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High-dimensional stochastic optimization with

the generalized Dantzig estimator

Karim Lounici

November 14, 2008

Abstract

We propose a generalized version of the Dantzig selector. We show

that it satisfies sparsity oracle inequalities in prediction and estimation.

We consider then the particular case of high-dimensional linear regres-

sion model selection with the Huber loss function. In this case we derive

the sup-norm convergence rate and the sign concentration property of the

Dantzig estimators under a mutual coherence assumption on the dictio-

nary.

Key words: Dantzig, Sparsity, Prediction, Estimation, Sign consistency.
2000 Mathematics Subject Classification Primary: 62G25, 62G05; Sec-

ondary: 62J05, 62J12.

1 Introduction

Let Z = X × Y be a measurable space. We observe a set of n i.i.d. random
pairs Zi = (Xi, Yi), i = 1, . . . , n where Xi ∈ X and Yi ∈ Y. Denote by P the
joint distribution of (Xi, Yi) on X × Y, and by PX the marginal distribution
of Xi. Let Z = (X, Y ) be a random pair in Z distributed according to P .
For any real-valued function g on X , define ||g||∞ = ess supx∈X |g(x)|, ‖g‖ =
(∫

X g(x)2PX(dx)
)1/2

and ||g||n =
(

1
n

∑n
i=1 g(Xi)

2
)1/2

. Let D = {f1, . . . , fM}
be a set of real-valued functions on X called the dictionary where M > 2. We
assume that the functions of the dictionary are normalized, so that ‖fj‖ = 1
for all j = 1, . . . , M . We also assume that ||fj ||∞ 6 L for some L > 0. For any

θ ∈ R
M , define fθ =

∑M
j=1 θjfj and J(θ) = {j : θj 6= 0}. Let M(θ) = |J(θ)|

be the cardinality of J(θ) and ~sign(θ) = (sign(θ1), . . . , sign(θM ))T where

sign(t) =











1 if t > 0,

0 if t = 0,

−1 if t < 0.

For any vector θ ∈ R
M and any subset J of {1, . . . , M}, we denote by θJ the

vector in R
M which has the same coordinates as θ on J and zero coordinates on
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the complement Jc of J . For any integers 1 6 d, p < ∞ and w = (w1, . . . , wd) ∈
R

d, the lp norm of the vector w is denoted by |w|p ∆
=
(

∑d
j=1 |wj |p

)1/p

, and

|w|∞ ∆
= max16j6d |wj |.

Consider a function γ : Y × R → R
+ such that for any y in Y and u, u′ in

R we have
|γ(y, u) − γ(y, u′)| 6 |u − u′|.

We assume furthermore that γ(y, ·) is convex and differentiable for any y ∈ Y.
We assume that for any y ∈ Y the derivative ∂uγ(y, ·) is absolutely continu-
ous. Then ∂uγ(y, ·) admits a derivative almost everywhere which we denote by
∂2

uγ(y, ·). Consider the loss function Q : Z × R
M → R

+ defined by

Q(z, θ) = γ(y, fθ(x)). (1)

The expected and empirical risk measures at point θ in R
M are defined

respectively by

R(θ)
△
= E (Q(Z, θ)) ,

where E is the expectation sign, and

R̂n(θ)
△
=

1

n

n
∑

i=1

Q(Zi, θ).

Define the target vector as a minimizer of R(·) over R
M :

θ∗
△
= arg min

θ∈RM
R(θ).

Note that the target vector is not necessarily unique. From now on, we assume
that there exists a s-sparse solution θ∗, i.e., a solution with M(θ∗) 6 s, and that
this sparse solution is unique. We will see that this is indeed the case under the
coherence condition on the dictionary (cf. Section 3 below).

Define the excess risk of the vector θ by

E(θ) = R(θ) − R(θ∗),

and its empirical version by

En(θ) = Rn(θ) − Rn(θ∗).

Our goal is to derive sparsity oracle inequalities for the excess risk and for the
risk of θ∗ in the l1 norm and in the sup-norm.

We consider the following minimization problem:

min
θ∈Θ

|θ|1 subject to
∣

∣

∣
∇R̂n(θ)

∣

∣

∣

∞
6 r, (2)

where ∇R̂n
△
= (∂θ1

R̂n, . . . , ∂θM
R̂n)T , r > 0 is a tuning parameter defined later

and Θ is a convex subset of R
M specified later. Solutions of (2), if they exist,
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will be taken as estimators of θ∗. Note that we will prove in Lemma 3 that under

Assumption 2 the set {θ ∈ Θ :
∣

∣

∣∇R̂n(θ)
∣

∣

∣

∞
6 r} is non-empty with probability

close to one. Note also that in the applications considered in Section 3, the
constraint |∇R̂n(θ)|∞ 6 r can be defined as a system of inequalities involving
convex functions. Thus, solutions to (2) exist and can be efficiently computed
via convex optimization. In particular, for the regression model with the Huber
loss, the gradient ∇R̂n(θ) is piecewise linear so that (2) reduces in this case to
a standard linear programming problem. Denote by Θ̂ the set of all solutions of
(2). For the reasons above, we assume from now on that Θ̂ 6= ∅ with probability
close to one.

The definition of our estimator (2) can be motivated as follows. Since the loss
function Q(z, ·) is convex and differentiable for any fixed z ∈ Z, the expected risk
R is also a convex function of θ and it is differentiable under mild conditions.
Thus, minimizing R is equivalent to finding the zeros of ∇R. The quantity
∇R̂n(θ) is the empirical version of ∇R(θ). We choose the constant r such that
the vector θ∗ satisfies the constraint |∇R̂n(θ∗)| 6 r with probability close to
1. Then among all the vectors satisfying this constraint, we choose those with
minimum l1 norm. Note that if we consider the linear regression problem with
the quadratic loss, we recognize in (2) the Dantzig minimization problem of
Candes and Tao [7]. From now on, we will call (2) the generalized Dantzig
minimization problem.

Bickel et al. [1], Candes and Tao [7] and Koltchinskii [12] proved that the
Dantzig estimator performs well in high-dimensional regression problems with
the quadratic loss. In particular they proved sparsity oracle inequalities on the
excess risk and the estimation of θ∗ for the lp norm with 1 6 p 6 2.

The problem (2) is closely related to the minimization problem:

min
θ∈Θ

R̂n(θ) + r|θ|1, (3)

which is a generalized version of the Lasso. For the Lasso estimator, Bunea et
al [5] proved similar results in high-dimensional regression problems with the
quadratic loss under a mutual coherence assumption [8] and Bickel et al [1] under
a weaker Restricted Eigenvalue assumption. Koltchinskii [11] derived similar
results for the Lasso in the context of high-dimensional regresssion with twice
differentiable Lipschtiz continuous loss functions under a restricted isometry
assumption. Van de Geer [22, 23] obtained similar results for the Lasso in the
context of generalized linear models with Lipschtiz continuous loss functions.
Lounici [15] derived sup-norm convergence rates and sign consistency of the
Lasso and Dantzig estimators in a high-dimensional linear regression model
with the quadratic loss under a mutual coherence assumption.

The paper is organized as follows. In Section 2 we derive sparsity oracle in-
equalities for the excess risk and for estimation of θ∗ for the generalized Dantzig
estimators defined by (2) in a stochastic optimization framework. In section 3
we apply the results of Section 2 to the linear regression model with the Huber
loss and to the logistic regression model. In Section 4 we prove the variable
selection consistency with rates under a mutual coherence assumption for the
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linear regression model with the Huber loss. In section 5 we show a sign con-
centration property of the thresholded generalized Dantzig estimators for the
linear regression model with the Huber loss.

2 Sparsity oracle inequalities for prediction and

estimation with the l1 norm

We need an assumption on the dictionary to derive prediction and estimation
results for the generalized Dantzig estimators. We first state the Restricted
Eigenvalue assumption [1].

Assumption 1.

ζ(s)
△
= min

J0⊂{1,...,M}:|J0|6s
min

∆ 6=0:|∆Jc
0
|16|∆J0

|1

||f∆||
|∆J0

|2
> 0.

It implies an ”equivalence” between the two norms |∆|2 and ‖f∆‖ on the subset
{∆ 6= 0 : |∆J(∆)c |1 6 |∆J(∆)|1} of R

M .
We need the following assumption on ‖fθ∗‖∞.

Assumption 2. There exists a constant K > 0 such that ‖fθ∗‖∞ 6 K.

From now on we take for Θ the set

Θ = {θ ∈ R
M : ‖fθ‖∞ 6 K}.

The following assumption is a version of the margin condition (cf. [21]). It
links the excess risk to the functional norm ‖ · ‖.

Assumption 3. For any θ ∈ Θ there exits a constant c > 0 depending possibly
on K such that

‖fθ − fθ∗‖ 6 c(R(θ) − R(θ∗))1/κ,

where 1 < κ 6 2.

We will prove in Section 2.1 below that this condition is always satisfied with
the constant κ = 2 for the regression model with Huber loss and for the logistic
regression model. We also need the following technical assumption.

Assumption 4. The constants K and L satisfy

1 6 K, L 6

√

n

log M
.

Define the quantity

r̃ = 4
√

2L
log M

n
+ 2

√
6

√

log M

n
. (4)
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We assume from now on that r̃ 6 1.
The main results of this section are the following sparsity oracle inequalities

for the excess risk and for estimation of θ∗ in the l1 norm. Define

r = 6‖∂uγ‖∞r̃. (5)

Theorem 1. Let Assumptions 1 - 4 be satisfied. Take r as in (5). Assume that
M(θ∗) 6 s. Then, with probability at least 1−M−1−M−K −3M−2K log n

log M ,
we have

sup
θ̂∈Θ̂

E(θ̂) 6

(

2(1 + 2K)cr
√

s

ζ(s)

)
κ

κ−1

+ 12‖∂uγ‖∞
κ

κ − 1
r̃2, (6)

and

sup
θ̂∈Θ̂

|θ̂ − θ∗|1 6

(

2c
√

s

ζ(s)

)
κ

κ−1

((1 + 2K)r)
1

κ−1 +
2K

(κ − 1)(1 + 2K)
r̃. (7)

Note that the regularization parameter r does not depend on the variance
of the noise if we consider the regression model with non-quadratic loss. In this
case, the use of Lipschtiz losses enables us to treat cases where the noise variable
does not admit a finite second moment, e.g., the Cauchy distribution. The price
to pay is that we need to assume that ‖fθ∗‖∞ 6 K with known K.

Proof. For any θ̂ ∈ Θ̂ define ∆ = θ̂ − θ∗. We have

E(θ̂) 6 En(θ̂) + E(θ̂) − En(θ̂)

= En(θ̂) +
E(θ̂) − En(θ̂)

|∆|1 + r̃
(|∆|1 + r̃)

6 En(θ̂) + sup
θ∈Θ:θ 6=θ∗

(E(θ) − En(θ)

|θ − θ∗|1 + r̃

)

(|∆|1 + r̃). (8)

By Lemma 1 it holds on an event A1 of probability at least 1 − M−K −
3M−2K log n

log M that

sup
θ∈Θ:θ 6=θ∗

E(θ) − En(θ)

|θ − θ∗|1 + r̃
6 2Kr. (9)

For any θ̂ ∈ Θ̂, we have by definition of the Dantzig estimator that |θ̂|1 6

|θ∗|1. Thus

|∆J(θ∗)c |1 =
∑

j∈J(θ∗)c

|θ̂j | 6
∑

j∈J(θ∗)

|θ∗j | − |θ̂j | 6 |∆J(θ∗)|1. (10)

Define the function g : t → Rn(θ∗ + t∆). Clearly g is convex and differen-
tiable on [0, 1]. Thus, the function g′ is nondecreasing on [0, 1] with derivative
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g′(t) = ∇Rn(θ∗ + t∆)T ∆. The constraint
∣

∣

∣
∇R̂n(θ)

∣

∣

∣

∞
6 r in (2) and Lemma 3

yield, on an event A2 of probability at least 1 − M−1,

En(θ̂) = Rn(θ̂) − Rn(θ∗)

=

∫ 1

0

∇Rn(θ∗ + t∆)T ∆dt

6 r|∆|1, (11)

for some numerical constant C > 0.
Combining (8)-(11) yields that on the event A1 ∩ A2

E(θ̂) 6 (2 + 4K)r|∆J(θ∗)|1 + 12‖∂uγ‖∞Kr̃2. (12)

Next,

2(1 + 2K)r|∆J(θ∗)|1 6 2(1 + 2K)r
√

s|∆J(θ∗)|2

6
2(1 + 2K)cr

√
s

ζ(s)

‖f∆‖
c

6
1

κ′

(

2cr
√

s

ζ(s)

)κ′

+
1

κ

(‖f∆‖
c

)κ

6
1

κ′

(

2(1 + 2K)cr
√

s

ζ(s)

)κ′

+
1

κ
E(θ̂D), (13)

where we have used the Cauchy-Schwarz inequality in the first line, the inequal-
ity xy 6 |x|κ/κ+ |y|κ′

/κ′ that holds for any x, y in R and for any κ, κ′ in (1,∞)
such that 1/κ + 1/κ′ = 1 in the third line, and Assumption 2 in the last line.
Combining (12) and (13) and the fact that r̃ 6 1 yields the first inequality. The
second inequality is a consequence of (6) and (13).

We state and prove below intermediate results used in the proof of Theorem
1.

Lemma 1. Let Assumptions 2 and 4 be satisfied. Then, with probability at least
1 − M−K − 3M−2K log n

log M , we have

sup
θ∈Θ

|E(θ) − En(θ)|
|θ − θ∗|1 + r̃

6 2Kr, (14)

where r is defined in Theorem 1.

Proof. For any A > 0, define the random variable

TA = sup
θ∈Θ:|θ−θ∗|16A

|En(θ) − E(θ)|.

For any θ in Θ and (x, y) in Z we have

|γ(y, fθ(x)) − γ(y, fθ∗(x))| 6 ‖∂uγ‖∞ (L|θ − θ∗|1 ∧ 2K) ,
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and

E
(

|γ(Y, fθ(X)) − γ(Y, fθ∗(X))|2
)

6 ‖∂uγ‖2
∞
(

|θ − θ∗|21 ∧ 2K2
)

.

Assumption 3 and Bousquet’s concentration inequality (cf. Theorem 4 in
Section 6 below) with x = (A ∨ 2K) logM , c = 2‖∂uγ‖∞(AL ∧ 2K) and σ =√

2‖∂uγ‖∞(A ∧
√

2K) yield

P (TA > E(TA) + 2AK‖∂uγ‖∞r̃) 6 M−(2K)∨A.

We study now the quantity E(TA). By standard symmetrization and contraction
arguments (cf. Theorems 5 and 6 in Section 6) we obtain

E(TA) 6 4‖∂uγ‖∞E

(

sup
θ∈Θ : |θ−θ∗|16A

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫifθ−θ∗(Xi)

∣

∣

∣

∣

∣

)

.

Then, observe that the mapping u → 1
n

∑n
i=1 ǫifu(Xi) is linear, thus its supre-

mum on a simplex is attained at one of its vertices. This yields

E(TA) 6 4‖∂uγ‖∞AE

(

max
16j6M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫifj(Xi)

∣

∣

∣

∣

∣

)

.

Combining Assumption 4 and Lemma 2 we obtain

E(TA) 6 4‖∂uγ‖∞Ar̃.

Thus
P (TA > 6AK‖∂uγ‖∞r̃) 6 M−(2K)∨A. (15)

Define the following subsets of Θ

Θ(I) = {θ ∈ Θ : |θ − θ∗|1 6 r̃} ,

Θ(II) = {θ ∈ Θ : r̃ < |θ − θ∗|1 6 2K} ,

Θ(III) = {θ ∈ Θ : |θ − θ∗|1 > 2K} .

For any t > 0 define the probabilities

PI = P

(

sup
θ∈Θ(I)

|E(θ) − En(θ)|
|θ − θ∗|1 + r̃

> t

)

PII = P

(

sup
θ∈Θ(II)

|E(θ) − En(θ)|
|θ − θ∗|1 + r̃

> t

)

PIII = P

(

sup
θ∈Θ(III)

|E(θ) − En(θ)|
|θ − θ∗|1 + r̃

> t

)

For any t > 0 we have

P

(

sup
θ∈Θ

|E(θ) − En(θ)

|θ − θ∗|1 + r̃
> t

)

6 PI + PII + PIII .
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Now, we bound from above the three probabilities on the right hand side of the
above expression. Take t = 12‖∂uγ‖∞Kr̃. Applying (15) to PI yields that

PI 6 P
(

Tr̃ > 6‖∂uγ‖∞Kr̃2
)

6 M−2K ,

since we have r̃ 6 K by Assumption 4.
Consider now PII . We have

Θ(II) ⊂
j0
⋃

j=0

{θ ∈ Θ : Aj+1 6 |θ − θ∗|1 6 Aj} ,

where Aj = 21−jK, j = 0, . . . , j0 and j0 is chosen such that 21−j0K > r̃ and
2−j0K 6 r̃. Thus

PII 6

j0
∑

j=0

P
(

TAj
> 12‖∂uγ‖∞Aj+1Kr̃

)

6

j0
∑

j=0

P
(

TAj
> 6‖∂uγ‖∞AjKr̃

)

6 (j0 + 1)M−2K

6

(

3

(

log
n

log M

)

− 1

)

M−2K .

Consider finally PIII . We have

Θ(III) ⊂
∞
⋃

j=0

{

θ ∈ Θ : Āj−1 < |θ − θ∗|1 6 Āj

}

,

where Āj = 21+jK, j > 0. Thus

PIII 6

∞
∑

j=1

P

(

TĀj
> 12‖∂uγ‖∞Āj−1Kr̃

)

6

j0
∑

j=0

P
(

TAj
> 6‖∂uγ‖∞ĀjKr̃

)

6

∞
∑

j=1

M−Āj

6 M−K .

We now study the quantity E
(

max16j6M

∣

∣

1
n

∑n
i=1 ǫifj(Xi)

∣

∣

)

. This is done
in the next lemma.
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Lemma 2. We have

E

(

max
16j6M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫifj(Xi)

∣

∣

∣

∣

∣

)

6 r̃, (16)

where r̃ is defined in (4).

Proof. Define the random variables

Uj =
1√
n

n
∑

i=1

ǫifj(Xi).

The Bernstein inequality yields, for any j = 1, . . . , M and t > 0,

P (|Uj | > t) 6 exp

(

− t2

2(t‖fj‖∞/(3
√

n) + ‖fj‖2)

)

. (17)

Set bj = ‖fj‖∞/(3
√

n). Define the random variables Tj = Uj1I|Yj|>‖fj‖2/bj

and T ′
j = Uj1I|Yj|6‖fj‖2/bj

. For all t > 0 we have

P (|Tj | > t) 6 2 exp

(

− t

4bj

)

, P
(

|T ′
j| > t

)

6 2 exp

(

− t2

4‖fj‖2

)

.

Define the function hν(x) = exp(xν) − 1, where ν > 0. This function is clearly
convex for any ν > 0. We have

E

(

h1

( |Tj |
12bj

))

=

∫ ∞

0

et
P(|Tj | > 12bjt)dt 6 1,

where we have used Fubini’s Theorem in the first equality. Since the function
h1 is convex and nonnegative, we have

h1

(

E

(

max
16j6M

|Tj|
12bj

))

6 E

(

h1

(

max
16j6M

|Tj|
12bj

))

6 E





M
∑

j=1

h1

( |Tj|
12bj

)





6 M,

where we have used the Jensen inequality. Since the function h−1
1 (x) = log(1+x)

is increasing, we have

E

(

max
16j6M

|Tj |
12bj

)

6 log(1 + M)

E

(

max
16j6M

|Tj |
)

6 4
log(1 + M)√

n
max

16j6M
‖fj‖∞. (18)

9



Applying the same argument to the function h2, we prove that

E

(

max
16j6M

|T ′
j|
)

6 2
√

3
√

log(1 + M) max
16j6M

‖fj‖. (19)

Combining (18) and (19) yields the result.

Lemma 3. Let Assumptions 2 and 4 be satisfied. Then, with probability at least
1 − M−1, we have

|∇R̂n(θ∗)|∞ 6 r,

where r is defined in Theorem 1.

Proof. For any 1 6 j 6 M define

Zj =
1

n

n
∑

i=1

∂uγ(Yi, fθ∗(Xi))fj(Xi).

Since the function θ → γ(y, fθ(x)) is differentiable w.r.t. θ and |∂uγ(y, fθ(x))fj(x)| 6

‖∂uγ‖∞L for any (x, y) ∈ X × Y and θ ∈ R
M , we have

E(Zj) =
∂R(θ∗)

∂θj
= 0.

Next, similarly as in Lemmas 1 and 2, we prove that

E(|∇R̂n(θ∗)|∞) 6 4‖∂uγ‖∞r̃.

Finally Bousquet’s concentration inequality (cf. Theorem 4 in Section 6 below)
yields that, with probability at least 1 − M−1,

|∇R̂n(θ∗)|∞ 6 E(|∇R̂n(θ∗)|∞)

+

√

2
logM

n

(

‖∂uγ‖2
∞ + 2‖∂uγ‖∞LE(|∇R̂n(θ∗)|∞)

)

+
‖∂uγ‖∞L log M

3n
6 6‖∂uγ‖∞r̃.

3 Examples

3.1 Robust regression with the Huber loss

We consider the linear regression model

Y = fθ∗(X) + W, (20)
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where X ∈ R
d is a random vector, W ∈ R is a random variable independent of

X whose distribution is symmetric w.r.t. 0 and θ∗ ∈ R
M is the unknown vector

of parameters. Consider the function

φ(x) =
1

2
x21I|x|62K+α +

(

(2K + α)|x| − (2K + α)2

2

)

1I|x|>2K+α,

where α > 0. The Huber loss function is defined by

Q(z, θ) = φ(y − fθ(x)), (21)

where z = (x, y) ∈ R
d × R and θ ∈ Θ.

In the following lemma we prove that for this loss function Assumption 3 is
satisfied with κ = 2 and c = (2/P(|W | 6 α))1/2.

Lemma 4. Let Q be defined by (21). Then for any θ ∈ Θ we have

P(|W | 6 α)

2
‖fθ − fθ∗‖2

6 E(θ).

Proof. Set ∆ = θ− θ∗. Since φ′ is absolutely continuous, we have for any θ ∈ Θ

Q(Z, θ) − Q(Z, θ∗) = φ′(W )f−∆(X)

+

[∫ 1

0

1I|W+tf−∆(X)|62K+α(1 − t)dt

]

f∆(X)2

> φ′(W )f−∆(X) +
1

2
1I(|W |6α)f∆(X)2,

since ‖fθ‖∞ 6 K for any θ ∈ Θ. Taking the expectations we get

R(θ) − R(θ∗) >
P(|W | 6 α)

2
‖f∆‖2,

for any α > 0 since φ′ is odd and the distribution of W is symmetric w.r.t.
0.

We have the following corollary of Theorem 1.

Corollary 1. Let Assumptions 1, 2 and 4 be satisfied. If M(θ∗) 6 s, then, with
probability at least 1 − M−1 − M−K − 3M−2K log n

log M , we have

sup
θ̂∈Θ̂

E(θ̂) 6
8(1 + 2K)2

P(|W | 6 α)ζ(s)2
sr2 +

2

3
r2,

and

sup
θ̂∈Θ̂

|θ̂ − θ∗|1 6
8(1 + 2K)

P(|W | 6 α)ζ(s)2
sr +

K

3(1 + 2K)
r.
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3.1.1 Logistic regression and similar models

We consider Z = (X, Y ) ∈ X × {0, 1} where X is a Borel subset of R
d. The

conditional probability P(Y = 1 |X = x) = π(x) is unknown where π is a
function on X with values in [0, 1]. We assume that π is of the form

π(x) = Φ′(fθ∗(x)), (22)

where the function Φ : R → R
∗ is convex, twice differentiable, of derivative Φ′

with values in [0, 1] and the vector θ∗ ∈ R
M is unknown. Consider, e.g., the

logit loss function Φ(u) = log(1 + eu). We assume that Φ is known. Define the
quantity

τ(R) =
1

2
inf

|u|6R
Φ(2)(u), (23)

for any R > 0. We want to estimate θ∗ with the procedure (2) and the convex
loss function

Q(z, θ) = −yfθ(x) + Φ(fθ(x)), (24)

where z = (x, y) ∈ R
d × {0, 1}. Thus we need to check Assumption 3 to apply

Theorem 1.

Lemma 5. Let the loss function be of the form (24) where Φ satisfies the above
assumptions. Then for any θ ∈ R

M we have

τ(K)‖fθ − fθ∗‖2
6 E(θ).

Proof. For any θ ∈ Θ, we have

Q(Z, θ) − Q(Z, θ∗) = ∇Q(Z, θ∗)T (θ − θ∗)

+

[∫ 1

0

Φ(2)(H(X)T (θ∗ + t(θ − θ∗)))(1 − t)dt

]

f∆(X)2

> ∇Q(Z, θ∗)T (θ − θ∗) + τ(‖fθ‖∞ ∨ ‖fθ∗‖∞)f∆(X)2.

Since ‖∇Q(·, ·)‖∞ < ∞, we can differentiate under the expectation sign, so that

E(∇Q(Z, θ∗)T (θ − θ∗)) = ∇R(θ∗) = 0.

Thus
E(θ) > τ(‖fθ‖∞ ∨ ‖fθ∗‖∞)‖fθ − fθ∗‖2.

Thus Assumption 3 is satisfied with the constants κ = 2 and c = 1√
τ(K)

.

We have the following corollary of Theorem 1.

Corollary 2. Let Assumptions 1, 2 and 4 be satisfied. If M(θ∗) 6 s, then, with
probability at least 1 − M−1 − M−K − 3M−2K log n

log M , we have

sup
θ̂∈Θ̂

E(θ̂) 6
4(1 + 2K)2

τ(K)ζ(s)2
sr2 +

2

3
r2,

12



and

sup
θ̂∈Θ̂

|θ̂ − θ∗|1 6
4(1 + 2K)

τ(K)ζ(s)2
sr +

K

3(1 + 2K)
r.

4 Sup-norm convergence rate for the regression

model with the Huber loss

In this section, we derive the sup-norm convergence rate of the Dantzig esti-
mators to the target vector θ∗ in the linear regression model under a mutual
coherence assumption on the dictionary and Huber’s loss. The proof relies on
the fact that the Hessian matrix of the risk also satisfies the mutual coherence
condition for this particular model. Unfortunately, we cannot proceed similarly
in the general case because the Hessian matrix of the risk at point θ∗ does not
necessarily satisfy the mutual coherence condition even if the Gram matrix of
the dictionary does. Note that for Huber’s loss the Dantzig minimization prob-
lem (2) is computable feasible. The constraints in (2) are indeed linear, so that
(2) is a linear programming problem.

Denote by Ψ(θ) the Hessian matrix of the risk R evaluated at θ. With our
assumptions on the dictionary D and on the function γ, for any θ ∈ R

M we
have

Ψ(θ)
△
= ∇2R(θ) =

(

E
(

∂2
uγ(Y, fθ(X))fj(X)fk(X)

))

16j,k6M
.

Note that for the quadratic loss we have Ψ(·) ≡ 2G where G is the Gram matrix
of the design. For Lipschtiz loss functions the Hessian matrix Ψ varies with θ.

We consider the linear regression model (20). For any functions g, h : X →
R, denote by < g, h > the scalar product E(g(X)h(X)). Define the Gram matrix
G by

G = (< fj , fk >)16j,k6M .

From now on, we assume that G satisfies a mutual coherence condition.

Assumption 5. The Gram matrix G = (< fj , fk >)16j,k6M satisfies

Gj,j = 1, ∀1 6 j 6 M,

and

max
j 6=k

|Gj,k| 6
1

3βs
,

where s > 1 is an integer and β > 1 is a constant.

This assumption is stronger than Assumption 1. We have indeed the follow-
ing Lemma (cf. Lemma 2 in [15]).

Lemma 6. Let Assumption 5 be satisfied. Then

ζ(s)
△
= min

J⊂{1,··· ,M},|J|6s
min

∆ 6=0:|∆Jc |16|∆J |1

‖f∆‖
|∆J |2

>

√

1 − 1

β
> 0.

13



Note that Assumption 5 the vector θ∗ satisfying (20) such that M(θ∗) 6 s
is unique. Consider indeed two vectors θ1 and θ2 satisfying (20) such that
M(θ1) 6 s and M(θ2) 6 s. Denote θ = θ1 − θ2 and J = J(θ1) ∪ J(θ2). Clearly
we have fθ(X) = 0 a.s. and M(θ) 6 2s. Assume that θ1 and θ2 are distinct.
Then,

‖fθ‖2
2

|θ|22
= 1 +

θT (G − IM )θ

|θ|22

> 1 − 1

3βs

M
∑

i,j=1

|θi||θj |
|θ|22

> 1 − 1

3β
> 0,

where we have used the Cauchy-Schwarz inequality. This contradicts the fact
that fθ(X) = 0 a.s.

For the linear regression model, the Hessian matrix Ψ at point θ is

Ψ(θ) = E(1I|fθ∗−θ(X)+W |62K+αfj(X)fk(X))16j,k6M .

We observe that
Ψ(θ∗) = P(|W | 6 2K + α)G.

Thus Ψ(θ∗) satisfies a condition similar to Assumption 4 but with a different
constant if P(|W | 6 2K + α) > 0. The empirical Hessian matrix Ψ̂ at point
θ ∈ R

M is defined by

Ψ̂j,k(θ) =
1

n

n
∑

i=1

1I|fθ∗−θ(Xi)+Wi|62K+αfj(Xi)fk(Xi), 1 6 j, k 6 M.

We will prove that the empirical Hessian matrix Ψ̂(θ) satisfies a mutual co-
herence condition for any θ in a small neighborhood of θ∗ under some additional
assumptions given below.

First, we need an additional mild assumption on the noise.

Assumption 6. There c.d.f. FW of W is Lipschitz continuous.

This assumption is satisfied, e.g., if W admits a bounded density so we allow
heavy tailed distributions such as the Cauchy. In the sequel we assume w.l.o.g.
that the Lipschitz constant of FW equals 1.

We impose a restriction on the sparsity s.

Assumption 7. The sparsity s satisfies s 6 1√
r
.

This implies that we can recover the sparse vectors with at most O
(

(n/ logM)
1/4
)

nonzero components.
Define Vη = {θ ∈ Θ : |θ − θ∗|1 6 η} where η = C1rs and

C1 =
8(1 + 2K)β

P(|W | 6 α)(β − 1)
+

1

6
. (25)
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Consider the event

E =

{

sup
16j,k6M,θ∈Vη

∣

∣

∣Ψ̂j,k(θ) − Ψj,k(θ)
∣

∣

∣ 6 8L3η + 4Lr̃ +
C2√
ns2

}

, (26)

where

C2 = 2

√

1 + (1 + L2)

(

8C1L3 +
4L

s

)

+
1 + L2

3
.

We have the following intermediate result.

Lemma 7. Let Assumptions 2- 6 be satisfied. Then P(E) > 1−exp(−√
log M).

Proof. Define the variable

Z = sup
16j,k6M, θ∈Vη

∣

∣

∣Ψ̂j,k(θ) − Ψj,k(θ)
∣

∣

∣ .

Applying the Bousquet concentration inequality (cf. Theorem 4 in Section 6)

with the constants c = (1 + L2)/n, σ2 = 2/n2 and x =
√

n
s2 yields that, with

probability at least 1 − e−x,

Z 6 E (Z) +
2√
ns

√

1 + (1 + L2)E (Z) +
1 + L2

3
√

ns2
. (27)

We study now the quantity E(Z). A standard symmetrization and contraction
argument yields

E(Z) 6 2E

(

sup
16j,k6M, θ∈Vη

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫi1I|fθ∗−θ(Xi)+Wi|62K+αfj(Xi)fk(Xi)

∣

∣

∣

∣

∣

)

6 2E

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫi1I|Wi|62K+αfj(Xi)fk(Xi)

∣

∣

∣

∣

∣

)

+ 2E

(

sup
16j,k6M, θ∈Vη

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫi(1I|fθ∗−θ(Xi)+Wi|62K+α − 1I|Wi|62K+α)fj(Xi)fk(Xi)

∣

∣

∣

∣

∣

)

.

(28)

Denote by (I) and (II) respectively the first term and the second term on the
right hand side of the above expression. The contraction principle yields

(I) 6 4E

(

max
16j,k6M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫifj(Xi)fk(Xi)

∣

∣

∣

∣

∣

)

. (29)

Then, similarly as in the proof of Lemma 2 we get

E

(

max
16j,k6M

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫifj(Xi)fk(Xi)

∣

∣

∣

∣

∣

)

6 Lr̃.
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Thus, for (II) we have

(II) 6 2L2
E

(

sup
θ∈Vη

1

n

n
∑

i=1

|1I|f∆(Xi)+Wi|62K+α − 1I|Wi|62K+α|
)

6 2L2
P (2K + α − Lη 6 |W | 6 2K + α + Lη)

6 8L3η. (30)

Assumptions 4 and 7 yield that s 6

(

n
log M

)1/4

. Combining (27)-(30) yields the

result.

We need an additional technical assumption.

Assumption 8. We have 12L3η + Lr̃ + C2√
ns2

6
P(|W |62K+α)

2 .

This is a mild assumption. It is indeed satisfied for n large enough if we
assume that P(|W | 6 2K + α) > 0 since Assumption 6 implies that r → 0 as
n → ∞.

We have the following result on the empirical Hessian matrix.

Lemma 8. Let Assumptions 2-8 be satisfied. Then, with probability at least
1 − exp(−√

log M), for any θ ∈ Vη, we have

min
16j6M

|Ψ̂j,j(θ)| >
P(|W | 6 2K + α)

2
,

max
j 6=k

|Ψ̂j,k(θ)| 6
C3

s
, (31)

where C3 = 1
3β + 12L3C1 + C2√

ns
.

Proof. For any θ in Vη and any j, k in {1, . . . , M} we have

Ψj,k(θ) − Ψj,k(θ∗) = E
(

(1I|f∆(X)+W |62K+α − 1I|W |62K+α)fj(X)fk(X)
)

,

where ∆ = θ − θ∗. Then

|Ψj,k(θ) − Ψj,k(θ∗)| 6 L2
E
(

|1I|f∆(X)+W |62K+α − 1I|W |62K+α|
)

6 L2
P (|W | 6 2K + α , |f∆(X) + W | > 2K + α)

+ L2
P (|W | > 2K + α , |f∆(X) + W | 6 2K + α) .

Recall that |f∆(X)| 6 Lη. Then

|Ψj,k(θ) − Ψj,k(θ∗)| 6 L2
P (2K + α − Lη 6 |W | 6 2K + α + Lη)

6 2L2
P (2K + α − Lη 6 W 6 2K + α + Lη)

6 4L3η, (32)
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where we have used the fact that the distribution of W is symmetric w.r.t. 0
in the second line and Assumption 6 in the last line. Lemma 7 and (32) yield
that, on the event E, for any θ ∈ Vη,

min
16j6M

Ψ̂j,j(θ) > P(|W | 6 2K + α) − 12L3η − C2√
ns2

,

and

max
j 6=k

|Ψj,k(θ)| 6
C3

s
.

Now we can derive the optimal sup-norm convergence rate of the Dantzig
estimators.

Theorem 2. Let Assumptions 2-8 be satisfied. If M(θ∗) 6 s, then, on an event
of probability at least 1−M−1 −M−K − exp(−√

log M)− 3M−2K log n
log M , we

have
sup
θ̂∈Θ̂

|θ̂ − θ∗|∞ 6 C4r,

where r is defined in Theorem 1,

C4 =
4 + 2C1C3

P(|W | 6 2K + α)
,

with C1 and C3 defined respectively in (25) and Lemma 8.

Proof. For any θ̂ in Θ̂ we have

∇Rn(θ̂) −∇Rn(θ∗) =

[∫ 1

0

Ψ̂(θ∗ + t∆)dt

]

∆,

where ∆ = θ̂ − θ∗.
The definition of our estimator, Lemma 3 and Corollary 1 yield that, on an

event A1 of probability at least 1 − M−1 − exp(−√
log M) − 3M−2K log n

log M ,

we have that θ̂ ∈ Vη and
∣

∣

∣

∣

[∫ 1

0

Ψ̂(θ∗ + t∆)dt

]

∆

∣

∣

∣

∣

∞
6 2r.

Lemma 8 yields that, on the event A1 ∩ E,

P(|W | 6 2K + α)

2
|∆|∞ 6 2r +

C3

s
|∆|1,

so that
|∆|∞ 6 C4r.

Note that Theorem 2 holds true for the Lasso estimators (2) with exactly the
same proof, provided that a result similar to Theorem 1 is valid for the Lasso
estimators. This is in fact the case (cf. [22, 12]).
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5 Sign concentration property

Now we study the sign concentration property of the Dantzig estimators. We
need an additional assumption on the magnitude of the nonzero components of
θ∗.

Assumption 9. We have

ρ
∆
= min

j∈J(θ∗)
|θ∗j | > 2C4r,

where r is defined in Theorem 1 and C4 is defined in Theorem 2.

We can find similar assumptions on ρ in the work on sign consistency of the
Lasso estimator mentioned above. More precisely, the lower bound on ρ is of the
order (s(log M)/n)1/4 in [17], n−δ/2 with 0 < δ < 1 in [25, 27],

√

(log Mn)/n

in [3],
√

s(log M)/n in [26] and r in [15].
We introduce the following thresholded version of our estimator. For any

θ̂ ∈ Θ̂ the associated thresholded estimator θ̃ ∈ R
M is defined by

θ̃j =

{

θ̂j , if |θ̂j | > C4r,

0 elsewhere.

Denote by Θ̃ the set of all such θ̃. We have first the following non-asymptotic
result that we call sign concentration property.

Theorem 3. Let Assumptions 2 and 5-9 be satisfied. If M(θ∗) 6 s, then

P

(

~sign(θ̃) = ~sign(θ∗), ∀θ̃ ∈ Θ̃
)

> 1 − M−1 − M−K − exp(−
√

log M)

− 3M−2K log
n

log M
.

Theorem 3 guarantees that the sign vector of every vector θ̃ ∈ Θ̃ coincides
with that of θ∗ with probability close to one.

Proof. Theorem 2 yields supθ̂∈Θ̂ |θ̂−θ∗|∞ 6 C3r on an event A of probability at

least 1 − 6M−1. Take θ̂ ∈ Θ̂. For j ∈ J(θ∗)c, we have θ∗j = 0, and |θ̂j | 6 c2r on

A. For j ∈ J(θ∗), we have |θ∗j | > 2C3r and |θ∗j | − |θ̂j | 6 |θ∗j − θ̂Cj | 6 C3r on A.

Since we assume that ρ > 2C3, we have on A that |θ̂j | >> c2r. Thus on the event

A we have: j ∈ J(θ∗) ⇔ |θ̂j | > c2r. This yields sign(θ̃j) = sign(θ̂j) = sign(θ∗j )

if j ∈ J(θ∗) on the event A. If j 6∈ J(θ∗), sign(θ∗j ) = 0 and θ̃j = 0 on A, so

that sign(θ̃j) = 0. The same reasoning holds true simultaneously for all θ̂ ∈ Θ̂
on the event A. Thus, we get the result.
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6 Appendix

We recall here some well-known results of the theory of empirical processes.

Theorem 4 (Bousquet’s version of Talagrand’s concentration inequal-
ity [2]). Let Xi be independent variables in X distributed according to P , and
F be a set of functions from X to R such that E(f(X)) = 0, ‖f‖∞ 6 c and
‖f‖2 6 σ2 for any f ∈ F . Let Z = supf∈F

∑n
i=1 f(Xi). Then with probability

1 − e−x, it holds that

Z 6 E(Z) +
√

2x(nσ2 + 2cE(Z)) +
cx

3
.

Theorem 5 (Symmetrization theorem [24], p. 108). Let X1, . . . , Xn be in-
dependent random variables with values in X , and let ǫ1, . . . , ǫn be a Rademacher
sequence independent of X1, . . . , Xn. Let F ba a class of real-valued functions
on X . Then

E

(

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

(f(Xi) − E(f(Xi)))

∣

∣

∣

∣

∣

)

6 2E

(

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

ǫif(Xi)

∣

∣

∣

∣

∣

)

.

Theorem 6 (Contraction theorem [14], p. 95). . Let x1, . . . , xn be nonran-
dom elements of X , and let F be a class of real-valued functions on X . Consider
Lipschitz functions γi :→ R, that is,

|γi(s) − γi(s
′)| 6 |s − s′|, ∀s, s′ ∈ R.

Let ǫ1, . . . , ǫn be a Rademacher sequence. Then for any function f∗ : X → R,
we have

E

(

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

ǫi(γi(f(xi)) − γi(f
∗(xi)))

∣

∣

∣

∣

∣

)

6 2E

(

sup
f∈F

∣

∣

∣

∣

∣

n
∑

i=1

ǫi((f(xi) − f∗(xi))

∣

∣

∣

∣

∣

)

.
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