A Brownian sheet martingale with the same marginals as the arithmetic average of geometric Brownian motion.

David Baker, Marc Yor

To cite this version:

David Baker, Marc Yor. A Brownian sheet martingale with the same marginals as the arithmetic average of geometric Brownian motion.. 2008. <hal-00348400>

HAL Id: hal-00348400
https://hal.archives-ouvertes.fr/hal-00348400

Submitted on 10 Jan 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A Brownian sheet martingale with the same marginals as the arithmetic average of geometric Brownian motion.

D. $\operatorname{Baker}^{(1), *}$, M. Yor ${ }^{(1),(2), * *}$

December 22, 2008

${ }^{(1)}$ Laboratoire de Probabilités et Modèles aléatoires Université Pierre et Marie Curie
175 rue du Chevaleret, 75013 Paris
${ }^{(2)}$ Institut Universitaire de France
* email: david.baker@etu.upmc.fr (corresponding author)
Fax: +33-1-44-27-72-23, Tel:+33-1-44-27-72-21
** email: deaproba@proba.jussieu.fr

Abstract

We construct a martingale which has the same marginals as the arithmetic average of geometric Brownian motion. This provides a short proof of the recent result due to P. Carr et al [5] that the arithmetic average of geometric Brownian motion is increasing in the convex order. The Brownian sheet plays an essential role in the construction. Our method may also be applied when the Brownian motion is replaced by a stable subordinator.

Keywords: Convex order, Brownian sheet, Asian option, Running average. AMS classification Primary: 60G07, 60G60, Secondary: 62P05, 91B30.

1 Introduction and Main Result

To $\left(B_{t}, t \geqslant 0\right)$ a 1-dimensional Brownian motion, starting from 0 , we associate the geometric Brownian motion:

$$
\mathscr{E}_{t}=\exp \left(B_{t}-\frac{t}{2}\right), \quad t \geqslant 0
$$

and its arithmetic average:

$$
\frac{1}{t} A_{t}=\frac{1}{t} \int_{0}^{t} d s \mathscr{E}_{s}, \quad t \geqslant 0
$$

A recent striking result by P. Carr et al [5] is the following:
Theorem 1. i) The process $\left(\frac{1}{t} A_{t}, t \geqslant 0\right)$ is increasing in the convex order, that is: for every convex function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$, such that $\mathbb{E}\left[\left|g\left(\frac{1}{t} A_{t}\right)\right|\right]<\infty$ for every $t>0$, the function:

$$
t \rightarrow \mathbb{E}\left[g\left(\frac{1}{t} A_{t}\right)\right] \text { is increasing }
$$

ii) In particular, for any $K \geqslant 0$, the call and put prices of the Asian option which we define as:

$$
C^{+}(t, K)=\mathbb{E}\left[\left(\frac{1}{t} A_{t}-K\right)^{+}\right] \text {and } C^{-}(t, K)=\mathbb{E}\left[\left(K-\frac{1}{t} A_{t}\right)^{+}\right]
$$

are increasing functions of $t \geqslant 0$.
The proof of Theorem 1 as given in [5] (see also [6] for a slight variation) is not particularly easy, as it involves the use of either a maximum principle argument (in [5]) or a supermartingale argument (in [6]). In the present paper we obtain directly the result of Theorem 1 as a consequence of Jensen's inequality, thanks to the following
Theorem 2. i) There exists a filtered probability space $\left(\Omega, \mathscr{G}, \mathscr{G}_{t}, \mathbb{Q}\right)$ and a continuous martingale $\left(M_{t}, t \geqslant 0\right)$ on this space such that:
for every fixed $t \geqslant 0, \frac{1}{t} A_{t} \stackrel{(l a w)}{=} M_{t}$
ii)More precisely, if $\left(W_{u, t}, u \geqslant 0, t \geqslant 0\right)$ denotes the standard Brownian sheet and $\mathscr{F}_{u, t}=\sigma\left\{W_{v, s}, v \leqslant u, s \leqslant t\right\}$ its natural increasing family of σ-fields, one may choose:

$$
M_{t}=\int_{0}^{1} d u \exp \left(W_{u, t}-\frac{u t}{2}\right) \quad, \quad t \geq 0
$$

which is a continuous martingale with respect to $\left(\mathscr{F}_{\infty, t}, t \geqslant 0\right)$

We note that in [8] several methods have been developed to construct martingales with given marginals. Theorem 2 may also be considered in this light, providing a martingale whose one-dimensional marginals are those of $\left(\frac{1}{t} A_{t}, t \geqslant 0\right)$. In Section 2, we give our (very simple!) proof of Theorem 2, and we comment on how we arrived gradually at the formulation of Theorem 2. We also obtain a variant of Theorem 2 when $\left(\exp \left(B_{t}-\frac{t}{2}\right), t \geqslant 0\right)$ is replaced by $\left(\exp \left(B_{t}-a t\right), t \geqslant 0\right)$ for any $a \in \mathbb{R}$.

In Section 3, we study various possible extensions of Theorem 2, i.e. : when the original Brownian motion $\left(B_{t}, t \geqslant 0\right)$ is replaced by certain Lévy processes, in particular stable subordinators and self-decomposable Lévy processes. In Section 4, we study some consequences of Theorem 1.

2 Proof of Theorem 2, and Comments

(2.1) We first make the change of variables: $u=v t$, in the integral

$$
A_{t}=\int_{0}^{t} d u \exp \left(B_{u}-\frac{u}{2}\right)
$$

We get: $\frac{1}{t} A_{t}=\int_{0}^{1} d v \exp \left(B_{v t}-\frac{v t}{2}\right)$
It is now immediate that since, for fixed t,

$$
\begin{aligned}
& \qquad\left(B_{v t}, v \geqslant 0\right) \stackrel{(l a w)}{=}\left(W_{v, t}, v \geqslant 0\right), \text { then: } \\
& \text { for fixed } t, \quad \frac{1}{t} A_{t} \stackrel{(l a w)}{=} \int_{0}^{1} d v \exp \left(W_{v, t}-\frac{v t}{2}\right)
\end{aligned}
$$

Denoting by $\left(M_{t}\right)$ the right-hand side, it remains to prove that it is a $\left(\mathscr{F}_{\infty, t}, t \geqslant 0\right)$ martingale. However, let $s<t$, then:

$$
\mathbb{E}\left[M_{t} \mid \mathscr{F}_{\infty, s}\right]=\int_{0}^{1} d v \mathbb{E}\left[\left.\exp \left(W_{v, t}-\frac{v t}{2}\right) \right\rvert\, \mathscr{F}_{\infty, s}\right]
$$

Since $\left(W_{v, t}-W_{v, s}\right)$ is independent from $\mathscr{F}_{\infty, s}$, we get:

$$
\mathbb{E}\left[\left.\exp \left(W_{v, t}-\frac{v t}{2}\right) \right\rvert\, \mathscr{F}_{\infty, s}\right]=\exp \left(W_{v, s}-\frac{v s}{2}\right)
$$

so that, finally: $\mathbb{E}\left[M_{t} \mid \mathscr{F}_{\infty, s}\right]=M_{s}$.
This ends the proof of Theorem 2.

Remark: The same argument of independence allows to show more generally that, if $f: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ is space-time harmonic, i.e. $\left(f\left(B_{t}, t\right), t \geqslant 0\right)$ is a martingale, then:

$$
M_{t}^{(f)} \stackrel{\text { def }}{=} \int_{0}^{1} d u f\left(W_{u, t}, u t\right)
$$

is a $\left(\mathscr{F}_{\infty, t}, t \geqslant 0\right)$ martingale. Thus in particular, for any $n \in \mathbb{N}$, one gets:

$$
\begin{gathered}
\text { for fixed } t, \quad \frac{1}{t} \int_{0}^{t} d u H_{n}\left(B_{u}, u\right) \stackrel{(l a w)}{=} M_{t}^{(n)} \\
\text { where: } M_{t}^{(n)}=\int_{0}^{1} d u H_{n}\left(W_{u, t}, u t\right)
\end{gathered}
$$

and $H_{n}(x, t)=t^{n / 2} h_{n}\left(\frac{x}{\sqrt{t}}\right)$ denotes the $n^{t h}$ Hermite polynomial.
Consequently, in that generality,

$$
\left(\frac{1}{t} \int_{0}^{t} d u f\left(B_{u}, u\right), t \geqslant 0\right)
$$

is increasing in the convex order sense.
(2.2) At this point, we feel that a few words of comments on how we arrived gradually at the statement of Theorem 2 may not be useless.
(2.2.1) We first recall the basic result of Rothschild and Stiglitz [3]. The notation $\leqslant c v$ means domination in the convex order sense; see [1], [2].

Proposition 1. Two variables X and Y on a probability space satisfy: $X \leqslant c v Y$ if and only if on some (other) probability space, there exists \hat{X} and \hat{Y} such that:

$$
\begin{array}{lll}
\text { (i) } X \stackrel{(l a w)}{=} & \hat{X} & \text { (ii) } Y \stackrel{(l a w)}{=} \hat{Y}
\end{array} \text { (iii) } \mathbb{E}[\hat{Y} \mid \hat{X}]=\hat{X}
$$

For discussions, variants, amplifications of the RS result, we refer the reader to the books of Shaked-Shantikumar ([1], [2]). Thus in order to show that a process $\left(H_{t}, t \geqslant 0\right)$ is increasing in the convex order sense, one is led naturally to look for a martingale $\left(M_{t}^{H}, t \geqslant 0\right)$ such that:

$$
\text { for fixed } t, \quad H_{t} \stackrel{(\text { law })}{=} M_{t}^{H}
$$

(2.2.2) The following variants of Proposition 1 shall lead us to consider properties of the process:

$$
\frac{1}{t} A_{t}^{(a)} \equiv \frac{1}{t} \int_{0}^{t} d s \exp \left(B_{s}-a s\right)
$$

for any $a \in \mathbb{R}$.
The notation [icv], and [dcv] used below indicates the notion of "increasing convex " resp. "decreasing convex" order. (See e.g. [1], [2] for details; in particular, Theorem 2.A. 3 in [1] and Theorem 3.A. 4 in [2])
Proposition 2. Two variables X and Y on a probability space satisfy: $X \leqslant_{[i c v]} Y$ if and only if there exists on some (other) probability space, a pair (\hat{X}, \hat{Y}) such that:

$$
\text { (i) } X \stackrel{(l a w)}{=} \hat{X} \quad \text { (ii) } Y \stackrel{(l a w)}{=} \hat{Y} \quad(i i i)_{\uparrow} \hat{X} \leqslant \mathbb{E}[\hat{Y} \mid \hat{X}]
$$

Proposition 3. Same as Proposition 2, but where [icv] is replaced by [dcv], and $(i i i)_{\uparrow}$ by: $(i i i)_{\downarrow} \quad \hat{X} \geqslant \mathbb{E}[\hat{Y} \mid \hat{X}]$

We now apply Propositions 2 and 3 to the process ($\left.\frac{1}{t} A_{t}^{(a)}, t \geqslant 0\right)$
Theorem 3. 1) Let $a \leqslant \frac{1}{2}$. Then the process $\left(\frac{1}{t} A_{t}^{(a)}, t \geqslant 0\right)$ increases in the [icv] sense
2) Let $a \geqslant \frac{1}{2}$. Then, the process $\left(\frac{1}{t} A_{t}^{(a)}, t \geqslant 0\right)$ increases in the [dcv] sense.

We leave the details of the proof of Theorem 3 to the reader as it is extremely similar to that of Theorem 2.
(2.2.3) The following statement is presented here in order to help with our explanation of how we arrived gradually at the statement of Theorem 2 .
Proposition 4. Let $\left(Z_{u}\right)$ and $\left(Z_{u}^{\prime}\right)$ denote two processes. Then under obvious adequate integrability assumptions, we have:

$$
\int_{0}^{1} d u Z_{u} \mathbb{E}\left[Z_{u}^{\prime} \mid Z\right] \leqslant c v \int_{0}^{1} d u Z_{u} Z_{u}^{\prime}
$$

Again, the proof is an immediate application of Jensen's inequality.
We now explain how we arrived at Theorem 2:
we first showed that, for $0<\sigma^{\prime}<\sigma$, there is the inequality:

$$
\begin{equation*}
I_{\sigma^{\prime}} \equiv \int_{0}^{1} d u \exp \left(\sigma^{\prime} B_{u}-\frac{\sigma^{\prime 2}}{2} u\right) \leqslant c v \int_{0}^{1} d u \exp \left(\sigma B_{u}-\frac{\sigma^{2} u}{2}\right) \equiv I_{\sigma} \tag{2}
\end{equation*}
$$

Indeed, to obtain (2) as a consequence of Proposition 4, it suffices to write: $\left(\sigma B_{u}, u \geqslant 0\right) \stackrel{(l a w)}{=}\left(\sigma^{\prime} B_{u}+\gamma \beta_{u}, u \geqslant 0\right)$ where $\left(\beta_{u}, u \geqslant 0\right)$, is a BM independent from $\left(B_{u}, u \geqslant 0\right)$
and $\sigma^{2}=\left(\sigma^{\prime}\right)^{2}+\gamma^{2}$, i.e. $\gamma=\sqrt{\sigma^{2}-\left(\sigma^{\prime}\right)^{2}}$
Once we had made this remark, it seemed natural to look for a "process" argument (with respect to the parameter σ), and this is how the Brownian sheet comes naturally into the picture.

3 Variants involving stable subordinators and selfdecomposable Lévy processes

(3.1) Here is an analogue of Theorem 1 when we replace Brownian motion by a (α)-stable subordinator $\left(T_{t}\right)$, for $0<\alpha<1$, whose law is characterized by:

$$
\mathbb{E}\left[\exp \left(-\lambda T_{t}\right)\right]=\exp \left(-t \lambda^{\alpha}\right) \quad, \quad t \geqslant 0, \lambda \geqslant 0
$$

Theorem 4. The process $\frac{1}{t} A_{t}^{(\alpha)} \stackrel{\text { def }}{=} \frac{1}{t} \int_{0}^{t} d s \exp \left(-\lambda T_{s}+s \lambda^{\alpha}\right)$ is increasing for the convex order.

We prove Theorem 4 quite similarly to the way we proved Theorem 1, namely: there exists a α-stable sheet $\left(T_{s, t}, s \geqslant 0, t \geqslant 0\right)$ which may be described as follows:
$\left(T(A), A \in \mathcal{B}\left(\mathbb{R}_{+}^{2}\right),|A|<\infty\right)$ is a random measure such that:
i) for all A_{1}, \ldots, A_{k} disjoint Borel sets with $\left|A_{i}\right|<\infty$, $T\left(A_{1}\right), . ., T\left(A_{k}\right)$ are independent random variables,
ii) $\mathbb{E}\left[\exp \left(-\lambda T\left(A_{i}\right)\right)\right]=\exp \left(-\left|A_{i}\right| \lambda^{\alpha}\right), \lambda \geq 0$.
($\mathrm{T}\left(A_{i}\right)$ is an α-stable random variable)
Then we denote $T_{s, t}=T\left(R_{s, t}\right)$, with $R_{s, t} \equiv[0, s] \times[0, t]$
See, e.g., [4] for the existence of such measures. The result of Theorem 4 is a consequence of:

Theorem 5. The process $M_{t}^{(\alpha)}=\int_{0}^{1} d u \exp \left(-\lambda T_{u, t}+u t \lambda^{\alpha}\right)$ is a $\mathscr{F}_{\infty, t}^{(\alpha)} \equiv$ $\sigma\left\{T_{h, k}, h \geqslant 0, k \leqslant t\right\}$ martingale, and for fixed t :

$$
\frac{1}{t} A_{t}^{(\alpha)} \stackrel{(l a w)}{=} M_{t}^{(\alpha)}
$$

(3.2) We now consider a self-decomposable Lévy process.
(See e.g., Jeanblanc-Pitman-Yor [9] for a number of properties of these processes.)
Assuming that: $\forall \alpha>0, \mathbb{E}\left[\exp \left(\alpha X_{u}\right)\right]<\infty$; then:
$\mathbb{E}\left[\exp \left(\alpha X_{u}\right)\right]=\exp (u \varphi(\alpha))$, for some function φ.
In this framework, we show the following.
Theorem 6. The process $\left(I_{\alpha}=\int_{0}^{1} d u \exp \left(\alpha X_{u}-u \varphi(\alpha)\right), \alpha \geqslant 0\right)$ is increasing in the convex order.

Proof. Since $\left(X_{u}, u \geqslant 0\right)$ is self-decomposable, there exists, for any $c \in(0,1)$, another Lévy process $\left(\eta_{u}^{(c)}, u \geqslant 0\right)$ such that:
$\left(X_{u}, u \geqslant 0\right) \stackrel{(l a w)}{=}\left(c X_{u}+\eta_{u}^{(c)}, u \geqslant 0\right)$, with independence of X and $\eta^{(c)}$. Consequently, we obtain, for any $(\alpha, c) \in(0, \infty) \times(0,1)$

$$
\begin{equation*}
I_{\alpha} \stackrel{(l a w)}{=} \int_{0}^{1} d u \exp \left(\alpha c X_{u}-u \varphi(\alpha c)\right) \exp \left(\alpha \eta_{u}^{(c)}-u \varphi_{c}(\alpha)\right) \tag{3}
\end{equation*}
$$

where on the RHS of (3), X and $\eta^{(c)}$ are assumed to be independent. Denote by I_{α}^{\prime} the RHS of (3), then :

$$
\mathbb{E}\left[I_{\alpha}^{\prime} \mid X\right]=\int_{0}^{1} d u \exp \left(\alpha c X_{u}-u \varphi(\alpha c)\right)
$$

which implies, from Jensen's inequality: for every convex function g,

$$
\mathbb{E}\left[g\left(I_{\alpha c}\right)\right] \leqslant \mathbb{E}\left[g\left(I_{\alpha}\right)\right]
$$

However we have not found, in this case, a martingale ($\mu_{\alpha}, \alpha \geqslant 0$) such that:

$$
\text { for every fixed } \alpha, \quad I_{\alpha} \stackrel{(\text { law })}{=} \mu_{\alpha}
$$

Remark: We note that the above argument is a particular case of the argument presented in Proposition 4, which involves two processes Z and Z^{\prime}.

4 Some consequences

Since the process $\left(\frac{1}{t} A_{t}, t \geqslant 0\right)$ is increasing in the convex order, we find, by differentiating the increasing function of $\mathrm{t}: \mathbb{E}\left[\left(K-\frac{1}{t} A_{t}\right)^{+}\right]$

$$
\text { for every } K \geqslant 0 \text { and } t \geqslant 0, \quad \mathbb{E}\left[\mathbf{1}\left(\frac{1}{t} A_{t}<K\right) \quad\left(\mathscr{E}_{t}-\frac{1}{t} A_{t}\right)\right] \geqslant 0
$$

although, it is not true that: $\mathbb{E}\left[\mathscr{E}_{t} \left\lvert\, \frac{1}{t} A_{t}\right.\right]$ is greater than or equal to $\frac{1}{t} A_{t}$, since this would imply that: $\frac{1}{t} A_{t}=\mathcal{E}_{t}$, as the common expectation of both quantities is 1.
(4.1) More generally, the following proposition presents a remarkable consequence of the increasing property of the process $\left(\frac{1}{t} A_{t}, t \geq 0\right)$ in the convex order sense.

Proposition 5. For every increasing Borel function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$there is the inequality:

$$
\mathbb{E}\left[\varphi\left(\frac{1}{t} A_{t}\right)\left(\frac{1}{t} A_{t}\right)\right] \leq \mathbb{E}\left[\varphi\left(\frac{1}{t} A_{t}\right) \mathcal{E}_{t}\right]
$$

Equivalently,

$$
\mathbb{E}\left[\varphi\left(\frac{1}{t} A_{t}\right)\left(\frac{1}{t} A_{t}\right)\right] \leq \mathbb{E}\left[\varphi\left(\frac{1}{t} \tilde{A}_{t}\right)\right]
$$

where $\tilde{A}_{t}=\int_{0}^{t} d u \exp \left(B_{u}+\frac{u}{2}\right)$
Proof. We may assume φ bounded. Then, $g(x)=\int_{0}^{x} d y \varphi(y)$ is convex (its derivative is increasing), and formula (\star) follows by differentiating the increasing function:

$$
t \rightarrow \mathbb{E}\left[g\left(\frac{1}{t} A_{t}\right)\right]
$$

Formula $(\star \star)$ follows from (\star) by using the Cameron-Martin relationship between $\left(B_{u}, u \leq t\right)$ and $\left(B_{u}+u, u \leq t\right)$
(4.2) As a partial check on the previous result (\star), we now prove directly that, for every integer $n \geq 1, t \rightarrow \mathbb{E}\left[\left(\frac{1}{t} A_{t}\right)^{n}\right]$ is increasing and that: $\mathbb{E}\left[\left(\frac{1}{t} A_{t}\right)^{n}\right] \leq$ $\mathbb{E}\left[\left(\frac{1}{t} A_{t}\right)^{n-1} \mathcal{E}_{t}\right]$

Here are two explicit formulae for: $\alpha_{n}(t)=\mathbb{E}\left[\left(\frac{1}{t} A_{t}\right)^{n}\right]$, and $\beta_{n}(t)=\mathbb{E}\left[\left(\frac{1}{t} A_{t}\right)^{n-1} \mathcal{E}_{t}\right]$.

$$
\begin{aligned}
\alpha_{n}(t) & =\frac{n!}{t^{n}} \mathbb{E}\left[\int_{0}^{t} d s_{1} \int_{s_{1}}^{t} d s_{2} \ldots \int_{s_{n-1}}^{t} d s_{n} \exp \left(\left(B_{s_{1}}+\ldots+B_{s_{n}}\right)-\frac{1}{2}\left(s_{1}+. .+s_{n}\right)\right)\right] \\
& =\frac{n!}{t^{n}} \int_{0}^{t} d s_{1} \int_{s_{1}}^{t} d s_{2} \ldots \int_{s_{n-1}}^{t} d s_{n} \exp \left(\frac{1}{2} C\left(s_{1}, . ., s_{n}\right)\right) \\
\text { where } C\left(s_{1}, . ., s_{n}\right) & =\mathbb{E}\left[\left(B_{s_{1}}+B_{s_{2}}+. .+B_{s_{n}}\right)^{2}\right]-\left(s_{1}+\ldots+s_{n}\right) \\
& =2 \sum_{1 \leq i \leq n} s_{i}(n-i) \quad(\geqslant 0)
\end{aligned}
$$

Consequently:

$$
\begin{equation*}
\alpha_{n}(t)=n!\int_{0}^{1} d u_{1} \ldots \int_{u_{n-1}}^{1} d u_{n} \exp \left(\frac{t}{2} C\left(u_{1}, \ldots, u_{n}\right)\right) \tag{3}
\end{equation*}
$$

from which it follows that $\alpha_{n}(t)$ is increasing in t .

Now $\beta_{n}(t)=\frac{(n-1)!}{t^{n-1}} \times$

$$
\begin{align*}
& \int_{0}^{t} d s_{1} \ldots \int_{s_{n-1}}^{t} d s_{n-1} \mathbb{E}\left[\exp \left(\left(B_{s_{1}}+\ldots+B_{s_{n-1}}+B_{t}\right)-\frac{1}{2}\left(s_{1}+\ldots+s_{n-1}+t\right)\right)\right] \\
& =(n-1)!\int_{0}^{1} d u_{1} \ldots \int_{u_{n-2}}^{1} d u_{n-1} \exp \left(\frac{t}{2} C\left(u_{1}, \ldots, u_{n-1}, 1\right)\right) \tag{4}
\end{align*}
$$

We have already seen from formula (3), that $\alpha_{n}(t)$ is increasing in t ; consequently: $\alpha_{n}^{\prime}(t) \geq 0$ and by definition of α_{n} :

$$
\begin{aligned}
\alpha_{n}^{\prime}(t) & =n \mathbb{E}\left[\left(\frac{1}{t} A_{t}\right)^{n-1}\left(-\frac{1}{t^{2}} A_{t}+\frac{\mathcal{E}_{t}}{t}\right)\right] \\
& =\frac{n}{t}\left\{\beta_{n}(t)-\alpha_{n}(t)\right\}
\end{aligned}
$$

Hence: $\beta_{n}(t) \geq \alpha_{n}(t)$.
(4.3) To conclude this paper, let us connect the properties of increase of
the functions α_{n} and β_{n} with our method of proving Theorem 1 using the Wiener sheet, as performed in Theorem 2.
Indeed, the same argument as in Theorem 2 shows that for any positive measure $\mu\left(d u_{1}, \ldots, d u_{n}\right)$ on $[0,1]^{n}$ the process:

$$
\begin{equation*}
\int \mu\left(d u_{1}, . ., d u_{n}\right) \prod_{i=1}^{n} \mathcal{E}_{\left(u_{i} t\right)} \tag{5}
\end{equation*}
$$

admits the same one-dimensional marginals as the $\left(\mathcal{W}_{t}\right)$ submartingale

$$
\begin{equation*}
\int \mu\left(d u_{1}, . ., d u_{n}\right) \mathcal{E}_{t}^{\left(u_{i}\right)}(W) \tag{6}
\end{equation*}
$$

where $\mathcal{E}_{t}^{(u)}(W)=\exp \left(W_{u, t}-\frac{u t}{2}\right)$.
Hence, the common expectation of (5) and (6) increases with t ; $\alpha_{n}(t)$ and $\beta_{n}(t)$ constitute particular examples of this.

References

[1] M. Shaked; J. G. Shanthikumar. Stochastic orders with applications. Academic press, 1994.
[2] M. Shaked; J. G. Shanthikumar. Stochastic orders. Springer Statistics, 2006.
[3] M. Rothschild; J. Stiglitz. Increasing Risk: I. A definition. Journal of Economic Theory, Vol 2, No 3, Sep. 1970.
[4] G. Samorodnitsky; M. S. Taqqu. Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman-Hall, 1994.
[5] P. Carr; C.-O. Ewald; Y. Xiao. On the qualitative effect of volatility and duration on prices of Asian options. Finance Research Letters, Vol. 5, Issue 3, p. 162-171 ,Sep. 2008.
[6] D. Baker; M. Yor. A proof of the increase in maturity of the expectation of a convex function of the arithmetic average of geometric brownian motion. Preprint, Sep. 2008.
[7] D. Madan; B. Roynette; M. Yor. Put option prices as joint distribution function in strike and maturity: the Black-Scholes case. Prepublication IEC Nancy, 41, 2008.
[8] D. Madan; M. Yor. Making Markov martingales meet marginals: with explicit constructions. Bernoulli Vol. 8, Issue 4, p 509-536, 2002.
[9] M. Jeanblanc; J. Pitman; M. Yor. Self-similar processes with independent increments associated with Levy and Bessel processes. Stoch. Proc. and its App., Vol. 100, p. 223-232, 2002.

