
Computation of a (min,+) multi-dimensional

convolution for end-to-end performance analyzes

Anne Bouillard, Laurent Jouhet, Eric Thierry

To cite this version:

Anne Bouillard, Laurent Jouhet, Eric Thierry. Computation of a (min,+) multi-dimensional
convolution for end-to-end performance analyzes. 2008. <hal-00281355>

HAL Id: hal-00281355

https://hal.archives-ouvertes.fr/hal-00281355

Submitted on 21 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47116576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00281355

Computation of a (min,+) multi-dimensional convolution
for end-to-end performance analysis.

Anne Bouillard
ENS Cachan / IRISA
Campus de Beaulieu
35000 Rennes, France
Anne.Bouillard@irisa.fr

Laurent Jouhet
ENS Lyon / IXXI
46 Allée d’ Italie

69007 Lyon, France
Laurent.Jouhet@ens-lyon.fr

Eric Thierry
LIAFA & ENS Lyon / IXXI

46 Allée d’ Italie
69007 Lyon, France

Eric.Thierry@ens-lyon.fr

ABSTRACT
Network Calculus is an attractive theory to derive deter-
ministic bounds on end-to-end performance measures. Nev-
ertheless bounding tightly and quickly the worst-case delay
or backlog of a flow over a path with cross-traffic remains a
challenging problem.

This paper carries on with the study of configurations where
a main flow encounters some cross-traffic flows which inter-
fere over connected sub-paths. We also assume that no infor-
mation is available about scheduling policies at the nodes
(blind multiplexing). Such configurations were first ana-
lyzed in [25, 27] where a “Pay Multiplexing Only Once”
(PMOO) phenomenon was identified, and then in [6, 7]
where a (min,+) multi-dimensional operator was introduced
to compute a minimum service curve for the whole path.
Under usual assumptions (concave arrival curves and con-
vex service curves), we prove some properties of this new
operator and we show how to use it to derive bounds on
delays and backlogs in polynomial time.

We also discuss the simpler case when there is no cross-
traffic. Then the analysis is known to boil down to the
(min,+) convolution of all the service curves over the path.
For convex and piecewise affine service curves, a specific
theorem enables to compute efficiently the convolution. This
theorem has been used by several authors [6, 8, 17, 21, 22,
25, 27], but they all refer to a proof which is unfortunately
incomplete [5]. To set definitely this theorem, we provide
three different proofs. We also investigate the complexity of
computing performances bounds in this case.

1. INTRODUCTION
Network Calculus can be presented as a deterministic queu-
ing theory based on the (min,+) semi-ring, and aimed at
worst-case performance analyzes in communication networks.
From a mathematical point of view, it consists in combin-
ing curves which locally describe the shape of the traffic
and the services, with (min,+) or (max,+) operations in

order to predict the global behavior of the networks, and
in particular end-to-end measures. This theory has man-
aged to gather several results of the performance evaluation
literature within a common framework and it has yielded
interesting new results about QoS in networks [12, 13, 9, 5].
Originally intended for Internet quality of service [14], its
use seems promising for other types of networks: embedded
systems like networks processors [30], switched Ethernet net-
works [15], sensor networks [24, 28]. Besides those achieve-
ments and potential applications, some mathematical and
algorithmic issues remain open. One main issue is the dif-
ficulty to analyze networks where several flows are multi-
plexed at some nodes. Such configurations also involve the
type of scheduling policy used to serve data from those dif-
ferent flows when they cross. As an example, the complexity
of deciding the stability of a network (i.e. checking that the
amount of data backlogged in the network will never grow to
infinite) is still open for simple Network Calculus constraints
and FIFO policy everywhere [1, 5]. Even for feed-forward
networks where a simple criteria of stability is known [5],
providing quickly tight bounds on end-to-end measures like
delays is very challenging in Network Calculus.

The analysis of one flow which encounters some cross-traffic
on its path is one basic issue that has been addressed with
various assumptions. For FIFO multiplexing at the nodes
of the path (which are the servers), configurations with ar-
bitrary cross-traffic have been studied in [3, 10, 16] where
bounds on end-to-end delays can be derived only for small
utilization factors. The reader is also referred to [18, 19, 20]
for the latest results about FIFO multiplexing: tight bounds
are provided for configurations where each cross-traffic flow
interferes over a sub-path which is a suffix of the main path.
Our work rather lies in the framework of blind multiplex-
ing, that is nothing is known about multiplexing policies
at the nodes. Despite this lack of information, one can
provide bounds on end-to-end performance measures like
delays or backlogs. The analysis of a path reduced to a
single node with cross-traffic and under blind multiplexing
can be found in [5]. This analysis was extended to con-
figurations where cross-traffic flows interfere over connected
sub-paths [25, 27]. Those authors identified a phenomenon
called “Pay Multiplexing Only Once” (PMOO). To give a
short description of this phenomenon, let us say that when
the routed flow merges with some cross-traffic flows, its ser-
vice may be strongly reduced at the first node. However
at the next nodes, the interference due to the cross-traffic
cannot be as severe since the competition for the resource

has already been partially resolved at the first node (see [25,
27] for a discussion about the PMOO appellation). The
PMOO phenomenon can be quantified in the Network Cal-
culus framework: a formula provided in [27] for a small ex-
ample was generalized in [6, 7] into an explicit formula of
an end-to-end service curve offered by the whole path to
the main flow. This formula is written under the form of
a multi-dimensional (min,+) convolution. It was claimed
in [6] that this new operator, and consequently the end-to-
end service curve, could be computed in polynomial time.
Unfortunately the algorithm had a flaw explained in [7].
The first part of our paper (Section 2) comes back to the
properties and the computation of this multi-dimensional
convolution under usual assumptions (concave arrival curves
and convex service curves): we show that convexity is pre-
served (Theorem 3) and although the complexity of comput-
ing the whole output curve remains an open problem, one
can compute end-to-end delay or backlog bounds in polyno-
mial time thanks to linear programming (Theorem 4). It is
a new evidence of the importance of algorithmic geometry
for Network Calculus [8].

The second part of the paper (Section 4) focuses on paths
without any cross-traffic. Such configurations represent the
brand image of Network Calculus: it is well-known that one
can analyze the performances by replacing the whole path
by a single node offering as minimum service curve the con-
volution of all the service curves of the initial path. It cap-
tures for instance the famous “Pay Burst Only Once” phe-
nomenon [5]. When the initial service curves are convex and
piecewise affine with a finite number of pieces, the convolu-
tion comes to concatenating all the pieces of the different
curves sorted by non-decreasing slopes (up to removing a
few pieces at the end). This theorem stated in [5] has been
used by various authors [6, 8, 17, 21, 22, 25, 27]. Unfortu-
nately the proof presented in [5] is incomplete (Remark 2).
Consequently we present three different proofs of this the-
orem (Theorem 5) which illustrate different types of tools
that can be used. Then we investigate the complexity of
computing performance bounds in this case with no cross-
traffic (Theorem 6).

2. “PAY MULTIPLEXING ONLY ONCE”

2.1 The Network Calculus framework
In Network Calculus, flows and services in the network are
modelled by non-decreasing functions t 7→ f(t) where t is
time and f(t) an amount of data. Time as well as data can
be discrete (values in N) or continuous (values in R). In this
paper, we will focus on the continuous time model and to
cover both discrete and continuous data we will work in F ,
the set of functions from R+ to Rmin = R∪{+∞}. The core
of Network Calculus consists in providing bounds on worst-
case performance measures by combining constraint func-
tions on flows (arrival curves) and services (service curves)
with (min,+) operations. Beyond usual operations over F
like the minimum or the addition of functions, Network Cal-
culus makes use of several classical operations [2] which
are the translations of (+,×) filtering operations into the
(min,+) setting. The convolution, denoted ∗, and the de-
convolution, denoted ⊘, are defined as: for all f, g in F ,
∀t ∈ R+,

• Convolution: (f ∗ g)(t) = inf0≤s≤t(f(s) + g(t− s)).

• Deconvolution: (f ⊘ g)(t) = supu≥0(f(t+ u) − g(u)).

Arrival curves. Given a data flow traversing a system, let
A ∈ F be its cumulative arrival function, i.e. A(t) is the
total amount of data that has arrived in the system until
time t, with A(0) = 0. A function α ∈ F is an arrival curve
for A if ∀ s, t ∈ R+, 0 ≤ s ≤ t, we have A(t)−A(s) ≤ α(t−s).
It means that the amount of data arriving between time s
and t is at most α(t − s). An example of arrival curve is
the affine function α(t) = σ + ρt, σ, ρ ∈ R+ (sometimes
called leaky-bucket arrival curve). In this case, σ can be
interpreted as the maximal number of bits that can arrive
simultaneously (maximal burst) and ρ the maximal long-
term rate of arrivals.

Service curves. Consider B the cumulative departure func-
tion of the flow, i.e. the amount of data B(t) that has left
the system until time t, with B(0) = 0. The system is said
to provide a (minimum) service curve β ∈ F if B ≥ A ∗ β.
A strict service curve β for the system is a non-negative
function in F such that during any backlogged period of du-
ration u, at least β(u) data is served. More formally, for
any s, t ∈ R+, s ≤ t, if ∀s < v < t, A(v) − B(v) > 0, then
B(t) ≥ B(s) + β(t − s). A strict service curve is clearly al-
ways a service curve for the system (by considering starts of
backlogged periods), but the converse is not true [5].

Note that although it may seem unusual or hard to interpret,
nothing prevents from using service curves and strict service
curves which fail to be non-decreasing or non-negative.

Convex/concave/piecewise affine assumptions. In this
paper, we will often assume that the input curves are piece-
wise affine with a finite number of pieces, and convex or
concave. These are recurrent assumptions in Network Cal-
culus [6, 7, 9, 5, 25, 30] due to the fact that such functions
can be easily generated from combinations of linear functions
and that convex/concave properties are often preserved by
the Network Calculus operations.

Note that since we consider functions from R+ into Rmin, our
definition of a convex (resp. concave) function f is that its
support (the set where it is finite) is R+ or an interval [0, T],
T ∈ R+, and f is convex on its support. In the same way, a
function f from R+ into Rmin is piecewise affine if its support
(the set where it is finite) is R+ or an interval [0, T], T ∈ R+,
and f is piecewise affine on its support. The number of affine
pieces of f is denoted |f |.

Bounds on delays and backlogs. Bounds on worst-case
backlogs and delays can be easily derived from the Network
Calculus constraints.

Definition 1. Let A be the cumulative arrival function
of a flow entering a system and let B be its corresponding
cumulative departure function. Then the backlog of the flow
at time t is

b(t)
def
= A(t) −B(t)

and the delay (assuming FIFO order when serving data of

the flow) at time t is

d(t)
def
= inf{s ≥ 0 | A(t) ≤ B(t+ s)}.

Given an arrival curve and a service curve, it is possible
to compute with the Network Calculus operations an upper
bound on the maximal backlog (resp. delay). Moreover, one
can also compute the arrival curve of the departure flow.

Theorem 1 ([5, 9]). Let A ∈ F be the cumulative ar-
rival function with an arrival curve α for a flow entering a
system with service curve β. Let B ∈ F be the cumulative
departure function. Then,

1. B has an arrival curve α⊘ β.

2. b(t) ≤ Bmax(α, β)
def
= sup{α(t) − β(t) | t ≥ 0} = (α ⊘

β)(0). 1

3. d(t) ≤ Dmax(α, β)
def
= inf{d ≥ 0 | ∀t ≥ 0, α(t) ≤ β(t+ d)}
= inf{d ≥ 0 | (−β) ⊘ (−α)(d) ≤ 0}.

2

As illustrated on Fig. 1, the backlog bound Bmax(α, β) is
the maximal vertical distance between α and β while the
delay bound Dmax(α, β) is given by the maximal horizontal
distance between those two functions.

Bmax(α, β)

α

β

bits

t

Dmax(α, β)

Figure 1: Bounds on worst-case backlog and delay.

2.2 Quantifying the “Pay Multiplexing Only

Once” phenomenon
There exists an interesting formula which gives a end-to-
end service curve for a path in case the cross-traffic flows
interfere over sub-paths, i.e. sets of consecutive nodes. It
generalizes a formula obtained in [27] for a small example
with three nodes and two cross-traffic flows. Here are the
configurations we study (and called PMOO) and the nota-
tion we use, illustrated by Fig. 2:

PMOO Configurations:

• The main flow F0 follows a path p of n nodes indexed
1,2,...,n with respective service curves βj , 1 ≤ j ≤ n,
which can be strict or not.

1with the convention (+∞) − (+∞) = −∞
2with the convention inf ∅ = +∞

• The cross-traffic interfering with the path is composed
of k flows Fi, 1 ≤ i ≤ k, with respective arrival curve αi.

• Each cross-traffic flow Fi intersects the path p over
a set of consecutive nodes of p. It joins the path at
node si and leaves it just after node ei (in particular
s0 = 1 and e0 = n).

• Consider a flow i, 1 ≤ i ≤ k, the amount of data
that have been served by node j until time t is de-

noted A
(j)
i (t). The amount of data that have entered

node si until time t is denoted A
(si−1)
i (t).

• As in the rest of the paper, we assume blind multi-
plexing at the nodes: the scheduling policy applied to
the input flows entering a node is unknown (we only
assume that, for each flow, it is FIFO with regard to
data from this flow).

1 neisi

A
(si−1)
i A

(ei)
i

A
(j)
i

j

Flow 0

Flow i

Figure 2: Path where each cross-traffic flow i inter-
feres over a sub-path.

The next theorem is proved in [6] with the assumption that
all the service curves βj are strict. A careful look at the proof
enables to rewrite the theorem as follows (it emphasizes the
role of the strict service curve assumption):

Theorem 2 (PMOO multi-dimensional operator [6]).
For a PMOO configuration, a service curve offered by the
whole path p to flow F0 is:

ψ(t) = inf
u1, . . . , un ≥ 0

u1 + · · · + un = t

n
X

j=1

βj(uj) −
k

X

i=1

αi(

ei
X

j=si

uj).

If all the service curves βj are strict, a service curve offered

by the whole path is φ(t) = ψ(t)+, where x+
def
= max(x, 0).

Two classical results of Network Calculus can be seen as
corollaries of this theorem. The first one corresponds to
n = 2 and no cross traffic, and the second one to n = k = 1.

Corollary 1 (Tandem [5, 9]). Consider a flow cross-
ing two nodes in tandem with respective service curves β1

and β2. Then the concatenation of the two nodes offers a
minimum service curve β1 ∗ β2 to the flow.

Corollary 2 (Residual service [5, 9]). Consider a
node offering a strict service curve β and two flows entering
that server, with respective arrival curves α1 and α2. Then
a service curve for flow 1 is β1 = (β − α2)+.

3. PERFORMANCE ANALYSIS WITH A

MULTI-DIMENSIONAL CONVOLUTION

3.1 Multi-dimensional convolution
Definition 2. Let J = {1, . . . , n} and I = {1, . . . , k}.

Let {fi}i∈I be a family of functions in F , and {Ji}i∈I be a
family of subsets of J . The multi-dimensional convolution
associated with those families is the function ψ ∈ F defined
as:

ψ(t) = min
u1, . . . , un ≥ 0

u1 + · · · + un = t

X

i∈I

fi

`

X

j∈Ji

uj

´

.

Theorem 3. With the notation of Definition 2, if all the
functions fi are convex, then ψ is also convex. Moreover if
they are convex and piecewise affine with a finite number of
pieces, then ψ is a convex piecewise affine function which
can be computed in exponential time.

Proof. For all j ∈ J , we will denote Ij = {i ∈ I | j ∈ Ji}.
We can suppose w.l.o.g. that for all 1 ≤ i ≤ k, fi(0) = 0.
Otherwise it is sufficient to notice that ψ is equal to the
same formula with f̃i(x) = fi(x) − fi(0) plus the constant
Pk

i=1 fi(0). Then we may also suppose w.l.o.g. that all
functions are non-decreasing. If some functions fi are not
non-decreasing, let λ < 0 be the smallest slope among them.
For all t ∈ R+, it can be checked that

ψ(t) = kλt+ min
u1, . . . , un ≥ 0

u1 + · · · + un = t

k
X

i=1

f̃i

`

X

j∈Ji

uj

´

+

n
X

j=1

λ(|Ij |−k)uj .

In this way, up to adding the negative linear function t 7→
kλt, ψ is the multi-dimensional convolution of n + k non-
decreasing convex piecewise functions. Note that those trans-
formations yield new instances which can be stored in linear
space with regard to the initial instance.

Now for each function fi, 1 ≤ i ≤ k, with ℓi
def
= |fi| pieces

on its support, let ri,ℓ (resp. τi,ℓ) be the slope (resp. the
horizontal length, possibly +∞) of the ℓ-th piece starting
from the left. Since all fi’s are convex and non-decreasing,
for a fixed t ∈ R+, the value ψ(t) is exactly the solution
of a linear programming instance (the primal one). It uses
the non-negative variables (uj)1≤j≤n, (vi,ℓ)1≤ℓ≤ℓi

for each
1 ≤ i ≤ k. It can be easily checked that the value ψ(t) is

equal to inf
Pk

i=1

Pℓi

ℓ=1 ri,ℓvi,ℓ under the linear constraints:
u1 + · · · + un ≤ t and for all 1 ≤ i ≤ k,

(

P

j∈Ji
uj ≤

Pℓi

ℓ=1 vi,ℓ

vi,ℓ ≤ τi,ℓ for all 1 ≤ ℓ ≤ ℓi

We first wish to find the support of ψ: we only have to
replace the objective function by sup t with the same con-
straints, the solution T (possibly +∞) can be found in poly-
nomial time by solving this linear programming instance.
Whenever t > T we know that ψ(t) = +∞.

Now the Strong Duality theorem for linear programming [29]
ensures that, when it is finite, ψ(t) is also equal to the opti-
mum of the dual instance defined for the non-negative vari-
ables y, (yi)1≤i≤k and (yi,ℓ)1≤ℓ≤ℓi

. The value ψ(t) is equal

to sup yt−
Pk

i=1

Pℓi

ℓ=1 yi,ℓτi,ℓ under the constraints:
(

yi ≤ yi,ℓ + ri,ℓ for all 1 ≤ i ≤ k, 1 ≤ ℓ ≤ ℓi,

y ≤
P

i∈Ij
yi for all 1 ≤ j ≤ n

Those c = n+
Pk

i=1 ℓi linear constraints over d = c+ k + 1

variables define a convex polyhedron in Rd
+ which is inde-

pendent of t (note that this polyhedron is not bounded).
We already know the support of ψ, thus we are only inter-
ested in finite values of ψ. It is known that the supremum
(if finite) is necessarily reached at an extremal point of the
polyhedron in Rd

+. Moreover the set of extremal points is
finite, its cardinal can be exponential in d, and this set can
be computed in exponential time in d [4, 29]. Each extremal
point (y, (yi)1≤i≤k, (yi,ℓ)1≤ℓ≤ℓi

) ∈ Rd
+ defines an affine func-

tion t 7→ yt −
Pk

i=1

Pℓi

ℓ=1 yi,ℓτi,ℓ and over its support, ψ(t)
is the supremum of this finite set of affine functions. Con-
sequently ψ is a convex piecewise affine function which can
be computed in exponential time in d.

For now, when the functions fi are convex and piecewise
affine, if one wishes to compute and store the whole func-
tion ψ, we only have an exponential algorithm except from
very specific cases where a polynomial algorithm is known:

• Ji = J for all i (it comes to the addition of convex
piecewise affine functions).

• I = J and Ji = {i} for all i (it comes to the classical
convolution - see Section 4).

Nevertheless we conjecture that it is possible to compute the
whole function ψ in polynomial time (which implies that the
number of pieces of ψ is polynomial with the size of the input
functions). As a matter of fact, we can already compute, in
polynomial time, worst-case bounds on delays and backlogs
using ψ but without computing explicitly the whole curve,
as shown in the next section.

3.2 Bounds on delays and backlogs
Theorem 4. In a PMOO configuration, if all the service

(resp. arrival) curves |βj | (resp. |αi|, including α the arrival
curve of the main flow F0) are convex (resp. concave) piece-
wise affine functions with a finite number of pieces, then the
worst-case bounds Dmax(α,ψ) and Bmax(α,ψ) for the main
flow F0 can be computed in polynomial time by solving one
linear programming instance with O(

Pk
i=1 |αi| +

Pn
j=1 |βj |)

linear constraints over O(
Pk

i=1 |αi| +
Pn

j=1 |βj |) variables

(replace ψ by φ = ψ+ if service curves are strict).

Proof. Consider C(α,ψ)
def
= {(t, z) ∈ R+ × R | ψ(t) ≤

z ≤ α(t)} the area between the arrival curve α and the
end-to-end service curve ψ defined by Theorem 2. This
function ψ is a particular case of the multi-dimensional con-
volution and due to the hypotheses on αi and βj , Theo-
rem 3 ensures that ψ is convex (as well as ψ+). Since α
is concave, C(α,ψ) is a convex set. As a matter of fact,

let α(t)
def
= min1≤p≤|α|(apt + bp), then (t, z) ∈ C(α,ψ) if

and only if z ≤ apt + bp for all 1 ≤ p ≤ |α| and (t, z)
satisfies the constraints of the primal linear programming

instance presented in the proof of Theorem 3 applied to
our PMOO formula. Just replace the objective function by
the constraint z ≥ inf

Pk
i=1

Pℓi

ℓ=1 ri,ℓvi,ℓ up to the small
transformations presented at the beginning of that proof.
Then Dmax(α,ψ) = sup{t′ − t | (t, z) ∈ C(α,ψ), (t′, z) ∈
C(α,ψ), z ∈ R+} and Bmax(α,ψ) = sup{z′ − z | (t, z) ∈
C(α,ψ), (t, z′) ∈ C(α,ψ), t ∈ R+}. In both case, the
value is the optimum of a linear programming instance with
≤ 2(2n + k + 2 + |α| +

P

|αi| +
P

|βj |) constraints over
≤ 2(n+

P

|αi| +
P

|βj |) + 3 variables.

If all the service curves are strict, considering φ = ψ+ in-
stead of ψ provides tighter bounds and only adds one linear
constraint.

Note that, in potential applications of Network Calculus, it
is often assumed that |αi| and |βj | are equal to 1 or 2 leading
to small linear programming instances

Remark 1. The first issue of Network Calculus is to pro-
vide bounds on worst-case performance measures. Then a
very difficult problem is to find tight bounds. The first ana-
lyzes taking into account PMOO raised this question for the
configurations we consider here [25, 27]. The works [6, 7]
proving the PMOO formula of Theorem 2 showed on a small
example that in some specific cases the end-to-end service
curve φ = ψ+ could give worse bounds on delays and back-
logs than some other service curves also offered by the path
but better adapted to the arrival curve of the main flow. In
fact, very recent and accurate work [26] suggests that the
situation is much more complicated than expected and re-
quires the development of new methods to get tight bounds,
losing part of the algebraic flavor of Network Calculus. Nev-
ertheless the use of our PMOO formula still provides better
bounds than former approaches as indicated by experiments
in [25, 27, 7] and, as shown in Theorem 4, those bounds can
be computed in polynomial, whereas the recent solution pre-
sented in [26] requires exponential time (

Qk
i=1 |αi|

Qn
j=1 |βj |

linear programming instances to solve).

4. A PARTICULAR CASE: THE CLASSICAL

(MIN,+) CONVOLUTION

4.1 The convolution of piecewise affine convex

functions
Theorem 5 ([5]). Let f and g be two convex piecewise

affine functions over R+ with a finite number pieces. Let ρf

(resp. ρg) be the slope of the last semi-infinite segment of f
(resp. g) if it exists, or ρf = +∞ (resp. ρg = +∞) if f
(resp. g) is equal to +∞ from a point. Then the convolution
f ∗ g first consists in concatenating, in the increasing order
of the slopes and starting from f(0) + g(0), all the segments
of slope < min(ρf , ρg) of f and g. It ends by concatenating
a semi-infinite segments of slope min(ρf , ρg) if this value is
finite.

First proof (Local differentiation). Let f, g ∈ cF be
two convex functions. As convex functions, f and g are
continuous and admit a left and a right derivative. For a
function f admitting a derivative on the left (resp. right),

* =

f g g*f

Figure 3: Convolution of convex piecewise affine
functions.

let us denote by f ′
ℓ (resp. f ′

r) the left (resp. right) derivative
function of f . If f is convex, f ′

ℓ and f ′
r are non-decreasing

and ∀u ∈ R+, f ′
ℓ(u) ≤ f ′

r(u) and are respectively left and
right-continuous. By convention, one set f ′

ℓ(0) = g′ℓ(0) =
−∞.

The next two lemmas apply to arbitrary convex functions
in F .

Lemma 1 (Folklore). Let f be a convex function, ∀u, v ∈
R+, with u < v, one has

f
′
r(u) ≤

f(v) − f(u)

v − u
≤ f

′
ℓ(v).

Lemma 2. Let f, g ∈ F be two convex functions. Then,
for all t ∈ R+ and u, v ∈ R+ s.t. u + v = t, the next two
points are equivalent:

• (f ∗ g)(t) = f(u) + g(v).

• g′l(v) ≤ f ′
r(u) and f ′

l (u) ≤ g′r(v).

For all t ∈ R+, there always exist such u, v ∈ R+.

Proof. Since f and g are continuous and f ∗ g(t) is an
infimum over the compact set [0, t], the existence of u and v
stated at the end is proved.

Suppose that one can find u and v such that u + v = t,
g′l(v) ≤ f ′

r(u) and f ′
l (u) ≤ g′r(v). Consider u′ and v′ such

that f ∗ g(t) = f(u′) + g(v′) with u′ + v′ = t (then u− u′ =
v′ − v). Without loss of generality, one can suppose that
u′ ≤ u. Then,

f(u) + g(v)
= f(u′) + [f(u) − f(u′)] + g(v′) + [(g(v) − g(v′)]

= f(u′) + g(v′) + (u− u′)
h

f(u)−f(u′)
u−u′ − g(v′)−g(v)

v′−v

i

≤ f(u′) + g(v′) + (u− u′)(f ′
l (u) − g′r(v))

≤ f(u′) + g(v′).

As a consequence, f(u) + g(v) = f ∗ g(t).

Conversely, let f ∗ g(t) = f(u) + g(v), u + v = t. Then
f(u) + g(v) ≤ inf0<ε<u f(u − ε) + g(v + ε). It implies 0 ≤
infε>0 [−f(u) + f(u− ε) + g(v + ε) − g(v)]. Due to convex-
ity, g(v + ε) − g(v) ≤ εg′r(v + ε) and f(u) − f(u − ε) ≥
εf ′

l (u − ε). Thus f ′
l (u − ε) ≤ g′r(v + ε). The function f ′

l

(resp. g′r) is continuous on the left (resp. on the right). By

letting ε go to 0, we get f ′
l (u) ≤ g′r(v). In a symmetric way,

we can prove g′l(v) ≤ f ′
r(u).

We now apply this theorem to piecewise affine functions.
Let t ∈ R+ and u and v be such that f ∗ g(t) = f(u) + g(v).
We look at continuity of the derivative of f and g at those
points.

• if f ′ exists at u and is continuous on [u, u + ε], then
f ′(u) = f ′

l (u + ε) and fl(u + ε) ≤ g′r(v) and g′l(v) ≤
f ′

r(u) ≤ f ′
r(u+ε). So, f ∗g(t+ε) = f(u+ε)+g(v) and

f ∗ g is affine of slope f ′(u) on [t, t+ ε]. One can chose
ε such that there is a change of slope in f at u+ ε.

• the same holds for g and v if g′ is continuous on an
interval [v, v + ε] by symmetry.

• If f ′ and g′ don’t exist at u and v, and if f ′
r(u) ≤ g′r(v)

(the role of f and g are symmetric), then f ′
l (u+ ε) =

f ′
r(u) ≤ g′r(v) and g′l(v) ≤ f ′

r(u) = f ′
r(u + ε). So

f ∗ g(t) = f(u+ ε) + g(v) and the slope of f ∗ g after t
is f ′

r(u). This holds for any ε smaller that the length
of the segment of slope f ′

r(u) in f . If this segment is
of infinite length, it holds for every ε ∈ R+.

The three items show that one can construct f ∗g by letting
both u and v grow (sometimes alternatively). The first two
items show that the complete pieces of f and g appear in
the function f ∗ g. The third item indicates the rule of
concatenation: the piece of smallest slope appears first. �

Second proof (Algorithmic proof). Consider the first
segment of f , of slope sf and the first segment of g of slope
sg and suppose that sf ≤ sg and that the length of the first
segment of f is ℓf ∈]0,∞]. Then, for every t ∈ [0, ℓf],

f ∗ g(t) = inf
u+v=t,u,v≥0

f(u) + g(v)

= inf
u+v=t,u,v≥0

f(0) + sfu+ g(0) + v
g(v) − g(0)

v − 0
.

As g is convex, g(v)−g(0)
v−0

≥ sg ≥ sf so f ∗ g(t) = g(0)+ f(t).

If ℓf = ∞, then f ∗ g is an affine function consisting in the
segment of f and g if smallest slope.

Otherwise, f ∗ g consist of the segment of smallest slope on
[0, ℓf].

Let t > ℓf and suppose that f ∗g(t) = f(u)+g(v), u+v = t

and u < ℓf .

f(ℓf) + g(t− ℓf)
= [f(ℓf) − f(u)] + f(u) + [g(t− ℓf) − g(v)] + g(v)

= f(u) + g(v) + sf (ℓf − u) − (ℓf − u)
g(t−ℓf)−g(v)

t−ℓf−v
.

But,
g(t−ℓf)−g(v)

t−ℓf−v
≥ sg ≥ sf , so f(ℓf) + g(t − ℓf) ≤ f(u) +

g(v) = f ∗ g(t).

As a consequence, f ∗g(t) = f(ℓf)+g(t−ℓf) and one always
can write

f ∗ g(t) = f(ℓ) + f̃ ∗ g(t− ℓf),

with f̃(t−ℓf) = f(t)−f(ℓf). In other words, f̃ is constructed

from f by removing the first segment in f (and f̃(0) = 0). f̃
is also convex, so one can compute iteratively the remaining
of f ∗g. The segments of f and g are clearly concatenated in
increasing order of the slopes. If there is a segment of infinite
length, then the segments of greater slopes are ignored. �

Third proof (Legendre-Fenchel transform). Without
loss of generality, we assume that f and g are non-decreasing
and f(0) = g(0) = 0. Suppose actually that f or g have
pieces with negative slopes and let R < 0 be the smallest
slopes over all their pieces. Then one can easily check that
for all t ∈ R+, (f ∗ g)(t) − Rt = infu+v=t,u≥0,v≥0((f(u) −
Ru) + (g(v) − Rv)). The functions u 7→ f(u) − Ru and
v 7→ g(v) − Rv remain convex piecewise affine and become
non-decreasing. One can reason on those functions and then
come back to f ∗ g by adding t 7→ Rt which preserves the
concatenation construction. In the same way, suppose that
f(0) 6= 0 or g(0) 6= 0, then one can reason with the func-
tions u 7→ f(u) − f(0) and v 7→ g(v) − g(0) and then de-
duce the theorem statement since (f ∗ g)(t)− f(0)− g(0) =
infu+v=t,u≥0,v≥0((f(u) − f(0)) + (g(v) − g(0))).

Let F+ be the set of non-decreasing functions h from R+

into R+ ∪ {+∞} such that h(0) = 0. We use the Legendre-
Fenchel transform restricted to F+. It associates with any

function f ∈ F+ the function bf ∈ F+ defined by bf(λ)
def
=

supt≥0 (λt− f(t)) for all λ ∈ R+. This powerful tool of
convex analysis [23, 31] has very interesting properties:

(LF1) For all f, g ∈ F+, f̂ ∗ g = bf + bg.

(LF2) For all f ∈ F+,
b

bf = f if and only if f convex.

A consequence of the second property is that f 7→ bf is an
involution (and thus a bijection) on C+ the set of convex
functions of F+. The next lemma provides a formula for
the Legendre-Fenchel transform of convex piecewise affine
functions.

Lemma 3. Let f ∈ F+ be a convex piecewise affine func-
tion with ℓ pieces over its support. For each 1 ≤ i ≤ ℓ,
ri (resp. τi) denotes the slope (resp. the horizontal length)
of the i-th piece starting from the left (with the conven-
tion τℓ = +∞ if the last piece is semi-infinite). Then for
all λ ∈ R+:

bf(λ) =

ℓ
X

i=1

(λ− ri)+τi

with the convention 0 × +∞ = 0.

The proof of this lemma is easy from the definition of the
Legendre-Fenchel transform. It uses the fact that the se-

quence (ri)1≤i≤ℓ is increasing to locate the value t for which
the supremum is reached.

From Property (LF1) and Lemma 3, for all λ ∈ R+, f̂ ∗ g(λ) =
bf(λ)+bg(λ) =

P

(r,τ)∈Cf
(λ−r)+τ+

P

(r,τ)∈Cg
(λ−r)+τ where

Cf (resp. Cg) contains the couples (slope,horizontal length)
of all the pieces of f (resp. g).

We also know that f ∗g is convex. This is true for any convex
functions f, g ∈ F (even if not piecewise affine) since f ∗ g
is the infimum of a convex function over a convex set [23].

We now introduce h the concatenation from point (0, 0) of
all the pieces of f and g, sorted by non-decreasing slopes.
If f or g has a semi-infinite piece, that is (ρf ,+∞) ∈ Cf

or (ρg,+∞) ∈ Cg, then we ignore the pieces with slopes
larger than ρf or ρg and h ends by the semi-infinite piece of
smallest slope (denoted ρh). Since h sorts the pieces by non-
decreasing slopes h is convex by construction and Lemma 3

applies: for all λ ∈ R+, bh(λ) =
P

(r,τ)∈Ch
(λ − r)+τ where

Ch denotes the set of the couples (slope,horizontal length)
of the pieces of h .

One can easily check that, for all λ ∈ R+, f̂ ∗ g(λ) = bh(λ).
If f and g have no semi-infinite, Ch = Cf ∪ Cg. Otherwise
Ch ⊆ Cf ∪ Cg, but the terms which only appear in the

formula of f̂ ∗ g(λ) do not play any role: due to their form
(λ− r)+τ with r > ρh, they may come up only for λ > ρh,

but both f̂ ∗ g and bh contain the term (λ−ρh)+×+∞ which
is equal +∞ for such λ.

To sum up, f ∗g and h are both convex functions of F+ and

f̂ ∗ g = bh. Since the Legendre-Fenchel transform is injective
over C+ the set of convex functions of F+, we have f ∗g = h.

�

Remark 2. Theorem 5 is presented in [5] (Theorem 3.1.6
rule 9, pages 113-115). However the proof for convex piece-
wise affine functions is incomplete. Two functions are de-

fined from the convex functions f and g: h
def
= f ∗ g and h′

which is the concatenation from f(0) + g(0) of all the pieces
of f and g sorted by non-decreasing slopes. The proof de-
fines the respective epigraphs S1, S2, S, S ′ of f , g, h, h′

(and their boundaries ∂S1, ∂S2, ∂S, ∂S ′). It is shown that
∂S ′ ⊆ ∂S1 + ∂S2. It implies that h′ ≥ f ∗ g, but unfortu-
nately it does not prove the converse inequality. The proof
that ∂S ′ ⊆ ∂S1 +∂S2 only uses the fact that h′ is a prefix of
a shuffle of the two sequences of pieces of f and g (seen as
two words). It does not use the sorting of slopes. Although
at some point it is noted that h′ is convex by construction,
this property is not used later.

4.2 Bounds on delays and backlogs
Theorem 6. In the simple PMOO configurations where

there is no cross-traffic, a service curve for the whole path
is β = β1 ∗ β2 ∗ · · ·βn. If all the service curves are convex
piecewise affine functions with a finite number of pieces, the
size of ψ satisfies |ψ| ≤

Pn
j=1 |βj | and ψ can be computed

in O(log2 n
Pn

j=1 |βj |) time.

Given an concave piecewise affine arrival curve α with a
finite number of pieces, if the pieces of α (resp. ψ) are
stored in an array sorted w.r.t. abscisses, one can compute
Dmax(α, β) and Bmax(α, β) in O((log2(|α| + |β|))) time.

Proof. Thanks to Theorem 5, the computations of β =
β1 ∗ β2 ∗ · · ·βn comes to merging n sorted lists of respective
sizes |βj |. The complexity stated in the theorem can be
achieved by progressing from left to right on the lists while
maintaining a binary heap which contains the first available
piece of each list and enable to find efficiently the one of
smallest slope [11].

In order to compute the bound Bmax(α, β), one can use a
kind of dichotomic algorithm. Two pointers lα ≤ rα (resp.
lβ ≤ rβ) are associated with each sorted array, they points
at two pieces of the corresponding function and indicates
the extremities on the interval where the maximum vertical
distance may be reached. Those pointers will move during
the search of this maximum, they are initialized at both
extremities of each array, i.e. lα = 1 and rα = |α|, lβ = 1
and rβ = |β|. A elementary step of the algorithm can be
decomposed as follows:

• Choose the function which maximizes max(rα−lα, rβ−
lβ). Say for instance that it is α.

• Consider the median piece between lα and rα, i.e. the
piece of index ⌈lα+rα⌉, and find the piece(s) of β below
each extremities of this piece thanks to a dichotomic
search in the sorted array of β.

• By comparing the slopes of the median piece of α
and of the piece(s) of below its extremities (in some
cases one may have to check the slopes of the adjacent
pieces), one can decide whether the maximum vertical
distance is located on the left, on the right or below the
median piece. The pointers of α can be appropriately
updated.

Each step removes at least 1/4 of the number of pieces of α
and β, and each dichotomic search to locate pieces w.r.t. the
median piece is in O(log2(|α| + |β|)) time. Thus the overall
time complexity is bounded by O(log2(|α|+ |β|) log3/4(|α|+
|β|)).

The same kind of algorithm applies to the computation of
Dmax(α, β).

5. REFERENCES
[1] M. Andrews. Instability of fifo in the permanent

sessions model at arbitrarily small network loads. In
Proceedings of SODA’07, 2007.

[2] F. Baccelli, G. Cohen, G.Y. Olsder, and J.P. Quadrat.
Synchronization and linearity. Wiley, 1992.

[3] J.C.R. Bennett, K. Benson, A. Charny, W.F.
Courtney, and J.-Y. Le Boudec. Delay jitter bounds
and packet scale rate guarantee for expedited
forwarding. IEEE/ACM Transactions on Networking,
10(4):529–540, 2002.

[4] J.-D. Boissonnat and M. Yvinec. Algorithmic
Geometry. Cambridge University Press, 2001.

[5] J.-Y. Le Boudec and P. Thiran. Network Calculus: A
Theory of Deterministic Queuing Systems for the
Internet, volume LNCS 2050. Springer-Verlag, revised
version 4, may 10, 2004 edition, 2001.

[6] A. Bouillard, B. Gaujal, S. Lagrange, and E. Thierry.
Optimal routing for end-to-end guarantees: the price
of multiplexing. In Proceedings of Valuetools’07, 2007.

[7] A. Bouillard, B. Gaujal, S. Lagrange, and E. Thierry.
Optimal routing for end-to-end guarantees using
network calculus. Technical report, INRIA, 2008.

[8] A. Bouillard and E. Thierry. An algorithmic toolbox
for network calculus. Discrete Event Dynamic
Systems, 18(1):3–49, 2008.

[9] C. S. Chang. Performance Guarantees in
Communication Networks. TNCS, 2000.

[10] A. Charny and J.-Y. Le Boudec. Delay bounds in a
network with aggregate scheduling. In Proceedings of
QoFIS’00, volume LNCS 1922, pages 1–13, 200.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, 2001.

[12] R. L. Cruz. A calculus for network delay, part i:
Network elements in isolation. IEEE Transactions on
Information Theory, 37(1):114–131, 1991.

[13] R. L. Cruz. A calculus for network delay, part ii:
Network analysis. IEEE Transactions on Information
Theory, 37(1):132–141, 1991.

[14] V. Firoiu, J.-Y. Le Boudec, D. Towsley, and Zhi-Li
Zhang. Theories and models for internet quality of
service. Proceedings of the IEEE, 90(9):1565–1591,
2002.

[15] J.-P. Georges, E. Rondeau, and T. Divoux. Evaluation
of switched ethernet in an industrial context by using
the network calculus. In Proceedings of 4th IEEE
Workshop on Factory Communication Systems, pages
19–26, 2002.

[16] Y. Jiang. Delay bounds for a network of guaranteed
rate servers with fifo aggregation. Computer Networks,
40(6):683–694, 2002.

[17] H. Kim and J. C. Hou. Network calculus based
simulation for tcp congestion control: Theorems,
implementation and evaluation. In Proceedings of
INFOCOM’2004, 2004.

[18] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea. A
novel approach to scalable cac for real-time traffic in
sink-tree networks with aggregate scheduling. In
Proceedings of Valuetools’06, 2006.

[19] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea.
Tight end-to-end per-flow delay bounds in fifo
multiplexing sink-tree networks. Performance
Evaluation, 63(9-10):956–987, 2006.

[20] L. Lenzini, E. Mingozzi, and G. Stea. End-to-end
delay bounds in fifo-multiplexing tandems. In
Proceedings of Valuetools’07, 2007.

[21] F. Nemeth, P. Barta, R. Szabo, and J. Biro. Network
internal traffic characterization and end-to-end delay
bound calculus for generalized processor sharing
scheduling discipline. Computer Networks,
48(6):910–940, 2005.

[22] K. Pandit, C. Kirchner, J. Schmitt, and R. Steinmetz.
A transform for network calculus and its application
to multimedia networking. In Proceddings of SPIE’s

Multimedia Computing and Networking Conference
2006 (MMCN’06), 2006.

[23] R. T. Rockfellar. Convex Analysis. Princeton
University Press, 1996.

[24] J. B. Schmitt and U. Roedig. Sensor network calculus:
A framework for worst case analysis. In Proceedings of
1st International Conference on Distributed
Computing in Sensor Systems, 2005.

[25] J. B. Schmitt and F. A. Zdarsky. The disco network
calculator: a toolbox for worst case analysis. In
Proceedings of Valuetools’06, 2006.

[26] J. B. Schmitt, F. A. Zdarsky, and M. Fidler. Delay
bounds under arbitrary multiplexing. Technical
report, University of Kaiserslautern, 2007.

[27] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic.
Performance bounds in feed-forward networks under
blind multiplexing. Technical Report 349/06,
University of Kaiserslautern, Germany, 2006.

[28] J. B. Schmitt, F. A. Zdarsky, and U. Roedig. Sensor
network calculus with multiple sinks. In Proceedings of
IFIP Networking’2006, 2006.

[29] A. Schrijver. Theory of Linear and Integer
Programming. Wiley, 1998.

[30] L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine,
and J. Greutert. Embedded software in network
processors models and algorithms. In Proceedings of
Embedded Software Workshop EMSOFT’2001, 2001.

[31] H. Touchette. Legendre-fenchel transforms in a
nutshell. Technical report, School of Mathematical
Sciences, University of London, 2005.

