The paper is organized as follows: In Section 2 we explain in a more precise way the
“distances” mentioned above. Section 3 is a collection of simple linear algebra results,
and Section 4 contains the basic limiting results needed. Then in Sections 5 and 6 we put
the previous results in use to develop some statistical applications, and finally we provide
some numerical experiments in Section 7.

2 An instructive but non effective approach

In this section we measure the discrepancy between the model (1), and models of the
same type but with a different Brownian dimension. We denote by Sr the set of all càdlàg
adapted d × q matrix–valued processes σ′ such that c′s = σ′sσ′?s satisfies rank(c′s) ≤ r a.s.
for all s. In particular S0 contains only σ′ ≡ 0. With any σ′ ∈ Sr we associate the process

X ′
t = X0 +

∫ t

0
asds +

∫ t

0
σ′s dWs, (3)

with the same a and the same W than in (1).

A measure of the “distance” between the two processes X and X ′ of (1) and (3),
measured on the time interval [0, t], is the random variable ∆(X, X ′)t defined below: in
the next formula H ranges through all predictable d-dimensional process with ‖Ht(ω)‖ ≤
1 for all (ω, t) and H? is the transpose; 〈M〉 is the quadratic variation process of the
semimartigale M and • denotes stochastic integration:

∆(X,X ′)t = sup
H :‖H‖≤1

〈H? • (X −X ′)〉t. (4)

This measurement of the discrepancy between X and X ′ is particularly well suited to
finance, where E(∆(X,X ′)t) is a measure of the difference in the L2 sense between the
portfolio evaluations when one takes the model with X or the model with X ′. Then set

∆(r; X)t = inf(∆(X, X ′)t : X ′ is given by (3), with σ′ ∈ Sr) (5)

for the “distance” from X to the set of semimartingales with Brownian dimension not
more than r, again on the time interval [0, t].
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Remark 1 Of course ∆(X, X ′)t is not a genuine distance, for two reasons: it does not
satisfy the triangle inequality (it is rather the square of a distance), and more impor-
tant it is random. The genuine distance (which is one of Emery’s distances, see [5]) is√

E(∆(X, X ′)t), provided we identify two processes which are a.s. equal, as usual.

Also, note that the two approaches, here where W is kept fixed, and in the previous
section where W may be changed into another Wiener process W ′, look different but are
actually the same. 2

The next proposition shows how to compute “explicitly” ∆(r;X)t. We denote by
λ(1)s ≥ λ(2)s ≥ . . . ≥ λ(d)s ≥ 0 the eigenvalues of the matrix cs, and we set

L(r)t =
∫ t

0
λ(r)s ds. (6)

Proposition 2 For any r = 0, . . . , d− 1 we have ∆(r; X)t = L(r + 1)t, and the infimum
in (5) is attained.

Proof. It is no restriction to suppose that q ≥ d (if not, we can always add independent
components to W , and accordingly components to σ which are 0). Let J be the d × q
matrix with (i, i) entry equal to 1 when 1 ≤ i ≤ d, and all other entries equal to 0. Then
we can find two càdlàg adapted processes Πs and Qs, with values in the sets of d× d and
q × q orthogonal matrices respectively, and such that σs = ΠsΛ

1/2
s JQs, where Λs is the

diagonal matrix with entries λ(i)s. Note that cs = ΠsΛsΠ?
s.

Let Ir (resp. I ′r) be the d× d matrix with (i, i) entry equal to 1 when 1 ≤ i ≤ r (resp.
r + 1 ≤ i ≤ d), and all other entries equal to 0. Then we set σ′s = ΠsΛ

1/2
s IrJQs and we

associate X ′ by (3). Then σs − σ′s = ΠsΛ
1/2
s I ′rJQs, and thus

〈H? • (X −X ′)〉t =
∫ t

0
(H?

s ΠsΛ1/2
s I ′rJQsQ

?
sJ

?I ′rΛ
1/2
s Π?

sHs)ds.

The integrand above is simply H?
s ΠsΛ

1/2
s I ′rΛ

1/2
s Π?

sHs and, if ‖Hs‖ = 1, we also have
‖Π?

sHs‖ = 1 and thus this integrand is not bigger than λ(r + 1)s: therefore ∆(X, X ′)t ≤
L(r + 1)t. Furthermore σ′sσ′?s = ΠsΛsIrΠ?

s is of rank ≤ r, so σ′ ∈ Sr.

Now, let σ′ be any process in Sr and put c′s = σ′sσ′?s . The kernel K ′
s of the linear

map on Rd associated with the matrix c′s is of dimension at least d − r. The subspace
Ks of Rd generated by all eigenvectors of this linear map, which are associated with the
eigenvalues λ(1)s, . . . , λ(r + 1)s, is of dimension at least r + 1 (it is strictly bigger than
r + 1 if λ(r + 1)s = λ(r + 2)s). Then Ks ∩K ′

s is not reduced to {0}, and we thus can find
a process H = (Hs)s≥0 with ‖Hs‖ = 1 and Hs ∈ Ks ∩K ′

s identically, and obviously this
process can be chosen to be progressively measurable. Then c′sHs = 0 (because Hs ∈ K ′

s)
and H?

s csHs ≥ λ(r + 1)s‖Hs‖ = λ(r + 1)s (because Hs ∈ Ks). The first property above
yields

H? •X ′
t =

∫ t

0
H?

s asds,

hence
〈H? • (X −X ′)〉t = 〈H? •X〉t =

∫ t

0
(H?

s c?
sHs)ds,

5



which by the second property above is not less than L(r + 1)t: hence we are done. 2

In particular, L(1)t = ∆(0;X)t measures the “distance” between the process X and the
pure drift process X0+

∫ t
0 asds. The following is obvious, with the convention L(d+1)t = 0 :

Rt ≤ r ⇐⇒ L(r + 1)t = ∆(r; X)t = 0, (7)

where, similar to (2), we have set for all t > 0:

R(ω)t = sup
s∈[0,t]

rank(cs(ω)). (8)

Hence the random value L(r + 1)t measures the distance between X and the set of all
processes with Brownian dimension r, over the time interval [0, t], and for our particular
path of X. Note also that it is an “absolute” measure of the distance, which is multiplied
by u2 if we multiply the process X by u.

Unfortunately, the variables L(r)t do not seem to be easy to “estimate” from discrete
observations since they involve eigenvalues. Hence we will construct below estimators
which are easier to handle.

3 Linear algebra preliminaries

Consider for a moment the toy model X = σW , where σ is a non-random d × q matrix.
That is, we have (1) with X0 = 0 and as = 0 and σs(ω) = σ, or equivalently X is a
Wiener process with covariance Σt at time t, where Σ = σσ?. The observation scheme
amounts to observing n i.i.d. random vectors Gi, all of them N (0, Σ)–distributed (namely
Gi =

√
n/T ∆n

i X, with the notation ∆n
i X = XiT/n −X(i−1)T/n). To infer rank(Σ) from

the observations of the n first variables Gk, we can use the empirical covariance

Σ̂n =
1
n

n∑

k=1

GkG
?
k. (9)

Indeed, the variables Gk have a density over their support, which is a linear subspace with
dimension rank(Σ): hence rank(Σ̂n) is almost surely equal to n when n < rank(Σ), and
to rank(Σ) otherwise, and the problem is solved in a trivial way.

If we are in the same setting, except that cs depends on s (and is still deterministic)
and has a constant rank r, then typically the eigenspaces “rotate” when s varies, and the
rank of Σ̂n above is a.s. equal to d as soon as n ≥ d. Therefore Σ̂n gives no insight on
the rank. So the problem for nonhomogeneous Wiener process, and a fortiori for general
diffusions like (1), is actually more complex.

Despite the uselessness of the toy model consisting of an homogeneous Wiener process,
let us give a couple of formulas about it, for further reference. We denote by Ar the family
of all subsets of {1, . . . , d} with r elements (r = 1, . . . , d). If K ∈ Ar and Σ = (Σij) ∈Md

we denote by detK(Σ) the determinant of the r × r sub–matrix (Σkl : k, l ∈ K), and we
set

det(r; Σ) =
∑

K∈Ar

detK(Σ). (10)
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Observe that det(d; Σ) = det(Σ), while det(1; Σ) is the trace of Σ.

Lemma 3 If Σ ∈Md has eigenvalues λ(1) ≥ . . . λ(d) ≥ 0, we have for r = 1, . . . , d:

1
d(d− 1) . . . (d− r + 1)

det(r; Σ) ≤ λ(1)λ(2) . . . λ(r) ≤ det(r; Σ). (11)

Notice that both inequalities in (11) may be equalities. It follows from (11) that, with
the convention 0/0 = 0, we have

1 ≤ r ≤ d =⇒




r ≤ rank(Σ) =⇒ det(r; Σ) > 0

r > rank(Σ) =⇒ det(r; Σ) = 0,
(12)

2 ≤ r ≤ d =⇒ r!
d!

det(r; Σ)
det(r − 1;Σ)

≤ λ(r) ≤ d!
(r − 1)!

det(r; Σ)
det(r − 1;Σ)

. (13)

Proof. We expand the characteristic polynomial of Σ as

det(Σ− λI) = (−λ)d +
d∑

r=1

(−λ)d−rdet(r; Σ).

In view of the well known expressions for the “symmetrical functions” of the roots of a
polynomial, we get

∑

1≤i1<...<ir≤d

λ(i1)λ(i2) . . . λ(ir) = det(r; Σ),

and thus both sides of (11) are obvious. 2

Next, we consider a sequence (Gi)i≥1 of i.i.d. N (0,Σ)-distributed random vectors. For
all j = 1, . . . , d we define two random elements of Md by

ζj =
j∑

i=1

GiG
?
i , ζ ′j =

d+j∑

i=d+1

GiG
?
i , (14)

and we consider the mean and covariance of the random vector (det(r; ζr)/r! : 1 ≤ r ≤ d):

γ(r; Σ) = 1
r! E(det(r; ζr)),

Γ(r, r′; Σ) = 1
r!r′! E(det(r; ζr) det(r′; ζr′))− γ(r; Σ)γ(r′; Σ).

}
(15)

Since (ζj , ζ
′
j : 1 ≤ j ≤ d) are i.i.d. we also have

Γ(r, r′; Σ) =
1

r!r′!
E

(
det(r; ζr) det(r′; ζr′)− det(r; ζr) det(r′; ζ ′r′)

)
. (16)
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Lemma 4 If r ∈ {1, . . . , d}, we have

γ(r; Σ) = det(r; Σ). (17)

Moreover
r ≤ rank(Σ) ⇒ γ(r; Σ) > 0, Γ(r, r; Σ) > 0

r > rank(Σ) ⇒ γ(r; Σ) = 0, Γ(r, r; Σ) = 0.



 (18)

Proof. For proving (17) it is enough to show that for any K ∈ Ar, we have E(detK(ζr)) =
r! detK(Σ), and for this it is no restriction to assume that K = {1, . . . , r}. We denote
by Pr the set of all permutations of the set {1, . . . , r}, and ε(τ) is the signature of the
permutation τ . Then

detK(ζr) =
∑

τ∈Pr

(−1)ε(τ)
r∏

l=1

ζ lτ(l)
r =

∑

1≤k1,...,kr≤r

∑

τ∈Pr

(−1)ε(τ)
r∏

l=1

Gl
kl

G
τ(l)
kl

,

and each summand of the first sum of the extreme right side is the determinant of a matrix
with rank less than r, unless all kl are distinct. So it is enough to sum over all r–uples
(k1, . . . , kr) with distinct entries between 1 and r, that is for r–uples with ki = τ ′(i) for
some τ ′ ∈ Pr. In other words, we have

detK(ζr) =
∑

τ ′∈Pr

∑

τ∈Pr

(−1)ε(τ)
r∏

l=1

Gl
τ ′(l) G

τ(l)
τ ′(l). (19)

Since the variables Gn are independent and E(Gk
nGl

n) = Σkl, we deduce that

E(detK(ζr)) = r!
∑

τ∈Pr

(−1)ε(τ)
r∏

l=1

Σlτ(l) = r! detK(Σ),

and we have (17).

If r > rank(Σ) we have det(r; Σ) = 0 (see (12)): the nonnegative variable det(r; ζr)
has zero expectation, so it is a.s. null, and we have the second part of (18). Finally let
r ≤ rank(Σ). By (12) again we have E(det(r; ζr)) > 0. Also, observe that det(r; ζr) is a
continuous function of the random vectors Gn for n = 1 . . . , r, which vanishes if all these
Gn are 0. Thus det(r; ζr) can take arbitrarily small values with a positive probability, and
it has a positive expectation, so it is not degenerate and we get the first part of (18). 2

4 Limit theorems for estimators of the Brownian dimension

It turns out that determinants or “integrated determinants”, are much easier to estimate
than eigenvalues or integrated eigenvalues. So in view of (11) and (12) one might replace
the variable L(r)t of (6) by

L′(r)t =





∫ t
0 det(1; cs) ds if r = 1

∫ t
0

det(r;cs)

det(r−1;cs)
ds if r ≥ 2.
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However, L′(r)t for r ≥ 2 is still not so easy to estimate: for example for the toy model
of Section 3 the variable det(r; ζr)/r! is an unbiased estimator of det(r; Σ) (see (17)), but
we have no explicit unbiased estimator for a quotient like det(r; Σ)/det(r − 1;Σ).

So we propose to measure the distance between X and the set of models with multiplicity
r, over the time interval [0, t], by the following random variable:

L(r)t =
∫ t

0
det(r; cs) ds. (20)

Up to multiplicative constants, this more or less amounts to replace the “natural” distance
L(r)t by

∫ t
0 λ(1)s . . . λ(r)s ds. The variables L(r)t, L′(r)t and L(r)t convey essentially the

same information as far as rank is concerned, and in particular they vanish simultaneously,
which is the most important property for our purposes. In other words, exactly as in (7)
we have

Rt ≤ r ⇐⇒ L(r + 1)t = 0, (21)

By virtue of (17) we can rewrite L(r) as follows (we also introduce additional variables
Z(r, r′), using the notation (15)):

L(r)t =
∫ t

0
γ(r; cs) ds, Z(r, r′)t =

∫ t

0
Γ(r, r′; cs) ds. (22)

Now, we need to approximate the variables in (22) by variables which depend on our
discrete observations only. To this end we introduce the random matrices

ζ(r)n
i =

r∑

j=1

(∆n
i+j−1X) (∆n

i+j−1X)?, where ∆n
i X = XiT/n −X(i−1)T/n. (23)

We have ζ(r)n
i ∈ Md and rank(ζ(r)n

i ) ≤ r. Then we set (with [x] being the integer part
of x):

L(r)n
t =

nr−1

T r−1 r!

[nt/T ]−r+1∑

i=1

det(r; ζ(r)n
i ), (24)

and

Z(r, r′)n
t =

nr+r′−1

T r+r′−1 r! r′!

[nt/T ]−d−r′+1∑

i=1

(
det(r; ζ(r)n

i ) det(r′; ζ(r′)n
i )

−det(r; ζ(r)n
i ) det(r′; ζ(r′)n

d+i)
)
. (25)

The first key theorem is the “consistency” of these variables:

Theorem 5 Under (H) the variables L(r)n
t and Z(r, r′)n

t converge in probability to L(r)t

and Z(r, r′)t respectively, uniformly in t ∈ [0, T ].

This is not enough for our purposes, and we need rates of convergence. For this (H) is
not sufficient, and some additional regularity on the coefficients a and σ is necessary. A
first set of sufficient conditions is simple enough:

9



Hypothesis (H1): We have (H) with a càdlàg process a, and a process σ which is Hölder
continuous (in time) with index ρ > 1/2, in the sense that

sup
0≤s<t≤T

‖σt − σs‖
(t− s)ρ

< ∞ a.s. (26)

The assumption on a above is quite mild, and the assumption on σ is reasonable when
σ is deterministic. However, in the pure diffusion case we have σs = σ(Xs) for, say, a
Lipschitz or locally Lipschitz function σ, and of course (26) fails for any ρ ≥ 1/2. This
assumption also fails when σs is a “stochastic volatility” driven by an Itô equation, and
even more if this equation has jumps !

Therefore, for practical purposes which are especially relevant in finance, we need to
replace (H1) by a different assumption. This assumption looks (is ?) complicated to state,
but it essentially says that a is as in (H1), and that the process σ follows a jump-diffusion
Itô equation, or in other words that it is driven by a Wiener process and a Poisson random
measure); in particular it is satisfied in the pure diffusion case when σs = σ(Xs) with a
C2 function σ.

Hypothesis (H2): We have (H), the process a is càdlàg, and the process σ is a (possibly
discontinuous) Itô semimartingale on [0, T ], that is for t ≤ T we have

σt = σ0 +
∫ t

0
a′sds +

∫ t

0
σ′s−dWs

+
∫ t

0

∫

E
ϕ ◦ w(s−, x)(µ− ν)(ds, dx) +

∫ t

0

∫

E
(w − ϕ ◦ w)(s−, x)µ(ds, dx). (27)

Here σ′ is Rd ⊗ Rq ⊗ Rq-valued adapted càdlàg, and a′ is Rd ⊗ Rq–valued predictable
and locally bounded; µ is a Poisson random measure on (0,∞) × E independent of W
and V , with intensity measure ν(dt, dx) = dtF (dx) with F a σ–finite measure on some
Polish space (E, E); ϕ is a continuous function on Rdq with compact support, which
coincides with the identity on a neighborhood of 0); finally w(ω, s, x) is a map Ω× [0,∞)×
E → Rd ⊗Rq which is Fs ⊗ E–measurable in (ω, x) for all s and càdlàg in s, and such
that

∫
E(1

∧
supω∈Ω,s≤T ‖w(ω, s, x)‖2) F (dx) < ∞.

These conditions are indeed quite easy to check in practice. They accommodate the
case of a stochastic volatility driven by a Wiener process having some (or all) components
independent of X: since W has an “arbitrary” dimension q in this paper, possibly q > d,
there might be components used for X in (1) and other components used in (27).

Theorem 6 Assume either (H1) or (H2). The d–dimensional processes (V (r)n
t )1≤r≤d

with components
V (r)n

t =
√

n (L(r)n
t − L(r)t) (28)

converge stably in law to a limiting process (V (r)t)1≤r≤d, which is defined on an extension
of the original space and which, conditionally on F , is a non-homogeneous Wiener process
with quadratic variation process t 7→ (TZ(r, r′)t)1≤r,r′≤d.

10



Proof of Theorems 5 and 6. The proof goes through several steps:

1) It is based on the following two results of [4]. Take N functions gj on Rd, which are
C2 and with polynomial growth and even. Set

Y (g1, . . . , gN )n
t =

T

n

[nt/T ]−N+1∑

i=1

N∏

k=1

gk(
√

n/T ∆n
i+k−1X).

Then under (H) we have

Y (g1, . . . , gN )n
t

P−→ Y (g1, . . . , gN )t :=
∫ t

0
y(g1, . . . , gN ; cs) ds,

where the convergence in uniform in t ∈ [0, T ] and where y(g1, . . . , gN ; Σ) is, for any d× d
covariance matrix Σ, the expectation of the variable

γ(g1, . . . , gN ) =
N∏

k=1

gk(Gk)

and the Gn’s are i.i.d. random vectors with law N (0,Σ), as in Section 3.

If further (H2) holds, then for any array
(
(gj

1, . . . , g
j
Nj

) : 1 ≤ j ≤ J
)

with gj
i as above,

the J–dimensional processes
(√

n/T (Y (gj
1, . . . , g

j
Nj

)n
t − Y (gj

1, . . . , g
j
Nj

)t

)
1≤j≤J

converge

stably in law to a limiting process which, conditionally on F , is a non-homogeneous Wiener
process with quadratic variation process

∫ t
0 Γ(cs)ds, and where Γ(Σ) is the covariance

matrix of the random vector
(
γ(gj

1, . . . , g
j
Nj

)
)

1≤j≤J
as defined above. Under (H1) instead

of (H2) the same result holds: it is not explicitely stated in [4], but the proof is similar
and technically much simpler.

2) These results extend by ”linearity” in an obvious way. More precisely, for 1 ≤ j ≤ J
set

Y (j)n
t =

T

n

[nt/T ]−Nj+1∑

i=1

hj

(√
n/T ∆n

i X,
√

n/T ∆n
i+1X, . . . ,

√
n/T ∆n

i+Nj−1X

)
, (29)

where each hj is a linear combinations of tensor products g1 ⊗ . . . ⊗ gNj , where the gi’s
are C2 functions on Rd, even and with polynomial growth. Let also denote by M(Σ)
and C(Σ) the mean vector and the covariance matrix of the J–dimensional random vector
(hj(G1, . . . , GNj )1≤j≤J , with Gi as above. Then:

1. under (H) we have

Y (j)n
t

P−→ Y (j)t :=
∫ t

0
M j(cs)ds, uniformly in t ∈ [0, T ]; (30)

2. under (H1) or (H2) the J-dimensional processes with components
√

n/T (Y (j)n
t −

Y (j)t) converge stably in law to a limiting process which, conditionally on F , is a
non-homogeneous Wiener process with quadratic variation process

∫ t
0 C(cs) ds.

11



3) The theorem is now almost trivial. The determinants entering (24) and (25) are sums
of even monomials of the components of ∆n

i+j−1X for 1 ≤ j ≤ 2d, each one with degree
2r, resp. 2(r + r′). More specifically, L(r)n is of type (29), with Nr = r and the function

hr(x1, · · · , xr) =
1
r!

det
(
r,

r∑

j=1

xjx
?
j

)
,

whereas Z(r, r′)n is of type (29), with Nr,r′ = d + r′ and the function

hr,r′(x1, · · · , xd+r′) =
1

r! r′!


det

(
r,

r∑

j=1

xjx
?
j

)
det

(
r′,

r′∑

j=1

xjx
?
j

)

− det
(
r,

r∑

j=1

xjx
?
j

)
det

(
r′,

d+r′∑

j=d+1

xjx
?
j

)

 .

Then Theorem 5 readily follows from Step 2 and from the relations (15). 2

In the sequel we will need also some estimates on the moments of V (r)n
t , uniform in

n. It follows from the proofs in [4] that, under (H2) and for each t ∈ (0, T ], there is a
sequence Ap,t of Ft–measurable sets such that

Ap,t ↑ Ω as p →∞
p ≥ 1, n ≥ 1, t ∈ (0, T ] =⇒ E(|V (r)n

t |21Ap,t) ≤ Cp,

}
(31)

for a suitable sequence of constants Cp (depending on T ). This very same result also holds
under (H1).

Now, if the coefficient a is bounded, and if we have (H1) with (26) holding uniformly
in ω, or (H2) with a′s(ω) and σ′s − ω) bounded and ‖w(ω, s, x)‖ ≤ h(x) for some function
having

∫
E(1

∧
h(x)2)F (dx) < ∞, one can (easily) prove that (31) holds for A1,t = Ω, and

so there is a constant C, depending on T , such that

n ≥ 1, t ∈ (0, T ] =⇒ E(|V (r)n
t |2) ≤ C. (32)

5 Tests based on thresholds

5.1 A test based on an absolute threshold

We come back to the initial problem, in the light of the second comment of Section 1:
namely, we want to decide which integer value (between 0 and d) the variable R of (2)
takes for the particular path ω which is known only through the observations XiT/n. In
principle we have our observations XiT/n for i = 0, . . . , n, but it may be interesting to
determine how our estimators behave as time changes; this is why we also give estimators
for the variable Rt of (8), based on the observation of XiT/n for i = 0, . . . , [nt/T ].

Let us say once more that in the ideal scheme (the whole path of X is known over
[0, T ]) we also know R = R(ω), whereas we have the equivalence (21). In view of this, and

12



taking into account the convergence result in Theorem 5, it seems natural to operate as
follows: we choose a sequence of positive numbers ρn such that

ρn → 0, ρn

√
n →∞. (33)

Then we take the following ”estimator” for Rt:

R̂n,t = inf
(
r ∈ {0, . . . , d− 1} : L(r + 1)n

t < ρnt
)

, (34)

with inf(∅) = d. That this estimator is a priori reasonable comes from the fact that if
we set Rn,t = inf

(
r ∈ {0, . . . , d− 1} : L(r + 1)t < ρnt

)
, then by (21) and the property

ρn → 0, we have P(Rn,t = Rt) → 1 as n → ∞. We take a threshold of the form ρnt
because L(r + 1)n

t is roughly proportional to t.

Remark 7 Another equally reasonable estimator, which is a kind of “dual” of R̂n,t, is the
following one:

R̂′
n,t = sup

(
r ∈ {1, . . . , d} : L(r)n

t ≥ ρnt
)

, (35)

with sup(∅) = 0. The analysis of R̂n,t made below carries over for R̂′
n,t in pretty much the

same way. 2

Remark 8 The choice of the threshold ρn is arbitrary, upon the fact that (33) holds:
asymptotically all choices are equivalent. In practice, though, it is of primary importance
because n, albeit large, is given and is of course not infinite ! Even worse, an absolute
threshold like in (34) is sensitive to the unit in which the values of the Xi

t are expressed:
for example if we multiply all components by the same (known) constant the estimator
of the Brownian dimension provides a different value. So using an absolute threshold is
probably not advisable in general. Nevertheless we pursue here the analysis of tests based
on an absolute threshold, since they may serve as a case study and are somewhat simpler
to study than the tests based on relative thresholds which are introduced later. 2

The integer–valued estimator R̂n,t should be analyzed using the testing methodology
rather than as a usual estimator: we test the hypothesis Rt = r with the critical region
{R̂n,t 6= r}. The “power function” is in principle the probability of rejection, a function of
the underlying probability measure. Here we have a single P, and Rt is (possibly) random.
We thus develop two different substitutes to the power function.

5.2 A first substitute to the power function

A seemingly acceptable version of the power function is

β̂r
n,t(r

′) = P(R̂n,t 6= r | Rt = r′), r′ = 0, 1, . . . , d, (36)

provided P(Rt = r′) > 0. We explicitly mention the number n of observations and the
number r, but it also depends on the sequence ρn. The index r indicates the “test” with
null hypothesis Rt = r which we are performing, while the index r′ indicates the “true”
value or Rt: so β̂r

n,t(r) should be small, and β̂r
n,t(r

′) should be close to 1 when r′ 6= r.

We have a first – quite simple – result:

13



Theorem 9 Under (33) and either (H1) or (H2) we have for all r, r′ in {1, . . . , d}, and
provided P(Rt = r′) > 0:

β̂r
n,t(r

′) −→
{

1 if r 6= r′

0 if r = r′. (37)

Another equivalent (simpler) way of stating this result consists in writing

P(R̂n,t 6= Rt) → 0. (38)

This is more intuitive, but somehow farther away from the way results on tests are usually
stated.

Proof. For each s = 1, . . . , (r′ + 1) ∧ d we set δs
n,t(r

′) = P(L(s)n
t < ρn, Rt = r′). Observe

that, if ρ′n = ρn
√

n, and with the notation (28),

δs
n,t(r

′) ≤ P(L(s)t < 2ρnt, Rt = r′) + P(|V (s)n
t | > ρ′nt),

P(Rt = r′)− δs
n,t(r

′) ≤ P(L(s)t > ρnt/2, Rt = r′) + P(|V (s)n
t | ≥ ρ′nt/2).



 (39)

Theorem 6 yields that the sequence V (s)n
t converges in law when n goes to infinity, whereas

on the set {Rt = r′} we have L(s)t > 0 if s ≤ r′, and L(s)t = 0 if s > r′. Therefore it
follows from (33) that

s ≤ r′ ⇒ δs
n,t(r

′) → 0

s = r′ + 1 ≤ d ⇒ δs
n,t(r

′) → P(Rt = r′).

}
(40)

Now {R̂n,t 6= r′} = (∪1≤s≤r′{L(s)n
t < ρnt}) ∪ {L(r′ + 1)n

t ≥ ρnt}, with the convention
{L(d + 1)n

t ≥ ρnt} = ∅. Then

P(R̂n,t 6= r′ = Rt) ≤




∑r′
s=1 δs

n,t(r
′) + P(Rt = r′)− δr′+1

n,t (r′) if r′ ≤ d− 1
∑r′

s=1 δs
n,t(r

′) if r′ = d.

Then it readily follows from (40) that β̂r′
n,t(r

′) → 0 as soon as P(Rt = r′) > 0. Under this
assumption and if r 6= r′ we clearly have β̂r

n,t(r
′) = 1−P(R̂n,t = r | Rt = r′) ≥ 1− β̂r′

n,t(r),
hence β̂r

n,t(r
′) → 1. 2

The previous result seems to settle the matter. However, it is not as nice as it may
look, because it gives no “rate” for the convergence in (37) or (38) and is thus impossible
to put in use in practice. The impossibility of getting a rate is apparent in (39): the
second terms on the right may be more or less controlled through estimates like (31), but
the first terms on the right cannot be controlled at all; indeed if Rt = r the variable L(r)t

is positive, but may be arbitrarily close to 0.
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5.3 A second substitute to the power function

As emphasized in Comment 4 of Section 1, one may reasonably decide that Rt = r if r is
the “true” Brownian dimension in a “significant” way, which means in particular that the
“distance” between the model X and the set of models with Brownian dimension r′ < r
is not “infinitesimal”. This may be interpreted as the property that L(r)t exceeds some
positive level for all r ≤ Rt.

In other words, we set Br′,ε,t = {Rt = r′, L(r)t ≥ εt for r = 1, . . . , r′}, and we define
the “power function” as being

β̂r
n,t(r

′, ε) = P(R̂n,t 6= r | Br′,ε,t), (41)

provided P(Br′,ε,t) > 0.

Evaluating βr
n,t(r

′, ε) is still difficult, because it involves the unknown quantity P(Br′,ε,t).
So we provide a result which does not directly give the power function itself, but which is
probably more relevant for applications.

Theorem 10 Under (H1) or (H2) there are Ft-measurable sets (Ap,t) increasing to Ω as
p →∞, and constants Cp such that, for all r in {1, . . . , d}, and provided ρn < ε/2:

P({R̂n,t 6= r} ∩Br,ε,t ∩Ap,t) ≤ Cp

nρ2
n

(42)

for all t ∈ (0, T ]. If further (32) holds, we can find a constant such that

P({R̂n,t 6= r} ∩Br,ε,t) ≤ C

nρ2
n

, (43)

or in other words, the “level” satisfies β̂r
n,t(r, ε) ≤ C/

(
nρ2

nP(Br,ε,t)
)
.

Note that we can choose ρn above at will, provided it satisfies (33), and neither Ap nor
Br′,ε,t nor Cp depend on this choice (the estimator R̂n,t does, though): so we can obtain
a rate 1/nθ for any θ ∈ (0, 1), as close to 1 as one wishes.

Proof. We consider the sets Ap,t for which (31) holds, and we denote by C ′
p the constants

occurring in that formula. For s = 1, . . . , (r + 1)∧ d we set (ε > 0 being fixed) δs
n,t(r, p) =

P({L(s)n
t < ρnt} ∩Br,ε,t ∩Ap,t). Exactly as for (39), we have

δs
n,t(r, p) ≤ P({L(s)t < 2ρnt} ∩Br,ε,t)) + P({|V (s)n

t | > ρ′nt} ∩Ap,t),

P(Br,ε,t ∩Ap,t)− δ′sn,t(r, p) ≤ P({L(s)t > ρnt/2} ∩Br,ε,t) + P({|V (s)n
t | ≥ ρ′nt/2} ∩Ap,t).

Taking into account (31) and ρn < ε/2 and the facts that L(s)t = 0 if Rt = r < s and
that L(r)t ≥ εt on B(r, ε, t), we deduce from Tchebycheff inequality that

s ≤ r ⇒ δs
n,t(r, p) ≤ C ′

p

ρ′2n
, P(Br,ε,t ∩Ap,t)− δr+1

n,t (r, p) ≤ 4C ′
p

ρ′2n
, (44)
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where the second equality makes sense when r < d only. Applying once more the identity
{R̂n,t 6= r} = {L(r + 1)n

t ≥ ρnt} ∪ (∪1≤s≤r{L(s)n
t < ρnt}, we get

P({R̂n,t 6= r}∩Br,ε,t∩Ap,t) ≤
{ ∑r

s=1 δs
n,t(r, p) + P(Br,ε,t ∩Ap,t)− δr+1

n,t (r, p) if r < d
∑r

s=1 δs
n,t(r, p) if r = d.

Then we deduce (42) form (44) if we put Cp = (4 + d)C ′
p. Finally under (32) we may

choose A1,t = Ω above, and thus (43) with C = (4 + d)C ′
1. 2

Of course (42) is not useful in general, although it gives us a rate, because we do not
know the sets Ap,t. In case (32) holds the result appears much more satisfactory; however,
we still do not know the constant C in (43), and have no mean to guess what it is from
the observations.

5.4 Tests based on a relative threshold

In practice the previous tests are not recommended, see Remark 8. Now we exhibit other
tests which are scale-invariant.

If we multiply X by a constant δ > 0, then cs is multiplied by δ2 and both L(r)n
t

and L(r)t are multiplied by δ2r. Then, for any given sequence ρn ∈ (0, 1] satisfying (33)
the following two “estimators” of R, which are candidates to be explicative Brownian
dimensions, are scale-invariant:

R̃n,t = inf
(
r ∈ {0 . . . , d− 1} : L(r + 1)n

t < ρnt−1/r(L(r)n
t )(r+1)/r

)
,

R̃′
n,t = inf

(
r ∈ {0, . . . , d− 1} : L(r + 1)n

t < ρnt−r(L(1)n
t )r+1

)
,



 (45)

with the convention that L(0)n
t = 1, and again inf(∅) = d. The presence of t1/r or tr above

accounts for the fact that L(r)n
t is roughly proportional to t, as in (34).

Note that R̃′
n,t ≥ 1, even when Rt = 0: so if Rt = 0 this estimator is bad, but in this

case our problem is essentially meaningless anyway ! When Rt ≥ 1, the significance of
these two estimators is essentially as follows: R̃n,t is the smallest integer r for which there
is a “large” drop between the explicative powers of the models with Brownian dimensions r
and r+1, whereas R̃′

n,t is the smallest integer r at which the ratio between the contributions
of the (r + 1)th and the first Brownian dimension is smaller than ρn. Clearly there exist
other estimators of the same kind, with slightly different meanings, the above two being
the extremes. All such estimators are amenable to essentially the same mathematical
analysis.

In practice the choice of ρn is relative to the physical phenomenon under consideration
and to the use which is made of the model (prediction, simulation, computation of extreme
values, etc.). Roughly speaking the choice should reflect the physical effects which are
modelled as the driving noise, and the intensity of components of the noise which are
considered as important to capture essential properties of the model.

Here again the substitutes to the power functions are

β̃r
n,t(r

′) = P(R̃n,t 6= r | Rt = r′), β̃′rn,t(r
′) = P(R̃′

n,t 6= r | Rt = r′). (46)
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We now aim to a result similar to Theorem 9 :

Theorem 11 Under (33) and either (H1) or (H2) we have for all r, r′ in {1, . . . , d}, and
provided P(Rt = r′) > 0:

β̃r
n,t(r

′) −→
{

1 if r 6= r′

0 if r = r′, (47)

and the same for β̃′rn,t(r
′).

Proof. We prove the result for β̃r
n,t(r

′) only, the other case being similar. For each
s = 1, . . . , r′ ∧ d we set

δs
n,t(r

′) = P(L(s)n
t < ρnt−1/s(L(s− 1)n

t )s/(s−1), Rt = r′).

As in Theorem 9 we write ρ′n = ρn
√

n, and with the convention 0/0 = 1 and with t ∈ (0, T ]
fixed we put

Ṽ (s)n = t1/s√n

(
L(s)n

t

(L(s− 1)n
t )s/(s−1)

− L(s)t

(L(s− 1)t)s/(s−1)

)
. (48)

Observe that, similar to (39), we have

δs
n,t(r

′) ≤ P(L(s)t < 2ρnt−1/s(L(s− 1)t)(s−1)/s, Rt = r′) + P(|Ṽ (s)n| > ρ′n, Rt = r′),

P(Rt = r′)− δs
n,t(r

′) ≤ P(L(s)t > ρnt−1/s(L(s− 1)t)(s−1)/s/2, Rt = r′)

+P(|Ṽ (s)n| ≥ ρ′n/2, Rt = r′).

Moreover Theorem 6 yields that, on the set {L(s− 1)t > 0} = {Rt ≥ s− 1}, the variables
Ṽ (s)n converge stably in law to the variable

Ṽ (s) =
t1/sL(s)t

(L(s− 1)t)s/(s−1)

(
V (s)t

L(s)t
− s

s− 1
V (s− 1)t

L(s− 1)t

)
.

Therefore, since (33) holds, we get (40). At this stage, we can reproduce the end of the
proof of Theorem 9 to obtain (47). 2

Obviously the comments made after Theorem 9 for the estimators R̂n,t apply to R̃n,t

or R̃′
n,t, and in particular the fact that (47) gives no rates. Moreover there is nothing like

Theorem 10 here, because we have no moment estimates like (31) or (32) for the variables
Ṽ (s)n of (48) (such estimates seem to be out of reach, because of the denominators).

Remark 12 On could also think of estimators similar to (35), for example

R̃′′
n,t = sup

(
r ∈ {1 . . . , d} : L(r)n

t ≥ ρnt−1/(r−1)(L(r − 1)n
t )r/(r−1)

)
. (49)

However, the previous analysis does not carry over to R̃′′
n,t, again because we do not know

whether the variables Ṽ (s)n
t converge stably in law on the set {Rt < s−1} (due once more

to the presence of the denominators). 2
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Remark 13 Here again the problem of choosing the threshold ρn is crucial in practice,
despite the fact that a relative threshold is - at least - insensitive to the scale. This is
illustrated somehow by the numerical experiments conducted in Section 7. For real data,
only the experience of the statistician, at this point, can help for the choice of ρn. We hope
in a future work to be able to derive some tests based on the consideration of the variables
L(r)n

t again, but which do not necessitate an arbitrary threshold. The next section is a
kind of first and somewhat incomplete attempt in this direction. 2

6 A test based on confidence intervals

Finally, we can take full advantage of the fourth comment in the Introduction. Namely,
instead of trying to directly evaluate Rt, we can try to evaluate the variables L(s)t for all
s = 1, . . . , d.

In view of Theorem 6, this is quite simple: in restriction to the set {Rt ≥ r}, the vari-
ables

√
n (L(r)n

t − L(r)t) are asymptotically mixed normal, with a (conditional) variance
TZ(r, r)t, which in turn can be estimated by TZ(r, r)n

t because of Theorem 5. And on
the set {Rt < r}, the variables

√
n (L(r)n

t − L(r)t) =
√

n L(r)n
t go to 0 in law.

This allows one to derive (asymptotic) confidence intervals for L(s)t. More precisely,
we get the following:

lim
n

P
(∣∣∣∣

√
nTZ(r, r)n

t (L(r)n
t − L(r)t)

∣∣∣∣ ≥ γ | Rt = r′
)

= P(|G| ≥ γ) (50)

for any γ > 0, where G is an N (0, 1) random variable, and provided P(Rt = r′) > 0 and
r′ ≥ r. This is quite satisfactory because Z(r, r)n

t is observable. On the other hand, as
soon as P(Rt = r′) > 0 and r′ < r and γ > 0, we get

lim
n

P
(∣∣∣
√

n L(r)n
t

∣∣∣ ≥ γ | Rt = r′
)

= 0. (51)

This is less satisfactory, because the confidence intervals based on this are not sharp. And it
is difficult to obtain non trivial limit theorems for the sequence L(r)n

t suitably normalized,
when Rt < r: it seems linked to the speed with which the eigenspaces associated with the
positive eigenvalues of cs rotates in Rd.

An example. Let us consider for instance the problem of “testing” whether the scale-
invariant variable St := tr−1L(r)t/(L(1)t)r exceeds some prescribed level ε > 0 (with, say,
0/0 = 0). This variable is naturally estimated by Sn,t = tr−1L(r)n

t /(L(1)n
t )r.

Although once again this is not a testing problem in the usual sense, one can do as if
St were a (deterministic) parameter and the null hypothesis is St ≥ ε. Critical regions on
which we reject this hypothesis are naturally of the form

Cn,t(η) = {Sn,t < η}. (52)

The “level” of this test is

αη
n,t = sup

x≥ε
P(Cn,t(η) | St ≥ x), (53)
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and its “power function” for x ∈ (0, ε) is

βη
n,t(x) = P(Cn,t(η) | St ≤ x). (54)

(it would perhaps be more suitable to use P(Cn(η) | S = x) as the power function, but
the later cannot be evaluated properly below). We also need the following variable

Zn,t = Tt2(r−1) (L(r)n
t )2

L(1)2r
n

(
Z(r, r)n

t

(L(r)n
t )2

− 2rZ(1, r)n
t

L(r)n
t L(1)n

t

+
r2Z(1, 1)n

t

(L(1)n
t )2

)
, (55)

which looks complicated but is actually computable at stage n from our observations.
Then we get the following result:

Theorem 14 Assume (H1) or (H2). Let α ∈ (0, 1) and take γ ∈ R to be such that
P(G > γ) = α, where G is an N (0, 1) variable.

(i) If P(St ≥ ε) > 0, the “tests” with critical regions Cn,t(ηn,t) have an asymptotical
level less than or equal to α (that is, lim supn α

ηn,t

n,t ≤ α), if we take

ηn,t = ε− γ

√
|Zn,t|√

n
. (56)

(ii) If P(L(1)t > 0) = 1, the power function β
ηn,t

n,t of the above test, with ηn,t given by
(56), satisfies β

ηn,t

n,t (x) → 1 for any x ∈ (0, ε).

The assumption P(L(1)t > 0) = 1 in (ii) is very mild: it rules out the case where the
function s 7→ cs(ω) vanishes on [0, t] on a subset of Ω with positive probability. If it fails,
then the variable St is not well defined on this set anyway and the problem is essentially
meaningless.

Proof. The result is based on the following consequences of Theorems 5 and 6. We fix
t ∈ (0, T ] and we introduce the variables

V̂n :=
√

n (Sn,t − St) = tr−1√n

(
L(r)n

t

(L(1)n
t )r

− L(r)t

(L(1)t)r

)
. (57)

Theorem 6 yields that, in restriction to the set A = {L(1)t > 0}, the variables V̂n converge
stably in law to the variable

V̂ = tr−1 L(r)t

(L(1)t)r

(
V (r)t

L(r)t
− r

V (1)t

L(1)t

)
.

Conditionally on the σ-field F , and again in restriction to A, the variable V̂ is centered
normal with variance

Z = Tt2(r−1) L(r)2

L(1)2r

(
Z(r, r)t

(L(r)t)2
− 2rZ(1, r)t

L(r)tL(1)t
+

r2Z(1, 1)t

(L(1)t)2

)
.
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Finally, the above variable Z is the limit in probability of the sequence Zn defined in (55),
by virtue of Theorem 5. To summarize, we deduce that the variables Tn = V̂n/

√
|Zn,t|

converge stably in law, in restriction to A again, to an N (0, 1) variable, say G, which is
independent of F . In particular, for all y ∈ R we have:

B ∈ F , B ⊂ A ⇒ P({Tn < y} ∩B) → P(B) P(G < y). (58)

It remains to observe that Sn,t = St + Tn

√
Zn,t/n. Then with the choice (56) for ηn,t

we have Tn < −γ on Cn,t(ηn,t) as soon as St ≥ ε, and (i) follows from (58) applied to
B = {St ≥ ε}, which is included into A. Finally the assumption in (ii) is P(A) = 1. Let
y, z > 0 and x < ε, and observe that if Tn < y and S ≤ x < ε and

√
|Zn,t| ≤ z

√
n, we have

Sn < x+yz and so we are in Cn,t(ηn,t) as soon as yz < ε−x. Then (58) with B = {S ≤ x}
and the fact that Zn,t converges in probability to Z yield for any y, z > 0 with yz < ε−x:

P(Cn,t(ηn,t) ∩B) ≥ P({Tn < y} ∩B)−P(Zn,t > nz2) → P(B) P(G < y).

Since y is arbitrarily large, we conclude that P(Cn,t(ηn,t) ∩ B) → P(B), and (ii) follows.
2

7 Numerical experiments

In this section we present numerical results for three different families of models. The
two first ones concern financial applications, namely, the calibration of baskets of stan-
dard stock prices, or energy indices, with stochastic volatilities. Our last example is not
motivated by Finance; however it presents a kind of degeneracy which illustrates an (un-
surprising) limitation of our estimation procedure.

All the numerical results below concern the test based on a relative threshold described
in section 5.4.

7.1 Models with Stochastic Volatilities

In Finance the calibration of models is a difficult issue. One has to handle missing data
in statistical analysis; the frequency of prices observations is often too weak to allow one
to estimate quadratic variations and thus volatilities with good accuracies, and if it is
high then microstructure noises tend to blur the picture; moreover because of market
instabilities, any particular model with fixed parameters or coefficients can pretend to
describe market prices over only short periods of time. Consequently the practitioners are
used to calibrate implicit parameters of their stock price models by solving PDE inverse
problems (see, e.g., Achdou and Pironneau [1] and the references therein), minimizing
entropies (see, e.g., Avellaneda et al. [2]), etc. Such procedures use instantaneous market
information on the stocks under consideration, particularly derivative prices, rather than
historical data. In all these approaches, as soon as one deals with a portfolio with several
assets, the Brownian dimension is a parameter of prime importance. We thus have studied
the performances of our estimation procedure within the commonly used Black, Scholes
and Samuelson framework with stochastic volatilities.
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Figure 1: Test case 7-1: ρ = 0

Consider

X1
t = 1 + r1

∫ t
0 X1

s ds + σ1
∫ t
0 X1

s dB1
s

X2
t = 1 + r2

∫ t
0 X2

s ds + σ2
∫ t
0 X2

s (ρdB1
s +

√
1− ρ2dB2

s )

}

with σ1 = 0.1, σ2 = 0.2, r1 = 0.05 and r2 = 0.15.

To simulate paths of (X1
t , X2

t ) we have used the Euler scheme with stepsize 10−4. The
final time is T = 10. The observations are at times k · 10−2, 1 ≤ k ≤ 1000. In view of (45)
we consider the estimators

ξ
n
t (1) = t

L
n
t (2)

L
n
t (1)2

, ξt(1) = t
Lt(2)
Lt(1)2

.

Figs. 1-4 are organized as follows: the left picture displays a particular sample path
of the pair (X1

t , X2
t ), and in the right picture we have plotted the paths of ξ

n
t (1) (solid

line) and ξt(1)) (dashed line) corresponding to the path of the left display. Moreover at
each integer time t = 2, 3, · · · , 10 the right picture also displays two boxes and whiskers:
the box and whiskers on the right plots the empirical quartiles and extends upward and
downward to the extremal values of 500 independent samples of the random variables
ξ
n
t (1); the box and whiskers on the left provides a similar information on ξt(1). Moreover

the left-hand paths in all Figs 1-4 correspond to the same simulated path of the Brownian
motion (B1, B2).

On this example we see that the paths of (X1, X2) for different values of ρ (and
corresponding to the same Brownian motion (B1, B2)) are difficult to distinguish, whereas
the values taken by ξ

n
t (1) clearly allows one to distinguish the strongly correlated and

weakly correlated cases.

Figs. 5 and 6 display the same box and whiskers pictures than previously, but with
ρ = 0.00 and ρ = 0.99 and for two sampling frequencies T/n: for each integer time t the
left box and whiskers are the same on the left and right displays (they both are for ξt(1),
beware the change of scale between the two displays), but unsurprisingly the spread of
ξ
n
t (1) is bigger at low frequency (right display). However even at the lowest frequency

(with only 100 observations) it allow to correctly estimate the real Brownian dimension.
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Figure 2: Test case 7.1: ρ = 0.5
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Figure 3: Test case 7.1: ρ = 0.9

7.2 A simplified model for energy indices

We now present a toy model for oil prices. In his Ph.D. thesis within a collaboration
between INRIA and Gaz de France, O. Bardou [3] has studied modelling and simulation
questions related to energy contract pricing problems. One question was to identify the co-
efficients of a stochastic differential system which could satisfyingly describe the dynamics
of about ten energy indices.

Here, for the sake of simplicity, we consider a three-dimensional system whose coeffi-
cients resemble those identified by O. Bardou: for 1 ≤ i ≤ 3 we set

dXi
t = [αi(Xi

t −Ki)+ + βi]dBi
t + νi(µi −Xi

t)dt,

with X1
0 = 0.29, X2

0 = 0.89, X3
0 = 0.62.

Fixed this way, the diffusion term does not satisfy Hypothesis (H2). We thus slightly
modify the equation and consider

dXi
t = [αiφ(Xi

t −Ki) + βi]dBi
t + νi(µi −Xi

t)dt,

where φ(x) = 0 if x ≤ 0, φ(x) = 2.5 x2 if 0 < x < 0.2, and φ(x) = x − 0.1 if x ≥ 0.2.
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Figure 4: Test case 7.1: ρ = 0.99
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Figure 5: Test case 7.1: ξ
n
t (1) in terms of T/n (ρ = 0.00)

In this very simplified model the components of X are independent; in the real situation
where one observes energy indices, one should take correlated Brownian motions Bi, as in
Subsection 7.1.

We set νi = µi = αi = 1. The drift term then stabilizes the process around the value
1. If βi = 0, the process (Xi

t) diffuses only when Xi
t is above the threshold Ki.

As above, we have approximated a path of the system by simulating the Euler scheme
with stepsize 10−4 between times 0 and 10. The observations are at times k · 10−2, 1 ≤
k ≤ 1000. In view of (45) we consider the estimators

ξ
n
t (1) = t

L
n
t (2)

L
n
t (1)2

, ξ
n
t (2) =

√
t

L
n
t (3)

L
n
t (2)3/2

,

and

ξt(1) = t
Lt(2)
Lt(1)2

, ξt(2) =
√

t
Lt(3)

Lt(2)3/2
.

In Figs.7-10 the left boxes show a particular path of (X1, X2, X3); the right boxes show
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(a) T/n = 10−3 (b) T/n = 10−1

Figure 6: Test case 7.1: ξ
n
t (1) in terms of T/n (ρ = 0.99)
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Figure 7: Test case 7.2: β1 = β2 = 1, β3 = 0, K1 = K2 = 3, K3 = 0.9

the corresponding paths of ξ
n
t (j) (solid line) and ξt(j) (dashed line), for j = 1 and j = 2:

respectively the top and the bottom curves; values on the right hand-side vertical axes
denote ξ

n
T (1) and ξ

n
T (2). Moreover on the right we have box and whiskers for the empirical

quartiles of ξ
n
t (1) (top) and ξ

n
t (2) (bottom), computed from 500 independent paths and

for all integer times t = 2, 3, · · · , 10. The whiskers extend to the extremal values of the
samples, the other ticks denoting the 1%, 10%, 90% and 99 % quantiles.

In Fig.7, the two first components diffuse from time 0 to time 10 since K1 and K2 are
large. The third component diffuses a little only since it is attracted to 1 and φ(1−K3) =
φ(0.1) is small. Given the threshold ρn = 0.01, the explicative Brownian dimension R̃n,t

is 2 since ξ
n
t (1) takes values around 0.2 whereas ξ

n
t (2) takes values around 2 10−3.

In Fig. 8, the two last components have a small diffusion term. As both ξ
n
t (1) and

ξ
n
t (2) take values less than 0.02, according to the same threshold ρn = 0.01 as above, the

explicative Brownian dimension R̃n,t is 1.

In Fig. 9, we have K1 large, and φ(1 − K2) = φ(1 − K3) = φ(0.4) = 0.3. Therefore
none of the diffusion terms can be neglected, but the first component ‘oscillates’ more
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Figure 8: Test case 7.2: β1 = 1, β2 = β3 = 0, K1 = 3, K2 = K3 = 0.9
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Figure 9: Test case 7.2: β1 = 1, β2 = β3 = 0, K1 = 3, K2 = K3 = 0.6

than the two other ones. It is a case where observed paths, for which both ξ
n
t (1) and ξ

n
t (2)

take values around 0.1, may make difficult to decide whether the explicative Brownian
dimension should be chosen as 1 or 2.

Finally, in Fig. 10, we keep the two first components as in Fig. 9, but change the third
one into an almost constant process. Of course, as above, we have difficulties to decide
whether the Brownian dimension is 1 or 2. However it is clear that it cannot be 3 since
ξ
n
t (2) fluctuates around 5 10−3.

7.3 Sensitivity to a drift term close to be a martingale

We now consider a model with a strongly oscillating drift term. These oscillations signif-
icantly decrease the efficiency of our estimator. In certain circumstances the explicative
Brownian dimension over-estimates the real dimension.

The system under consideration is

X1
t =

∫ t
0 η cos(θX2

s )ds,
X2

t = Bt,

}
,
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Figure 10: Test case 7.2: β1 = 1, β2 = β3 = 0, K1 = 3, K2 = 0.6, K3 = 0.9
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Figure 11: Test case 7.3: η = 10, θ = 100

where B is a one-dimensional standard Brownian motion, and η, θ are positive real num-
bers.

As above, we have approximated a path of X by simulating the Euler scheme with
stepsize 10−4 between times 0 and 10. The observations are at times k ·10−2, 1 ≤ k ≤ 1000.
In view of (45) we consider the estimator ξ

n
t (1) = t L

n
t (2)

L
n
t (1)2

. Observe that Lt(2) = 0, so that

ξ
n(1) should be close to 0.

The boxes and whiskers denote the empirical quartiles of ξ
n
t (1) and extends to the

extremal values, at times t = 2, 3, . . . , 10 and for 500 estimations of ξ
n
t (1).

Fig. 11 shows a case with so a highly oscillating coefficient that the first component is
close to 0. The reason is clear since

X1
t =

2η

θ2
− 2η

θ2
cos(θBt)− 2η

θ

∫ t

0
sin(θBs)dBs, (59)

and, here, η = 10 and θ = 100. As our estimator takes values around 0.02, choosing
ρn = 0.02 leads one to choose R̃n,t = 1 as the explicative Brownian dimension.

In Fig. 12 we fix η = 10 and θ = 10. In view of (59), (X1
t ) is close to be a stochastic
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Figure 12: Test case 7.3: η = 10, θ = 10
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Figure 13: Test case 7.3: η = 10, θ = 1

integral whose co-variation with B on the time interval [0, 10] is small. As our estimator
now takes values around 0.2, we are led to choose 2 as the explicative Brownian dimension
and thus over-estimate the real Brownian dimension.

In Fig. 13 we fix η = 10 and θ = 1. As our estimator takes values around 0.2, again
we over-estimate the real Brownian dimension.

In Fig. 14, as η = 1 and θ = 1, the first component oscillates ”reasonably”. The
estimator takes values less than 0.01, and we are led to correctly choose 1 as the explicative
Brownian dimension.

Fig. 15 shows histograms of ξ
n
t (1) in the various preceding situations. Finally, Fig. 16

shows the influence of the sampling frequency in the case exhibited in Fig. 14: we see that
in this case the Brownian dimension remains correctly estimated to 1 when the step size
remains smaller than 10−1.
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Figure 14: Test case 7.3: η = 1, θ = 1
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Figure 16: Test case 7.3: ξ
n
t (1) in terms of T/n (η = 1, θ = 1)
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Figure 15: Test case 7.3: Histograms of ξ
n
t (1) at time t = 5.
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