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Abstract. We analyse the power spectral densityδB2 and
δE2 of the magnetic and electric fluctuations measured by
Cluster 1 (Rumba) in the magnetosheath during 23 h, on four
different days. The frequency range of the STAFF Spectral
Analyser (f =8 Hz to 4 kHz) extends from about the lower
hybrid frequency, i.e. the electromagnetic (e.m.) range,
up to about 10 times the proton plasma frequency, i.e. the
electrostatic (e.s.) range. In the e.m. range, we do not con-
sider the whistler waves, which are not always observed, but
rather the underlying, more permanent fluctuations. In this
e.m. range,δB2 (at 10 Hz) increases strongly while the lo-
cal angle2BV between the magnetic fieldB and the flow
velocity V increases from 0◦ to 90◦. This behaviour, also
observed in the solar wind at lower frequencies, is due to the
Doppler effect. It can be modelled if we assume that, for the
scales ranging fromkc/ωpe≃ 0.3 to 30 (c/ωpe is the elec-
tron inertial length), the intensity of the e.m. fluctuations for
a wave numberk (i) varies like k−ν with ν≃ 3, (ii) peaks
for wave vectorsk perpendicular toB like | sinθkB |µ with
µ≃100. The shape of the observed variations ofδB2 with
f and with2BV implies that the permanent fluctuations, at
these scales, statistically do not obey the dispersion relation
for fast/whistler waves or for kinetic Alfv́en waves: the fluc-
tuations have a vanishing frequency in the plasma frame, i.e.
their phase velocity is negligible with respect toV (Taylor
hypothesis). The electrostatic waves around 1 kHz behave
differently: δE2 is minimum for2BV ≃ 90◦. This can be
modelled, still with the Doppler effect, if we assume that,
for the scales ranging fromkλDe≃0.1 to 1 (λDe is the Debye
length), the intensity of the e.s. fluctuations (i) varies likek−ν

with ν≃ 4, (ii) peaks fork parallel toB like | cosθkB |µ with
µ≃100. These e.s. fluctuations may have a vanishing fre-
quency in the plasma frame, or may be ion acoustic waves.
Our observations imply that the e.m. frequencies observed
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in the magnetosheath result from the Doppler shift of a spa-
tial turbulence frozen in the plasma, and that the intensity
of the turbulentk spectrum is strongly anisotropic, for both
e.m. and e.s. fluctuations. We conclude that the turbulence
has strongly anisotropick distributions, on scales ranging
from kc/ωpe≃0.3 (50 km) tokλDe≃1 (30 m), i.e. at elec-
tron scales, smaller than the Cluster separation.

Keywords. Magnetospheric physics (Magnetosheath;
Plasma waves and instabilities) – Space plasma physics
(Turbulence)

1 Introduction

The magnetic and electric fluctuations in the Earth’s magne-
tosheath have been mainly studied either in the Ultra Low
Frequency range (ULF,f <10 Hz) or at much higher fre-
quenciesf ≥1 kHz (see the review by Lucek et al., 2005).

The intermediate range (10 Hz≤f ≤1 kHz) has been given
less attention, although results have been obtained thanks
to spacecraft which observed electromagnetic (e.m.) and/or
electrostatic (e.s.) waves in the magnetosheath. According to
these results, the wave intensity in the e.m. range is mainly
controlled by the position in the magnetosheath, in particu-
lar the distance of the magnetopause (Rodriguez, 1985). In
the e.s. range, the wave intensity depends on the distance of
the bow shock (Rodriguez, 1979); and it depends strongly
on the local angle between the magnetic fieldB and the flow
velocityV (Coroniti et al., 1994). The STAFF Spectral Anal-
yser (STAFF-SA) on board Cluster allows one to analyse
this intermediate range between 8 Hz and 4 kHz, i.e. be-
tween aboutflh and 10fce or 10fpi (flh, fce andfpi are the
nominal lower hybrid frequency, electron gyrofrequency and
proton plasma frequency in the magnetosheath plasma rest
frame).
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In the present paper (Paper 1, and in a companion Paper 2
by Lacombe et al., 2006) we show results obtained from the
STAFF-SA data, the most striking of which, discussed in Pa-
per 1, being the strong dependence of the intensity of the
fluctuations, both electromagnetic and electrostatic, on the
angle2BV between the magnetic fieldB and the flow veloc-
ity V . In Paper 1, we show that a simple interpretation of this
observation is that the fluctuations have a highly anisotropic
distribution of wave vectors, while their observed frequen-
cies are mainly due to a Doppler shift. In Paper 2, we will
show that no parameter other than2BV appears to play a sig-
nificant role in the turbulence intensity in the magnetosheath.
Actually, the fluctuations in the STAFF-SA frequency range
are made of two components, one component permanently
observed, the “permanent” component, over which are super-
posed intermittent, short duration bursts of whistler or elec-
trostatic waves. In both papers, we neglect the whistler waves
or the electrostatic pulses, which are not always present, and
we only consider the underlying permanent fluctuations.

To interpret spectral observations, the frequencies mea-
sured on board a spacecraft must be transformed to frequen-
cies in the plasma rest frame and, if possible, to wave num-
bers. Any observed frequencyω can be considered as the
sum of the frequencyω0 of a wave in the plasma rest frame
plus the Doppler shift,ω=ω0+k.V , wherek is the wave vec-
tor . The Taylor hypothesis, usually made in the solar wind,
implies thatω0 is vanishing i.e. that the phase speed of
the waveω0/k is much smaller thanV in a large range of
frequencies. If we make the Taylor hypothesis in the mag-
netosheath, the STAFF-SA frequencies 8 Hz to 4 kHz corre-
spond to the electron scales∼10c/ωpe to ∼3λDe (c/ωpe is
the electron inertial length,λDe the electron Debye length).
In the present paper, we thus study the anisotropies of the
wave vector distributions at electron scales (about 50 km to
30 m) which are smaller than the Cluster separation.

In the ULF range (f <10 Hz) what are the directions of the
wave vectors found for case studies in the magnetosheath?
For the Alfvén ion cyclotron waves, the wave vectors are
generally parallel to the magnetic fieldB (e.g. Lacombe et
al., 1995; Alexandrova et al., 2004). Some observations of
mirror modes show that they are 3-D structures, with the mi-
nor axis nearly along the magnetopause normal (Hubert et
al., 1998) and perpendicular to bothB andV (Lucek et al.,
2001). The normals of the mirror structures observed by Hor-
bury et al. (2004) suggest that they are cylinders rather than
sheets. A case study with the k-filtering method, in mirror-
like fluctuations near the magnetopause, displays wave vec-
tors mainly perpendicular toB (Sahraoui et al., 2004) and
also perpendicular to the magnetopause normal (Sahraoui
et al., 2006). With the same method, during 37 intervals
over 5 months, Scḧafer et al. (2005) find standing mirror
modes with wave vectors mainly perpendicular toB, and
Alfv énic fluctuations at every angle with respect toB; but
quasi-perpendicular, mirror-like waves are also found, with
phase speeds up to the local Alfvén velocity.

Above 1 kHz, the fluctuations are electrostatic: the elec-
tric field and the wave vectors are mainly parallel toB.
This broadband electrostatic noise is made of bipolar and
tripolar pulses observed up tofpe with a typical duration of
0.1 ms (Pickett et al., 2005), superimposed on a background
of waves, up to a few kHz (Pickett et al., 2003).

In the intermediate frequency range of STAFF-SA (8 Hz–
4 kHz), the magnetic and the electric fluctuations at a given
frequency are nearly isotropic; but we find that their to-
tal intensitiesδB2 (in the three directions) andδE2 depend
strongly on the angle2BV betweenB andV (Sect. 3). These
strong dependences can be modelled if thek distributions
I (k) have a power law dependencek−ν and if the angu-
lar distribution ofI (k), assumed to be axisymmetric around
B, is highly anisotropic (Sect. 4). In the electromagnetic or
“whistler” range (kc/ωpe∼0.3 to 30), we find thatI (k) has
to peak fork mostly perpendicular toB, and that the perma-
nent fluctuations statistically have a vanishing frequency in
the plasma rest frame (Sect. 5). In the electrostatic or “ion
acoustic” range (kc/ωpe∼15 to 150, orkλDe∼0.1 to 1), the
distributionI (k) has to peak fork mostly parallel toB; the
fluctuations may have a vanishing frequency in the plasma
frame, but the dispersion relation of ion acoustic waves is
also statistically consistent with the observations (Sect. 6).
In Sect. 7, we discuss a possible wave mode identification
based on the ratioδE2/δB2 observed in the electromagnetic
range. We compare our results about the anisotropies of the
wave vector distributions at electron scales, in the magne-
tosheath, to the anisotropies observed in the solar wind. Fi-
nally, we show that the strong dependence of the intensity of
the permanent e.m. and e.s. fluctuations on the angle2BV is
probably not due to the dissipation of an energy input in the
magnetosphere frame.

2 Data

The STAFF Spectral Analyser (Cornilleau-Wehrlin et al.,
1997) measures every second the diagonal terms of the 5×5
complex spectral matrix computed with the threeδB compo-
nents of the magnetic field fluctuations and twoδE compo-
nents of the electric field fluctuations. STAFF-SA operates
at 27 logarithmically spaced frequencies, between 8 Hz and
4 kHz. We shall use here 4-s averages of the magnetic Power
Spectral Density (PSD) which is the trace of the magnetic
field spectral matrixδB2=δB2

xx+δB2
yy+δB2

zz in nT2/Hz,

and 4-s averages of the electric PSDδE2=δE2
xx+δE2

yy in

(mV/m)2/Hz. We shall also consider the phase differences
between the three components ofδB, given by the nondi-
agonal terms of the complex spectral matrix measured ev-
ery 4 s. This 4-s complex spectral matrix is projected in a
magnetic-field aligned frame, so thatδB1 and δB2 are the
two components ofδB perpendicular to theB field averaged
over 4 s:δB1 is in the plane (B, XGSE), with a positive com-
ponent alongXGSE. A phase difference of 90◦ betweenδB1

Ann. Geophys., 24, 3507–3521, 2006 www.ann-geophys.net/24/3507/2006/
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Table 1. Coordinates of the four time intervals on Cluster-1.

date 12.02.2001 16.12.2001 19.12.2001 17.05.2002

time (UT) 00:15 07:30 03:15 09:00 00:00 06:00 08:00 12:15

X RE 4.20 11.81 -1.10 0.79 3.40 5.06 5.53 6.10
Y RE 5.04 7.07 9.97 15.01 17.74 18.53 -8.69 -12.84
Z RE 8.91 8.52 8.62 6.90 4.03 0.64 8.00 6.66

LT (hour) 14:39 14:04 18:25 17:48 17:17 16:59 08:10 07:42
lat (deg.) 53.6 31.8 40.7 24.7 12.6 1.9 37.8 25.1

andδB2 implies a circular right-handed polarisation, while a
phase difference of 0◦ or 180◦ implies a linear polarisation.

We analyse four intervals of Cluster data (spacecraft 1),
lasting from 4 h to 7 h. Table 1 gives the dates, the GSE co-
ordinates, the local time and the latitude of Cluster 1 at the
beginning and the end of each interval. The considered inter-
vals are generally far from the bow shock, except the longest
interval, on 12 February 2001, which corresponds to a com-
plete crossing of the magnetosheath. We shall mainly analyse
19 December 2001, when the Cluster spacecraft were in the
dusk side.

The plasma properties, proton density, temperature and
velocity (R̀eme et al., 1997) and the electron temperature
(Johnstone et al., 1997) are sampled with a time resolution
of 4 s. We use 4-s averages of the magnetic field (Balogh et
al., 1997).

3 Observations

The point we want to stress in this paper is the remarkable
and strong dependence ofδB2 andδE2 on the angle2BV

between the magnetic fieldB and the flow velocityV , when
observed at a given frequency in the STAFF-SA range. This
strong dependence is observed while the variance of the fluc-
tuations is nearly isotropic, so thatδB2

xx≃δB2
yy≃δB2

zz and

δE2
xx≃δE2

yy .
Let us first consider the magnetic fluctuations. Figure 1

displays scatter plots ofδB2 as a function of2BV on differ-
ent days and at different frequencies, the broken line being
the median value for bins 5◦ wide. Despite the scatter of the
data, Fig. 1a, at 8.8 Hz, shows that the median line displays
a broad peak for2BV ≃90◦. On the same day, 19 Decem-
ber 2001, Fig. 1b displays a weaker curvature at a higher
frequency, but this is due to the background noise: the back-
ground level is about 5×10−9 nT2/Hz at 56 Hz (Cornilleau-
Wehrlin et al., 2003), and it prevents the measurements of
weaker signals for2BV <50◦. Figure 1c shows that2BV

varies over about 180◦ in 4 h on 17 May 2002: it helps to
see that there is probably a symmetry between2BV <90◦

and2BV >90◦. On 16 December 2001,δB2 is very intense,
well above the background noise: there is a broad peak of

Figure 1: Satter plots of the trae of the spetral matrix of the magneti�utuations every 4 s, as a funtion of the angle between the �eld and the�ow veloity in the magnetosheath: a) day 19/12/2001, for = 8.8 Hz; b)19/12/2001, = 56 Hz; ) 17/05/2002, 8.8 Hz; d) 16/12/2001, 8.8 Hz; e)16/12/2001, 70 Hz; f) 16/12/2001, 111 Hz. The thik line gives the median valuefor bins wide.
1

Fig. 1. Scatter plots of the traceδB2 of the spectral matrix
of the magnetic fluctuations every 4 s, as a function of the angle
2BV between theB field and the flow velocityV in the mag-
netosheath:(a)19 December 2001, forf =8.8 Hz; (b) 19 Decem-
ber 2001,f =56 Hz; (c) 17 May 2002, 8.8 Hz;(d) 16 December
2001, 8.8 Hz;(e)16 December 2001, 70 Hz;(f) 16 December 2001,
111 Hz. The thick line gives the median value for bins 5◦ wide.

the median line for2BV ≃90◦ and a strong curvature of the
scatter plot at 8.8 Hz (Fig. 1d), as well as at 70 Hz and 111 Hz
(Figs. 1e and 1f).

As mentionned in the Introduction, the fluctuating fields
are made of several components. This is clearly shown
by histograms of the PSDδB2 at a given frequency, and
histograms of the phase differenceφB1B2 between the two
componentsδB1 andδB2 perpendicular to the localB field
(Fig. 2). In the histogram of Fig. 2a, the solid line corre-
sponds to the data of the scatter plot of Fig. 1a: this is a nearly
Gaussian distribution, at 8.8 Hz. The corresponding phases
φB1B2 (Fig. 2b) are around 0◦ and 180◦ and imply a linear
polarisation. Whistler waves, which are right-handed, should
appear as a peak atφB1B2≃90◦, if they were intense enough.
The dotted line in Fig. 2a gives the histogram of the PSD of
the fluctuations withφB1B2=90◦±10◦: these whistler waves
have a negligible power at 8.8 Hz. The histogram (solid line)
of Fig. 2c corresponds to the data of Fig. 1e at a higher

www.ann-geophys.net/24/3507/2006/ Ann. Geophys., 24, 3507–3521, 2006
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Figure 2: Day 19/12/2001 at 8.8 Hz: a) histograms of (nT /Hz) for thewhole data set (solid line), and for the right-handed �utuations (dotted line); b)histogram of the phase di�erene between the two omponents andof the �utuations perpendiular to the loal �eld (4 s average). Day 16/12/2001at 70 Hz: ) histogram of for the whole data set (solid line), and forthe right-handed �utuations (dotted line); d) histogram of the phase di�erene.
2

Fig. 2. 19 December 2001 at 8.8 Hz:(a) histograms of logδB2

(nT2/Hz) for the whole data set (solid line), and for the right-handed
fluctuations (dotted line);(b) histogram of the phase difference
φB1B2 between the two componentsδB1 andδB2 of the fluctua-
tions perpendicular to the localB field (4 s average). 16 Decem-
ber 2001 at 70 Hz:(c) histogram of logδB2 for the whole data set
(solid line), and for the right-handed fluctuations (dotted line);(d)
histogram of the phase differenceφB1B2.

frequency (70 Hz): on the Gaussian distribution is super-
posed a shoulder of less frequent and more intense fluctua-
tions. The corresponding phases (Fig. 2d) are still mainly lin-
ear (φB1B2=0◦ or 180◦) but a few whistler waves are present
with a right-handed polarisationφB1B2≃90◦. In Fig. 2c, the
dotted line gives the histogram of the PSD of these whistlers:
at 70 Hz, the whistlers are relatively more important above
10−5 nT2/Hz than below. They are not dominant but they
contribute to the dispersion of the scatter plots of Figs. 1e
and 1f. The low intensity boundary of each scatter plot has
a maximum for2BV ≃90◦: this is typical of the permanent
e.m. turbulence. The high intensity boundary of each scat-
ter plot has no clear maximum: this is due to whistler waves
which will be analysed in a future work. The time inter-
vals with whistler waves at different frequencies have not
been withdrawn from the data because the whistlers are rel-
atively rare and because their occurrence and their intensity
do not depend on2BV . The scatter plots and the medians of
Fig. 1 thus mainly correspond to permanent fluctuations with
a Gaussian histogram, which are the subject of our study.

In Fig. 3, we show the spectra averaged over sev-
eral hours on the four considered days, for large an-
gles (65◦<2BV <115◦, solid lines) and for small angles
(2BV <25◦ and 2BV >155◦, dashed lines). Fromflh to
fce, δB2 is always more intense for large2BV . The dot-
ted line gives the observed minimum PSD over each interval,
which is near the sensitivity of STAFF-SA given by Fig. 2 of
Cornilleau-Wehrlin et al. (2003). The spectral bumps around
70 Hz on Figs. 3a and 3d are observed for large and small

Figure 3: Average power spetral density for large angles (, solid line) and for small angles ( , , dashed line), forthe four onsidered intervals. The dotted line gives the observed minimum PSDover eah interval. The horizontal bars at the top of eah �gure give the range oflower hybrid frequenies and of eletron ylotron frequenies found duringthe interval.
3

Fig. 3. Average power spectral densityδB2(f ) for large angles
(65◦<2BV <115◦, solid line) and for small angles (2BV <25◦,
2BV >155◦, dashed line), for the four considered intervals. The
dotted line gives the observed minimum PSD over each interval.
The horizontal bars at the top of each figure give the range of lower
hybrid frequenciesflh and of electron cyclotron frequenciesfce

found during the interval.

2BV ; they are due to whistlers which are relatively more fre-
quent or more intense on 12 February 2001 and on 17 May
2002 than on the two other days. The scalesk−1=V/2πf

corresponding to 8 Hz–800 Hz givekc/ωpe≃0.3 to 30, so
that the wavelengths are≃40 km to 400 m, smaller than the
separation between the Cluster spacecraft. The spectral slope
is ν≃3 around 10 to 30 Hz, andν≃4 above 100 Hz (Fig. 3).

Let us now consider the electric fluctuations. As we did
not withdraw the whistlers from the magnetic fluctuations,
we do not withdraw them from the electric fluctuations in
the electromagnetic range (below≃300 Hz) because they are
not dominant. In the electrostatic range (above≃300 Hz)
the short duration pulses observed in the time domain by
Pickett et al. (2005) probably do not play a large part in
our data which are 4-s averages of the PSD. We have not
tried to withdraw them from our data: indeed, Pickett et
al. (2005) note that neither the time duration nor the ampli-
tude of the pulses depend on2BV . Conversely, Coroniti et
al. (1994) noted that, around 1 kHz in the magnetosheath,
δE2 is large for small2BV and vanishes for2BV ≃90◦.
We also observe that the electric PSD at a given frequency
depends on the angle2BV , but with a change in regime
between low and high frequencies. Indeed, the spectra of
Fig. 4 show thatδE2 is more intense for large2BV (solid
lines) below a frequencyfr≃200 to 1000 Hz, whileδE2 is
more intense for small2BV (dashed lines) abovefr ; fr is
slightly belowfpi , and is below or aroundfce. Figures 5a
to 5e displayδE2 as a function of2BV on day 19 December
2001, at different frequencies. At 8.8 Hz (Fig. 5a) there is
no maximum ofδE2 for 2BV ≃90◦, while the maximum of

Ann. Geophys., 24, 3507–3521, 2006 www.ann-geophys.net/24/3507/2006/
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Figure 4: Average power spetral density for large angles (, solid line) and for small angles ( , , dashed lines),for the four onsidered intervals. The dotted line gives an estimation of thebakground impat noise on the antenna, whih varies like . The horizontalbars at the top of eah �gure give the range of proton plasma frequenies andof eletron ylotron frequenies found during the interval.
4

Fig. 4. Average power spectral densityδE2(f ) for large angles
(65◦<2BV <115◦, solid line) and for small angles (2BV <25◦,
2BV >155◦, dashed lines), for the four considered intervals. The
dotted linei gives an estimation of the background impact noise on
the antenna, which varies likef −2. The horizontal bars at the top
of each figure give the range of proton plasma frequenciesfpi and
of electron cyclotron frequenciesfce found during the interval.

δB2 at the same frequency was clear (Fig. 1a). But at 18 Hz
(Fig. 5b) and at 88 Hz (Fig. 5c),δE2 has a broad maximum
for 2BV ≃90◦. At higher frequencies, there is a relative min-
imum for 2BV ≃90◦ at 445 Hz (Fig. 5d), and a deeper min-
imum at 891 Hz (Fig. 5e). In Fig. 5e, the dispersion of the
dataδE2 at2BV ≃20◦ is larger than at2BV ≃90◦. Note that
Fig. 5f (day 17 May 2002) displays a scatter plot which is
not symmetrical with respect to2BV =90◦. This point will
be addressed in Sect. 7.2. The spectral slope ofδE2 varies
from ν≃1 to 2 belowfpi , and is about 4 abovefpi (Fig. 4).
In the e.m. range, belowfpi , the spectral slope ofδE2 is
thus weaker than the spectral slope ofδB2. We shall see in
Sect. 6 how these different behaviours forδE2(f, 2BV ) can
be modelled.

4 Models of the anisotropic distribution of wave vectors
of the turbulence

A possible explanation for the dependence on2BV of the
levelsδB2 andδE2 of the permanent fluctuations, at a given
observing frequency, is that the observations are affected by
a significant Doppler effect. Indeed, a natural assumption
is that the intensity of the permanent turbulence increases
with a decreasing wave numberk. A given Doppler shift
2πf =kV cosθkV will be reached by a smallk (which has a
large intensity), if cosθkV is large (θkV ≃0◦): this happens
for 2BV ≃0◦, if k is mostly parallel toB, and for2BV ≃90◦,
if k is mostly perpendicular toB. θkV is the angle betweenk
andV .

Figure 5: Satter plots of as a funtion of the angle . Day 19/12/2001:a) at = 8.8 Hz; b) 18 Hz; ) 88 Hz; d) 445 Hz; e) 891 Hz. Day 17/05/2002:f) 707 Hz. The thik line gives the median value for bins wide.

5
Fig. 5. Scatter plots ofδE2 as a function of the angle2BV . 19 De-
cember 2001:(a) atf =8.8 Hz;(b) 18 Hz;(c) 88 Hz;(d) 445 Hz;(e)
891 Hz. 17 May 2002:(f) 707 Hz. The thick line gives the median
value for bins 5◦ wide.

We shall explore the possibility that the Doppler effect,
combined with an anisotropic distribution of wave vectors,
explains all or a major part of the observed PSD variations:
simple models with reasonable properties naturally account
for the observations.

We shall see in Sect. 7.4 that the dependence ofδB2 and
δE2 on2BV in the magnetosheath is probably not due to the
dissipation of an energy input like the solar wind Poynting
vector energy fluxESW×BSW in the magnetosheath.

4.1 General method

A 3-D wave vector spectrumI3D(k) of the magnetosheath
fluctuations cannot be directly measured with the STAFF
Spectral Analysers, as the information on phase delays be-
tween the four probes is lost for wavelengths smaller than
the separation. However, as usual in space physics, the mo-
tion of the plasma with respect to one probe allows a 1-D
analysis of the wave vector spectrum, along the directionV

of the flow velocity.
Let us assume thatI3D(k) is axisymmetric with respect

to the direction of the meanB field, so that it only depends
on two parameters,k and the angleθkB betweenk andB.
Then, if the angle2BV betweenB andV changes, the other
plasma parameters remaining roughly constant,I3D(k, θkB)

is sampled in different directionsθkB .
We use a coordinate system with thex axis aligned with

V , and theB field in thex, y plane. Ifω0 is the frequency
of a wave in the plasma frame (ω0 is assumed to be positive),
the observed frequency is

ω = |kx V + ω0(k, θkB)| , (1)

www.ann-geophys.net/24/3507/2006/ Ann. Geophys., 24, 3507–3521, 2006
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wherekx can be>0 or <0. The angleθkB can be written as
a function of2BV ,

sinθkB = [k2
z + (kx sin2BV − ky cos2BV )2]1/2/k , (2)

whereθkB and2BV vary between 0 andπ . We introduce the
function

h(kx) ≡ ω − |kx V + ω0(k, θkB)| , (3)

so that Eq. (1) is equivalent toh(kx)=0. The power
δB2(ω, 2BV ) (or δE2(ω, 2BV )) observed at a given fre-
quency for a given angle can be written as the sum of contri-
butions at different scalesk−1

δB2(ω, 2BV )=A
∫ ∞

−∞
dky

∫ ∞

−∞
dkz

∫ ∞

−∞
dkx δ[h(kx)]I3D(k)

whereA is a normalisation factor andδ(x) the usual Dirac
function. There are generally several solutionskxs (positive
or negative) to the equationh(kx)=0 (argument of the Dirac
function). θkB is a function ofkxs , ky , kz and2BV (Eq. 2).
After the integration overkx , we obtain

δB2(ω, 2BV ) =

A 6s

∫ ∞

−∞
dky

∫ ∞

−∞
dkz I3D(kxs, ky, kz)/|

dh

dkx

(kxs)| (4)

where6s is a sum over thekxs solutions. In what follows,
we shall make simple assumptions about the dependence of
I3D(k, θkB) onk andθkB :

– I3D has a power law dependence on the wave number

I3D ∝ k−ν−2 (5)

in a rangekmin<k<kmax, with a spectral indexν inde-
pendent onθkB ,

– for a givenk, I3D has one of the two typical angular
distributions,

I3D ∝ | cosθkB |µ (6)

illustrating situations whenk lies mostly parallel toB,
and

I3D ∝ | sinθkB |µ (7)

for k mostly perpendicular toB.

Note that the exponentν refers here to the power law index
of the 1-D spectrumI1D(k) defined by

δB2 =
∫

dk I1D(k)

with

I1D(k) = 2πAk2
∫ π

0
sinθkBdθkBI3D(k, θkB) .

For an isotropic Kolmogorov spectrumI1D∝k−ν with
ν=5/3, the 3-D spectrum isI3D∝k−ν−2.

4.2 Parameters of the models

Our aim is to study the respective influence onδB2(ω, 2BV )

and onδE2(ω, 2BV ) of the anisotropy of thek distribu-
tion, of the Doppler shift and of possible dispersion effects.
We shall first test whether simple anisotropic models for
I3D(k, θkB) (Eq. 5, with Eq. 6 or Eq. 7) can explain the
observed behaviour ofδB2(f, 2BV ) andδE2(f, 2BV ) de-
scribed in Sect. 3.

To compare models and observations, we shall mainly
consider 19 December 2001 because the variations of the
plasma parameters, velocity, density, temperatures and mag-
netic field are only 20% to 35% over 6 h. (Conversely, on
16 December 2001 the proton density, for instance, varies
from 10 to 70 cm−3 over 6 h; see Paper 2). On 19 Decem-
ber 2001, the average parameters areV =260 km/s for the
flow speed, 148.4 km/s for the Alfvén speedvA, 152.7 km/s
for the sound speedcs=(γ kB(Te+Tp)/mp)1/2 (γ=5/3 is
the ratio of specific heats), so thatc2

s /v
2
A=1.06; βp=1.07,

βe=0.2, c/ωpe≃2 km,c/ωpi≃rgi≃90 km, the Debye length
λDe≃15 m, fpi≃530 Hz, fce≃ 484 Hz andflh≃11.3 Hz.
The temperature anisotropies areTp⊥/Tp‖=1.65 for the pro-
tons, andTe⊥/Te‖≃1 for the electrons.

The modelsδB2(f, 2BV ) or δE2(f, 2BV ) (Eq. 4) will be
calculated for the 27 frequencies of STAFF-SA (from 8 Hz
to 4 kHz) and for 19 values of2BV from 0◦ to 180◦. For
the spectral index of the magnetic fluctuations, we shall take
ν=3 (at low frequencies) to 4 (at high frequencies), as in
Fig. 3c, andν=1 to 4 for the electric fluctuations (Fig. 4c).
The cone aperture ofθkB , corresponding to Eqs. (6 and 7), is
about 20◦ for µ = 10 and 7◦ for µ = 100.

5 Magnetic fluctuations in the “whistler” range

5.1 Models with pure Doppler effects

First, let us assume that the Doppler shift is much larger
than the wave frequency (ω0≃0), so that Eq.(1) reduces to
ω−|kxV |=0. This implies that the STAFF-SA “whistler”
range (8 Hz to 500 Hz) has wave numbers comparable to the
inverse of the electron inertial length,kc/ωpe≃3. We choose
herekminc/ωpe=0.3 andkmaxc/ωpe=30. We further checked
that the results do not depend on the precise values of the
bounds, as soon as thek domain is extended enough, cover-
ing two decades. The spectral index was chosen to beν=3
for 0.3≤kc/ωpe≤3 andν=4 for 3≤kc/ωpe≤30.

We first calculateδB2(f, 2BV ) (Eq. 4) for wave vectors
mainly parallel toB (Eq. 6) withµ=10. Figure 6a givesδB2

from f =8.8 Hz (upper solid line) to 56 Hz (lower solid line)
and to 561 Hz (lowest dotted line); this highest frequency
561 Hz correspond to the largest Doppler shiftkmaxV . At
all the frequencies,δB2(2BV ) is minimum for 2BV =90◦.
We see in Fig. 6b that the scatter plot or the median ofδB2

at 8.8 Hz cannot be explained by a model (solid line) withk

Ann. Geophys., 24, 3507–3521, 2006 www.ann-geophys.net/24/3507/2006/



A. Mangeney et al.: Anisotropies of the turbulence at electron scales in the magnetosheath 3513

mostly parallel toB; similarly, Fig. 6c shows that the aver-
age spectrum for small angles2BV (s.a., defined in Sect. 3.1,
dashed line) is more intense than the spectrum for large2BV

(l.a., solid line), while the opposite is observed (Fig. 3).
As discussed at the beginning of Sect. 4, we indeed ex-

pect that the wave vectors are mainly perpendicular toB in
the e.m. range: we have evaluated Eq. (4) with the angular
distribution of Eq. (7). To check the influence of the angular
width, we consider two cases, a wide one (20◦) with µ=10
and a narrow one (7◦), µ=100. Figure 6d gives the calcu-
lated PSDδB2(f, 2BV ) for the wide angular width, forf
between the lowest frequency 8.8 Hz (upper solid line) and
561 Hz (lowest dotted line). At all the frequencies, the peak
of δB2(2BV ) is for 2BV =90◦. Figure 6e shows that the
agreement is not very good, at 8.8 Hz, between the scatter
plot or the median of the observations (in nT2/Hz) and the
model with an arbitrary normalisation factorA=10−18 (solid
line). Figure 6f displays the calculated spectra for large an-
gles2BV (solid line) and for small angles (dashed line): at
every frequency, the calculatedδB2 is larger for large angles,
as in the observed spectra (Fig. 3).

Let us now consider the narrow angular width,µ=100.
Then (Fig. 6h), the agreement is better between the median
of the observations and the model, withA=5 10−18. Fig-
ure 6g shows that the curvature ofδB2(2BV ) is larger at
56 Hz (lower solid line) than at 8.8 Hz. In Fig. 6i, the ratio
between the l.a. spectrum and the s.a. spectrum is larger than
10, and this is more consistent with the observations (Fig. 3).

The shape of the spectra in Figs. 6c, 6f and 6i isf −ν

with ν=3 at low frequencies andν=4 at high frequencies:
in models with pure Doppler effects (f =k.V /2π ) the ob-
served spectral indexν of the frequency spectrum is equal
to the spectral index of the 1-D wave number spectrum, re-
gardless of the anisotropy of the (axisymmetric) wave vector
distribution.

In the “whistler” range, the shape of the Power Spectral
DensityδB2 observed as a function off and2BV can there-
fore be explained by the Doppler shift of fluctuations with
a vanishing rest frame frequency. The wave vector distribu-
tion has to be strongly anisotropic, with (i) a spectral density
peaking fork perpendicular toB like | sinθkB |100, and (ii) a
steep power law dependence ink, like k−3.

5.2 Effects of a nonvanishing rest frame frequency

Let us now assume that the rest frame frequencyω0(k) is
comparable to the Doppler shift. Does the inclusion of
ω0(k) 6= 0 in h(kx) (Eq. 3) significantly modify the eval-
uation of the model PSD (Eq. 4)?

First, note that we have to extend somewhat the range
of wave numbers towards small values to reach the same
STAFF-SA frequencies: we shall now use the range
0.03≤kc/ωpe≤30. Furthermore, to avoid cumbersome and
time consuming numerical solutions of kinetic dispersion
equations, we shall use analytical approximate solutions

Figure 6: The model (Eq. 4) with a pure Doppler shift and no disper-sion relation in Eq. 1. The distribution is given by Eq. 5 with = 3 to 4, for0.3 to 30, and for the average parameters of the day 19/12/2001. For wavevetors mostly parallel to (Eq. 6) and for = 10 (large angular width of ):a) the model at the STAFF-SA frequenies, from 8.8 Hz (upper solidline) to 561 Hz (lower dotted line); arbitrary ordinates. b) the model at 8.8 Hz(solid line) ompared to the satter plot and the median of the observations at thesame frequeny, as a funtion of ; ) the model spetra for large angles(solid line, ) and for small angles (dashed line, ). The vertial dottedlines give the average values of and on the 19/12/2001. For wave vetorsmostly perpendiular to (Eq. 7) and for = 10 (large angular width of ):d) the model at di�erent frequenies, e) the model (solid line) and thedata, still at 8.8 Hz; f) the model spetra. With Eq. 7 and for = 100 (strongeranisotropy of ): g) the model at di�erent frequenies; h) a goodagreement between the model (solid line) and the data; i) the model spetra.6

Fig. 6. The modelδB2(f, 2BV ) (Eq. 4) with a pure Doppler shift
and no dispersion relation in Eq. (1). The distributionI3D(k) is
given by Eq. (5) withν=3 to 4, for kc/ωpe≃ 0.3 to 30, and for
the average parameters of 19 December 2001. For wave vectors
mostly parallel toB (Eq. 6) and forµ=10 (large angular width of
I3D(k)): (a) the modelδB2(2BV ) at the STAFF-SA frequencies,
from 8.8 Hz (upper solid line) to 561 Hz (lower dotted line); arbi-
trary ordinates.(b) the model at 8.8 Hz (solid line) compared to
the scatter plot and the median of the observations at the same fre-
quency, as a function of2BV ; (c) the model spectra for large2BV

angles (solid line, l.a.) and for small2BV angles (dashed line, s.a.).
The vertical dotted lines give the average values offlh andfce on
19 December 2001. For wave vectors mostly perpendicular toB

(Eq. 7) and forµ=10 (large angular width ofI3D(k)): (d) the model
δB2(2BV ) at different frequencies,(e) the model (solid line) and
the data, still at 8.8 Hz;(f) the model spectra. With Eq. (7) and for
µ=100 (stronger anisotropy ofI3D(k)): (g) the modelδB2(2BV )

at different frequencies;(h) a good agreement between the model
(solid line) and the data;(i) the model spectra.

ω0(k, θkB) of the dispersion equations. Different shapes for
the dispersion relation can be found in the considered wave
number range:

– modes with a phase velocityω0/k independent ofk and
nearly independent ofθkB , an example being the fast
MHD mode

ω0≃kcf , (8)

wherecf =(v2
A+c2

s )
1/2 is the fast mode velocity for per-

pendicular propagation;
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– modes with a phase velocity which depends mainly on
θkB , as in the ion acoustic mode or the slow mode

ω0≃
√

(kBTe/mp)
k cosθkB√
(1 + k2λ2

De)

[1 + 3
Tp

Te

(1 + k2λ2
De)]

1/2 ≃kcs cosθkB . (9)

This dispersion relation is derived from Eqs. 10.55 and
10.113 of Baumjohann and Treumann (1996).

– modes with a phase velocity which depends onk and on
θkB , as in the whistler mode

ω0≃ωce

c2

ω2
pe

k2 cosθkB

1 + k2c2/ω2
pe

, (10)

or in the Alfvén mode, taking into account kinetic ef-
fects

ω0≃kvA cosθkB [1+ k2 sin2 θkBr2
gi (3/4+ Te/Tp)]1/2(11)

(see Eq. 10.179 of Baumjohann and Treumann (1996);
the factor 3/4+Te/Tp is about 1 for the average param-
eters of 19 December 2001).

To check the validity of these analytical dispersion rela-
tions, we calculate using the program WHAMP (Rönnmark,
1982) the fully kinetic dispersion relations for the average
parameters of 19 December 2001. For a quasi-perpendicular
propagationθkB = 85◦ and forkc/ωpe≤ 0.3, all the modes
(mirror, Alfvén and fast) are damped; there is no whistler
mode, and the fast and Alfvén mode merge with the ion Bern-
stein modes. Forkc/ωpe≥0.3, all the modes are so strongly
damped that the solutions of WHAMP are uncertain. As
Te≃0.2Tp on that day, the slow mode is strongly damped
for everyk and everyθkB .

We shall therefore modify our evaluation of Eq. (4), using
the analytical dispersion relations described above (Eqs. 8, 9
and 11) in the calculation ofh(kx), in spite of the fact that
these modes are damped. To comply with the kinetic theory
of the dispersion, only fluctuations withkc/ωpe=0.03 to 0.3
are assumed to be Doppler-shifted waves with a non zero rest
frame frequency, while a pure Doppler shift will be consid-
ered for the rangekc/ωpe=0.3 to 30. (The results are not
basically changed if the approximate dispersion relations are
assumed to be valid in the whole rangekc/ωpe=0.03 to 30).
We still assume thatν=3 or 4, andµ=100.

Figures 7a and 7b display the PSDδB2(f, 2BV ) obtained
using the fast mode dispersion equation (Eq.8) for a quasi-
perpendicular propagation, withcf =215 km/s. Figure 7a
gives the shape of the PSD from 8.8 Hz (upper solid line)
to 561 Hz (lowest dotted line). We see in Fig. 7b that if the
model fits the data for2BV larger than 30◦, it does not fit

them for2BV smaller than 20◦. Thus, the observed fluctua-
tions probably do not obey the fast mode dispersion relation
for a quasi-perpendicular propagation.

Figures 7c and 7d giveδB2(f, 2BV ) for the slow-ion
acoustic dispersion relation (Eq. 9) for a quasi-perpendicular
propagation: we take this mode into account in spite of the
fact that it is strongly damped. We see in Fig. 7d that the
agreement between the model and the observations at 8.8 Hz
is as good as in Fig. 6h (pure Doppler shift), basically be-
cause the slow-ion acoustic rest frame frequency, for a quasi-
perpendicular propagation, remains very small compared to
the Doppler shift.

Figures 7e and 7f giveδB2(f, 2BV ) for the dispersion
relation (Eq. 11) of quasi-perpendicular Alfvén waves, tak-
ing into account kinetic effects: there is no agreement be-
tween the model and the observations at 8.8 Hz. Let us
now assume that the wave vectors of the Alfvén waves are
not quasi-perpendicular but are quasi-parallel in the range
kc/ωpe=0.03 to 0.3, withI3D given by Eq. (6) forµ=100.
The intermittent presence of such waves is probable: indeed,
according to WHAMP, Alfv́en ion cyclotron (AIC) waves
are unstable on 19 December 2001, atkc/ωpe≃0.01, for
a quasi-parallel propagation. The AIC waves are unstable,
while the mirror modes are damped, because the pro-
ton temperature anisotropy is relatively large andβp rela-
tively small on 19 December 2001 (see Lacombe and Bel-
mont, 1995). Figures 7g and 7h giveδB2(f, 2BV ) for
quasi-parallel Doppler-shifted Alfv́en waves (in the range
kc/ωpe=0.03 to 0.3), and for a pure Doppler shift of quasi-
perpendicular fluctuations (in the rangekc/ωpe=0.3 to 30).
There is no agreement between the observations and a model
with quasi-parallel Alfv́en waves (Fig. 7h).

We conclude that the observations of the magnetic PSD by
STAFF-SA are consistent with permanent fluctuations with a
vanishing rest frame frequency but Doppler-shifted up toflh

andfce in the spacecraft frame. The distribution of the wave
vectors of these fluctuations has to be strongly anisotropic,
with a spectral density depending onθkB , like | sinθkB |100

and onk, like k−ν , with ν=3 to 4 (see Fig. 8a). The wave vec-
tor range iskc/ωpe=0.3 to 30. These permanent fluctuations
with a vanishing rest frame frequency and with wave vectors
mostly perpendicular toB could be mirror or slow fluctu-
ations. According to Ǵenot et al. (2001), the polarisation
of the magnetic and electric fluctuations of purely growing
modes, like the mirror modes, is always linear. The polarisa-
tion of the observed magnetic fluctuations (see Figs. 2b and
2d) and the polarisation of the observed electric fluctuations
(not shown) are mainly linear in the whole e.m. frequency
range. This is another argument in favour of purely growing
linear modes like the mirror mode. Arguments against the
presence of linear mirror modes or slow modes, based on a
comparison of the intensity of the electric and of the mag-
netic fluctuations, will be given in Sect. 7.1.

In this section, we have used analytical approximations
of the dispersion relation of kinetic linear wave modes in a
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Figure 7: The model (Eq. 4), parameters and observations of the day19/12/2001. For 0.3 to 30, the �utuations su�er a pure Doppler shift,with given by Eqs. 5 and 7, = 3 to 4 and = 100. For larger sales( 0.03 to 0.3), di�erent (Doppler shifted) dispersion relations and di�erentwave vetor distributions are onsidered. Quasi-perpendiular fast mode (Eqs. 7and 8): a) the model at the STAFF-SA frequenies, from 8.8 Hz (uppersolid line) to 561 Hz (lower dotted line); arbitrary ordinates; b) the model at 8.8 Hz(solid line) ompared to the satter plot and the median of the observations at thesame frequeny, as a funtion of . Quasi-perpendiular slow-ion aousti mode(Eqs. 7 and 9): ) the model at di�erent frequenies; d) the model at8.8 Hz ompared with the observations. Quasi-perpendiular Alfvén waves in thekineti range (Eqs. 7 and 11): e) the model at di�erent frequenies; f)the model at 8.8 Hz ompared with the observations. Quasi-parallel Alfvén waves(Eqs. 6 and 11): g) the model at di�erent frequenies; h) the modelat 8.8 Hz ompared with the observations.
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Fig. 7. The modelδB2(f, 2BV ) (Eq. 4), parameters and observations on 19 December 2001. Forkc/ωpe≃0.3 to 30, the fluctuations
suffer a pure Doppler shift, withI3D(k) given by Eqs. (5) and (7),ν=3 to 4 andµ=100. For larger scales (kc/ωpe≃0.03 to 0.3), different
(Doppler shifted) dispersion relations and different wave vector distributions are considered. Quasi-perpendicular fast mode (Eqs. 7 and 8):
(a) the modelδB2(2BV ) at the STAFF-SA frequencies, from 8.8 Hz (upper solid line) to 561 Hz (lower dotted line); arbitrary ordinates;
(b) the model at 8.8 Hz (solid line) compared to the scatter plot and the median of the observations at the same frequency, as a function
of 2BV . Quasi-perpendicular slow-ion acoustic mode (Eqs. 7 and 9):(c) the modelδB2(2BV ) at different frequencies;(d) the model at
8.8 Hz compared with the observations. Quasi-perpendicular Alfvén waves in the kinetic range (Eqs. 7 and 11):(e) the modelδB2(2BV ) at
different frequencies;(f) the model at 8.8 Hz compared with the observations. Quasi-parallel Alfvén waves (Eqs. 6 and 11):(g) the model
δB2(2BV ) at different frequencies;(h) the model at 8.8 Hz compared with the observations.

plasma (Eqs. 8 to 11). The conclusion is that these linear
waves, if they are present in our data intervals, must have
a vanishing phase velocity and a quasi-perpendicular propa-
gation direction. If we had taken the phase velocities of the
nonlinear wave modes given by Stasiewicz (2005), we should
have found the same result: a vanishing phase velocity for a
quasi-perpendicular propagation.

6 Electric fluctuations in the “ion acoustic” range

The electric PSD is maximum for2BV ≃90◦ at frequencies
belowfpi (Sect. 3.2): a model with wave vectors mainly per-
pendicular toB is thus probably suitable in this e.m. range.

Conversely, at and abovefpi , δE2 is minimum for2BV ≃90◦

(Fig. 4): we shall assume that the wave vectors for these
small scales are mainly parallel toB, according to the re-
sults displayed in Fig. 6a . Figure 8b displays our composite
model for thek distribution of the electric fluctuations: from
kc/ωpe=0.04 to 160, we assume thatν=1, 2 and 4 for in-
creasingk (solid line); the anisotropy varies like| sinθkB |µ
with µ=100. In the upper range, fromkc/ωpe=16 to 160
(kλDe=0.1 to 1), we superimpose a spectrum∝ k−4, 300
times more intense, with wave vectors mainly parallel toB,
like | cosθkB |µ (dashed line in Fig. 8b), still withµ=100.
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Figure 8: The models of the wave vetor distribution as funtions ofa) for the magneti �utuations ; in our model, the anisotropy with respet tothe average �eld diretion varies like with 100; b) for the eletri�utuations ; in the eletromagneti range (solid line, 0.03 to 30),the anisotropy model varies like with 100. In the eletrostati range(dashed line, 16 to 160), the anisotropy model varies like with100.
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Fig. 8. The models of the wave vector distributionI3D(k) as func-
tions ofkc/ωpe (a) for the magnetic fluctuationsδB2; in our model,
the anisotropy with respect to the averageB field direction varies
like | sinθkB |µ with µ≃100; (b) for the electric fluctuationsδE2;
in the electromagnetic range (solid line,kc/ωpe≃0.03 to 30), the
anisotropy model varies like| sinθkB |µ with µ≃100. In the electro-
static range (dashed line,kc/ωpe≃16 to 160), the anisotropy model
varies like| cosθkB |µ with µ≃100.

6.1 Models with pure Doppler effect

We assume that the composite spectrum of wave vectors
(Fig. 8b) simply suffers a Doppler shift. Figure 9a dis-
plays the resulting calculated spectraδE2(f, 2BV ) between
8.8 Hz (upper dashed line) and 3.6 kHz (lower dashed line).
The upper solid line (11 Hz) is also shown in Fig. 9b su-
perimposed on the observed scatter plot (in (mV/m)2/Hz)
and its median: the observations and the model both dis-
play a minimum for2BV ≃0◦ and a broad maximum around
2BV ≃90◦. At higher frequencies (Figs. 9c, 9d and 9e), the
global agreement between the model and the data is even
better: at 354 Hz (Fig. 9d) there is a relative minimum of
the data for2BV ≃90◦. The model (Fig. 9d) varies strongly
from 2BV =0◦ to 30◦: this is consistent with the large disper-
sion of the data points at small2BV . The spectra of Fig. 9f
for large and small angles are similar to the observations of
Fig. 4c. If we now suppose that the wave vector distribution
of the model is isotropic forkλDe=0.1 to 1, i.e. ifµ=0 for
the dashed line in Fig. 8b, the spectra (not shown) are the
same for large and for small2BV above about 200 Hz: this
is not observed, so that the wave vector distribution of the
e.s. fluctuations has to be anisotropic.

6.2 Models with a nonvanishing rest frame frequency

Let us now assume that, in the compositek distribution of
Fig. 8b, the fluctuations withk perpendicular toB (solid
line) still suffer a simple Doppler shift (ω0≃0) while the
fluctuations withk parallel toB (dashed line) are Doppler-

Figure 9: The model (Eq. 4) with a simple Doppler shift and nodispersion relation in Eq. 3. The wave vetor distribution is given by theomposite spetrum of Fig. 8b. Parameters and observations of the 19/12/2001:a) the model at the STAFF-SA frequenies, from 8.8 Hz (upper dashedline) to 3600 Hz (lower dashed line). The four solid lines orrespond respetivelyto = 11 Hz, 88 Hz, 354 Hz and 891 Hz; arbitrary ordinates; b) the model at11 Hz (solid line) ompared to the satter plot and the median of the observationsat the same frequeny, as a funtion of ; ) the model and the observations at88 Hz, d) at 354 Hz, e) at 891 Hz; f) the model spetra for large angles(solid line, ) and for small angles (dashed line, ). The vertial dottedline gives the average value of on the 19/12/2001.
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Fig. 9. The modelδE2(f, 2BV ) (Eq. 4) with a simple Doppler
shift and no dispersion relation in Eq. (3). The wave vector distri-
bution I3D(k) is given by the composite spectrum of Fig. 8b. Pa-
rameters and observations on 19 December 2001:(a) the model
δE2(2BV ) at the STAFF-SA frequencies, from 8.8 Hz (upper
dashed line) to 3600 Hz (lower dashed line). The four solid lines
correspond, respectively, tof =11 Hz, 88 Hz, 354 Hz and 891 Hz;
arbitrary ordinates;(b) the model at 11 Hz (solid line) compared to
the scatter plot and the median of the observations at the same fre-
quency, as a function of2BV ; (c) the model and the observations at
88 Hz, (d) at 354 Hz,(e) at 891 Hz;(f) the model spectra for large
2BV angles (solid line, l.a.) and for small2BV angles (dashed
line, s.a.). The vertical dotted line gives the average value offpi on
19 December 2001.

shifted ion acoustic waves, with a frequencyω0 given by
Eq. (9) (ω0≃kcs cosθkB ) with cs≃150 km/s. We see that
the calculated spectra (with ion acoustic waves) given in
Figs. 10b, 10c, 10d and e are consistent with the observa-
tions, as were the calculated spectra (without ion acoustic
waves) of Figs. 9b, 9c, 9d and 9e. Above 500 Hz (Fig. 10f)
the model spectrum for large2BV is about 10 times weaker
than the spectrum for small2BV ; this is observed in Fig. 4c.

If we now suppose that the model of the wave vector dis-
tribution of the ion acoustic waves is isotropic, i.e. ifµ=0
for the dashed line in Fig. 8b, the l.a. and s.a. spectra (not
shown) are not the same above about 500 Hz: the l.a. spec-
trum is 2 to 3 times weaker than the s.a. spectrum. Indeed,
the ion acoustic phase velocity vanishes at largeθkB , so that
large (less intense)k is needed to reach the same frequency
when 2BV is large. As we observe that the l.a. spectrum
is at least 10 times weaker than the s.a. spectrum (Fig. 4c),
the wave vector distribution of the ion acoustic waves has to
be anisotropic. But the presence of ion acoustic waves, with
a phase velocity∝ cosθkB , amplifies the part played by the
anisotropic wave vector distribution, peaking fork parallel
to B, more especially as the sound speed is close to the flow
speed.
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Figure 10: The model (Eq. 4) for the omposite spetrum ofFig. 8b: the eletromagneti �utuations orresponding to the solid line in Fig.8b su�er a simple Doppler shift; the eletrostati �utuations orresponding to thedashed line in Fig. 8b su�er a Doppler shift and have the dispersion relation ofthe slow-ion aousti mode (Eq. 9): a) the model at the STAFF-SAfrequenies (see the aption of Fig. 9a). The four solid lines orrespond respetivelyto = 11 Hz, 88 Hz, 445 Hz and 891 Hz; arbitrary ordinates; b) the model at11 Hz (solid line) (see the aption of Fig. 9b); ) the model and the observationsat 88 Hz, d) at 445 Hz, e) at 891 Hz; f) the model spetra for large and small(see the aption of Fig. 9f).
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Fig. 10. The modelδE2(f, 2BV ) (Eq. 4) for the composite spec-
trum I3D(k) of Fig. 8b: the electromagnetic fluctuations corre-
sponding to the solid line in Fig. 8b suffer a simple Doppler shift;
the electrostatic fluctuations corresponding to the dashed line in
Fig. 8b suffer a Doppler shift and have the dispersion relation of
the slow-ion acoustic mode (Eq. 9):(a) the modelδE2(2BV ) at
the STAFF-SA frequencies (see the caption of Fig. 9a). The four
solid lines correspond, respectively, tof =11 Hz, 88 Hz, 445 Hz and
891 Hz; arbitrary ordinates;(b) the model at 11 Hz (solid line) (see
the caption of Fig. 9b);(c) the model and the observations at 88 Hz,
(d) at 445 Hz,(e)at 891 Hz;(f) the model spectra for large and small
2BV (see the caption of Fig. 9f).

We conclude that the permanent electric (e.m.) fluctua-
tionsδE2 observed betweenflh andfce≃fpi have a vanish-
ing rest frame frequency and are Doppler-shifted up toflh

andfce; the distribution function of their wave vectors peaks
like | sinθkB |100 i.e. k perpendicular toB, and varies like
k−ν , with ν= 1 to 2; the wave vector range iskc/ωpe≃0.05
to 20. At smaller scales,kc/ωpe≃20 to 200, the electric
(e.s.) fluctuations may have a vanishing frequencyω0≃0, but
the observations are also statistically consistent with Doppler
shifted ion acoustic waves; the distribution of the wave vec-
tors has to peak like| cosθkB |100, i.e. k parallel toB, with a
power law dependence∝k−4.

7 Discussion

7.1 Wave modes in the e.m. range?

In Sect. 5.2, we have seen that the magnetic fluctuations in
the e.m. range have a vanishing frequency. The electric fluc-
tuations in the same frequency range also have a vanishing
frequency (Sect. 6.1). If interpreted with a linear theory,
these e.m. fluctuations could thus be mirror structures or slow
mode structures with wave vectors quasi-perpendicular toB.

To try to identify the wave mode of the permanent e.m.
fluctuations, we consider the ratioδE2/δB2 observed at the

e.m. frequencies. On 19 December 2001, the observed ratio
δE2/δB2 averaged over 6 h (in (mV/m)2/nT2) varies from
about 10 at 10 Hz to 105 at 400 Hz in the plasma frame (from
the observed values of

√
(δE2) in the spacecraft frame, we

have substracted the electric field (V
√

(δB2) which is an up-
per value for the induced electric field(V ×δB), and which
is negligible). Using the program WHAMP, we calculate
the ratioδE2/δB2 for the different kinetic linear modes at
θkB=85◦ and for 10−2<kc/ωpe<0.3; δE2/δB2 is 10−5 to
10−3 for the mirror mode, 3 10−3 to 1 for the slow mode, 3
10−2 for the Alfvén mode, and 5 10−2 to 3 for the fast mode:
there is no linear quasi-perpendicular mode withδE2/δB2

as large as the observed values. (The slow mode for a quasi-
parallel propagation is the only mode for whichδE2/δB2

reaches 10 to 105). However, the linear kinetic model of
WHAMP at large scales cannot be used for a mode identifica-
tion at smaller scales, especially as the observed small-scale
fluctuations can be in a highly nonlinear state.

7.2 Symmetries with respect to2BV =90◦

When the angle2BV varies from 0◦ to 180◦, the scatter
plot δB2(2BV ) aroundflh is symmetrical with respect to
2BV =90◦ (17 May 2002, Fig. 1c); butδE2(2BV ) around
fpi is not symmetrical (Fig. 5f): it is 10 times larger for
2BV =45◦ than for2BV =135◦.

It is well known that the wave vectors of Alfvén waves
in the magnetosheath are generally directed downstream, so
thatkx≡k.V >0 (Matsuoka et al., 2000). Can the asymmetry
of Fig. 5f be due to an asymmetry of the distribution ofkx

for e.s. fluctuations with a nonvanishingω0?

At a given frequencyω, the solutionskxs of Eq. (1) are
the same for2BV =45◦ and for2BV =135◦, because we as-
sume that waves withk.B>0 and waves withk.B<0 have
the same positive frequencyω0. The waves withk.B>0 for
2BV =45◦ will suffer the same positive Doppler shift (kxs>0)
as the waves withk.B<0 for 2BV =135◦. Thus, if we with-
draw the solutionskxs<0 in the integral (Eq.4), we simply
obtainδE2(2BV ) two times weaker than if we consider both
kxs<0 andkxs>0: δE2(f, 2BV ) remains symmetrical with
respect to2BV =90◦.

The only way to obtain asymmetries inδE2(2BV ) would
be to have waves propagating with onlyk.B>0, because the
Doppler shift would increaseω for 2BV =45◦ (kxs>0), and
would decreaseω for 2BV =135◦ (kxs<0). But waves with
only k.B>0 (or onlyk.B<0) are not observed.

Figure 11 shows that the asymmetry observed on 17 May
2002 (Fig. 5f) is probably due to the fact that the plasma
properties were different for2BV <90◦ and for2BV >90◦:
the plasma density (Fig. 11b) and the proton temperature
(Fig. 11d) were higher for2BV >90◦, the magnetic field was
weaker (Fig. 11c); the flow speed (Fig. 11a) and the electron
temperature (not shown) were nearly the same.
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Figure 11: Day 17/05/2002, observations between 08:00 and 12:15 UT, as funtionsof the angle , a) the �ow speed, b) the proton density, ) the �eldintensity, d) the proton temperature.
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Fig. 11. 17 May 2002, observations between 08:00 and 12:15 UT,
as functions of the angle2BV , (a) the flow speed,(b) the proton
density,(c) theB field intensity,(d) the proton temperature.

7.3 Comparison with the solar wind turbulence

The magnetosheath is made of the solar wind plasma com-
pressed through the Earth’s bow shock. There are similarities
between the anisotropies of the wave vector distributions in
the solar wind and in the magnetosheath.

In the electrostatic range (f ≃4–6 kHz,kλDe≃0.3) the in-
tensity δE2 of the electric fluctuations in the solar wind
is minimum when the angle2BX betweenB and the
GSEX-axis is about 90◦ (Lacombe et al., 2002). As
2BX≃2BV in the solar wind, this minimum can be due to
the Doppler shift: in the solar wind, as well as in the magne-
tosheath, the e.s. wave vectors are mostly parallel toB in the
rangekλDe≥0.1.

In the MHD range (f ≃10−2 Hz), i.e. in the inertial range
of the electromagnetic solar wind turbulence, the total inten-
sity δB2 in the three directions depends on2BV : Bieber et
al. (1996) observe thatδB2 increases when2BV increases up
to 90◦ in the solar wind. These observations imply that the
wave vectors are mostly perpendicular toB. As for the wave
modes, Bale et al. (2005) suggest that kinetic Alfvén waves
could account for their observations of the electric field in the
solar wind, in the inertial and proton dissipation ranges.

In the magnetosheath, at electron scaleskc/ωpe≃0.3 to
30, we find that the wave vectors of the permanent magnetic
fluctuations are mainly perpendicular toB, as in the solar
wind at larger scales; but the variance of the magnetic fluc-
tuations is nearly isotropic in the magnetosheath, while this
variance is minimum alongB in the solar wind. At the same
electron scales, the electric fluctuations also have wave vec-
tors mainly perpendicular toB, but no dispersion relation is
consistent with the observations ofδB2 andδE2 as functions
of f and of the angle2BV .

Sahraoui et al. (2004) analyse an interval of magnetic
fluctuations in the magnetosheath, up to 1.4 Hz, in a high-
β plasma near the magnetopause. They observe a mirror
mode, Doppler-shifted at 0.11 Hz, which corresponds to the
largest linear growth rate for the observed plasma parame-
ters; they also observe mirror modes Doppler-shifted up to
1.4 Hz, as a nonlinear extension of the most unstable mode
to smaller scales; the wave vectors are mostly perpendicu-
lar to B. During our interval, 19 December 2001, accord-
ing to WHAMP, the quasi-perpendicular mirror modes are
not unstable, while the quasi-parallel AIC waves are lin-
early unstable (see Sect. 5.2). However, the observations of
δB2(f, 2BV ) are consistent with quasi-perpendicular wave
vectors in the e.m. rangekc/ωpe≃0.3 to 30. We thus find that
the wave vectors of the permanent fluctuations in the mag-
netosheath are mostly perpendicular toB at electron scales,
in the rangekc/ωpe≃0.3 to 30, even if the unstable domi-
nant modes at larger scales are not quasi-perpendicular mir-
ror modes but are quasi-parallel AIC waves.

Carbone et al. (1995) consider the magnetic fluctuations
below 1 Hz during Alfv́enic periods in the solar wind. They
analyse separately the Alfvénic (A) polarisation and the com-
pressive (S) polarisation. For the A polarisation,k is ob-
served to be mainly parallel toB; for the S polarisation, the
k distribution is flattened in the (B, V ) plane. This last re-
sult implies that thek distributions are not axisymmetric with
respect toB. In the magnetosheath near the magnetopause,
Sahraoui et al. (2006) also find ak distribution which is not
axisymmetric.

At MHD scales, the cascade from small to large wave
numbers is different in the directions parallel and perpendic-
ular to theB field (see the review by Oughton and Matthaeus,
2005): the parallel cascade is likely to be rather weak in the
solar wind. This difference is probably still present at the
electron MHD scales (kc/ωpe≃1) in the magnetosheath: we
find wave vectors mostly perpendicular toB for the e.m. fluc-
tuations.

In our observations, we have only considered the trace
δB2 of the magnetic fluctuation tensor, and we have as-
sumed in our model that thek distributions were axisym-
metric at the electron scales. In a future work, we shall
check whether non-axisymmetrick distributions in the mag-
netosheath would be consistent with the slightly anisotropic
distribution of the variance of the e.m. fluctuations observed
around 10 Hz.

7.4 Energy dissipation?

In the STAFF-SA frequency range, the magnetic and electric
fluctuations are more intense in the magnetosheath than in
the solar wind and in the magnetosphere. This could be due
to a continuous dissipation of part of the solar wind energy:
such a dissipation indeed begins at the bow shock.

The solar wind Poynting vectorSSW∝ESW×BSW gives
the large-scale e.m. energy flux which impinges on the mag-
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netosphere obstacle. AsESW=−V SW×BSW , SSW varies
like VSWB2

SW sinθSW
BV . We have seen that the PSDδB2 in-

creases like the local sin2BV in the magnetosheath. Is this
increase due to a dissipation ofSSW ? Let us first assume that
the local quantities in the magnetosheathV , B, sin2BV (and
S∝V B2 sin2BV ) are proportional to the solar wind quanti-
tiesVSW , BSW , sinθSW

BV (andSSW ). If δB2 was proportional
to S, it would increase when sin2BV increases (which is
observed) but also whenB2 increases, and this is not ob-
served: on the four days considered,δB2 is constant or de-
creases whenB2 increases, so thatδB2 is not proportional to
S. Furthermore, the numerical simulations of Paper 2 show
that even if the magnetosheath intensities ofV and B are
related to the solar wind intensities ofVSW andBSW , there
is no simple relation betweenθSW

BV and2BV in the magne-
tosheath: indeed, for a givenθSW

BV , 2BV strongly depends
on the position in the magnetosheath, so thatS is not pro-
portional toSSW . The increase inδB2 with the angle2BV

is thus probably not due to the dissipation of the large-scale
solar wind Poynting vector in the magnetosphere frame, it is
mainly due to the Doppler shift.

Similarly, we have checked that the increase inδB2 with
2BV in the e.m. range was not due to the clock angle of the
solar wind magnetic fieldBSW , or to local velocity shears.
As for the dependences ofδB2 andδE2 on the solar wind
dynamical pressure and on the cone angle ofBSW , they will
be addressed in Paper 2.

8 Conclusions

In this paper, we have not considered the fluctuations like the
e.m. whistler or the e.s. solitary waves which are sometimes
observed in the magnetosheath, but only the underlying per-
manent fluctuations.

At a given frequency in the magnetosheath, the permanent
electromagnetic Power Spectral DensitiesδB2 andδE2 (be-
low about 300 Hz in the spacecraft frame) strongly depend
on the local angle2BV between the magnetic fieldB and
the flow velocityV : δB2 andδE2 peak when2BV is around
90◦. This is due to the Doppler shift of the fluctuations, the
frequency of which isf0≃0 in the plasma frame. This im-
plies that at the electron scales ranging fromkc/ωpe≃0.3 to
30, the distribution of the wave vectors is strongly peaked for
k perpendicular toB, like | sinθkB |µ, with µ≃100, and in-
creases at large scales, likek−ν . In this pure Doppler model,
the slopeν of the 1-D wave vector spectrum is equal to the
slopeν≃3 to 4 of the frequency spectrum in the spacecraft
frame. We emphasize that the wave vectors of the perma-
nent e.m. fluctuations at electron scales are perpendicular to
B, regardless of the wave vectors’ direction for the unstable
waves at larger scales (quasi-parallel for Alfvén ion cyclotron
waves, quasi-perpendicular for mirror modes).

The ratioδE2/δB2 observed in the e.m. range is much
larger than this ratio calculated for the linear kinetic wave

modes, for a quasi-perpendicular propagationθkB=85◦ and
for 10−2<kc/ωpe<0.3. We conclude that there is no indi-
cation of the presence of linear wave modes in this range:
the electric and the magnetic fluctuations do not belong to a
same linear wave mode. Nevertheless, there is a crude corre-
lation between the time variations ofδE2 andδB2 at a given
frequency because these two kinds of fluctuations have sim-
ilar k distributions and thus suffer the same Doppler shift at
the same time.

At smaller scaleskc/ωpe≃ 20 to 200 (i.e. kλDe ≃0.15
to 1.5), the variations ofδE2 with 2BV imply that the dis-
tribution of the wave vectors of the electrostatic fluctuations
is peaked fork parallel toB, like | cosθkB |µ, with µ≃100.
The observationsδE2(2BV ) are consistent withf0=0 in the
plasma frame; they are also consistent with the presence of
quasi-parallel dispersive ion acoustic waves in the electron
dissipation range (related to the Debye length). To account
for the observed variations ofδE2 with the frequency and
with 2BV , the electrostatic fluctuationsδE2

es which peak
like | cosθkB |100 have to be about 300 times more intense,
at kc/ωpe≃ 30, than the electromagnetic fluctuationsδE2

em

which peak like| sinθkB |100.
The distributions of the magnetosheath wave vectorsk,

shown in Figs. 8a and 8b, have not been obtained by a decon-
volution of the data but by a fitting with a model implying
several parameters. This model is not unique and we can-
not really state that more complex models with dispersive
waves (and, for example, an anisotropy indexµ depending
on k) are excluded by the observations. However, the fit be-
tween the relatively simple axisymmetric models described
here and the data is surprisingly good. This means that, in the
magnetosheath, some properties of the magnetic and electric
turbulence, at scales smaller than the spacecraft separation,
can be determined thanks to the Doppler effect, and thanks
to the good coverage of the range 0◦−90◦ by the angle2BV .

As mentioned in the Introduction, the Taylor hypothesis
implies that the wave frequencyf0 in the plasma rest frame
is vanishing, i.e., that the phase speed of the wave 2πf0/k is
much smaller than the flow speedV . This hypothesis is usu-
ally made in the solar wind, in the MHD range and in the dis-
sipation range. In the Earth’s magnetosheath, the flow speed
is smaller than the solar wind speed, while the characteristic
frequencies,fci andfpi , are slightly larger than in the solar
wind. The Taylor hypothesis 2πf0/k≪V could thus be less
valid in the magnetosheath: any dispersion effect occurring
in the dissipation range could be more evident in the magne-
tosheath than in the solar wind. However, we have shown that
in the electron MHD (electromagnetic) rangekc/ωpe≃0.3 to
30, the Taylor hypothesis is valid for the permanent fluctua-
tions in the magnetosheath:f0 is vanishing in the plasma rest
frame, and there is no indication of statistically important fast
waves, Alfv́en waves or slow waves (meanwhile, the linear
polarisation of the magnetic and electric fluctuations is con-
sistent with the permanent presence of purely growing modes
in the electron MHD range, see Sect. 7.1).
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In the electrostatic range, the presence of ion acoustic
waves is possible. The sound speed is weaker than the flow
speed, but it is not negligible: the Taylor hypothesis is gen-
erally less valid than in the e.m. range.

We emphasize that the electric or magnetic PSD, at a given
frequency below about 3 kHz in the spacecraft frame, can be
multiplied by 10 to 103 when the angle2BV varies. We thus
have to take into account this consequence of the Doppler
effect if we want to study the other parameters which control
the intensity of the magnetic and electric fluctuations in the
magnetosheath. This will be done in Paper 2.
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