
Level-k Phylogenetic Network can be Constructed from

a Dense Triplet Set in Polynomial Time

Thu-Hien To, Michel Habib

To cite this version:

Thu-Hien To, Michel Habib. Level-k Phylogenetic Network can be Constructed from a Dense
Triplet Set in Polynomial Time. 2009. <hal-00352360>

HAL Id: hal-00352360

https://hal.archives-ouvertes.fr/hal-00352360

Submitted on 12 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00352360

LEVEL-K PHYLOGENETIC NETWORK CAN BE CONSTRUCTED FROM

A DENSE TRIPLET SET IN POLYNOMIAL TIME

THU-HIEN TO AND MICHEL HABIB

Abstract. Given a dense triplet set T , there arise two interesting questions [7]: Does there
exists any phylogenetic network consistent with T ? And if so, can we find an effective algorithm
to construct one? For cases of networks of levels k = 0 or 1 or 2, these questions were answered
in [1, 6, 7, 8, 10] with effective polynomial algorithms. For higher levels k, partial answers were

recently obtained in [11] with an O(|T |k+1) time algorithm for simple networks. In this paper
we give a complete answer to the general case, solving a problem of [7]. The main idea is to
use a special property of SN-sets in a level-k network. As a consequence, we can also find the
level-k network with the minimum number of reticulations in polynomial time.

1. Introduction

The goal of phylogenetics is to reconstruct plausible evolutionary histories from biological
data of currently living species. Normally, the standard model to describe the derivation is a
tree whose each leaf is labeled by a specie and each node with descendants represents the most
recent common ancestor of the descendants. But in reality, if we count to the hybridizations,
recombinations and lateral gene transfer events, the model will be a network in which we allow
the fact that a specie can have more than one parent. We call such a node a reticulation or
a hybrid node. To study general phylogenetic networks, a way to classify them by level has
been introduced in [3], basing on the number of reticulations in its biconnected components. A
phylogenetic tree is considered as a level-0 phylogenetic network. This view gives us an approach
to analyse networks thank to a beautiful structure so that we can decompose a network into
several modules. In the other side, the most basic description of a phylogenetic evolution is a
triplet which gives us the information on the relation of 3 species: which 2 species are closer than
the last. Therefore, the considered problem is to construct a phylogenetic network consistent
with a set of triplets. However, with an arbitrary triplet set, the problem is NP-hard with
networks of levels higher than 0 [6, 10, 12]. But if we impose the density on the triplet set,
which means that there is at least one triplet on each three species, then the triplet set has a
better structure so that we can infer a level-1 [6, 7, 8], or a level-2 [10] network, if one exists,
in polynomial time. The question firstly posed in [7] is: Does the problem remain polynomial
for level-k network with any k fixed? We give an affirmative answer for this question here. As
a consequence, we can also find the level-k network with the minimum number of reticulations,
if one exists, in polynomial time.

Related works: Aho, Sagiv, Szymanski, and Ullman [1] presented an O(|T |.n)-time al-
gorithm for determining whether a given set T of triplets on n leaves is consistent with some
rooted, distinctly leaf-labelled tree, i.e. a level-0 network, and if so, returning such a tree. Later,
there are improvements for this algorithm given in [4, 5]. But the problem becomes NP-hard for
all other levels [6, 10, 12]. And the problem of finding a network consistent with the maximum
number of triplets is also NP-hard for all levels [6, 12]. The approximation problem which
gives a factor on the number of triplets that we can construct a network consistent with, is also
studied in [2] for level-0, level-1, and level-2 networks.

Concerning the problems with dense triplet sets, there are following results. For level-1,
[6, 7, 8] give an O(|T |)-time algorithm to construct a consistent network, and [11] gives an
O(n5)-time algorithm to construct the consistent one with the minimum number of reticulations.

Date: January 12, 2009.

1

For level-2, [10] gives an O(|T |
8

3)-time algorithm to construct a consistent network, and [11]
presents an O(n9)-time algorithm to construct the consistent one with the minimum number
of reticulations. For level-k networks with any k fixed, there is only a result for constructing
all simple consistent networks with an O(|T |k+1)-time algorithm [11]. The problem of finding
a network consistent with the maximum number of triplets is also NP-hard for all levels in this
case [12]. However, it is still unknown if we can find the consistent networks with the minimum
level in polynomial time.

There are also studies on the version of extremely dense triplet sets, that is when T is
considered to contain all triplets of a network. In this case, an algorithm of O(|T |k+1) was
given in [11] for any level-k network. But even in this case, the problem of minimizing the level
of consistent networks is still open.

2. Preliminaries

Let L be a set of n species. A phylogenetic network N on L is a connected, directed, acyclic
graph which has:

- a unique vertex of indegree 0 and outdegree 2 (root).
- vertices of indegree 1 and outdegree 2 (speciation vertices).
- vertices of indegree 2 and outdegree 1 (reticulation vertices, or hybrid vertices).
- n vertices labelled distinctly by L of indegree 1 and outdegree 0 (leaves). So L is also called

the leaf set.
We denote u ; v if there is a path in N from u to v (u and v may be the same vertex).
A graph is biconnected if it contains no vertex whose removal disconnects the graph. A bicon-

nected component of a graph is a maximal biconnected subgraph. Let U(N) be the underlying
undirected graph of N , obtained by replacing each directed edge of N by an undirected edge.
We consider the decomposition into biconnected components of U(N). As any two biconnected
components of U(N) are vertex-disjoint, U(N) consists of a finite number of vertex-disjoint
biconnected components. Each remaining edge connects two biconnected components. In N

such edge correponds to an arc whose removal disconnects N . So we call it a cut-arc. A cut-arc
a = (u, v) is highest if there is no cut-arc a′ = (u′, v′) such that v′ ; u.

A network N is called of level-k if every biconnected component of U(N) contains at most k

hybrid vertices.
A triplet x|yz is a rooted binary tree on the leaves x, y and z such that x and the parent of

y and z are children of the root. A set T of triplets is dense if for any set {x, y, z} ⊆ L, at least
one triplet on these three leaves belongs to T .

A triplet x|yz is consistent with a network N if N contains two vertices u 6= v and pairwise
internally vertex-disjoint paths u ; x, u ; v, v ; y, and v ; z.

A phylogenetic network is simple if it has only one non leaf biconnected component which
is the one containing the root, and every its cut-arc connects a vertex of this biconnected
component to a leaf.

Let P be a partition of the leaf set L: P = {P1, . . . , Pq}. We denote T ∇P the induced set
of triplets PiPj|Pk such that there exist x ∈ Pi, y ∈ Pj , z ∈ Pk with xy|z ∈ T and i, j and k are
distinct.

3. Construction a Level-k Phylogenetic Network from a Dense Triplet Set

In this section we show that with any k fixed, it is possible to construct in polynomial time
a level-k phylogenetic network from a dense triplet set, if such a network exists. Let us start
with some properties of level-k networks.

Let N be a level-k network. Then:
i) A cut-arc connects two vertex-disjoint sub-networks of N and each one is also a level-k

network.
ii) We can decompose N into a finite number of modules as follows (see figure 2(a)): One

of the modules is a biconnected component C which contains the root. The other modules
2

Figure 1. The triplet c|ab is consistent with N1, but not with N2. N1 is a simple
level-1 network, N2 is also a level-1 network but not simple. In N2, (u1, v1) is a
highest cut-arc, (u2, v2) is also a cut-arc but not highest. Note that, as with all
figures in this article, all arcs are directed downwards, away from the root.

are level-k sub-networks N1, . . . , Nm, which are pairwise vertex-disjoint. Moreover, for any
j = 1, . . . ,m, there is a unique arc, called a highest cut-arc, connecting from C to Nj.

iii) For any j = 1, . . . ,m, let Pj be the leaf set of the sub-network Nj . So P = {P1, . . . , Pm}
is a partition of L. If we replace each Ni by a representing leaf, also called Pi, we obtaine a
simple network Ns (see figure 2(b)). Asumming that for any j, Nj is consistent with T |Pj . So,
N is consistent with T if and only if Ns is consistent with T ∇P.

Using these properties, we can have the following recursive algorithm. Firstly, look for the
possible decompositions: how the leaf set is partitioned below the highest cut-arcs and what
is the consistent simple network whose each leaf represents a part of the partition. Then,
recursively construct a consistent sub-network on each part of the partition. We know that it is
possible to construct all simple networks consistent with a dense triplet set T in O(|T |k+1) time
[11]. So it remains to know the possible partitions of the leaf set L below the highest cut-arcs.
We will show in the remaining of this section that the number of the possible partitions is bound
by a polynomial function of n. This fact allows us to construct a level-k network, and then a
level-k network which minimizes the number of reticulations in polynomial time.

The question is answered by exploring the leaf sets hung below cut-arcs. Remark that if A

is a leaf set hung below a cut-arc, then for any z ∈ L\A, x, y ∈ A, the only triplet on {x, y, z}
that can be consistent with the network is z|xy. Basing on this property, we define a family of
leaf sets, called CA-sets, for CutArc-sets, as follows.

Definition 1. Let A ⊆ L. We say that A is a CA-set if either it is a singleton or the whole L,
or if it satisfies the following property: For any z ∈ L\A, x, y ∈ A, the only triplet on {x, y, z}
in T , if there is any, is z|xy.

As remarked, a leaf set hung below a cut-arc is a CA-set, but the converse sens is not always
true. Let us recall that [7] presented a variation of these CA-sets, namely the notion of SN-set.
A SN-set is defined on a leaf set. Let A be a subset of L, the SN-set of A, denoted SN(A), is
the set recursively defined as SN(A∪ {z}) if there exists some z ∈ L\A and x, y ∈ A such that
x|yz ∈ T , and as A otherwise. We will show in the following lemma that the two definitions
identify the same family of leaf sets.

3

(a) Decomposition of a network
N : the biconnected component
C is in bold, each sub-network
Nj is framed by a dotted bold
rectangle, each highest cut-arc
connects from the biconnected
component to a sub-network.

(b) The corresponding
simple network Ns of
N . Each leaf Pj repre-
sents the leaf set of the
sub-network Nj .

Figure 2. Construction a network by a recursive algorithm

Lemma 1. Equivalence of the two definitions.
(i) For any A ⊆ L, SN(A) is a CA-set.
(ii) For any CA-set A, there exists B, a subset of L, such that SN(B) = A.

Proof: All claims are obviously true with singleton sets. So we consider only the non singleton
sets in the next.

(i) For any non singleton set A ⊆ L, ∀z ∈ L\SN(A), ∀x, y ∈ SN(A), neither x|yz nor y|xz is
in T because if one of them is, following the definition of SN-set, SN(A) will be SN(A ∪ {z}),
and will contains z. So, the only triplet on {x, y, z} in T , if there is any, is z|xy. Or, SN(A) is
a CA-set, according to the definition 1.

(ii) For any CA-set A, there can exist several B such that SN(B) = A. We take, for exemple,
B equals to A. We have to show that SN(A) = A. Indeed, as A is a CA-set, there doesn’t exist
any z ∈ L\A and x, y ∈ A such that x|yz ∈ T . It means that SN(A) is exactly A, accoding to
the recursive definition of SN-set. 2

Therefore, the family of SN-sets is exactly the family of CA-sets and we will stick to the
notation of SN-set for any CA-set determined by the definition 1.

It was proved in [7] that if T is dense, then the collection of the SN-sets is a laminar family
[9]. It means that two SN-sets are either disjointed or included one in another, and the family is
tree structured under inclusion. So all SN-sets are representable by a tree, called SN-tree. Each
node of SN-tree corresponds to a SN-set. The root corresponds to L, and the leaves correspond
to the singletons. The SN-tree can be calculated in O(n3) time [6].

Let A, a be two SN-sets. We say that a is a child of A if in the SN-tree, the node which
represents a is a child of the node which represents A.

Definition 2. Let N be a network consistent with T , and A be a SN-set. We say that A is
splitted in N if each of its children is hung below a highest cut-arc of N (see figure 3).

Following the definition, if A is splitted, its children are not.
Let us start with a simple remark: The knowledge of all splitted SN-sets is enough to capture

all the SN-sets hung below the highest cut-arcs, or to capture the partition of the leaf set. Really,
4

(a) The SN-tree of T (b) a network N consis-
tent with T

Figure 3. The SN-set A is splitted in N . Each leaf set ai, child of A, is hung
below a highest cut-arc (ui, vi) of N .

let see the example of a SN-tree in the figure 4, the black square nodes represent the splitted
SN-sets, we have three. The children of these three sets, with the maximal SN-sets that do not
contain any of these three sets are the SN-sets hung below the highest cut-arcs. In the figure,
these sets are marked by the black round nodes, they create a partition of L.

Figure 4. The black square nodes represent the splitted SN-sets. The black
round nodes represent the SN-sets hung below the highest cut-arcs.

Let T be a dense triplet set. N is a level-k network consistent with all triplets of T . NS is
the simple network of N . H is the set of the hybrid vertices of NS , so |H| ≤ k. H is the set of
all subsets of H. A is the set of all splitted SN-sets in N (In the figure 4, A is the set of the
SN-sets corresponding to the square nodes). We define a function f from A to H as follows.

Definition 3. Given A ∈ A and a1, . . . am the children of A. In N , each ai is hung below a
highest cut-arc (ui, vi). We define:

f(A) = {h ∈ H|∃i so that ui ; h and the path from ui to h does not contain any internal
hybrid vertex (if ui is a hybrid vertex, then h = ui)} (see figure 5).

Lemma 2. The function f has the following properties:
(i) ∀A ∈ A, f(A) 6= ∅.
(ii) ∀h ∈ H, there are at most three pairwise disjointed sets of A so that their image by f

contains h.
5

Figure 5. f(A) = {h1, h
′
1, u3} where A is the splitted SN-set which has three

children a1, a2, a3. The paths, which are in bold, u1 ; h1, u1 ; h′
1, and u2 ; u3

don’t contain any internal hybrid vertex.

Proof: (i) For any A ∈ A, we prove that ∀ui,∃h ∈ H such that ui ; h and the path from ui

to h does not contain any internal hybrid vertex. This fact implies f(A) 6= ∅.
Indeed, if ui is a hybrid vertex, then we have h = ui.
If ui is not a hybrid vertex, then there are two arcs starting from ui: one is (ui, vi) and let

the second be (ui, v
′
i). Assuming that there is no hybrid vertex of NS that is reachable from ui,

so both (ui, vi) and (ui, v
′
i) are cut-arcs. We infer that the arc coming to ui is also a cut-arc, so

(ui, vi) is not a highest cut-arc, a contradiction.
(ii) Assuming that there are four pairwise disjointed sets A1, A2, A3, A4 ∈ A so that ∃h ∈

f(A1) ∩ f(A2) ∩ f(A3) ∩ f(A4). According to the definition of f , ∀i ∈ {1, 2, 3, 4}, there is at
least a child ai of Ai so that no internal vertex of the path from ui to h is hybrid.

Firstly, among the four u′
is, there is at most one that is equal to h. It means that there are

at least three u′
is that are strictly above h. As h has only two parents, and the path from ui

to h does not contain any internal hybrid vertex, so there exist i1, i2 ∈ {1, 2, 3, 4} so that ui2 is
placed on the path from ui1 to h.

The following proof is illustrated by the figure 6.

Figure 6. The triplets ai2|ai1a
′
i1 can not be consistent with the network.

For convenience, we call the triplets ai|ajak for the set of all triplets x|yz where x ∈ ai, y ∈ aj

and z ∈ ak.
Let a′i1 be another child of Ai1. As Ai1 is a SN-set, and ai2 is not included in Ai1 (because

Ai1 and Ai2 are disjointed), so according to the definition, the triplets ai2|ai1a
′
i1 have to be

contained in T . Let xi1 be any common ancestor of ui1 and u′
i1, then xi1 is above ui1. We

remark that all paths starting from a vertex above ui1 that come to ai2 have to pass by ui1

because there is no hybrid vertex on the path from ui1 to ui2. Besides, all paths coming to ai1

have to pass by ui1 too. Then the triplets ai2|ai1a
′
i1 can not be consistent with the network. So

ai2|ai1a
′
i1 is not contained in T , contradiction. 2

Therefore, we have the following lemma that allows us to bound the number of splitted
SN-sets in a level-k network.

6

Lemma 3. (Fundamental)
Let T be a dense triplet set which is consistent with a level-k network N , A be the collection

of splitted SN-sets in N , then |A| ≤ 3k.

Proof: Firstly, we observe that all elements of A are pairwise disjointed. Actually, for some two
SN-sets, they are either disjointed or included one in another. But according to the definition,
if A is splitted, its children are not. It means that if A is in A, its subsets are not. Then, the
two sets of A can not be included one in another. They are disjointed.

Let H ′ ⊆ H be the union of the images of all elements of A by f , so |H ′| ≤ k. Let A ∈ A,
and h ∈ H ′, we say that A corresponds to h, and h corresponds to A if f(A) contains h. We
infer from the lemma 2 that each element of A corresponds to at least one element of H ′, and
each element of H ′ corresponds to at most three elements of A. So |A| ≤ 3|H ′| ≤ 3k. 2

Moreover, if we are interested only in finding a certain consistent network, we can have a
better bound with the following lemma. The idea is to modify an arbitrary consistent network
into another one which has a particular property but still consistent with T and don’t make the
level increase. But the class of modified networks will not be assured to contain the one with
the minimum number of reticulations.

Lemma 4. Let T be a dense triplet set, if T is consistent with a level-k network N whose the
corresponding simple network has level greater than 1, then there exists a level-k network N ′

consistent with T such that: For any splitted SN-set A of N ′, |f(A)| ≥ 2.

Proof: Assuming that there exists a SN-splitted A of N such that |f(A)| = 1. Let f(A) = {h},
and GA be the sub-network of N on A. In NS , there are 2 paths leading to h. So there are 2
cases that can happen.

In the first case (figure 7(a)), ui are all placed on one path leading to h, for example on
the left one. Let u1 be the highest and uf be the lowest vertex on all ui. There are two
possible positions for uf : either it is right above h, i.e (uf , h) is an arc, or it is equal to h. The
network N ′ is obtained from N by the following modifications: deleting all children ai of A

and all concerning arcs and vertices; at the position of uf , add a new arc which connect to the
sub-network GA at u1 (figure 7(b)).

In the second case (figure 7(c)), ui are placed on the two paths leading to h. We can easily
remark that the leaf set hung below h has to be also a child of A. The network N ′ is obtained
from N by the following modifications: deleting all children ai of A and all concerning arcs and
vertices; let G′

A be the network obtained from GA by sticking the top of the two branches of
GA into one vertex u. At the position of h, we add a new arc which connect to G′

A at u (figure
7(d)).

(a) (b) The modi-
fied network of
(a)

(c) (d) The modi-
fied network of
(c)

Figure 7. The modified networks are level-k, still consistent with T , and have
all sons of A hung below a highest cut-arc.

In the two cases, we can verify that the modifications don’t increase the level of the network,
the new network is still consistent with all triplets of T , and A is not anymore a splitted
SN-set of the new network because it is now hung below a highest cut-arc. The fact that the

7

corresponding simple network of N has level greater than 1 assures that the new network doesn’t
contain any two parallel arcs with the sames extremities.

By modifying the network for any splitted SN-set of N whose image by f contains only one
element, we obtain finally a network in which there is not anymore such splitted SN-set. In
addition, the lemma 2 says that the image by f of any splitted SN-sets is not empty. Then we
have a new network in which |f(A)| ≥ 2 for any splitted SN-set A. 2

Lemma 5. Let T be a dense triplet set, if T is consistent with a level-k network N , then there
exists a level-k network N ′ consistent with T which satisfies: let A be the collection of splitted
SN-sets in N ′, then |A| ≤ ⌊3k

2
⌋.

Proof: If the simple network of N is of level-1, we choose N ′ = N . It can be inferred from
[6, 7] that each SN-set hung below a highest cut-arc is a son of the SN-set L. It means that
there is only one splitted SN-set L. So |A| = 1 ≤ ⌊3k

2
⌋ is obviously true in this case.

Otherwise, according to the lemma 4, there exists a level-k network N ′ consistent with T
and satisfies: if A is the collection of splitted SN-sets of N ′, then ∀A ∈ A, |f(A)| ≥ 2. Let
H ′ ⊆ H be the union of the images of all of the elements of A by f , so |H ′| ≤ k. We say that A

corresponds to h, and h corresponds to A if f(A) contains h. So each element of A corresponds
to at least two elements of H ′ (lemma 4), and each element of H ′ corresponds to at most three
elements of A (lemma 2). Then |A| ≤ ⌊3

2
|H ′|⌋ ≤ ⌊3k

2
⌋. 2

Theorem 1. Given a dense triplet set T , and k ≥ 0, it is possible to construct a level-k network

consistent with T , if one exists, in time O(|T |k+1n⌊ 3k
2
⌋+1).

Algorithm 1 Level-k network

Require: A dense triplet set T .
Ensure: A level-k network consistent with T , if one exists; otherwise, null.

Calculate the SN-tree R of T .
For every leaf u of R, define Nu the network contains only one leaf u.
for each internal node a of R, in bottom-up order do

Let R[a] be the subtree of R rooted at a.
Let n(a) = {a1, a2, . . . , aq} be all of the nodes of R[a]
For any j = {1, . . . , q}, nj be the leaf set of R[aj].
i = 1; found = false;
while (i ≤ 3k

2
) and (i ≤ q) and !(found) do

for each combination A of i disjointed sets nj do

Calculate the partition P of the leaf set of R[a] from A.
Calculate T ′ from T |a.
Calculate T ′∇P.
Look for a certain simple network consistent with T ′∇P . If one exists, then denote
Nsa this network; replace each leaf f of Nsa by the network Nf already found to
obtain the network Na; found = true; break.

end for

if found = true then

break;
end if

i + +;
end while

if found = false then

return null ;
end if

end for

return Nr where r is the root of R.

8

Proof: Each element of A has children, so is not a singleton. The number of non singleton

SN-sets is O(n). So, from the lemma 5, we have O(n⌊ 3k
2
⌋) possible possibilities of A by choosing

at most ⌊3k
2
⌋ disjointed SN-sets from all non singleton SN-sets. For each choice of A, we look

for the corresponding partition P of L. Each part of the partition is either a child of an element
of A, or a maximal SN-sets that does not contain any element of A.

Next, we have to find a simple network consistent with T ∇P. The theorem 3 in [11] says
that it is possible to construct all simple level-k networks consistent with a dense triplet set T in

O(|T |k+1) time. So, it takes totally O(|T |k+1n⌊ 3k
2
⌋) time to find all the possible decompositions.

As a recursive algorithm, we suppose that for each part Pi of the partition P, we already knew
a network consistent with T |Pi, if there is any. Then, the wanted network will be obtained by
replacing each leaf which represents the part Pi of the simple network by the corresponding
network on Pi.

The algorithm, which is described in the algorithm 1, constructs on each non singleton SN-
set, in small-big order, a consistent network, if there is any. If there isn’t any such network, we
can conclude immediately that there isn’t any network consistent with T , and the algorithm
returns null. Indeed, if there exists a network N consistent with T , then for any SN-set A there
is always a network consistent with T |A which is the sub-network of N on A. The last obtained
network, on the largest SN-set which is L, is the wanted one. As there are O(n) non singleton
SN-sets, the complexity will be multiplied by n. The construction of SN-tree takes O(n3), all
other operations take a negligible time compared with the others. So, the total complexity is

O(|T |k+1n⌊ 3k
2
⌋+1). 2

As a consequence, and with a recursive property of the network with minimum number of
hybrid vertices, the problem of finding the consistent network which minimizes the number of
hybrid vertices is also solved in polynomial time.

Theorem 2. Given a dense triplet set T , and k ≥ 0, it is possible to construct the level-k
network consistent with T which minimizes the number of hybrid vertices, if one exists, in time
O(|T |k+1n3k+1).

Proof: Let N be a level-k network consistent with T , P = (P1, . . . , Pm) be the partition of
the leaf set hung below the highest cut-arcs of N , and Ni be the sub-network of N on Pi. The
number of hybrid vertices of N is equal to the sum of the number of hybrid vertices of each
Ni and the number of hybrid vertices of the simple network of N . So if N is the network
that minimizes the minimum number of hybrid vertices, then Ni has to be also the network
which minimizes the number of hybrid vertices among those who are consistent with T |Pi. This
property allows us to have a recursive construction as the algorithm 1. Indeed, in the algorithm
1, for every node a of R, instead of taking any simple network consistent with T ′∇P, we take
the one such that the corresponding network minimizes the number of hybrid vertices. In the
end, Nr, where r is the root of R, will be the wanted network. The construction described
in the algorithm 2 stays in polynomial time because we can find all simple level-k networks in
O(|T |k+1) time, and all possible partitions of the leaf set in O(n3k) time. Finally, the recursion
on O(n) non singleton SN-set makes the total complexity O(|T |k+1n3k+1). 2

4. Conclusion and perpectives

To any set of triplets S we can define its treerank(S) as the minimum k for which it exist
a level-k network which represents S. This measures the distance from S to a tree in term
of number of hybrid nodes. We prove here that for dense triplets, for any fixed k, checking if
treerank(S) ≤ k can be done in polynomial time. Therefore this new parameter is analogous
to treewidth for graphs and we conjecture that its computation is NP-hard for dense triplets
or extremely dense triplets. However, comparing with the complexity of the existing efficient
algorithms for the cases k = 0, 1, 2, a better bound can be expected for level-k networks. Another
interesting question is under which conditions on the triplet set T there is only one network N

consistent with T . We also would like to know if the condition of density on the triplet set can
9

Algorithm 2 Level-k network with the minimum number of hybrid vertices

Require: A dense triplet set T .
Ensure: A level-k network consistent with T that minimizes the number of hybrid vertices, if

one exists; null otherwise.
Calculate the SN-tree R of T .
For every leaf u of R, define Numin

the network contains only one leaf u.
for each internal node a of R, in bottom-up order do

Let R[a] be the subtree of R rooted at a.
Let n(a) = {a1, a2, . . . , aq} be all of the nodes of R[a].
Namin

= null;min = n;
i = 1;
while (i ≤ 3k) and (i ≤ q) do

for each combination A of i disjointed elements of n(a) do

Calculate the partition P from A.
Calculate T ′ the triplet set on the leaves of R[a].
Calculate T ′∇P.
for each simple network Nsa consistent with T ′∇P do

Construct Na by replacing each leaf f of Nsa by the network Nfmin
already found.

m = the number of hybrid vertices of Na.
if m < min then

min = m;Namin
= Na;

end if

end for

end for

i + +;
end while

if Namin
= null then

return null ;
end if

end for

return Nrmin
where r is the root of R.

be relaxed so that there is still a polynomial algorithm to construct a consistent level-k network,
if there any, with any k fixed.

5. Thanks

We would like to thank Philippe Gambette for many useful references and comments and
also for his practical website Who is Who in Phylogenetic Networks which let us to know what
already exists about phylogenetic networks.

References

[1] A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman. Inferring a tree from lowest common ancestors with
an application to the optimization of relational expressions. SIAM Journal on Computing, 10(3):405–421,
1981.

[2] J. Byrka, P. Gawrychowski, K.T. Huber, and S. Kelk. Worst-case optimal approximation algorithms for
maximizing triplet consistency within phylogenetic networks. arXiv:0710.3258v3 [q-bio.PE], 2008.

[3] C. Choy, J. Jansson, K. Sadakane, and W. K. Sung. Computing the maximum agreement of phylogenetic
networks. Theoretical Computer Science, 355(1):93–107, 2005.

[4] L. Gasieniec, J. Jansson, A. Lingas, and A. Ostlin. Inferring ordered trees from local constraints. In CATS
1998, volume 20, pages 67–79, 1998.

[5] M.R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomorphic subtrees, with applica-
tions to computational evolutionary biology. Algorithmica, 24(1):1–13, 1999.

[6] J. Jansson, N.B. Nguyen, and W.-K Sung. Algorithms for combining rooted triplets into a galled phylogenetic
network. SIAM Journal on Computing, 35(5):1098–1121, 2006.

10

[7] J. Jansson and W.-K. Sung. Inferring a level-1 phylogenetic network from a dense set of rooted triplets. In
COCOON 2004, volume 3106, pages 462–471. LNCS, Springer, 2004.

[8] J. Jansson and W.-K.Sung. Inferring a level-1 phylogenetic network from a dense set of rooted triplets.
Theoretical Computer Science, 361(1):60–68, 2006.

[9] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.
[10] L. van Iersel, J. Keijsper, S. Kelk, and L. Stougie. Constructing level-2 phylogenetic networks from triplets.

In RECOM 2008, volume 4955, pages 450–462. LNCS, Springer, 2008.
[11] L. van Iersel and S. Kelk. Constructing the simplest possible phylogenetic network from triplets.

arXiv:0805.1859 [q-bio.PE], 2008.
[12] L. van Iersel, S. Kelk, and M. Mnich. Uniqueness, intractability and exact algorithms: Reflections on level-k

phylogenetic networks. arXiv:0712.2932v3[q-bio.PE], 2008.

LIAFA, CNRS and University Paris Diderot - Paris 7

E-mail address: name@liafa.jussieu.fr

11

