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Abstract

We provide a study of the supersymmetric Adler–Bardeen anomaly in the

N = 1, d = 4, 6, 10 super-Yang–Mills theories. We work in the component for-

malism that includes shadow fields, for which Slavnov–Taylor identities can be in-

dependently set for both gauge invariance and supersymmetry. We find a method

with improved descent equations for getting the solutions of the consistency con-

ditions of both Slavnov–Taylor identities and finding the local field polynomials

for the standard Adler–Bardeen anomaly and its supersymmetric counterpart. We

give the explicit solution for the ten-dimensional case.
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1 Introduction

The gaugino of even-dimensional N = 1 supersymmetric Yang–Mills theories is a chiral

spinor. This implies the existence of an Adler–Bardeen one-loop anomaly. Its effect is

made manifest by the non-vanishing of a relevant form factor of well defined one-loop

amplitudes, as predicted by the consistency equations [1] and by their solution given

by the Chern–Simons formula [2, 3, 4]. It is of course well-known that the existence

of anomalies in ten-dimensional supersymmetric Yang–Mills theory has triggered funda-

mental progress in string theories [5, 6]. The consistency of these anomalies with N = 1

supersymmetry eluded however a complete analysis. In this paper, we address this prob-

lem using recent progress in the formulation of supersymmetric theories in component

formalism and in various dimensions.

As a matter of fact, in a supersymmetric gauge theory, the Wess and Zumino con-

sistency conditions must be generalized in order to be compatible with supersymmetry.

The standard Adler–Bardeen anomaly must come with a supersymmetric counterpart.

The method of [2, 3, 4] was however generalized to higher dimensions both in component

formalism [7] and in superspace [8] to determine this supersymmetric counterpart, but

no explicit expression was given for the ten-dimensional case. Such an expression was

derived later in [9] for the coupled N = 1 supergravity and super-Yang–Mills theory for

the supersymmetrization of the Green–Schwartz mechanism [6].

On the other hand, recent results in component formalism based on the introduction

of shadow fields [10] have allowed for the definition of two independent Slavnov–Taylor

identities. This has permitted the disentangling of gauge invariance and supersymme-

try. In this way, one gets a consistent analysis of the compatibility of the Adler–Bardeen

anomaly with supersymmetry, and an algebraic proof was given for the absence of anoma-

lies in N = 2, 4, d = 4 super-Yang–Mills theories and for the fact that in the case of

N = 1 the only possible anomaly is of the Adler–Bardeen type.

The purpose of this paper is to give a systematic way for solving the supersymmetric

consistency equations for the supersymmetric Adler–Bardeen anomaly in the cases of

N = 1, d = 4, 6, 10 super-Yang–Mills theories, following the same logic as that of [10]

and completing it by determining the explicit expression for the ten-dimensional case.
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2 Adler–Bardeen anomaly in super-Yang–Mills the-

ories

We first introduce some definitions that apply to N = 1 supersymmetric Yang-Mills

theories in general and focus on the ten-dimensional case afterwards. Let s be the

BRST operator associated to ordinary gauge symmetry and Q the differential operator

that acts on the physical fields as an ordinary supersymmetry transformation minus a

gauge transformation of parameter a scalar field c, that is Q ≡ δ Susy − δ gauge(c). The

shadow field c allows for the elimination of the field dependent gauge transformations in

the commutators of the supersymmetry algebra [10]. It completes the usual Faddeev–

Popov ghost Ω associated to BRST symmetry. The s and Q operators verify

s
2 = 0 , { s , Q} = 0 , Q2 ≈ Lκ (1)

where ≈ means that this relation can hold modulo the equations of motion and κ is the

bilinear function of the supersymmetry parameter, κµ = −i(ǫγµǫ). In addition to the

ghost number, we assign a shadow number, equal to one for the supersymmetry parameter

and for the shadow field c, and zero for the other fields. The Q operator increases the

shadow number by one unit. Each field and operator has a grading determined by the

sum of the ghost number, shadow number and form degree. Transformation laws for

the various fields can be deduced from the definition of an extended curvature F̃ , by

decomposition over terms of all possible gradings of the following horizontality condition

F̃ ≡ (d + s + Q − iκ)
(

A + Ω + c
)

+
(

A + Ω + c
)2

= F + δ SusyA (2)

where A is the gauge connection and F = dA+AA. At the quantum level, one introduces

sources for the non-linear s , Q and s Q transformations of all fields. The BRST invariant

gauge-fixed local action with all needed external sources is then given by

Σ = S[ϕ] + s Ψ + Sext (3)

The BRST and supersymmetry invariances of Σ imply both Slavnov–Taylor identities

S(s)(Σ) = 0 , S(Q)(Σ) = 0 (4)

where S(s) and S(Q) are the Slavnov–Taylor operators associated to the s and Q operators,

respectively 1. These identities imply the following anticommutation relations between

1We refer to [10] for more explicit definitions.

2



the associated linearized Slavnov–Taylor operators S(s)|Σ and S(Q)|Σ

S(s)
2
|Σ = 0 , {S(s)|Σ ,S(Q)|Σ} = 0 , S(Q)

2
|Σ = Pκ (5)

where Pκ is the differential operator that acts as the Lie derivative along κ on the fields

and external sources 2. An anomaly is defined as an obstruction – at a certain order n

of perturbation – to the implementation of the Slavnov–Taylor identities on the vertex

functional Γ = Σ + O(~), that is

S(s)(Γ) = ~
n
A , S(Q)(Γ) = ~

n
B (6)

where A , and B are respectively integrated local functionals of ghost number one and

shadow number one, defined modulo S(s)- and S(Q)-exact terms. The introduction of the

linearized Slavnov–Taylor operators permits one to write the consistency conditions

S(s)|ΣA = 0(2,0) , S(Q)|ΣA + S(s)|ΣB = 0(1,1) , S(Q)|ΣB = 0(0,2) (7)

where the superscripts (g, s) denote the ghost and the shadow number. Due to (5),

the problem of the determination of the solutions to these conditions is a cohomological

problem. The consistent Adler–Bardeen anomaly is thus defined as the pair A and B,

identified as the elements (1, 0) and (0, 1) of the cohomology of the operators S(s)|Σ,S(Q)|Σ,

in the set of integrated local functionals depending on the fields and sources. It can be

shown that the cohomology of the linearized Slavnov–Taylor operators in the set of

local functionals depending on the fields and sources is completely determined by that

of the classical operators in the set of local functionals depending only on the fields,

provided such functionals are identified on the stationary surface, i.e., modulo equations

of motion [11, 10]. We will thus consider the consistency conditions

s A = 0(2,0), QA + s B = 0(1,1), QB = 0(0,2) (8)

To determine the solutions of these equations in d = 2n − 2 dimensional space-

time, we formally define the Chern character 2n-form Chn ≡ Tr F̃ n, where F̃ has been

introduced in Eq. (2) 3. From a generalization of the algebraic Poincaré lemma and the

Chern–Simons identity, Chn can locally be written as a (d̃ ≡ d+ s +Q− iκ)-exact term

Tr F̃ n = d̃Tr W2n−1(Ã, F̃ ) (9)
2The fact that Q2 is a pure derivative only modulo the equations of motion on the gaugino of the

ten-dimensional case is solved for the linearized Slavnov–Taylor operator S(Q)|Σ by introducing suitable

source terms in (3).
3The following procedure is actually valid for any invariant symmetric polynomial, which covers the

case of so-called factorized anomalies.
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W2n−1 is the Chern–Simons form, which can be calculated form the formula

W2n−1(Ã, F̃ ) = n

∫ 1

0

dt Tr (Ã F̃ n−1
t ) (10)

where Ft = tdA + t2A2. The term with grading (2, 0) in (9) gives the standard Adler–

Bardeen anomaly [4]

A ≡

∫

W
(1,0)
2n−2 , s A = 0 (11)

The term with grading (1, 1) gives a solution for the consistency condition

QA + s Bc = 0 (12)

which is given by

B
c ≡

∫

W
(0,1)
2n−2 (13)

However, we have not yet a solution to the consistency equations, since the term Tr F̃ n

with grading (0, 2) gives a breaking of the consistency condition QBc = 0, according to

QB
c = (n

2)

∫

Tr δ SusyA δ SusyA F n−2 (14)

where (n
2) stands for the binomial coefficient.

The solution of this problem can be solved as follows. One observes that Bc in

Eq. (14) is a particular solution of Eq. (12), so that one can add to it a local functional

of the fields B
inv, provided their sum is Q-invariant. To preserve the condition (12),

Binv must be s -closed. But since QBc is not s -exact and since { s , Q} = 0, no s -exact

element of Binv can contribute and Binv must be in the cohomology of s . Therefore,

the consistency conditions (8) are fulfilled provided there exists a gauge-invariant local

functional of the physical fields satisfying

δ Susy
B

inv = −(n
2)

∫

Tr δ SusyA δ SusyA F n−2 (15)

so that

B = B
c + B

inv , QB = 0 (16)

We now address the problem of determining Binv. We keep general d-dimensional

notations, since we have in mind the cases of N = 1 super-Yang–Mills theories in d = 4, 6

and 10. The field content is made of a gauge connexion A = Aµdxµ (µ = 0, . . . , d) and

its gaugino λ, both in the adjoint representation of some gauge group. Transformation
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laws are determined by Eq. (2) and its Bianchi identity with δ SusyA = −i(ǫγ1λ), and

γ1 ≡ γµdxµ. We take ǫ commuting so that Eq. (1) holds. To determine Binv, we first

make the following observation. In each of the considered dimensions, a Fierz identity

shows that κµ ≡ −i(ǫγµǫ) is light-like, that is κµκµ = 0. We then introduce a vector κ̂µ

that we normalize so that κ̂µκµ = 1. Let moreover ικ be the contraction operator along

κµ, so that

δ SusyA = −i(ǫγ1λ) , δ SusyF = −dAδ SusyA , ικδ
SusyA = 0 , (δ Susy)2A = ικF (17)

By integrating by parts and with the Bianchi identity dAF = 0, it is straightforward to

see that the following expression

B
inv = cn

∫

Tr
(

κ̂ δ SusyA δ SusyA δ SusyA F n−3
)

(18)

with κ̂ ≡ κ̂µdxµ and cn = n−2
3 (n

2) is such that Eq. (15) holds true. Moreover, it provides

an off-shell expression, as it is solely based on the geometrical curvature Eq. (2) and its

Bianchi identity. The problem thus reduces to that of the elimination of κ̂, in order the

solution to be bilinear in the supersymmetry parameter. In four dimensions for example,

n = 3 and the elimination of κ̂ in Eq. (18) directly yields the known result [10].

From now on, we focus on the ten-dimensional super-Yang–Mills theory. Its fields

content consists of a gauge connection A = Aµdxµ (µ = 0, . . . , 9) and a Majorana–Weyl

spinor λ, with both λ and ǫ ∈ 16+ of SO(1, 9). Eq. (15) now reads

δ Susy
B

inv = −15

∫

Tr δ SusyA δ SusyA F 4 (19)

By demanding removal of the κ̂ dependency in Eq.(18), one is naturally led to consider

the following solution

B
inv =

1

16

∫

d10x Tr
(

εµ1···µ10(ǫγ σ
µ1µ2

λ)(λγµ3µ4σλ) Fµ5µ6Fµ7µ8Fµ9µ10

)

(20)

Indeed, with the help of some ten-dimensional γ-matrix identities [A], one can check that

modulo the equations of motion

δ Susy

∫

d10x Tr
(

εµ1···µ10(ǫγ σ
µ1µ2

λ)(λγµ3µ4σλ) Fµ5µ6Fµ7µ8Fµ9µ10

)

≈ 15

∫

d10x Tr
( 1

16
εµ1···µ10 (ǫγσǫ)(λγµ1µ2σλ)Fµ3µ4Fµ5µ6Fµ7µ8Fµ9µ10

+
1

96
εµ1···µ10 (ǫγ ν1ν2ν3

µ1µ2
ǫ)(λγν1ν2ν3λ)Fµ3µ4Fµ5µ6Fµ7µ8Fµ9µ10

)
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= −15

∫

d10x Tr
(

εµ1···µ10 (ǫγµ1λ)(ǫγµ2λ)Fµ3µ4Fµ5µ6Fµ7µ8Fµ9µ10

)

(21)

It implies that the following expression

B =

∫

W
(0,1)
10 +

1

16

∫

d10x Tr
(

εµ1···µ10(ǫγ σ
µ1µ2

λ)(λγµ3µ4σλ) Fµ5µ6Fµ7µ8Fµ9µ10

)

(22)

solves the supersymmetric part of the consistency equations. We have therefore found

the supersymmetric counterpart of the Adler–Bardeen anomaly for the N = 1, d = 10

super-Yang–Mills theory. The result can be easily transposed in d = 4 and 6 dimensions.

For the case d = 4, we recover the result of [10], where the problem is less involved and

can easily be solved by inspection over all possible field polynomials.

Acknowledgments

We thank very much G. Bossard for useful discussions. A. M. is grateful to P. Vanhove for

his useful advice regarding gamma matrix manipulations. This work has been partially

supported by the contract ANR (CNRS-USAR), 05-BLAN-0079-01. A. M. has been

supported by the Swiss National Science Foundation, grant PBSK2-119127.

A Ten-dimensional γ-matrix identities

The ten-dimensional γ-matrices satisfy the Clifford algebra {γµ, γν} = 2ηµν and our

convention for antisymmetrization is γµ1···µn = 1
n!

γ[µ1 · · · γµn]. Both ǫ and λ are chiral, so

that we only have to consider a basis of gamma matrices made of

γµ , γµ1µ2µ3 , γµ1···µ5 (23)

Useful identities used to derive (21) are

γσγµγσ = −8γµ

γσγµ1µ2µ3γσ = −4γµ1µ2µ3

γσγµ1···µ5γσ = 0

γσ1σ2σ3γµγσ1σ2σ3 = 288γµ

γσ1σ2σ3γµ1µ2µ3γσ1σ2σ3 = −48γµ1µ2µ3

γσ1σ2σ3γµ1···µ5γσ1σ2σ3 = 0

as well as γσ1···σ5γµγσ1···σ5 = γσ1···σ5γµ1µ2µ3γσ1···σ5 = γσ1···σ5γµ1···µ5γσ1···σ5 = 0. A generic

bi-spinor can be expanded over the basis (23) as

ξζ =
1

16
(ξγσζ)γσ +

1

96
(ξγσ1σ2σ3ζ)γσ1σ2σ3 +

1

3840
(ξγσ1···σ5ζ)γσ1···σ5 (24)
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In particular, the supersymmetry parameter ǫ being commuting, the non-vanishing terms

for ζ = ξ = ǫ are (ǫγσǫ) and (ǫγσ1···σ5ǫ), so that for example (ǫγσǫ)ǫγσ = 0. λ being

anticommuting, the only non-vanishing term for ζ = ξ = λ is (λγσ1σ2σ3λ). The following

identities also turned out to be precious

(ǫγµ1λ)(ǫγµ2λ) = −
1

16
(ǫγσǫ)(λγµ1µ2σλ) −

1

96
(ǫγ ν1ν2ν3

µ1µ2
ǫ)(λγν1ν2ν3λ)

(ǫγσλ)(ǫγµ1µ2σλ) = −
3

8
(ǫγσǫ)(λγµ1µ2σλ) +

1

48
(ǫγ ν1ν2ν3

µ1µ2
ǫ)(λγν1ν2ν3λ)

(ǫγ ν1ν2ν3
µ1µ2

λ)(ǫγν1ν2ν3λ) = −
21

4
(ǫγσǫ)(λγµ1µ2σλ) −

3

8
(ǫγ ν1ν2ν3

µ1µ2
ǫ)(λγν1ν2ν3λ) (25)

Needless to say, Ulf Gran’s GAMMA package [12] was greatly appreciated to derive these

identities.
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