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Abstract

Our current understanding of secondary organic aerosol (SOA) formation is limited

by our knowledge of gaseous secondary organics involved in gas/particle partitioning.

The objective of this study is to explore (i) the potential for products of multiple oxi-

dation steps contributing to SOA, and (ii) the evolution of the SOA/VOC/NOx system.5

We developed an explicit model based on the coupling of detailed gas-phase oxidation

schemes with a thermodynamic condensation module. Such a model allows prediction

of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system

is studied for the oxidation of 1-octene under atmospherically relevant concentrations.

In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Con-10

tributors to SOA formation are shown to be formed via multiple oxidation steps of the

parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the

explicit model agrees with general tendencies observed during laboratory chamber ex-

periments. This explicit modelling of SOA formation appears as a useful exploratory

tool to (i) support interpretations of SOA formation observed in laboratory chamber15

experiments, (ii) give some insights on SOA formation under atmospherically relevant

conditions and (iii) investigate implications for the regional/global lifetimes of the SOA.

1 Introduction

Progressive gas-phase oxidation of volatile organic compounds (VOC) leads to the

formation of a multitude of intermediate species (e.g., Aumont et al., 2005). These20

secondary organics are more functionalised than their precursor compounds, and

the number of functions typically increases as oxidation proceeds. Highly function-

alised species typically have lower saturation vapour pressures and/or higher polari-

ties, allowing substantial gas/particle partitioning, thus leading to secondary organic

aerosol (SOA) formation. Once in the aerosol phase, those compounds react fur-25

ther by photochemical reactions that alter particulate composition (e.g., Molina et al.,
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2004; Stephanou, 2005). Recent measurements indicate that SOA products can re-

act via heterogeneous or particle-phase reactions, forming oligomeric and/or polymeric

species, responsible for an important fraction of SOA growth (e.g., Jang et al., 2002;

Gao et al., 2004; Kalberer et al., 2004; Tolocka et al., 2004).

Despite the substantial impacts of SOA on the environment, SOA modelling is not5

satisfactorily constrained. A large underestimation of SOA production in current models

has been highlighted by recent observations in the boundary layer (e.g., de Gouw et al.,

2005; Johnson et al., 2006; Volkamer et al., 2006) as well as in the free troposphere

(Heald et al., 2005). Our current understanding of SOA formation is limited by the

lack of knowledge of gaseous secondary organics involved in gas/particle partitioning.10

SOA formation involves a multitude of semi-volatile organic compounds (SVOC) having

complex molecular structures. Their low atmospheric concentrations cause analytical

difficulties (e.g., Jacobson et al., 2000; Turpin et al., 2000; Kanakidou et al., 2005).

During in situ measurement campaigns, less than 20% of the total particulate organic

mass is typically identified (Rogge et al., 1993; Puxbaum et al., 2000). Moreover major15

difficulties hinder the simulation of SOA formation on the basis of first principles. Most

three-dimensional transport models were developed to represent the chemical evolu-

tion of the O3/VOC/NOx system. These models typically represent organic chemistry

with highly simplified mechanisms using lumped or surrogate species (e.g., Gery et al.,

1989; Stockwell et al., 1997; Bey et al., 2001; Brasseur et al., 1998; Carter, 2000; Pois-20

son et al., 2000). The formation of long chain functionalised secondary organics acting

as SOA precursors is ignored in those gas-phase oxidation schemes.

Parameterized SOA representations are therefore implemented in 3-D chemistry-

transport models in terms of total particle growth. The aerosol creation potential mea-

sured in laboratory chamber experiments from a particular hydrocarbon, HC, is cur-25

rently expressed in terms of aerosol yield Y defined as:

Y =
Mo

∆HC
(1)

where Mo is the organic aerosol mass concentration produced for a given amount of

11225
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HC reacted (∆HC). The aerosol yield strongly depends on the organic particulate mass

which acts as the medium into which oxidation products can be absorbed (e.g., Odum

et al., 1996, 1997). Odum et al. (1996) demonstrated that the evolution of aerosol yield

with Mo can be expressed as:

Y = Mo

∑

(

αiKom,i

1 + Kom,iMo

)

(2)5

where αi is the mass stoichiometric factor of the aerosol-forming species i and Kom,i is

the equilibrium partitioning coefficient for species i . Odum et al. (1996, 1997) showed

that the use of two lumped aerosol-forming products for Eq. (2) fits laboratory yield data

with sufficient accuracy. Equation (2) is considered valid only for the final aerosol yield.

This semi-empirical two-product model has been extensively used in 3-D chemistry-10

transport models (e.g., Hoffman et al., 1997; Kanakidou et al., 2000; Schell et al.,

2001; Chung and Seinfeld, 2002; Tsigaridis and Kanakidou, 2003) where constants αi

and Kom,i are chosen as the best fit of laboratory chamber data for a given HC.

However, the two-product representation assumes that aerosol-forming species i is

produced from a single oxidation step of the parent hydrocarbon. SVOC formation is15

suspected to be more complex than arising from first generation oxidation products of

a given precursor, with the possibility of multiple oxidation steps (Kroll and Seinfeld,

2005; Ng et al., 2006, 2007). The relative importance as contributors to SOA formation

of those products formed from multiple oxidation steps with regard to direct oxidation

products of the parent hydrocarbon remains unknown (e.g., Kroll and Seinfeld, 2005).20

Furthermore, this empirical representation for SOA formation implies a large ex-

trapolation of experimental chamber results carried out at levels of NOx and HC that

are significantly higher than typical tropospheric conditions (e.g., Cocker et al., 2001;

Vesterinen et al., 2007; Kroll et al., 2007). The potential of an air mass to attain su-

persaturation during its ageing depends on local chemical factors, especially (i) the25

emitted HC source amounts influencing the concentration of secondary organic car-

bon in the plume and (ii) NOx chemical regimes that drive the chemical identity of

11226
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SVOC produced during air mass oxidation (i.e. carbon atom number, nature and distri-

bution of functional groups borne by the molecule...), and consequently their volatility.

The evolution of the SOA/VOC/NOx system still remains difficult to ascertain.

The objective of this work is to explore (i) the role of products of multiple oxidation

steps in the production of SOA contributors and (ii) the evolution of the SOA/VOC/NOx5

system. For this purpose, we developed an explicit model describing SOA formation

based on thermodynamic and chemical principles that predicts the gas/particle par-

titioning of individual organics produced during gas-phase oxidation. Such a model

allows therefore prediction of SOA mass and speciation on the basis of first-principles.

The model is based on the coupling of detailed gas-phase oxidation schemes with a10

thermodynamic module for condensation (see Fig. 1). Gas-phase oxidation schemes

up to CO2 production are developed using the explicit self-generating approach de-

scribed by Aumont et al. (2005). Gas/particle partitioning of low-volatility species is

represented assuming (i) a basic thermodynamic absorption process (e.g., Pankow,

1994a) and (ii) that the aerosol phase behaves as a pure ideal organic phase. In this15

exploratory study, no reactions are implemented in the particulate phase. SOA forma-

tion is studied here for the complete oxidation of 1-octene. This work has been carried

out with a particular focus on the gas/aerosol carbon budget. Section 2 describes the

explicit model for SOA formation. The scenarios selected to explore the SOA/VOC/NOx

system are presented in Sect. 3. SOA formation from multiple oxidation steps of the20

parent HC is reported in part 4. The simulated evolution of the SOA/VOC/NOx system

is discussed in Sect. 5.

2 SOA formation model

SVOC production might require many successive oxidation steps. Most reaction path-

ways involved during gas-phase oxidation make minor individual contributions to the25

organic budget. These minor reaction channels are therefore ignored in current mech-

anisms, even in the most detailed mechanisms available to date such as the NCAR

11227
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Master Mechanism (Madronich and Calvert, 1990; Aumont et al., 2000) or the Univer-

sity of Leeds’ Master Chemical Mechanism (MCM-v3) (Jenkin et al., 2003; Saunders

et al., 2003). However, these minor pathways could have a cumulative importance for

the formation of those low-volatility species. Highly detailed oxidation schemes are

therefore required to simulate the behaviour of organic species during gas-phase ox-5

idation and their interaction with the organic aerosol phase. Such explicit schemes

involve a very large number of chemical reactions and intermediate species, far in ex-

cess of the number that can be reasonably written manually (Aumont et al., 2005).

2.1 Gas-phase oxidation schemes

Explicit gas-phase oxidation schemes are written using the self-generating approach10

developed by Aumont et al. (2005). This expert system is based on two main elements:

1. A protocol defining a set of rules that lay out the choice of reaction pathways and

provide the rate coefficients needed in the mechanism. When available, kinetic

data taken from laboratory measurements are assigned to the chemical scheme.

Otherwise, an estimation of the rate constant, stoichiometric coefficients and re-15

action products is performed using structure/activity relationships.

2. A generator which is a computer program that automatically creates the fully-

explicit degradation scheme, up to CO and CO2, for a set of parent species pro-

vided as input on the basis of the predefined protocol.

The protocol and the main running stages of the generator are described in detail20

by Aumont et al. (2005). Only salient points are summarized here. The development

of self-generated chemical schemes requires the identification of all the reactions for

each emitted organic compound and for their reaction products. These reactions gen-

erally include: (i) initiation of atmospheric degradation by attack with OH, NO3, O3 or

photolysis, leading to the formation of peroxy radicals, (ii) reactions of peroxy radicals25

with NO, NO2, NO3, HO2 and with other RO2 radicals leading to the formation of stable

11228
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reaction intermediates or alkoxy radicals RO and (iii) alkoxy radical reactions with O2,

unimolecular decomposition or isomerisation leading to the formation of stable reaction

intermediates or new peroxy radicals. The possible functional groups produced during

the oxidation of parent compounds are ketones, aldehydes, alcohols, hydroperoxides,

nitrates, peroxy radicals, alkoxy radicals, carboxylic acids, peracids, peroxyacylnitrates5

and peroxyacyl radicals. The total number of species generated to fully describe the ox-

idation grows exponentially with increasing carbon number of precursor (Aumont et al.,

2005).

2.2 Gas/particle partitioning of semi-volatile organic compounds

The dominant process controlling the gas/particle partitioning of SVOC is expected to10

be an absorption mechanism (Pankow, 1994a,b; Odum et al., 1996; Hoffman et al.,

1997; Griffin et al., 1999; Kalberer et al., 2000). The gas/particle partitioning of organ-

ics produced during the gas-phase degradation is based on the absorptive model de-

scribed by Pankow (1994a,b), which assumes a thermodynamic equilibrium of gaseous

oxidation products between gas and particulate phases. Gas/particle partitioning of15

each organic species can then be described on the basis of Raoult’s law:

Pi = xiγiP
vap

i
(3)

where Pi is the equilibrium partial pressure of a species i , xi its mole fraction in the

aerosol phase, P
vap

i
its vapour pressure as pure liquid at the temperature of interest

and γi its activity coefficient in the aerosol phase. Only equilibria for non-radical inter-20

mediate species are considered here.

For aerosol particles expected to be composed of a mixture of similar-type

molecules, γi is set to unity (e.g., Seinfeld and Pankow, 2003). The liquid vapour pres-

sure (subcooled if necessary) of organic species is estimated using the Myrdal and

Yalkowsky method (Myrdal and Yalkowsky, 1997), owing to its reliability for SVOC gen-25

erated during tropospheric gas-phase oxidation (Camredon and Aumont, 2006). The

11229
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Myrdal and Yalkowsky method is coupled with the Joback structure/property relation-

ship for boiling point estimates (e.g., Reid et al., 1986). Additional group contributions

are included to evaluate the vapour pressure of the wide range of compounds involved

in SOA formation (see Camredon and Aumont, 2006).

In this exploratory study, no reactions are implemented in the particulate phase. Het-5

erogeneous reactions would shift condensation equilibria towards the aerosol phase.

As long as the products of any heterogeneous reactions were less volatile than their

reactants, such processes would lead to additional mass in the condensed phase. The

aerosol mass simulated here can therefore be seen as a lower limit (e.g., Kroll and

Seinfeld, 2005).10

2.3 System resolution

Time integration for chemical schemes is performed using the two-step solver (Verwer,

1994; Verwer et al., 1996). The gas-phase lifetimes of SVOC are typically greater than

half an hour. The characteristic time associated with the gas/particle mass transfer is

assumed to be short compared to the timescale required for other production/removal15

processes of gaseous SVOC. Hence, thermodynamic equilibrium was imposed at each

time step (20 min). Gas/particle equilibrium is solved using the iterative method de-

scribed by Pankow (1994b). For the case of 1-octene presented below, the number

of species considered to describe gas-phase oxidation is about 1.4×10
6
. Thermody-

namic equilibrium is considered for about 4.0×10
5

of these oxidation products. To our20

knowledge, this is the first attempt to describe SOA formation on the basis of a fully

explicit model.

3 Scenarios

The SOA/VOC/NOx system is studied here for the complete oxidation of 1-octene. This

species was selected as a representative parent compound because (i) the aerosol25

11230
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creation potential of 1-octene has been reported experimentally (Wang et al., 1992;

Forstner et al., 1997), (ii) the first steps in gaseous oxidation of alkenes are relatively

well established (e.g., Calvert et al., 2000) and (iii) SOA formation is expected from

multiple oxidation steps of this volatile precursor.

The aerosol creation potential of 1-octene is simulated in a box model. Physical5

conditions and chemical regimes are held constant throughout the simulation in order

to isolate the influence of the initial hydrocarbon concentration or NOx regimes on SOA

formation. Relative humidity is set to 50%. Temperature is fixed at 298 K. Photolysis

frequencies are computed for a zenith angle of 30 degrees for mid-latitude conditions

using the TUV model (Madronich and Flocke, 1998). Simulations are performed under10

various fixed NOx mixing ratios, between 50 ppt and 100 ppb. NOx levels are adjusted

at each time step to sustain the prescribed NOx mixing ratio. Finally, simulations are

carried out for various initial mixing ratios of the parent hydrocarbon, [HC]0, ranging

from 1 to 100 ppb.

4 Typical temporal evolution of SOA mass and speciation15

Results are presented here with a particular focus on the gradual change of organic

compounds in the particulate phase during gas-phase oxidation. The various simu-

lations present similar characteristics. Typical profiles are illustrated here with results

obtained for the simulation carried out under 1 ppb of NOx and starting with an initial

loading of 10 ppb of octene. Under those conditions, octene removal is dominated by20

OH radical chemistry (with a reactivity yield toward OH higher than 90%).

The temporal evolutions of octene, secondary organics and inorganic carbon

(i.e. CO+CO2) during the simulation are shown in Fig. 2a. For the conditions simu-

lated here, the precursor is essentially consumed after 20 h of irradiation. At this time,

secondary organics represent the major fraction of the carbon. This fraction is then25

progressively oxidised in the gas-phase into CO and CO2.

The distribution of secondary organics between the gaseous and particulate phases

11231
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is shown in Fig. 2b. SOA mass only appears when a significant fraction (50%) of

precursor has been oxidised. Aerosol mass reaches a maximum after about 30 h of

oxidation and a slight decrease of SOA mass is then observed. As no aerosol phase

reactions are implemented in the model, the gas/particle equilibria of the more volatile

compounds are progressively shifted from particle to gas, as gas-phase oxidation pro-5

ceeds. Once in the gaseous phase, those compounds evolve by oxidation until the

final formation of CO and CO2. A significant fraction of the carbon still remains in the

condensed phase (about 15% of the carbon at the end of the simulation).

The distribution of particulate organics is shown as a function of the chain length in

Fig. 2c. This fraction is dominated by species holding 8 carbon atoms, i.e. of the same10

size as the parent compound. As oxidation proceeds and particulate mass increases,

the amount of compounds with shorter carbon chain length also increases.

The distribution of particulate organic compounds bearing 8 carbons is shown in

Fig. 2d as a function of the number of functional groups borne by the molecules.

C8 compounds in the condensed phase mainly bear 4 functional groups. After 30 h15

of oxidation, those compounds volatilise into the gas phase again. Tri-functionalised

C8 compounds are found in the aerosol phase at the beginning of the oxidation but

volatilise rapidly back to the gas phase after 24 h. Species bearing 5 functions appear

in particulate matter as gas-phase oxidation proceeds and for the conditions simulated

here remain in the particle phase.20

The distribution of the organic moieties in the particulate phase is shown as a func-

tion of time in Fig. 3. Results are expressed as an organic functional group (OFk) per

particulate carbon ratio as:

ROF k/C =

∑

i

nOF k
i Ci

∑

i

nC
i
Ci

(4)

where Ci is the concentration of molecule i in the aerosol phase and n
OFk
i

or nC
i are25

the number of organic functions k or carbon atoms in the molecule i , respectively.

11232
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The substitution degree of the carbon (i.e.
∑

k

ROF k/C) is found to be slightly sensitive

to oxidation time. As expected, the degree of substitution is rather high with values

of about 50%. The dominant moieties in the particulate phase are found to be the

alcohol (R
−OH/C=18%), nitrate (R

−ONO2/C=18%) and ketone (R
−CO−/C=13%) moieties.

Hydroperoxides and PANs are found in the 3% range.5

In this exploratory study, gaseous oxidation of a relatively high-volatility hydrocar-

bon, 1-octene, is simulated to lead to SOA formation for representative concentrations

of tropospheric levels. Contributors to SOA formation are shown to be highly function-

alised products, bearing at least 3 functional groups. These compounds are formed

via multiple oxidation steps of the parent HC. Time scales of a few days are indeed10

required to form those low vapour pressure products. This delay may explain why neg-

ligible or small SOA formation is observed in laboratory chamber experiments from the

oxidation of relatively high-volatility precursors. Furthermore, some SOA contributors

(especially the 4- and 5-functional C8 species) have very low vapour pressure. These

compounds remain preferentially in the aerosol phase and SOA evaporation is a slow15

process. Therefore lifetime of SOA appears likely driven by aerosol reactivity and/or

microphysical processes.

5 The SOA/VOC/NOx system

The formation of SOA has been illustrated in the previous section with a simulation

carried out under 1 ppb of NOx and starting with an initial loading of 10 ppb of octene.20

SOA formation is quite sensitive to external parameters such as the initial mixing ratio

of the parent hydrocarbon, [HC]0, and NOx-levels. The sensitivity of the SOA/VOC/NOx

system is explored here with a particular focus on (i) the maximum aerosol yield, (ii)

the temporal evolution of SOA formation and (iii) SOA speciation. The objective of

this section is to assess whether the behaviour simulated using the explicit modelling25

agrees with general tendencies observed during laboratory chamber experiments.

11233
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5.1 Maximum aerosol yields

5.1.1 Influence of [HC]0

The dependence of SOA formation on the initial mixing ratio of the parent hydrocarbon

has been widely studied in laboratory chamber experiments (e.g., Hurley et al., 2001;

Song et al., 2005; Ng et al., 2006; Kroll et al., 2006). An increase of [HC]0 leads directly5

to an increase of the aerosol organic mass, Mo, by increasing the concentrations of

the SVOC in the system. An additional effect arises from the increase of the organic

mass which acts as the medium into which oxidation product can be absorbed. The

dependence of SOA formation on Mo is generally discussed by observing the evolution

of the maximum aerosol yield, Y , versus Mo (e.g., Odum et al., 1996, 1997; Song10

et al., 2005; Presto et al., 2005; Ng et al., 2007; Kroll et al., 2007). Y increases with

Mo. Notable limit behaviours are that:

– At low particulate organic mass, Y strongly depends on Mo. For Mo equal to

zero, a compound will partition into the particulate phase only if its concentra-

tion exceeds its saturation vapour pressure. When increasing Mo, products might15

be absorbed into the particle phase even though they are present at concentra-

tions below their saturation point. The two-product model (see Eq. 2) predicts

an aerosol yield that is directly proportional to Mo (Y → Mo

∑

αiKom,i ) when Mo

tends to zero.

– At high particulate organic mass, Y is weakly dependent on Mo. The two-product20

model (see Eq. 2) predicts an aerosol yield that is independent of Mo (Y →

∑

αi )

when Mo tends to infinity.

Figure 4 shows simulated evolutions of SOA formation as classical plots reported

from laboratory chamber experiments: (a) the maximum aerosol mass (denoted Mmax
o

hereafter) as a function of ∆[HC] (the final growth plot as defined by Ng et al., 2006)25

and (b) the maximum aerosol yield (denoted Y max
hereafter) as a function of organic
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aerosol mass concentration (the final yield plot as defined by Ng et al., 2006). These

plots are reported for simulations carried out under 10 ppb of NOx. The set includes

five [HC]0 values: 1, 5, 10, 50 and 100 ppb. The final growth and yield curves for the

two-product model are also reported. The final growth curve is of similar shape to those

reported from laboratory chamber experiments (e.g., Hurley et al., 2001; Song et al.,5

2005; Ng et al., 2006; Kroll et al., 2006). Mmax
o varies from about 3 to 250µg m

−3
for

1 and 100 ppb of [HC]0, respectively. The final yield curve also has the same shape

as those observed in laboratory chamber experiments (e.g., Odum et al., 1996, 1997;

Song et al., 2005; Presto et al., 2005; Ng et al., 2007; Kroll et al., 2007). Y max
ranges

from about 0.1 to an asymptotic value of about 0.57. As expected, the effect on Y max
10

of changes in Mo is clearly more pronounced at low Mo than at higher values.

The explicit approach captures the general qualitative behaviours observed during

laboratory chamber experiments of the dependence of SOA formation with [HC]0, ten-

dencies that are also reported by the two-product (e.g., Odum et al., 1996) or the

one-product approach (Kroll and Seinfeld, 2005).15

5.1.2 Influence of NOx

NOx-levels have been shown to largely influence SOA formation during laboratory

chamber experiments. Conclusions of those experimental studies are that (i) a higher

Mo is observed under low-NOx experiments than under high-NOx (e.g., Hatakeyama

et al., 1991; Hurley et al., 2001; Johnson et al., 2004; Martin-Riviejo and Wirtz, 2005;20

Song et al., 2005; Presto et al., 2005; Ng et al., 2007; Kroll et al., 2007), (ii) at high NOx,

Mo is found to decrease with increasing NOx (e.g., Pandis et al., 1991; Zhang et al.,

1992; Kroll et al., 2006) and (iii) at low NOx, Mo is found to increase with increasing

NOx (e.g., Pandis et al., 1991; Zhang et al., 1992; Kroll et al., 2006).

Figure 5 shows Mmax
o as a function of NOx level for simulations carried out with an25

initial loading of 10 ppb of [HC]0. The set includes nine NOx levels: 0.05, 0.1, 0.5, 1,

2.5, 5, 10, 50 and 100 ppb. Two regimes of SOA formation dependence on NOx level

are identified: a first regime, where Mmax
o increases with NOx and a second one, where
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Mmax
o decreases when NOx increases. Transition between those two regimes occurs

at a NOx mixing ratio of about 1 ppb. The simulated profile of Mmax
o versus NOx shows

a similar shape to those reported from laboratory chamber experiments browsing NOx

levels from low to high NOx (e.g., Kroll et al., 2006; Pandis et al., 1991; Zhang et al.,

1992).5

The explicit approach therefore captures the general features reported from labora-

tory chamber experiments of the influence of NOx level on SOA formation. This explicit

model can as a result be used as an exploratory tool to (i) facilitate interpretations of

SOA formation observed in laboratory chamber experiments and (ii) give some insight

into SOA formation under atmospherically relevant concentrations.10

5.1.3 The SOA/VOC/NOx system

The sensitivity of the SOA/VOC/NOx system is explored here on the basis of 45 sim-

ulations, conducted with five different initial concentrations of octene (1, 5, 10, 50 and

100 ppb) under nine fixed NOx concentrations (0.05, 0.1, 0.5, 1, 2.5, 5, 10, 50 and

100 ppb). Figure 6 shows Y max
as a function of NOx level and initial loading of octene,15

as usually done for ozone isopleths.

At a fixed NOx level, Y max
increases globally with increasing [HC]0. As expected

and discussed before, Y max
is found to be largely dependent on [HC]0 at low [HC]0.

Y max
is expected to tend to an asymptotic value when [HC]0 tends to infinity. This

behaviour is observed at low NOx levels but not at high NOx. The simulated zone20

focuses on low [HC]0, representative of atmospheric levels. The asymptotic value of

Y max
is not reached under those conditions. At a fixed [HC]0 value, two NOx regimes

are highlighted as specified before. Y max
increases with NOx at low NOx and shows

an opposite behaviour at high NOx. Note that Y max
is highly sensitive to NOx at high

[HC]0, but remains weakly sensitive to NOx at low [HC]0. Maximum Y max
values are25

reached for an HC(ppb)/NOx(ppb) ratio of about 10. This constant ratio is also reported

in Fig. 6. An increase or decrease of this ratio results in a decrease of simulated Y max
.

The limitation of SOA formation under high NOx levels has been suggested to be the
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result of the change in (i) the relative level of oxidants, i.e. OH, O3 and NO3 (Hurley

et al., 2001), and/or (ii) the branching ratio for the recombination of organo-peroxy

radicals, RO2 (e.g., Hatakeyama et al., 1991; Johnson et al., 2004; Presto et al., 2005;

Kroll et al., 2006; Ng et al., 2007; Kroll et al., 2007). The increase of aerosol yields with

increasing NOx at low NOx levels remains not understood (e.g., Kroll et al., 2006).5

Gas/particle partitioning of a given SVOC occurs when its gas-phase concentra-

tion exceeds its equilibrium vapour pressure above a particle surface. Gas/particle

partitioning of a given SVOC strongly depends on (i) its chemical identity defining its

vapour pressure and (ii) its supersaturation state which is directly linked to its gas-

phase concentration. According to the speciation of particulate organic matter given in10

Fig. 2d, SOA contributors are mainly C8 organic compounds bearing at least 4 func-

tional groups. Figure 7 shows the time evolution of these secondary organics summed

across both phases for simulations starting with an initial amount of 10 ppb of octene.

Three cases are reported in Fig. 7 for various NOx levels (50 ppt, 1 ppb and 100 ppb).

For the low-NOx case, the formation of secondary organic species is slow. A maximum15

concentration of about 8.5 ppbC is reached after 110 h. For the intermediate-NOx case,

the formation of secondary organics is fast and a maximum value of about 12 ppbC is

reached after 30 h. Under high-NOx conditions, the formation of secondary organic is

slow and lower than for the low and intermediate NOx levels. A maximum concentra-

tion of 3 ppbC is reached after 170 h. Formation and accumulation of multifunctional20

compounds bearing at least 4 functional groups is optimal for a NOx level of a few ppb.

This optimal condition of NOx coincides with the maximum Y max
reached for an initial

loading of 10 ppb of octene.

Various processes explain the evolution with NOx level of secondary organics acting

as SOA contributors. Figure 8 shows the relative contribution of oxidants to the re-25

moval of 1-octene as a function of NOx level and initial loading of 1-octene. Under the

simulated conditions, octene is mainly removed by OH radicals. NO3 is responsible for

less than 1% of octene oxidation. However reactivity toward O3 can be significant, with

an O3 reaction yield reaching 50%. Reactions of 1-octene with O3 break the >C=C<
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bond and lead to the formation of smaller (and more volatile) compounds. Figure 6

and Fig. 8 show that for a given [HC]0, the maximum Y max
is reached when the relative

contribution of OH to the removal of the precursor is maximum. The dependence of

SOA formation on NOx can therefore be interpreted as being partially controlled by the

differences in relative oxidant levels. In addition, under low and high NOx, the oxida-5

tion rate is slow because of low oxidant concentrations. With a slow oxidation rate, the

gas-phase concentration of secondary products increases slowly and the SVOC are

consequently oxidised before they accumulate in particles (see Fig. 7). Furthermore

under high NOx levels, reactions with NO produce mostly alkoxy radicals, which can

decompose to smaller (and more volatile) compounds. Simulated results lead to the10

conclusions that the dependence of Y max
with NOx is here the result of (i) the relative

contribution of gaseous oxidants, (ii) the gaseous oxidation rate and (iii) the gaseous

radical chemistry.

5.2 Temporal behaviour

Ng et al. (2006) suggested that the shape of the time-dependent growth curve can15

give some insight into the processes involved in SOA formation. Especially, this shape

reveals the importance and the relative contribution of second generation products to

SOA growth.

Figure 9 reports the time-dependent growth curve for simulations carried out under

10 ppb of NOx. The set includes the five [HC]0 values of 1, 5, 10, 50 and 100 ppb.20

The final growth curve is also reported (as also shown Fig. 4a). The time-dependent

growth does not overlap the final growth curve. This behaviour is interpreted by Ng

et al. (2006) as the result of SOA formation occurring after multiple oxidation steps. We

showed in the previous section that SOA formation from octene oxidation is the result

of species bearing at least 3 functional groups, formed by multiple oxidation steps. The25

behaviour observed in Fig. 9 therefore confirms the interpretation provided by Ng et al.

(2006) to explain the shape of the curve.
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5.3 SOA speciation sensitivity

The identities of secondary gaseous organics produced during gas-phase oxidation are

a function of NOx levels (e.g., Atkinson, 2000). NOx level controls the fate of peroxy

radical intermediates by changing the branching ratios in the radical photochemistry.

Organic nitrate formation versus organic peroxide formation is thus directly affected5

by NOx. NOx is consequently suspected to influence SOA speciation, and therefore

organic particulate matter ageing. At low NOx, gaseous reactions with HO2 may form

peroxides (e.g., Atkinson, 2000). Gas/particle partitioning of hydroperoxides at low

NOx has been shown in both laboratory chamber experiments (Docherty et al., 2005;

Tobias and Ziemann, 2001) and modelling studies (Bonn et al., 2004; Johnson et al.,10

2004, 2005) to represent a dominant fraction of SOA. Under high NOx, gaseous re-

action of RO2 with NO produces organic nitrates among other products. Partitioning

into nitrate moieties at high NOx has been detected in experiments (e.g., Presto et al.,

2005).

The distribution of the organic moieties (ROF k/C) in the particulate phase at the max-15

imum aerosol yield is shown in Fig. 10. Those values are plotted as a function of NOx

for the simulation carried out with 10 ppb of [HC]0. The substitution degree of the car-

bon (i.e.
∑

k

ROF k/C) is found to be slightly sensitive to NOx level and [HC]0, with values

raging around 40 to 50 %. At all NOx levels, the dominant moieties are found to be the

alcohol (15%<ROH/C<25%) and the ketone (R
−CO−/C<13%). As expected at low NOx,20

hydroperoxide moieties are a large fraction of SOA (R
−OOH/C=12%), while at high NOx,

nitrate moieties prevail (R
−ONO2/C=18%).

6 Conclusions

An explicit model has been developed to explore (i) the potential of the products of

multiple oxidation steps to play a role as SOA contributors and (ii) the evolution of the25
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SOA/VOC/NOx system. The sensitivity of the SOA/VOC/NOx system has been studied

for the oxidation of 1-octene under tropospheric relevant concentrations.

In this exploratory study, gaseous oxidation of octene is simulated to lead to SOA

formation. Contributors to SOA formation are shown to be formed via multiple oxidation

steps of the parent hydrocarbon. Time scales of a few days are indeed required to form5

those low vapour pressure products. This delay may explain why negligible or small

SOA formation is observed in laboratory chamber experiments from the oxidation of

relatively high volatile precursors.

The explicit approach captures the qualitative features observed during laboratory

chamber experiments of the SOA/VOC/NOx system:10

– Y max
is found to be largely dependent on [HC]0 at low [HC]0 and tends to an

asymptotic value when [HC]0 tends to infinity.

– Y max
increases with NOx at low NOx and shows an opposite behaviour at high

NOx.

Maximum Y max
values are reached for a VOC(ppb)/NOx(ppb) ratio of about 10. Simu-15

lated results lead to the conclusions that the dependence of Y max
with NOx is here the

result of (i) the relative contribution of oxidants, (ii) the gaseous oxidation rate and (iii)

the gaseous radical chemistry. Furthermore the simulated temporal behaviour of SOA

formation corroborates the interpretation provided by Ng et al. (2006) for SOA forma-

tion from multiple oxidation steps of the parent compound. The simulated speciation20

shows a large contribution of hydroperoxide moieties at low NOx while at high NOx,

nitrate moieties prevail as expected.

As a result, such an explicit model can be used as a useful exploratory tool to (i) fa-

cilitate interpretations of SOA formation observed in laboratory chamber experiments,

(ii) give some insights of SOA formation under relevant atmospheric conditions and (iii)25

examine the implications for the regional/global lifetimes of the SOA.
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Fig. 2. Time evolution of carbonaceous species in the particulate phase during the simula-

tion carried out under 1 ppb of NOx and starting with an initial loading of 10 ppb of 1-octene.

Panel (a): distribution of the carbon. Panel (b): distribution of secondary organics. Panel (c):

distribution of particulate organics as a function of carbon chain length. Panel (d): distribu-

tion of particulate C8 organics as a function of the number of functional groups borne by the

molecules.
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circle represents Y max
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o obtained for a single simulation. The continuous line represents

the fit of the data from the two-product model (α1=0.17, K1,om=0.08, α2=0.40, K2,om=0.26).
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o obtained for a single simulation.
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Fig. 10. Distribution of the ratio of organic functional group per particulate carbon (ROF k/C) as

a function of NOx level for simulations carried out with an initial loading of 10 ppb of 1-octene.

The distribution of (ROF k/C)is plotted at the maximum aerosol yield.
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