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Numerical approximation for a superreplication problem under

gamma constraints

Benjamin Bruder∗, Olivier Bokanowski†, Stefania Maroso‡, Hasnaa Zidani§

May 8, 2008

Abstract

We study a superreplication problem of European options with gamma constraints, in
mathematical finance. The initially unbounded control problem is set back to a problem
involving a viscosity PDE solution with a set of bounded controls. Then a numerical
approach is introduced, inconditionnally stable with respect to the mesh steps. A gen-
eralized finite difference scheme is used since basic finite differences cannot work in our
case. Numerical tests illustrate the validity of our approach.

Keywords. Super-replication problem, viscosity solution, numerical approximation, gen-
eralized finite difference scheme, monotone scheme, Howard’s algorithm

1 Introduction

In a financial market, consisting in a non-risky asset and some risky assets, people are inter-
ested to study the minimal initial capital needed in order to superreplicate a given contingent
claim, under gamma constraints. Many authors have studied this problem in different cases
and with different constraints. For instance, see [13, 20], for problems in dimension 1, [9]
for problems in dimension 2, and [21, 11] for problems in a general dimension d. In all
these papers, authors characterize the superreplication price as the viscosity solution of an
Hamilton-Jaboci-Bellman (HJB) equation with terminal and boundary conditions. In a par-
ticular case, the dual formulation of the superreplication problem leads to a standard form
of optimal stochastic control problem of [9].

In this paper we study numerically an HJB equation coming from the superreplication
problem in dimension 2 introduced in [9]. We discretize the HJB equation using the General-
ized Finite Differences scheme [7, 8], then we study existence and uniqueness of the discrete
solution. Finally we prove the convergence of the numerical solution to the viscosity solution.
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More precisely, we are interested by the HJB equation which comes from the two dimensional
dual problem introduced in [9]:

ϑ(t, x, y) = sup
(ρ,ξ)∈U

E

[

g
(

Xρ,ξ
t,x,y(T )

)]

, (1.1)

where (ρ, ξ) are valued in [−1, 1]×(0,∞), the process (Xρ,ξ
t,x,y, Y

ρ,ξ
t,y ) is a 2-dimensional positive

process which evolves according to the stochastic dynamics (2.1), and g is a payoff function.
The main difficulty of the above problem is due to the non-boundedness of the control set.
This implies that the Hamiltonian associated to (1.1) is not bounded, and then, numerical
approximation and theoretical analysis for such a problem become more complicate.

In the literature, problems with unbounded control have been studied by many authors
(for instance [1, 10]). In these papers, the authors decide to truncate the set of controls to
make it bounded. This truncation simplifies the numerical analysis of the problem. However,
there is no theoretical result justifying this truncation.

In this paper we do not truncate the set of controls, because we find a particular form of
our HJB equation which leads us to avoid the difficulty of unbounded control. In fact, our
HJB equation can be reformulated in the following way

Λ−(J(t, x, y,Dϑ(t, x, y),D2ϑ(t, x, y))) = 0,

where J is a symetric matrix differential operator associated to the Hamiltonian, and where
Λ−(J) means the smallest eigenvalue of the matrix operator J . We rewrite the smallest
eigenvalue as follows:

Λ−(J) = min
‖α‖=1

αT Jα,

where α ∈ R2, and || · || denotes the Euclidean norm.
The structure of the paper is the following: in Section 2 we present the problem and

the associated HJB equation. We prove boundary conditions satisfied by the value function,
then the existence, uniqueness and Lipschitz property of the viscosity solution. In Section 3
we consider the discretization of the HJB equation, and recall the main properties of the
Generalized Finite Differences scheme and we prove the consistency of this scheme. In Sec-
tion 4, we prove existence and uniqueness of a bounded discrete numerical approximation.
In Section 5 we prove the convergence of the numerical approximation. Finaly Section 6 is
devoted to numerical tests and validation of the proposed algorithm.

2 Problem formulation and PDE

Let (Ω,Ft, P) be a probability space, and T > 0 be a fixed finite time horizon. Let U
denotes the set of all Ft-measurable processes (ρ, ζ) := {(ρ(t), ζ(t)); 0 ≤ t ≤ T} with values
in [−1, 1] × R+:

U :=
{

(ρ, ζ) valued in [−1, 1] × (0,+∞) and Ft-measurable |
∫ T

0
ζ2
t dt < +∞

}

.

For a given control process (ρ, ζ), and an initial data (t, x, y) ∈ (0, T )×R+ ×R+, we con-

sider the controlled 2-dimensional positive process (X,Y ) = (Xρ,ζ
t,x,y, Y

ρ,ζ
t,y ) evolving according
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to the stochastic dynamics:

dX(s) = σ(s, Y (s))XdW 1
s , s ∈ (t, T ) (2.1a)

dY ρ,ζ(s) = −µ(s, Y (s))ds + ζ(s)Y (s)dW 2
s , s ∈ (t, T ) (2.1b)

〈dW 1
s , dW 2

s 〉 = ρ(s), a.e s ∈ (t, T ) (2.1c)

X(t) = x , Y (t) = y, (2.1d)

where W 1
s and W 2

s denote the standard Brownian motion defined on the probability space
(Ω,F , P). The volatility σ and the cash flow µ satisfy the following assumptions:

(A1) σ : [0, T ] × R → R+ is a positive function, such that σ2 is Lipschitz. For
every t ∈ [0, T ], σ(t, 0) = 0 (typically σ(t, y) =

√
y).

(A2) µ : (0, T ) × R+ → R+ is a positive Lipschitz function, with µ(t, 0) = 0 for
every t ∈ [0, T ].

Assumptions (A1) and (A2) ensure that the stochastic dynamic system (2.1) has a unique
strong solution.

The variables Xρ,ζ
t,x,y and Y ρ,ζ

t,y describe two different assets from a financial market. The

first asset Xρ,ζ
t,x,y is risky, while the second one Y ρ,ζ

t,y distributes an instaneous cash flow

µ(s, Y ρ,ζ
t,y (s)), and its price is linked to the asset Xρ,ζ

t,x,y by the means of volatility σ(s, Y ρ,ζ
t,y (s)).

Remark 2.1. It is important to remark that the evolution of the variable Y ρ,ζ
t,y does not

depend on Xρ,ζ
t,x,y.

Now consider a function g : R+ → R. Different assumptions will be made on g:

(A3) g is a bounded Lipschitz function (hereafter we denote C0 := ‖g‖∞).

We shall also possibly assume

(A4) The function f : z → g (ez) is Lipschitz continuous.

or

(A5) g ∈ C2(R+), and the function x → −x2g′′(x) is bounded from below on R+.

Consider the following stochastic control problem (Pt,x,y) with its associated value func-
tion ϑ defined by:

ϑ(t, x, y) := sup
(ρ,ζ)∈U

E →
[

g
(

Xρ,ζ
t,x,y(T )

)]

. (2.2)

Assumption (A3) leads us to obtain a bounded value function ϑ of (2.2). Assumption
(A4) is usefull to prove more regularity on the function ϑ and some boundary conditions (see
section 2.2). Assumption (A5) will be needed for the scheme convergence proof.

This control problem can be interpreted in the following sense (see [9]): A trader wants
to sell an European option of terminal payoff g(XT ) without taking any risk. Hence we use
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a superreplication framework. The underlying X of the option is a risky asset, for axample
a stock, an index or a mutual fund. Unfortunately, in several cases, the volatility σ of the
underlying X exhibits large random changes across time. Therefore, the Black-Scholes model
fails to capture the risks of the trader. One must then use a model that features stochastic
volatility. It is known that in this framework, the superreplication problem has a trivial
solution (see [13]). For example, if the volatility has no a priori bound, the superreplication
price is the concave envelope of the payoff g(X(T )), and the hedging strategy is static. To
obtain more accurate prices, we introduce another financial asset Y whose price is linked
to the volatility of the underlying X. For example, we can consider a variance swap which
continuously pays the instantaneous variance of X (hence µ(t, Y ) = σ2). For the sake of
simplicity we assume that the price of Y and the volatility of X are driven by a single
common factor (hence σ = σ(t, Y )). If the parameters ζ and ρ of the dynamics of the price
Y were known, and if there were no transaction costs for Y , the superreplication price would

simply be E

[

g
(

Xρ,ζ
t,x,y(T )

)]

. But we face two problems:

• The parameters (ζ, ρ) of the dynamics of Y are likely to be random and difficult to
measure. As there is no a priori bound to these parameters, the superreplication price

is given be the supremum of E

[

g
(

Xρ,ζ
t,x,y(T )

)]

over all adapted processes ζ, ρ (see [15]).

• The asset Y is likely to introduce transaction costs, and hence the trader cannot buy
and sell an infinite amount of asset Y during the period [0, T ]. It is proved in [9]
that the superreplication price of g(X(T )) under the constraint of a finite amount of
transactions involving Y during [0, T ] is given by the value function of problem (2.2).
See also [20, 21] for a similar approach.

2.1 HJB equation

Denote by M2 the set of symmetric 2× 2 matrices. The Hamiltonian function is defined by:
for t ∈ (0, T ), x, y ∈ R+, p = (p1, p2)

T ∈ R2, and Q ∈ M2:

H (t, x, y, p,Q) := inf
(ρ,ζ)∈[−1,1]×R+

{

µ(t, y)p2 −
1

2
tr (a(t, x, y, ζ, ρ) · Q)

}

, (2.3)

and the covariance matrix a is given by:

a(t, x, y, ζ, ρ) :=

(

σ2(t, y)x2 ρζσ(t, y)x
ρζσ(t, y)x ζ2

)

.

Now we look for a characterization of ϑ as a viscosity solution of an HJB equation. If the
minimum in (2.3) is finite, then ϑ satisfies (in the viscosity sense) the following PDE:

− ∂ϑ

∂t
+ H

(

t, x, y,Dϑ,D2ϑ
)

= 0 (t, x, y) ∈ (0, T ) × (0,+∞) × (0,+∞). (2.4)

However, the infimum in (2.3) could be infinite, and we will prove in Theorem 2.5 that the
precise HJB equation satisfied by ϑ in the viscosity sense is

Λ−

(

−∂ϑ
∂t + µ(t, y)∂ϑ

∂y − 1
2σ2(t, y)x2 ∂2ϑ

∂x2 −1
2σ(t, y)x ∂2ϑ

∂x∂y

−1
2σ(t, y)x ∂2ϑ

∂x∂y −1
2

∂2ϑ
∂y2

)

= 0, (2.5)
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where Λ−(A) denotes the smallest eigenvalue of a given symmetric matrix A. We first prove
that ϑ is a discontinuous viscosity solution of (2.5). We will see later on that, under (A1), ϑ is
continuous thanks to a comparison principle, and even Lipschitz continuous when assumptions
(A3)-(A5) hold.

First, it is easy to see that the infimum in (2.3) can only be achieved for ρ = ±1. Hence
denoting ζ as ρζ, one can see that the Hamiltonian can be rewritten as:

H (t, x, y, p,Q) = inf
ζ∈R

{

µ(t, y)p2 −
1

2
tr (a(t, x, y, ζ) · Q)

}

, (2.6)

where, this time, there is only one control variable ζ taking values on the whole real line, and
the covariance matrix a is defined by:

a(t, x, y, ζ) =

(

σ2(t, y)x2 ζσ(t, y)x
ζσ(t, y)x ζ2

)

.

By elementary computations, the minimization over ζ, in (2.6) gives:

H(t, x, y, p,Q) = −∞ if Q22 > 0, (2.7a)

or Q22 = 0 and σ(t, y)xQ12 6= 0, (2.7b)

H(t, x, y, p,Q) ∈ R, otherwise. (2.7c)

Remark 2.2. For this particular problem, it is not possible to find a continuous function
G : [0, T ] × R2 × R2

+ ×M2 → R such that

H(t, x, y, p,Q) > −∞ ⇔ G(t, x, y, p,Q) ≥ 0.

Hence we can not use arguments introduced in [19] to deal with the HJB equation (2.5).

For t ∈ (0, T ), x, y ∈ R+, r ∈ R, p = (p1, p2)
T ∈ R2 and Q ∈ M2, introduce the notation:

J(t, x, y, r, p,Q) =

(

−r + µ(t, y)p2 − 1
2σ2(t, y)x2Q11 −1

2σ(t, y)xQ12

−1
2σ(t, y)xQ12 −1

2Q22

)

.

With straightforward computations we obtain the following result.

Lemma 2.3. For t ∈ (0, T ), x, y ∈ R+, r ∈ R, p = (p1, p2)
T ∈ R2 and Q ∈ M2, the following

assertions hold:

(i) −r + H(t, x, y, p,Q) ≥ 0 ⇔ Λ−(J(t, x, y, r, p,Q)) ≥ 0.

(ii) −r + H(t, x, y, p,Q) ≥ 0 ⇒ −Q22 ≥ 0.

(iii) −r + H(t, x, y, p,Q) = 0 ⇒ Λ−(J(t, x, y, r, p,Q)) = 0.

(iv) Λ−(J(t, x, y, r, p,Q)) > 0 ⇒ −r + H(t, x, y, p,Q) > 0.
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Now, for a function u : [0, T ]×R+ ×R+ → R, we define the upper (resp. lower) semicon-
tinuous envelope u∗ (resp. u∗) of u by : for t ∈ [0, T ), x, y ∈ (0,+∞),

u∗(t, x, y) = lim sup
(s,w,z)→(t,x,y)

s≥0,w,z∈(0,+∞)

u(s,w, z),

u∗(t, x, y) = lim inf
(s,w,z)→(t,x,y)

s≥0,w,z∈(0,+∞)

u(s,w, z).

With these definitions, we can give the sense of viscosity solution of (2.5), according to
[2, 3, 12].

Definition 2.4. (i) u is a discontinuous viscosity subsolution of (2.4) if for any (t̂, x̂, ŷ) ∈
[0, T )× (0,+∞)2, and any φ ∈ C2

(

[0, T ) × (0,+∞)2
)

, such that (t̂, x̂, ŷ) is a local maximum
of u∗ − φ:

Λ−(J(t̂, x̂, ŷ), ∂tφ(t̂, x̂, ŷ),Dφ(t̂, x̂, ŷ),D2φ(t̂, x̂, ŷ))) ≤ 0.

(ii) u is a discontinuous viscosity supersolution of (2.4) if for any (t̂, x̂, ŷ) ∈ [0, T ) ×
(0,+∞)2, and any φ ∈ C2

(

[0, T ) × (0,+∞)2
)

, such that (t̂, x̂, ŷ) is a local minimum of
u∗ − φ:

Λ−(J(t̂, x̂, ŷ), ∂tφ(t̂, x̂, ŷ),Dφ(t̂, x̂, ŷ),D2φ(t̂, x̂, ŷ))) ≥ 0.

(iii) u is a discontinuous viscosity solution of (2.4) if it is both sub and a super solution.

Theorem 2.5. Under assumptions (A1)-(A2), the value function ϑ is a viscosity discontin-
uous solution of (2.5):

Λ−

(

−∂ϑ
∂t + µ(t, y)∂ϑ

∂y − 1
2σ2(t, y)x2 ∂2ϑ

∂x2 −1
2σ(t, y)x ∂2ϑ

∂x∂y

−1
2σ(t, y)x ∂2ϑ

∂x∂y −1
2

∂2ϑ
∂y2

)

= 0.

Moreover ϑ is a discontinuous viscosity supersolution of

− ∂2ϑ

∂y2
≥ 0. (2.8)

Proof. The proof is splitted into two parts: the supersolution property and the subsolution
property.

(a) Supersolution property. By a classical application of the Dynamic Programming
Principle, as done in [18], we obtain that ϑ(t, x, y) is a viscosity supersolution of

−∂ϑ

∂t
+ H(t, x, y,Dϑ,D2ϑ) ≥ 0.

Then, Lemma 2.3(i) implies that also

Λ−(J(t, x, y, ∂tϑ,Dϑ,D2ϑ)) ≥ 0,

and then ϑ is also a viscosity supersolution of (2.5).

Moreover, this last inequality implies that −1
2

∂2ϑ
∂y2 ≥ 0, and hence (2.8) is verified.

(b) Subsolution property. Let ϕ be a smooth function, and let (t̄, x̄, ȳ) be a strict
maximizer of ϑ∗ − ϕ, such that

0 = (ϑ∗ − ϕ)(t̄, x̄, ȳ).
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Suppose that (t̄, x̄, ȳ) belongs to the set M(ϕ) defined by:

M(ϕ) = {(t, x, y) ∈ [0, T )×(0,+∞)2 : Λ−(J(t, x, y, ∂tϕ(t, x, y),Dϕ(t, x, y),D2ϕ(t, x, y))) > 0}
Since M(ϕ) is an open set, then there exists η > 0 such that

[0 ∧ (t̄ − η), t̄ + η] × Bη(x̄, ȳ) ⊂ M(ϕ),

where Bη(x̄, ȳ) denotes the closed ball centered in (x̄, ȳ) and with radius η. From Lemma
2.3(iii), if (t, x, y) ∈ M(ϕ), then

−∂ϕ

∂t
(t, x, y) + H(t, x, y,Dϕ(t, x, y),D2ϕ(t, x, y)) > 0.

Using the Dynamic Programming Principle and the same arguments as in [19, Lemma 3.1],
we get:

sup
∂p([0∧(t̄−η),t̄+η]×Bη(x̄,ȳ))

(ϑ − ϕ) = max
[0∧(t̄−η),t̄+η]×Bη(x̄,ȳ)

(ϑ∗ − ϕ), (2.9)

where ∂p([t1, t2] × Bη(x̄, ȳ)) is the forward parabolic boundary of [t1, t2] × B̄η(x̄, ȳ), i.e.
∂p([t1, t2]×Bη(x̄, ȳ)) = [t1, t2]×∂Bη(x̄, ȳ)∪{t2}×Bη(x̄, ȳ). However, since (t̄, x̄, ȳ) is a strict
maximizer of ϑ∗−ϕ, equality (2.9) leads to a contradiction. Therefore, (t̄, x̄, ȳ) /∈ M(ϕ), and
the result follows. 2

In this work, we are interested by the numerical computation of the value function ϑ.
Although equation (2.5) has a rigorous meaning, the formulation with the smallest eigenvalue
makes difficult to deal with its numerical discretization. Of course, one can be tempted to
modify the hamiltonian in the following way: for ζmax > 0,

H(t, x, y, p,Q) ∼= min
ζ∈[−ζmax,ζmax]

{

µ(t, y)p2 −
1

2
tr(a(t, x, y, ζ) · Q)

}

.

However, the choice of ζmax, guaranteeing a good approximation of H, does not appear
obvious to us. To avoid these difficulties, we first give an equivalent HJB equation satisfied
by ϑ and which is formulated with bounded controls. More precisely, we have:

Corollary 2.6. Under assumptions (A1)-(A3), the value function ϑ is a viscosity solution
of the HJB equation:

inf
α2

1+α2
2=1

{

(

α1

α2

)T
(

−∂ϑ
∂t + µ(t, y)∂ϑ

∂y − 1
2σ2(t, y)x2 ∂2ϑ

∂x2 −1
2σ(t, y)x ∂2ϑ

∂x∂y

−1
2σ(t, y)x ∂2ϑ

∂x∂y −1
2

∂2ϑ
∂y2

)

(

α1

α2

)

}

= 0.

(2.10)

Proposition 2.7. Let η(t, x, y) be a continuous function such that η(t, x, y) > 0 for all
(t, x, y) ∈ [0, T ) × (R∗

+)2. Then equation (2.5) can be reformulated as follows,

Λ−

(

−∂ϑ
∂t + µ(t, y)∂ϑ

∂y − 1
2σ2(t, y)x2 ∂2ϑ

∂x2 −1
2σ(t, y)xη(t, x, y) ∂2ϑ

∂x∂y

−1
2σ(t, y)xη(t, x, y) ∂2ϑ

∂x∂y −1
2η2(t, x, y)∂2ϑ

∂y2

)

= 0. (2.11)

In other words, Theorem 2.5 remains valid with (2.11) instead of (2.5).

Proof. This is obtained directly from (2.5) (adding the positive function η(t, x, y) does not
change the sign of the operator in (2.5) for fixed (t, x, y,Dϑ,D2ϑ)). 2

We shall use η(t, x, y) = 1 unless otherwise specified. For numerical purposes it may be
useful to choose η 6= 1 (see for instance the uniform consistency result in Proposition 3.8).
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2.2 Boundary conditions and unicity result

Unlike in most similar parabolic problems, here we do not only need a terminal condition to
obtain the uniqueness, but also a border conditions when y tends to zero. Another boundary
condition is hidden by the fact that we consider bounded solutions, which is, intuitively,
equivalent to Neumann conditions near infinity.

Lemma 2.8. Under assumptions (A1)-(A3), the value function ϑ is bounded and satisfies
the following conditions on the boundaries x = 0 and y = 0:

lim
(t′,x′,y′)→(t,x,0)

ϑ(t′, x′, y′) = ϑ(t, x, 0) = g(x),∀ (t, x) ∈ [0, T ] × R∗
+ (2.12a)

lim
(t′,x′,y′)→(t,0,y)

ϑ(t′, x′, y′) = ϑ(t, 0, y) = g(0),∀ (t, y) ∈ [0, T ] × R∗
+ (2.12b)

and the terminal condition of the equation for t = T is:

lim
(t′,x′,y′)→(T,x,y)

ϑ(t′, x′, y′) = ϑ(T, x, y) = g(x) for all (x, y) ∈ (R∗
+)2. (2.12c)

Proof. The statements (2.12a)-(2.12c) are proved in Lemma 5.6 in [9]. The proof is based
on the assumptions (A1) and (A2) on σ and µ, and on the continuity and boundedness of g
(see (A3)).

Now to prove statement (2.12b), we first give a representation of ϑ(t, x, y) using Doleans
integral. Indeed, for every (t, x, y), we have:

Xρ,ζ
t,x,y = xZζ,ρ

y , where Zζ,ρ
y := e

R T

t
σ(s,Y ρ,ζ

t,y (s)dW 1
s + 1

2

R T

t
(σ(s,Y ρ,ζ

t,y (s)))2ds.

Therefore,

ϑ(t, x, y) = E

[

g(Xρ,ζ
t,x,y)(T )

]

= E

[

g

(

xZζ,ρ
y ,

)

]

. (2.13)

We conclude that statement (2.12b) holds. 2

We recall here the uniqueness result, proved in Lemma 4.3, Proposition 4.4, and Propo-
sition 4.6 of [9].

Theorem 2.9. (Proposition 4.4 of [9]) Assume (A1)-(A3). Suppose that u is an upper semi-
continuous viscosity subsolution of (2.5) bounded from above, and w a lower semi-continuous
viscosity supersolution of (2.5) bounded from below. If, furthermore,

u(T, x, y) ≤ g(x) ≤ w(T, x, y),
u(t, x, 0) ≤ g(x) ≤ w(t, x, 0),

(2.14)

then u(t, x, y) ≤ w(t, x, y), for all (t, x, y) ∈ [0, T ] × R2
+. In particular, the solution of (2.5)

in the viscosity sense with boundary conditions (2.12a) and (2.12c) is unique.

We give here the main ideas of the proof.
Proof. Suppose that u and w are respectively subsolution and supersolution of (2.5), and
that they both satisfy the limit conditions (2.12a) and (2.12c). A classical argument (see [4])
to prove uniqueness for equation as (2.5), consists in building a strict viscosity supersolution
of (2.5) wε, depending on the supersolution and on a parameter ε. Moreover wε must to be

8



such that, when the parameter ε goes to zero, wε tends to w. Then with classical arguments
[12], a comparison principle between the strict supersolution and the subsolution can be
obtained, and sending ε to zero we have the desired comparison principle.

In our particular case, for any ε > 0, we build

wε = w + ε((T − t) + ln(1 + y)).

From Lemma 4.3 of [9], wε is a strict viscosity supersolution of (2.5), bounded from below
and such that conditions (2.14) are satisfied. Then we can apply Proposition 4.6 of [9] which
is a comparison principle between a strict viscosity supersolution and a viscosity subsolution,
and we obtain

wε ≥ u,

for all (t, x, y) ∈ [0, T ] × R2
+. Sending ε to zero, we have the result. 2

Since the boundedness property of ϑ would be tricky to manipulate numerically, in the
following proposition we give some growth properties of the value function which are a sort
of Neumann conditions at infinity. These conditions will guide us toward an implementable
scheme.

Proposition 2.10. Assume that (A1)-(A4) are satisfied. Then the following holds:
(i) For any a > 0, the function:

h1
t,y : x → ϑ(t, x + a, y) − ϑ(t, x, y)

converges to zero, uniformly in (t, y), when x → +∞.
(ii) The function

h2
t,x : y → ϑ(t, x, y + a) − ϑ(t, x, y)

converges to zero, uniformly in (t, x), when y → +∞.

Proof. (i) Let (t, x, y) ∈ (0, T ) × R+ × R+. As in (2.13), we have:

ϑ(t, x, y) = sup
ζ,ρ

E

[

g
(

Xρ,ζ
t,x,y(T )

)]

= sup
ζ,ρ

E

[

g
(

xZζ,ρ
y

)]

. (2.15)

By assumption (A3), the function f : z → g(ez) is Lipschitz continuous on R. Then, for
x′ ∈ R+, we get:

ϑ(t, x, y) − ϑ(t, x′, y) = sup
ζ,ρ

E

(

g
(

xZζ,ρ
y

))

− sup
ζ,ρ

E

(

g
(

x′Zζ,ρ
y

))

≤ sup
ζ,ρ

{

E

(

g
(

xZζ,ρ
y

))

− E

(

g
(

x′Zζ,ρ
y

))}

≤ sup
ζ,ρ

{

E

[

f
(

ln(x) + ln
(

Zζ,ρ
y

))

− f
(

ln(x′) + ln
(

Zζ,ρ
y

))]}

,

and using the Lipschitz property of f , it yields to:

ϑ(t, x, y) − ϑ(t, x′, y) ≤ K
∣

∣ln(x) − ln(x′)
∣

∣ .

Therefore we get that

∣

∣h1
t,y(x)

∣

∣ ≤ K

∣

∣

∣

∣

ln

(

x + a

x

)
∣

∣

∣

∣

→ 0 as x → +∞ uniformly in (t, y). (2.16)
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To prove assertion (ii), using (2.8), we see that ϑ is a supersolution of

−∂2v

∂y2
= 0.

Then, from [13], we deduce that the function ϑ is concave w.r.t. y. That is, for each (t, x),
ϑ(t, x, ·) is a concave function. Moreover, from (A3), ϑ is bounded and ‖ϑ‖∞ ≤ M0 (where
the constant M0 > 0 is the same as in (A3)). Therefore, for any λ, the function

h2
t,x : y → ϑ(t, x, y + λ) − ϑ(t, x, y)

is decreasing. Considering that ϑ(t, x, nλ + y0) = ϑ(t, x, y0) +
∑n

i=1 h2
t,x(iλ + y0). Hence, it

follows that:

ϑ(t, x, nλ + y0) ≥ ϑ(t, x, y0) +
n
∑

i=1

h2
t,x(nλ + y0)

which gives:

h2
t,x(nλ + y0) ≤

2M

n

and we get convergence of h2
t,x(y) to 0, which is uniform in (t, x). 2

2.3 Lipschitz property

Here we establish the Lipschitz property of the value function ϑ.

Proposition 2.11. Under assumptions (A1)-(A4), we have:

(i) The value function ϑ is Lipschitz w.r.t. x.

(ii) ϑ is Lipschitz w.r.t. y.

Proof. (i) As in the proof of proposition 2.10, we consider the representation of ϑ using
Doleans exponential:

ϑ(t, x, y) = sup
ζ,ρ

E

(

g(Xζ,ρ
t,x,y)

)

= sup
ζ,ρ

E

[

g
(

xZζ,ρ
y

)]

∀t ∈ (0, T ), x, y ∈ R+, (2.17)

where Zζ,ρ
y = e

R T

t
σ(s,Y ρ,ζ

t,y (s)dW 1
s + 1

2

R T

t
(σ(s,Y ρ,ζ

t,y (s)))2ds.
Then, for t ∈ (0, T ), x, x′, y ∈ R+ we have:

∣

∣ϑ(t, x, y) − ϑ(t, x′, y)
∣

∣ ≤ sup
ζ,ρ

E

[

g
(

xZζ,ρ
y

)

− g
(

x′Zζ,ρ
y

)]

.

As g is Lipschitz (assumption (A3)), there exists a constant K ≥ 0 such that:

∣

∣ϑ(t, x, y) − ϑ(t, x′, y)
∣

∣ ≤ sup
ζ,ρ

E

∣

∣

∣
K(x − x′)Zζ,ρ

y

∣

∣

∣
≤ K|x − x′| sup

ζ,ρ
E

(

Zζ,ρ
y

)

.

Therefore, using the fact that the Doleans exponential is a positive local martingale, and
hence a supermartingale, which implies that for any control (ζ, ρ) ∈ U :

E

(

e
R T

t
σζ,ρ

u dWu+ 1
2

R T

t
(σu)ζ,ρ)2du

)

≤ 1,

10



and then taking the supremum leads to:

∣

∣ϑ(t, x, y) − ϑ(t, x′, y)
∣

∣ ≤ K|x − x′|

which proves that ϑ(t, ., y) is a K-Lipschitz function.
(ii) Now we treat the Lipschitz property of ϑ w.r.t. y.
First,we recall that ϑ is concave w.r.t. y. Furthermore, as g is bounded, we immediately

get that ϑ shares the same bound. Hence, it is sufficient to prove that ϑ is Lipschitz near the
boundary y = 0.

Recall that by (2.12a), we know that ϑ(t, x, 0) = g(x) for all (t, x) ∈ (0, T ) × (0,+∞).
Let (t, x, y) ∈ [0, T ] × (0,+∞)2, with y > 0. For any control (ζ, ρ) ∈ U , we have:

Y ρ,ζ
t,y (s) = y +

∫ s

t
−µ(τ, Y ρ,ζ

t,y (τ))dτ +

∫ s

t
ζ(τ)Y ρ,ζ

t,y τ dW 2
τ .

Furthermore, by a comparison argument for SDEs, we get, for any τ ∈ [t, T ]:

Y ρ,ζ
t,y (τ) ≥ 0.

Using the positivity of µ, we get:

0 ≤ Y ρ,ζ
t,y (s) ≤ y +

∫ s

t
Y ρ,ζ

t,y (τ)dW 2
τ .

Hence, the quantity above is a super-martingale and we get:

E

[

Y ρ,ζ
t,y (s)

]

≤ y. (2.18)

Now, applying Itô’s formula on g(Xρ,ζ
t,x,y):

g(Xρ,ζ
t,x,y(s)) = g(x) +

∫ s

t
g′(Xρ,ζ

t,x,y(τ))dXρ,ζ
t,x,y(τ) +

1

2

∫ s

t
g′′(Xρ,ζ

t,x,y(τ))
〈

dXρ,ζ
t,x,y(τ), dXρ,ζ

t,x,y(τ)
〉

= g(x) +

∫ s

t
g′(Xρ,ζ

t,x,y(τ))dXρ,ζ
t,x,y(τ) +

1

2

∫ s

t

(

Xρ,ζ
t,x,y(τ)

)2
g′′(Xρ,ζ

t,x,y(τ))σ2(Y ρ,ζ
t,y (τ))dτ.

Since Xρ,ζ
t,x,y is a locale martingale, there exists a sequence (sn)n, with sn → ∞ such that:

E

(
∫ sn∧T

t
g′(Xρ,ζ

t,x,y(u))dXρ,ζ
t,x,y(u)

)

= 0.

Using (2.18), the Lipschitz property of σ2, and the boundedness of x 7−→ x2g′′(x), it yields:
there exists a constant C > 0, such that:

∣

∣

∣
E

(

g(Xρ,ζ
t,x,y(sn ∧ T )) − g(x)

)∣

∣

∣
≤
∫ sn∧T

t
Cy dτ.
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Finally, as g is bounded, we conclude with Fatou’s lemma that:

E

(

g(Xρ,ζ
t,x,y(T )) − g(x)

)

≤ C(T − t)y,

and since the constant C is independent of ρ, ζ, we obtain:

|ϑ(t, x, y) − ϑ(t, x, 0)| ≤ sup
(ρ,ζ)∈U

{

|E
(

g(Xρ,ζ
t,x,y(T )) − g(x)

)

|
}

≤ CTy.

Hence, as ϑ is concave w.r.t. y and bounded, it is Lipschitz with respect to y. 2

3 Approximation Scheme

In this section we want to approximate the bounded solution of Equation (2.11) formulated
as:

min
α=(α1,α2)

α2
1
+α2

2
=1

{

− α2
1

∂ϑ

∂t
(t, x, y) + µ(t, y)α2

1

∂ϑ

∂y
(t, x, y) − 1

2
Tr[a(α, t, x, y)D2ϑ(t, x, y)]

}

= 0,

(3.1)

with boundary conditions (2.12a) and (2.12c), where µ is a positive Lipschitz function, the
diffusion matrix a beeing now defined as follows:

a(α, t, x, y) :=

(

α2
1σ

2(t, y)x2 α1α2σ(t, y)xη(t, x, y)
α1α2σ(t, y)xη(t, x, y) α2

2η
2(t, x, y)

)

=

(

α1σ(t, y)x
α2η(t, x, y)

)(

α1σ(t, y)x
α2η(t, x, y)

)T

.

(3.2)

From now on a, µ, σ and η will stand for a(α, t, x, y), µ(t, y), σ(t, y) and η(t, x, y) if there is
no ambiguity.

We remark that a is not a diagonal dominant matrix1, because we cannot ensure that

α2η ≥ α1σx, ∀ (t, x, y) ∈ [0, T ) × [0,+∞)2, and ∀(α1, α2) s.t. α2
1 + α2

2 = 1.

This fact implies that we cannot choose the classical Finite Differences scheme to approximate
equation (3.1). Here we shall use the Generalized Finite Differences scheme introduced in [7].

3.1 Generalized finite differences scheme

Consider a regular grid Gh on R2
+, with discretization space step h > 0:

Gh :=

{

(xi, yj), xi := ih, yj := jh, i, j ∈ N × N∗

}

= (hN) × (hN∗),

1We recall that a matrix X of dimension N × N is diagonal dominant if

Xii ≥
X

i6=j

|Xij |, ∀ i = 1, . . . , N.
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(the nodes (xi, 0) with i ∈ N, are excluded from the grid), and let ∆t > 0 be a time step.
The main idea of the Generalized Finite Differences scheme consists in the approximation

of the diffusion term Tr(a·D2φ) by a linear combination of elementary diffusions ∆h
ξφ pointing

towards grid points. More precisely, for a given direction ξ = (ξ1, ξ2)
T ∈ Z2, we define a

second order finite difference operator (for x, y ∈ R) as follows:

∆h
ξ φ(x, y) :=

1

h2
(φ(x + ξ1h, y + ξ2h) + φ(x − ξ1h, y − ξ2h) − 2φ(x, y)) .

By a Taylor expansion, we have

∆h
ξφ(x, y) =

2
∑

i,j=1

ξiξj
∂2φ

∂xi∂xj
(x, y) + ||ξ||4 O(h2)

= Tr[ξξT · D2φ] + ||ξ||4 O(h2) (3.3)

(where x1 and x2 stand for x and y in (3.3)).
Now let p be in N∗. The covariance matrix a defined in (3.2) is of rank one. Therefore,

we have two cases.

Case 1. The direction of diffusion

(

α1σx
α2η

)

points toward a grid point (rh, qh), with

r, q ∈ Z2 and |r|, |q| ≤ p. Then we consider the vector ξ = ξr,q :=

(

r
q

)

and we have

a = γα
ξ ξξT with γα

ξ = Tr(a)/||ξ||2, for a given α = (α1, α2). The second order diffussion term

Tr(a · D2φ) can be approximated by:

Tr(a · D2φ) = γα
ξ ∆h

ξ φ + ||ξ||4 O(h2)

Case 2. In general the direction of the diffusion

(

α1σx
α2η

)

has a real slope, or is pointed

towards a grid point (rh, qh) with max(|r|, |q|) > p. In this case, we consider a set of natural
integers

Qp := {ξ = (ξ1, ξ2)
T ∈ Z × N max(|ξ1|, ξ2) ≤ p, (|ξ1|, ξ2) irreducible},

and the associated cone of positive symmetric matrices

C(Qp) =







∑

ξ∈Qp

γξξξ
T , γξ ≥ 0







.

(This cone is also generated by the matrices ξξT where ξ = (r, q)T for all (r, q) ∈ Z2 and
such that |r|, |q| ≤ p). Then we consider a particular projection ap of a on C(Qp) that can be
written as the sum of two terms as follows:

ap =
∑

ξ∈Qp

γα
ξ ξξT = γα

ξ+ξ+ξ+T
+ γα

ξ−ξ−ξ−
T

(3.4)

where γξ ≥ 0, and ξ± are two elements of Qp that depend on (α, t, x, y) (ξ± correspond to

the two closest directions to

(

α1σx
α2η

)

).
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Thus we approximate Tr(a · D2φ) by Tr(ap · D2φ), and use that

Tr(ap · D2φ) =
∑

ξ∈Qp

γα
ξ ∆h

ξ φ +

(

∑

ξ∈Qp

γα
ξ ||ξ||4

)

O(h2) (3.5)

(by (3.3) and (3.4)).

Representation of symmetric positive matrices. We recall that, as in [7], we can
represent the 2× 2 symmetric matrix a by an element of R3 using the following coordinates:

z1 = a11, z2 =
√

2 a12, z3 = a22. (3.6)

The cone of positive symmetric matrices is then defined as the set {z ∈ Z3, z1, z3 ≥ 0, z2
2 ≤

2z1z3} and represented in Figure 1 (a), together with the cone C(Q1) of diagonally dominant
matrices. Cuts of the cones C(Q1), C(Q2), and C(Q3) with the plan of trace one matrices
(z1 + z3 = 1) are represented in Figure 2.

z1

z3

z2

(a) (b)

a

ap

a

ap

Figure 1: (a) Cone of positive definite matrices, embedding the cone of diagonally dominant
matrices C(Q1); projection of a matrix a on C(Q1), in the case Tr(a) = 1 (b) Same figure,
where we draw the cut of the cone with trace one matrices (i.e, such that z1 + z3 = 1).

Definition of ap. For any p ≥ 1, the matrix ap is defined as the projection of a on the cone
C(Qp) parallely to the z2 axis (see Fig. 1). The order p is the order of neighboring points
allowed to enter in the scheme (this order may depends on where we are situated on the grid
and on the direction of the diffusion). We notice that a11 and a22 are unchanged by the
projection and only a12 is modified (since only z2 is modified):

a =

(

a11 a12

a12 a22

)

→ ap =

(

a11 a′12
a′12 a22

)

. (3.7)
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a

(a) (b) (c)

Figure 2: (a) Symmetric semi-definite positive matrix with trace equal to 1 and cone of
diagonal dominant matrix. (b) Cone C(Q1), a is on the border of the semi-definite positive
matrix. (c) Cone C(Q2).

In the special case of a border grid point (x = 0, y), we see that a is of the form a = γα
ξ ξξT

with ξ = (0, 1)T hence a ∈ Q1 and there is no projection error (ap = a).

Remark 3.1. Our projection is not the same as the orthogonal projection used in [7]. This
modification is important to prove the global convergence of our scheme (see section 5). How-
ever the generation of the optimal directions ξ± are the same as for the orthogonal projection
of [7], and can be performed in O(p) operations by using Stern-Brocot algorithm [16]. These
directions, geometrically, corresponds to the two closest directions (in angle) from the direc-

tion

(

α1σx
α2η

)

defining the matrix a.

Remark 3.2. The choice of the order p depends on where we are situated on the grid. For
instance, if we consider a point (x, y) in the middle of the grid, and we want to discretize
Tr(a · D2φ(t, x, y)), we can follow the direction of diffusion and choose the biggest order of
discretization p, because this will give a better approximation of the covariance matrix a. On
the other hand, if we consider a point (x, y) near to the boundary, it can often happen that
following the direction of the diffusion, we involve in the discretization some points which are
out of the grid. In this case the choice of p will be reduce in order to stay in the grid.

Remark 3.3. In all the decompositions, the coefficients γα
ξ and also the vectors ξ are in

terms of α and (t, x, y). For simplicity of notations we may omit to specify this dependence.

For a symmetric matrix b = (bij) of dimension 2 we consider the Frobenius norm

‖b‖F := Tr(bbT )1/2 = (
∑

i,j=1,2

b2
ij)

1/2.
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and the following notations

|∂2
t φ|0 := ||∂

2φ

∂t2
||L∞((0,T )×R

2
+),

|∂2
yφ|0 := ||∂

2φ

∂y2
||L∞((0,T )×R2

+),

|Dkφ|0 := max
i,j≥0, i+j=k

|| ∂kφ

∂xi∂yj
||L∞((0,T )×R

2
+), for k ∈ N.

Then we have the following error estimates.

Lemma 3.4 (Error projection). Let (t, x, y, α = (α1, α2)) be given in [0, T ] × R2
+ × R2, with

α2
1 + α2

2 = 1, and let ap be the projected matrix associated to a as defined in (3.2).
(i) For p ≥ 1, we have

||a(α, t, x, y) − ap(α, t, x, y)||F ≤ 2

p
Tr(a(α, t, x, y)).

(ii) For any p ≥ 1 and any regular function φ, we have
∣

∣

∣

∣

∣

∣

Tr(a(α, t, x, y) · D2φ(t, x, y)) −
∑

ξ∈Qp

γα
ξ ∆h

ξ φ(t, x, y)

∣

∣

∣

∣

∣

∣

≤ 4|D2φ|0
Tr(a(α, t, x, y))

p
+

2

3
|D4φ|0Tr(a(α, t, x, y)) p2h2

Proof. (i) It suffices to consider the case when Tr(a) = 1. The norm ||a − ap||F is also
the Euclidean distance in R3 beetwen the two matrices a and ap represented using their
coordinates as in (3.6).

Let ξ± be the two vectors of Qp associated to non-zero αξ. Then following the arguments
of [7], we have

||a − ap||F ≤ || ξ+

||ξ+|| −
ξ−

||ξ−|| || ≤ 2(ξ̂−ξ+) ≤ 2

p
.

where (ξ̂−ξ+) denotes the angle of between the vectors ξ+ and ξ−.

(ii) First using (3.3) (more precisely, |∆h
ξ φ−Tr[ξξT ·D2φ]| ≤ 2h2

4! (
∑

i+j=4 Ci
4|ξi

1ξ
j
2|)|D4φ|0),

∑

i+j=4 Ci
4|ξ1|i|ξ2|j = (|ξ1| + |ξ2|)4| ≤ 4||ξ||4, and the fact that ||ξ||2 ≤ 2p2, we obtain

∣

∣

∣

∣

∣

∣

Tr(ap · D2φ) −
∑

ξ∈Qp

γα
ξ ∆h

ξφ

∣

∣

∣

∣

∣

∣

≤ 2

3
|D4φ|0(

∑

ξ∈Qp

γα
ξ ||ξ||2) p2h2 =

2

3
|D4φ|0Tr(ap) p2h2.

Also Tr(ap) = Tr(a) by using (3.7). Then we have
∣

∣

∣

∣

∣

∣

Tr(a · D2φ) −
∑

ξ∈Qp

γα
ξ ∆h

ξφ

∣

∣

∣

∣

∣

∣

≤
∣

∣Tr(a · D2φ) − Tr(ap · D2φ)
∣

∣+
2

3
|D4φ|0Tr(a) p2h2. (3.8)

To conclude the proof we use (3.8) together with the inequalities Tr(AB) ≤ ||A||F ||B||F for
any symmetric matrices A,B, ||A||F ≤ Tr(A) for any symetric and positive matrix A, and
||D2φ||F ≤ 2|D2φ|0. 2

Remark 3.5. Using an orthogonal projection as in [7], we would obtain ||a−ap||F ≤ 1
4p2 Tr(a).
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3.2 The discrete equation

From now on, ⌈r⌉ will denote the smallest integer greater than r, pmax ∈ N the maximal
order of grid points allowed to enter in the scheme (pmax will typically depend of h), and ∆t
the time step. Set ρ = (∆t, h, pmax), r ∈ R and φ : [0, T ] × R+ × R+ → R, and define

p(x, y) := max(1,min(pmax, ⌈x/h⌉, ⌈y/h⌉)).

In particular, we have p = pmax if x − pmaxh ≥ 0 and y − pmaxh ≥ 0 (points in the interior
of the domain), or p = min(⌈x/h⌉, ⌈y/h⌉) for the points near to the boundary and such that
x 6= 0, and p = 1 in the case x = 0.

Now we define the function Sρ as follows:

Sρ(t, x, y, r, φ) := min
α2
1
+α2

2
=1

α=(α1,α2)

{

− α2
1

φ(t + ∆t, x, y) − r

∆t
+ α2

1µ
r − φ(t, x, y − h)

h

−1

2

∑

ξ∈Qp(x,y)

γα
ξ (t, x, y)

φ(t, x − ξ1h, y − ξ2h) − 2r + φ(t, x + ξ1h, y + ξ2h)

h2

}

, (3.9)

for (t, x, y) ∈ [0, T ) × (0,∞)2. In (3.9) we have used the decomposition of the projected
matrix associated to a: ap(α, t, x, y) =

∑

ξ∈Qp
γα

ξ ∆h
ξφ, with p = p(x, y). (we recall that there

are only two non vanishing terms γα
ξ in the sum).

Now let tn := n∆t. The discrete scheme for (3.1) is defined as the bounded solution
vh(tn, .) (if it exists) of

Sρ(tn, x, y, vh(tn, x, y), vh) = 0, (x, y) ∈ Gh, (3.10a)

for n = N − 1, . . . , 1, 0 and with the boundary conditions:

vh(T, x, y) = g(x), ∀(x, y) ∈ Gh, (3.10b)

vh(tn, x, 0) = g(x), n = 0, . . . ,N, x ∈ hN. (3.10c)

For t ∈ [tn, tn+1], vh(t, .) is defined by a P1 interpolation of vh(tn, ., .) and vh(tn+1, .). The
solution vh will stand for an approximation of the value function ϑ.

We also define a continuous fonction F , in view of the left hand side of (2.11), for u ∈ R,
p = (p1, p2) ∈ R2 and Q = (Qij) any 2 × 2 symmetric matrix, as follows:

F(t, x, y, u, p,Q) := inf
α=(α1,α2)

α2
1
+α2

2
=1

{

− α2
1u + α2

1µ(t, y)p2 −
1

2
Tr[a(α, t, x, y) · Q]

}

Then our equation (2.11) is now equivalent to

F(t, x, y, ∂tϑ(t, x, y),Dϑ(t, x, y),D2ϑ(t, x, y)) = 0

We remark that F is continous and backward parabolic (in the sense that it is decreasing in
the variable u, and decreasing with respect to symetric matrices Q2). In view of the general
abstract convergence result of [5], we shall use monotonity, stability and consistency results
for the scheme (3.10) in order to obtain its convergence.

First we have the following result, easily deduced from Lemma 3.4(ii) and by standard
first order consistency estimates.

2If Q2 − Q1 is positive then F(t, x, y, u, p, Q1) ≥ F(t, x, y, u, p, Q2)
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Lemma 3.6. Let ρ = (∆t, h, pmax), (x, y) ∈ R2
+, t ∈ [0, T [, φ ∈ C4([0, T ] × [0,∞)2). We

have
∣

∣

∣

∣

Sρ(t, x, y, φ(t, x, y), φ) −F(t, x, y, ∂tφ(t, x, y),Dφ(t, x, y),D2φ(t, x, y))

∣

∣

∣

∣

≤ 1

2
|∂2

t φ|0 ∆t +
1

2
µ|∂2

yφ|0 h + 4|D2φ|0
Tr(a)

p
+

2

3
|D4φ|0Tr(a) p2h2, (3.11)

where ap is the projection of a on C(Qp) and p := p(x, y). Furthermore the term 4|D2φ|0 Tr(a)
p

vanishes in the case x = 0.

Proposition 3.7. The scheme (3.10) satisfies the following properties:
(i) Monotonicity: for all r ∈ R, x, y ∈ R+, u, v ∈ C([0, T ] × [0,∞)2) such that u ≤ v, we
have

Sρ(t, x, y, r, u) ≥ Sρ(t, x, y, r, v).

(ii) Stability: For all ρ = (h,∆t) ∈ (R∗
+)2 and pmax ∈ N∗, there exists a bounded solution

vh of (3.10) such that ||vh||L∞((0,T )×R
2
+) ≤ C0 := ||g||L∞(R+).

(iii) Consistency: Let pmax be such that hpmax → 0 as h → 0. Then ∀(x, y) ∈ (R∗
+)2,

∀t ∈ [0, T [, for every φ ∈ C4([0, T ] × [0,∞)2),

lim
(tn,xi,yj)→(t,x,y)

∆t→0, h→0, pmax→∞

Sρ(tn, xi, yj, φ(tn, xi, yj), φ) = F(t, x, y, ∂tφ(t, x, y),Dφ(t, x, y),D2φ(t, x, y))

The monotonicity property (i) is immediate, and the consistency property (iii) is deduced
from the previous Lemma 3.6 and the continuity of Sρ. Hence there remains to prove the
well-posedness of the scheme and the stability (ii) This will be done in Section 4.

We deduce also from the Lemma 3.6 and the fact that argminp(
1
p + p2h2) is obtained for

p = 2−
1
3 h− 2

3 , the following consistency error result.

Proposition 3.8. Suppose that η(t, x, y) := x
√

y, and pmax∼Ch− 2
3 as h → 0, for some

constant C > 0. Let (t, x, y) be in [0, T ] × R+ × R+. Then as ρ = (∆t, h) → 0 and
(tn, xi, yj) → (t, x, y), we have

∣

∣

∣

∣

Sρ(tn, xi, yj , φ(tn, xi, yj), φ) −F(t, x, y, ∂tφ(t, x, y),Dφ(t, x, y),D2φ(t, x, y))

∣

∣

∣

∣

= O(h
2
3 ) + O(∆t). (3.12)

Furthermore the bound is uniform on compact sets with respect to (t, x, y).

Proof. The fact that pmax = o( 1
h) ensures that for any fixed point (x, y) with x, y > 0 and

for h sufficiently small, p = pmax neighbor grid points can be used for the approximation of
a and in (3.11), and the proof is immediate.

We only have to check that for points close to the boundary (x = 0 or y = 0) we can estab-
lish a uniform bound. The case of p < pmax happens when p = p(x, y) = min(⌈x/h⌉, ⌈y/h⌉),
so either p = ⌈x/h⌉, or p = ⌈y/h⌉.

In the case when x = 0, we have p = 1, there is no projection error, and the error term
is bounded by O(∆t + h).
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In the case when x 6= 0, we first have the bound Tr(a) ≤ Cx2y + η(t, x, y)2 ≤ C ′x2y for

some constant C ′. If p = ⌈x
h⌉, we have p ≥ x

h and Tr(a)
p ≤ C ′xyh = O(h). If p = ⌈ y

h⌉, we have

p ≥ y
h and Tr(a)

p ≤ C ′x2h = O(h). 2

Remark 3.9. In the case when the direction of the diffusion points toward a node of the
grid, the consistency remains the same, except for the term 4|D2φ|0 Tr(a)

p which vanishes.

4 Numerical solution: existence and stability

In this section we prove the well-posedness of the implicit scheme (3.10), and prove the
stability property stated in Proposition 3.7(ii).

We first initialize the scheme by

vh(T, x, y) := g(x), (x, y) ∈ Gh.

Then, given vh(t + ∆t, .) for some time t = tn, we need to find a bounded vh(t, .) such that

min
α=(α1,α2)

α2
1
+α2

2
=1

{

α2
1

vh(t, x, y) − vh(t + ∆t, x, y)

∆t
+ α2

1µ(t, y)
vh(t, x, y) − vh(t, x, y − h2)

h2

−1

2

∑

ξ∈Qp

γα
ξ (∆h

ξvh)(t, x, y)

}

= 0, ∀(x, y) ∈ Gh, (4.1)

and with the following boundary conditions:

vh(t, x, 0) = g(x), ∀x ∈ hN. (4.2)

Scheme in abstract form. Since for all (x, y) ∈ Gh with y > 0, an optimal control (α1, α2)
must be found, we introduce S1 := {α = (α1, α2), α

2
1 + α2

2 = 1} and

A := (S1)N×N
∗

the set of controls associated to the grid mesh Gh = h(N × N∗).
The scheme can then be expressed in the following abstract form: find X := vh(t, ., .) ∈

RN×N
∗

, bounded, such that

min
w∈A

(

A(w)X − b(w)

)

= 0, (4.3)

where A(w) is a linear operator on RN×N
∗

, and b(w) is a vector of RN×N
∗

, and are made
precise below.

Definition of the matrix A(w) and vector b(w): We denote by X = (Xij)i≥0, j≥1, (resp.
w = (αij)i≥0, j≥1, with αij = (αij,1, αij,2)) values (resp. controls) corresponding to the mesh
points (xi, yj) of Gh. Then
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• A(w) is an infinite matrix determined by ∀X, ∀i ≥ 0, ∀j ≥ 1,

(A(w)X)ij :=
α2

ij,1

∆t
Xij + α2

ij,1µ(t, yj)
1

h
(Xij − (1 − κj−1)Xi,j−1)

+
1

2

∑

ξ∈Qp

γ
αij

ξ (−(1 − κj−ξ2)Xi−ξ1,j−ξ2 + 2Xij − Xi+ξ1,j+ξ2)

where κk := 1 if k = 0 and κk := 0 if k 6= 0.

• b(w) is defined by

bi,j(w) :=
α2

ij,1

∆t
vh(t + ∆t, xi, yj) + α2

ij,1

µ(t, yj)

h
κj−1g(xi) (4.4)

+
1

2

∑

ξ∈Qp

γ
αij

ξ κj−ξ2g(xi−ξ1)

where vh(t + ∆t, x, y) is the solution at the previous time step and is assumed to be
bounded.

We shall also denote

δij(w) :=
α2

ij,1

∆t
+

α2
ij,1

h
µ(t, yj)κj−1 +

1

2

∑

ξ∈Qp

γ
αij

ξ κj−ξ2.

Remark 4.1. The matrix A(w) is δ(w)-diagonal dominant in the following sense:

A(i,j),(i,j)(w) = δij(w) +
∑

(k,ℓ)6=(i,j)

|A(i,j),(k,ℓ)(w)|

Remark 4.2. In the case no border points y = 0 are involved (i.e. when j > pmax), we have
the more simple expressions:

(A(w)X)ij :=
α2

ij,1

∆t
Xij +

α2
ij,1

h
µ(t, yj)(Xij − Xi,j−1)

+
1

2

∑

ξ∈Qp

γ
αij

ξ (−Xi−ξ1,j−ξ2 + 2Xij − Xi+ξ1,j+ξ2).

and

bi,j(w) :=
α2

ij,1

∆t
vh(t + ∆t, xi, yj), δij(w) :=

α2
ij,1

∆t
.

Remark 4.3. On the boundary x = 0, if we assume that vh(t + ∆t, 0, y) = g(0) then the
scheme reads

min
α2

1+α2
2=1

{

α2
1

vh(t, 0, y) − g(0)

∆t
+ α2

1µ(t, y)
vh(t, 0, y) − vh(t, 0, y − h)

h

+
1

2
α2

2(−vh(t, 0, y − h) + 2vh(t, 0, y) − vh(t, 0, y + h))

}

= 0, ∀y ∈ hN∗ (4.5)
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and with vh(t, 0, 0) = g(0). One can show that vh(t, 0, y) = const = g(0) is the only bounded
solution of (4.5) (using the results of Lemma A.1, Proposition A.4 and Proposition B.1).
Hence by recursion we see that vh(t, 0, y) = g(0) for all t and y ∈ hN. In order to simplify
the presentation of A(w) and b(w) we have preferred not to add this knowledge in a boundary
condition at x = 0.

Preliminary results. In order to find a solution of (4.3), we first consider the linear system

A(w)X = b(w),

for a given w ∈ A. For clarity, some specific results for such systems have been postponed
to Appendix A (this requires some work since the systems are of infinite dimension). We
can check that (A(w), b(w)) satisfy all the assumptions of Proposition A.6. In particular, we
obtain that A(w) is a monotone matrix, in the sense that if X = (Xi,j)i≥0,j≥1 is bounded (or
bounded from below) and such that

∀i ≥ 0, ∀j ≥ 1, δij(w) = 0 ⇒ (A(w)X)ij = 0, (4.6)

then
A(w)X ≥ 0 ⇒ X ≥ 0.

Here (4.6) is equivalent to

∀i ≥ 0, j ≥ 1, αij,1 = 0 ⇒ −Xi,j−1 + 2Xij − Xi,j+1 = 0.

Since b(w) satisfies δij(w) = 0 ⇒ bi,j(w) = 0, and that

max
i,j;δij(w)>0

|bij(w)|
δij(w)

≤ max(||vh(t + ∆t, ., .)||∞, ||g||∞),

we also obtain by Proposition A.6 (ii) that there exists a unique bounded X such that
A(w)X = b(w), and satisfying furthermore

||X||∞ := max
i≥0,j≥1

|Xij | ≤ max(||vh(t + ∆t, ., .)||∞, ||g||∞).

Howard’s algorithm We can now consider the following Howard’s algorithm [17] for solv-
ing (4.3).

Let w0 ∈ A be a given initial control value

Iterate for k ≥ 0

• Find Xk bounded, such that A(wk)Xk = b(wk).

• wk+1 := argminw∈A(A(w)Xk − b(w)).

In the second step, the minimization is done component by component, since (A(w)Xk −
b(w))ij depends only of the control αij ; the minimum is also well defined since the control
set S1 for αij is compact.

For convergence proof of Howard’s algorithm in a general setting see [6] and references
therein. In our case we have the following result, whose proof is postponed to Appendix B.
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Proposition 4.4. There exists a unique bounded solution X to the problem

min
w∈A

(A(w)X − b(w)) = 0,

and the sequence Xk converges pointwisely towards X, i.e., limk→∞ Xk
ij = Xij ∀i, j ≥ 0.

Proof of the existence of vh and of stability property. First, the convergence of
Howard’s algorithm leads to the existence of a scheme solution. Also we obtain the bound
||vh(t, .)||∞ = ||X||∞ ≤ max(||vh(t+∆t, .)||∞, ||g||∞). Hence by recursion we obtain ||vh(t, .)||∞ ≤
||g||∞. This shows the stability property, and complete the proof of Proposition 3.7(ii).

Remark 4.5. The stability and monotonicity results are obtained inconditionnaly with respect
to the mesh sizes h > 0 and ∆t > 0.

We have also the following stronger monotonicity result, and that will be useful for the
next Section.

Proposition 4.6. if v1
h(t + ∆t) and v1

h(t + ∆t) are two bounded vectors defined on the grid,
and X1 and X2 denotes the two corresponding solutions of (4.3), then

v1
h(t + ∆t, .) ≤ v2

h(t + ∆t, .) ⇒ X1 ≤ X2.

Proof. Let us denote bq(w), for q = 1, 2, the vectors corresponding to vq
h(t + ∆t) as defined

in (4.5). We remark that b1(w) ≤ b2(w), ∀w ∈ A. Let w1 be an optimal control for X1. Then

A(w1)X1 − b1(w1) = 0 = min
w∈A

(A(w)X2 − b2(w))

≤ A(w1)X2 − b2(w1)

≤ A(w1)X2 − b1(w1),

and thus A(w1)(X2 − X1) ≥ 0. By the monotonicity property of A(w1) and the fact that if
δij(w

1) = 0 then b2
ij(w

1) − b1
ij(w

1) = 0, we conclude to X1 ≤ X2. 2

5 Convergence

Since the scheme is monotone, stable and consistent, the idea is to use the same arguments
as in [5, Theorem 2.1] to conclude the convergence of ϑh toward ϑ, taking into account the
comparison principle Theorem 2.9.

We first establish the following discrete comparison principle for the scheme.

Lemma 5.1. Let Y = Yh,∆t(t, x, y) be defined on (x, y) ∈ Gh and for t ∈ T − ∆tN. Suppose
that Y is a supersolution of the scheme (resp. subsolution of the scheme), in the following
sense:
(i) ∀t + ∆t ≤ T , ∀(x, y) ∈ Gh, Sρ(t, x, y, Y (t, x, y), Y ) ≥ 0 (resp. ≤ 0),
(ii) ∀(x, y) ∈ Gh, Y (T, x, y) ≥ g(x) (resp Y (T, x, y) ≤ g(x)),
(iii) ∀t ≤ T , (x, y) ∈ Gh, Y (t, x, 0) ≥ g(x) (resp Y (t, x, 0) ≤ g(x)),
(iv) Y (t, x, y) is bounded from below (resp. from above).
Then Y ≥ vh (resp Y ≤ vh), where vh = vh(t, x, y) are the scheme values.
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Proof. The proof can be obtained by recursion (using Y (t+∆t, .) ≥ vh(t+∆t, .) to show that
Y (t, .) ≥ vh(t, .)) following the same arguments as in Proposition 4.6. In order to conclude
from A(w1)(Y (t, .) − vh(t, .)) ≥ 0 to Y (t, .) − vh(t, .) ≥ 0 (for a given control w1), we use the
fact that Y (t, .) − vh(t, .) is bounded from below and Proposition A.6 1). The proof for the
subsolution is similar. 2

We can now give the main convergence result.

Theorem 5.2. We assume (A1)-(A3) and (A5). Suppose that pmax = o( 1
h) as h → 0. Then

the scheme converges locally uniformly to ϑ when (∆t, h) → 0.

Proof. Let v̄ and v be defined by

v(t, x, y) := lim sup
h,∆t→0,(t′,x′,y′)→(t,x,y)

vh(t′, x′, y′),

v(t, x, y) := lim inf
h,∆t→0,(t′,x′,y′)→(t,x,y)

vh(t′, x′, y′)

The function vh(t, x, y) defined for (x, y) in the grid Gh and for t = T −n∆t can be extended
to [0, T ] × R+ × R+ by a P1 interpolation in time. As in [5, Theorem 2.1], using properties
(i) − (iii) obtained in Proposition 3.7, we can prove that v̄ and v are respectively bounded
viscosity subsolution and supersolution of (3.1). Furthermore, if the following inequalities
hold:

v(T, x, y) ≤ g(x) ≤ v(T, x, y) (5.1)

v(t, x, 0) ≤ g(x) ≤ v(t, x, 0) (5.2)

then, by the comparison principle of Theorem 2.9, we obtain v ≤ v. Hence v = v and the
convergence of vh towards the unique viscosity solution ϑ of (3.1).

Step 1: v(T, x, y) ≥ g(x), and v(t, x, 0) ≥ g(x).
Considering Y (t, x, y) := g(x), we see that Y is a subsolution of the scheme (in the sense
of Lemma 5.1). Hence vh ≥ Y and we deduce the two inequalities v(T, x, y) ≥ g(x) and
v(t, x, 0) ≥ g(x).

Step 2: v̄(T, x, y) ≤ g(x), and v̄(t, x, 0) ≤ g(x).
Let B ≥ 0 and L ≥ 0 be constants such that −g′′(x) ≥ −B for all x ∈ [0, 2], −x2g′′(x) ≥ −B
for all x ≥ 0 and σ2(t, y) ≤ Ly, for all y ≥ 0. Let

Y (t, x, y) := K (T − t)y + g(x), with K := 2BL.

We consider a given point (t, x, y) ∈ (T − ∆tN) × Gh, and a minimiser α = (α1, α2) ∈ S1

associated to Sρ as in (3.9).
Let us write the decomposition of ap :=

∑

ξ∈Qp
γα

ξ ξξT . Then we have

Sρ(t, x, y, Y (t, x, y), Y ) = −α2
1

∂Y

∂t
+ α2

1µ
∂Y

∂y
− 1

2

∑

ξ∈Qp

γα
ξ ∆h

ξ Y

Since g ∈ C2, we notice that (∆h
ξ Y )(t, x, y) = (∆h

ξ g)(x) = g′′(xξ)ξ
2
1 for some xξ ∈ (x −

|ξ1|h, x + |ξ1|h) ⊂ [x − ph, x + ph], and thus

Sρ(t, x, y, Y (t, x, y), Y ) ≥ α2
1Ky − 1

2

∑

ξ∈Qp

γα
ξ ξ2

1g′′(xξ).
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Let h > 0 be such that h ≤ 1
2pmax

. In the case x ∈ [0, 1] we have ph ≤ pmaxh ≤ 1
2 and thus

xξ ∈ [0, 2], and −g′′(xξ) ≥ −B. Hence, for all x ∈ [0, 1],

Sρ(t, x, y, Y (t, x, y), Y ) ≥ α2
1Ky − 1

2
B
∑

ξ∈Qp

γα
ξ ξ2

1

≥ α2
1Ky − 1

2
α2

1BLy

≥ 0,

where we have used the definition of K and the fact that

∑

ξ∈Qp

γα
ξ ξ2

1 = (ap)11 = a11 = α2
1x

2σ2(t, y) (5.3)

≤ α2
1Ly.

Now in the case x ≥ 1, we have x ≤ xξ +pmaxh ≤ xξ + 1
2 , with xξ ≥ 1

2 , and thus −x2g′′(xξ) =

−x2

x2
ξ

x2
ξg

′′(xξ) ≥ −4B. We obtain

Sρ(t, x, y, Y (t, x, y), Y ) ≥ α2
1Ky − 2B

1

x2

∑

ξ∈Qp

γα
ξ ξ2

1

≥ α2
1Ky − α2

12BLy

≥ 0.

Hence, Y satisfies the assumptions (i)-(iv) of Lemma 5.1, and thus Y ≥ vh. In particular,

v(T, x, y) = lim sup
h→0,(t′,x′,y′)→(T,x,y)

vh(t′, x′, y′) ≤ lim sup
h→0,(t′,x′,y′)→(T,x,y)

Y (t, x, y) = g(x).

We obtain v(t, x, 0) ≤ g(x) in the same way. 2

Remark 5.3. The choice of the projection ap of a is made such that the identity (5.3) be
true. This approach do not work with the orthogonal projection of a on C(Qp).

6 Numerical results

We consider the approximation scheme of Section 3, hereafter refered as the Implicit Euler
scheme, or (IE) scheme, and test it on some numerical examples. In all cases we have taken

µ(t, y) = 0,

i.e. no transport term, because this is not the main difficulty of the equation. Also we fixed

σ(t, y) =
√

y. (6.1)

We choose η(t, x, y) := y in (2.11), altough this do not affect much numerical results.
All tests where done in Scilab (equivalent of Matlab), on a Pentium 4, 3Ghz computer.
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6.1 Consistency test

Here we perform a verification of the consistency error of the spatial discretization. We
consider the function

v(t, x, y) := 1 − e−x2−y2
+ (T − t)2, (6.2)

and define f such that

f(t, x, y) := (6.3)

inf
α2

1+α2
2=1

{

(

α1

α2

)T
(

−∂v
∂t − 1

2σ2(t, y)x2 ∂2v
∂x2 −1

2σ(t, y)xy ∂2v
∂x∂y

−1
2σ(t, y)xy ∂2v

∂x∂y −1
2y2 ∂2v

∂y2

)

(

α1

α2

)

}

.

The function f corresponds to the first member of (2.11) with ϑ = v and η(t, x, y) = y. An
exact computation gives

f(t, x, y) =
1

2

[

− ∂v

∂t
− 1

2
σ2(t, x)x2 ∂2v

∂x2
− 1

2
y2 ∂2v

∂y2
(6.4)

+

√

(

∂v

∂t
+

1

2
σ2(t, x)x2

∂2v

∂x2
− 1

2
y2

∂2v

∂y2

)2

+

(

σ(t, x)xy
∂2v

∂x∂y

)2]

.

Following the definition of Sρ in (3.10), and using the fact that µ = 0, we define here
Sρ,Nu such that

Sρ,Nu(t, x, y, v(t, x, y), v) =

min
k=1,...,Nu

{

α2
1,k

v(t, x, y) − v(t + ∆t, x, y)

∆t
− 1

2

∑

ξ∈Qp

γαk

ξ ∆ξv(t, x, y)

}

,

where αk = (α1,k, α2,k) := e2iπk/(2Nu) (we remark that it is sufficient to take half of the unit
circle for the controls α in the definition of Sρ, and we do the same for Sρ,Nu).

Then we compute at time t = T , the value of

Sρ,Nu(t, x, y, v(t, x, y), v) − f(t, x, y). (6.5)

The results are shown in Table 1, in L∞ and L2 norms. The space domain is [0, xmax]×[0, ymax]
with xmax = ymax = 3, and we have used here Neumann boundary conditions on x = xmax

and on y = ymax (following Proposition 2.10).

number of Nu pmax L2 error L∞ error CPU time
space steps (seconds)

20× 20 20 2 0.0215 0.0396 0.23
40× 40 40 3 0.0094 0.0212 1.72
80× 80 80 4 0.0046 0.0121 14.98

160× 160 160 6 0.0020 0.0058 156.09

Table 1: Consistency error
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Remark 6.1. Contrary to the the definition of the projection of the matrix a in section 3, we
chose an orthogonal projection of a on C(Sp), as in [7]. Even if we did not prove convergence
in that case, it gives better numerical results (recall that ‖a − ap‖F ≤ 1

4p2
max

Tr(a) from [7]).

Remark 6.2. A key parameter for the discretization scheme is the maximum order pmax that
we consider. From the expression of the theoretical consistency error and of Proposition 3.8,
we can take pmax of the order of h− 2

3 In practice we observe that a small pmax, as in Table 1,
is numerically sufficient to obtain a consistency of order O(h).

We obtain a consistency error that converges to zero with rate h in both L∞ and L2

norms. To this end we also found numerically that it was sufficient to increase the number
of controls as the number of space steps (as is done in Table 1).

On the other hand we have also observed that the consistency error behaves as O( 1
Nu

).
For large Nu, and fixed space steps, the error no more diminishes, because the spatial error
dominates (see Table 2).

Nu L2 error L∞ error

5 0.035 0.051
10 0.014 0.024
20 0.010 0.022
40 0.009 0.021
80 0.009 0.021

Table 2: Error with varying number of controls Nu. Space steps 40 × 40 here.

6.2 Convergence test

Now we consider the time-dependant equation (2.11), with unkown ϑ and with a second
member f defined by (6.4) and (6.2), and with terminal data ϑ(T, ., .) = v(T, ., .). In this
case we know that the value of the solution is ϑ = v.

The results are given in Table 3, where we test the Implicit Euler scheme and also the
Crank-Nicolson (CN) scheme (see Remark 6.3) that is second order in time [14]. We have
used T = 1 with different time steps. We find that the (IE) scheme converges with rate
O(h) + O(∆t). The CN scheme gives better numerical results with a similar computational
cost.

From Table 4 (varying time steps/space steps), we see that only few time steps are needed
in order to obtain a good accuracy.

This shows the feasibility of the (EI) and (CN) scheme in reasonable time.
The CPU time could be reduced by using approximate sparse solvers for the linear systems

involved in Howard’s algorithm.

Remark 6.3. The Crank-Nicolson scheme is defined here by the following implicit scheme:

0 = min
k=1,...,Nu

{

α2
1,k

v(t, x, y) − v(t + ∆t, x, y)

∆t

−1

2

∑

ξ∈Qp

γαk

ξ

∆ξv(t, x, y) + ∆ξv(t + ∆t, x, y)

2

}
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number of Nu N pmax L2 error L∞ error CPU time L2 error L∞ error
space steps (EI) (EI) (seconds) (CN) (CN)

20×20 20 20 2 0.0590 0.0822 98 0.0136 0.0333
40×40 40 40 3 0.0284 0.0367 946 0.0051 0.0117
80×80 80 80 4 0.0138 0.0178 10120 0.0023 0.0053

Table 3: Error for the Implicit Euler scheme and the Crank-Nicholson Scheme.

varying time steps
number of number of L2 error L∞ error
space steps time steps

80×80 5 0.0026 0.0062
80×80 10 0.0023 0.0052
80×80 80 0.0023 0.0053

varying space steps
number of number of L2 error L∞ error
space steps time steps

20×20 80 0.0136 0.0332
40×40 80 0.0051 0.0118
80×80 80 0.0023 0.0053

Table 4: Error with varying number of time steps (resp. space steps) for the Crank Nicholson
Scheme. Only a few time steps are needed in order to obtain a good accuracy.
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Approximated solution, t=0
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Figure 3: Surreplication price at time t = 0, with T = 1, K = 1 and payoff (K − x)+.

(in our test, γαk

ξ does not depend on time).

6.3 Application

We apply the method to a financial example: we compute the price of a put option of strike
K = 1 and maturity T = 1. In this model, X represents the price of the underlying of the
put, and Y represents the price of the forward variance swap on the underlying X. Therefore,
the terminal condition is

v(T, x, y) = g(x) := (K − x)+ .

(Note that even if g does not satisfy (A5), it can be uniformly approximated by some gε

which satisfies, for any ε > 0, (A5) and ||g − gε||L∞(R+) ≤ ε. In this way a convergence result
can still be obtained).

Numerically we compute the price of the option for larges values of Y (i.e., Y ≃ 3), in
order to use Neumann conditions for large Y . This approach is coherent with the value of
interest which are typically for Y lower (or of the order of) unity. The result is shown in
Fig. 3

Acknowledgments. The authors would like to thank H. Pham for useful comments.

A Properties of some infinite linear system

In this section we give some basic results for solving some specific infinite linear system that
are involved in our scheme.

Notations. We say that A = (aij)1≤i,j , i, j ∈ N∗, with aij ∈ R is an infinite matrix if
{j ≥ 1, aij 6= 0} is finite ∀i ≥ 1. If X = (xi)i≥1 then we denote (AX)i =

∑

j≥1 aijxj. We
also denote X ≥ 0 if xi ≥ 0, ∀i ≥ 1.

The following Lemma generalizes the monotony property of M -matrices.

Lemma A.1 (monotony). Let A = (aij)1≤i,j be a real infinite matrix such that
(i) For all i ≥ 1, ∃δi ≥ 0, aii = δi +

∑

j 6=i |aij |,
(ii) aij ≤ 0 ∀i 6= j,
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(iii) δ1 > 0,
(iv) ∀i ≥ 1,

∑

j j aij ≥ 0.
(v) ∀i ≥ 2, if δi = 0 then ∃qi > 0 such that (AX)i = qi(−xi−1 + 2xi − xi+1).
Then A is monotone in the following sense: if X = (xi)i≥1 is bounded from below and such
that ∀i ≥ 1, δi = 0 ⇒ (AX)i = 0, then

AX ≥ 0 ⇒ X ≥ 0.

Remark A.2. Note that from Lemma A.1 we deduce the uniqueness of bounded solutions of
AX = b for any b such that δi = 0 ⇒ bi = 0.

Proof of Lemma A.1. Let m = mini≥1 xi.
Step 1. We first assume that there exists i ≥ 1 such that m = xi. Then

0 ≤ aiixi +
∑

j 6=i

aijxj = δixi +
∑

j 6=i

|aij |(xi − xj) ≤ δixi

If δi > 0, then xi ≥ 0. In the case δi = 0, by assumption (v) we obtain that m = xi = xi−1 =
xi+1. In particular the minimum m is also reached by xi−1. Since δ1 > 0, by a recursion
argument we will arrive at a point j such that δj > 0 and thus xj ≥ 0.

Step 2. In the general case we consider Y = (yi) with yi := xi + ε i for some ε > 0. We
note that yi → +∞, hence i → yi has a minimum. Also, (AY )i = (AX)i + ε

∑

j j aij ≥ 0.
Hence AY ≥ 0 and Y ≥ 0 by Step 1. Since this is true for any ε > 0, we conclude that
X ≥ 0. 2

Remark A.3. Note that in Lemma A.1 we can relax the assumption (xi) bounded from below
by lim infi→∞

xi

i ≥ 0.

Proposition A.4 (Existence of solutions for linear systems). We consider A, an infinite
matrix, such that
(i) ∀i ≥ 1, ∃δi ≥ 0, aii = δi +

∑

j 6=i |aij |,
(ii) δ1 > 0.
(iii) ∀i ≥ 2, if δi = 0 then ∃qi > 0, such that (AX)i = qi(−xi−1 + 2xi − xi+1).
Let also b = (bi)i≥1 be such that

∀i, δi = 0 ⇒ bi = 0, and max
k≥1, δk 6=0

|bk|
δk

< ∞.

Then there exists a unique X, in the space of bounded sequences, such that AX = b, and
furthermore we have

max
k≥1

|xk| ≤ max
k≥1, δk 6=0

|bk|
δk

.

Proof. We look for solutions x(n) = (x
(n)
1 , . . . , x

(n)
n )T ∈ Rn of the first n linear equations of

AX = b, and set also x
(n)
k := 0, ∀k > n. (Dirichlet type boundary conditions on the right

border). This leads to solve the finite dimensional system

A(n)x(n) = b(n) (A.1)

where A(n) := (aij)1≤i,j≤n and b(n) := (b1, . . . , bn)T ,
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Lemma A.5. There exists a unique x(n) solution of (A.1) and furthermore it satisfies the
inequality

max
1≤k≤n

|x(n)
k | ≤ max

1≤k≤n, δk 6=0

|bk|
δk

. (A.2)

Proof of Lemma A.5. Suppose that x(n) exists, and let i be such that |x(n)
i | = max1≤j≤n |x(n)

j |.
Note that we still have ∀1 ≤ i ≤ n, a

(n)
ii = δi +

∑

j 6=i |a
(n)
ij |. If δi > 0,

|bi| ≥ |a(n)
ii x

(n)
i | −

∑

j 6=i

|a(n)
ij ||x(n)

j | ≥ δi|x(n)
i |

thus |x(n)
i | ≤ |bi|

δi
. If δi = 0, we consider

i0 := sup{k < i, δk > 0}.

(i0 exists since δ1 > 0). Then −x
(n)
k−1 + 2x

(n)
k − x

(n)
k+1 = bk/qk = 0 for k = i0 + 1, . . . , i, and

x
(n)
k+1 − x

(n)
k = const = c0 for k = i0, . . . , i. But x

(n)
i is an extremum of x

(n)
i−1, x

(n)
i and x

(n)
i+1.

This implies that x
(n)
i−1 = x

(n)
i = x

(n)
i+1, and thus c0 = 0 and x

(n)
i0

= x
(n)
i is also an extremum.

Since δi0 > 0, we can estimate |x(n)
i0

| as before. This implies the invertibility of A(n), and thus

the uniqueness of x(n). 2

Now we shall prove that the sequence X(n) = (x(n), 0, 0, . . . )T , which satisfies already

||X(n)||∞ ≤ C := maxδk 6=0
|bk|
δk

, converges pointwisely towards a solution X of the problem.

We first suppose that b ≥ 0. We can see that A(n) is still a monotone matrix (following the
proof of Lemma A.1). Hence x(n) ≥ 0. Now we consider x(n+1) and for i ≤ n we see that

(

A(n)x(n+1)
)

i
= bi − ai,n+1x

(n+1)
n+1 ≥ bi =

(

A(n)x(n)
)

i
.

Hence we obtain that

(x
(n+1)
1 , . . . , x(n+1)

n )T ≥ (x
(n)
1 , . . . , x(n)

n )T ,

and in particular X(n) ≤ X(n+1). Since ||X||∞ ≤ C, we obtain the (pointwise) convergence
of X(n) towards some vector X such that ||X||∞ ≤ C. In the general case, we can decompose
b = b+ − b− with b+ = max(b, 0), b− = max(−b, 0), and proceed in the same way. We obtain
the pointwise convergence of X(n) = X(n),+ − X(n),− towards some X, with X(n),± ≥ 0 and
||X(n),±||∞ ≤ C, hence also ||X||∞ ≤ C.

Since {j, a
(n)
ij 6= 0} is finite, for any given i we can pass to the limit n → ∞ in

∑

j≥1 a
(n)
ij x

(n)
j = bi, and obtain (AX)i = bi. 2

Case of infinite 2d matrices. We say that the set of real numbers A = (A(i,j),(k,ℓ))1≤i,j,k,ℓ

is an infinite 2d matrix if {(k, ℓ), A(i,j),(k,l) 6= 0} is finite ∀i, j ≥ 1 (A is also an ”infinite”
tensor). If X = (Xi,j)i,j≥1 then we denote (AX)i,j =

∑

k,ℓ≥1 A(i,j),(k,ℓ)Xk,ℓ. We also denote
X ≥ 0 if Xi,j ≥ 0, ∀i, j.

The previous results can be easily generalized to infinite 2d matrices. We state here the
results without proof.
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Proposition A.6. Let A = (A(i,j),(k,ℓ))1≤i,j,k,ℓ be an infinite 2d matrix such that
(i) For all i, j ≥ 1, A(i,j),(i,j) = δij +

∑

(k,ℓ)6=(i,j) |A(i,j),(k,ℓ)| with δij ≥ 0,
(ii) A(i,j),(k,ℓ) ≤ 0 ∀(i, j) 6= (k, ℓ),
(iii) δi1 > 0, ∀i ≥ 1,
(iv) ∀i, j ≥ 1,

∑

(k,ℓ)(k + ℓ)A(i,j),(k,ℓ) ≥ 0,
(v) ∀i ≥ 1, ∀j ≥ 2, if δij = 0 then ∃qij > 0 such that

(AX)ij = qij(−Xi,j−1 + 2Xi,j − Xi,j+1).

1) Then A is monotone in the following sense: if X = (Xi,j)i,j≥1 is bounded from below and
such that ∀i, j ≥ 1, δi,j = 0 ⇒ (AX)i,j = 0, then

AX ≥ 0 ⇒ X ≥ 0.

2) If b = (bij)i,j≥1 is such that δij = 0 ⇒ bi,j = 0, and max
i,j≥1, δij>0

|bij|
δij

< ∞,

then there is a unique bounded X such that AX = b, and furthermore

max
i,j≥1

|Xij | ≤ max
i,j≥1, δij>0

|bij |
δij

.

B Convergence of the Howard algorithm

In this section we prove the following result.

Proposition B.1. Let S be a compact set, and A := SN, the set of infinite sequences of S.
For all w ∈ A, let A(w) := (aij(w))i,j≥1 be an infinite matrix, and b(w) := (bi(w))i≥1. We
assume furthermore that
(i) If w = (wi)i≥1, aij(w) depends only of wi, and also bi(w) depends only of wi, and this
dependence is continuous.
(ii) ∀i, supw∈A

(

Card{j, aij(w) 6= 0}
)

< ∞.
(iii) (monotony) For all w ∈ A and X bounded,

A(w)X ≥ 0 ⇒ X ≥ 0.

(iv) ∃C ≥ 0, ∀w ∈ A, ∃X solution of A(w)X = b(w) and such that

||X||∞ ≤ C.

Then
(i) there exists a unique bounded solution X to the problem

min
w∈A

(A(w)X − b(w)) = 0. (B.1)

(ii) the Howard algorithm as defined in section 4 converges pointwisely towards X.

Remark B.2. Proposition B.1 can then be adapted in order to prove Proposition 4.4. The
proof is left to the reader.

31



Proof. Let us first check the uniqueness. Let X and Y be two solutions, and let w̄ be an
optimal control associated to Y . Then

A(w̄)Y − b(w̄) = 0

= min
w∈A

(A(w)X − b(w))

≤ A(w̄)X − b(w̄).

Hence A(w̄)(Y −X) ≤ 0 and thus Y ≤ X using the monotony property. We can prove Y ≥ X
in the same way, hence X = Y which proves uniqueness.

The existence now is obtained by considering the sequence Xk and controls wk as in the
Howard algorithm of section 4.

We first remark that for all k ≥ 0, Xk ≤ Xk+1, because

A(wk+1)Xk+1 − b(wk+1) = 0

= A(wk)Xk − b(wk)

≥ min
w

(A(w)Xk − b(w))

≥ A(wk+1)Xk − b(wk+1)

and using the monotony of A(wk+1). Also, Xk is bounded. Hence Xk converges pointwisely
towards some bounded X. It remains to show that X satisfies (B.1).

Let Fi(X) be the i-th component of minw∈A(A(w)X − b(w)), i.e.

Fi(X) = min
w∈A

(A(w)X − b(w))i

For a given i, since (A(w)X)i involves only a finite number of matrix continuous coefficients
(aij(w))j≤jmax , we obtain that limk→∞ Fi(X

k) = Fi(X). Also by compactness of S, by
a diagonal extraction argument, there exists a subsequence of (wk)k≥0, denoted wφk , that
converges pointwisely towards some w ∈ A.

Passing to the limit in (A(wφk)Xφk − b(wφk))i = 0, we obtain (A(w)X − b(w))i = 0. On
the other hand,

Fi(X) = lim
k→∞

Fi(X
φk−1)

= lim
k→∞

(

A(wφk)Xφk − b(wφk)

)

i

=
(

A(w)X − b(w)
)

i

Hence Fi(X) = 0, ∀i, which concludes the proof. 2
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Birkhäuser, Boston, 1997.

32



[3] G. Barles. An approach of deterministic control problems with unbounded data. Ann.
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