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KILLING INITIAL DATA ON TOTALLY UMBILICAL & COMPACTHYPERSURFACESDANIEL MAERTENAbstrat. In this note, we give a geometri haraterization of the ompat and totallyumbilial hypersurfaes that arry a non trivial loally stati Killing Initial Data (KID).More preisely, suh ompat hypersurfaes (Mn, g, cg) endowed with a Riemannianmetri g and a seond fundamental form cg (where c ∈ C∞(M) a priori) have onstantmean urvature and are isometri to one of the following manifolds:(i) S
n the standard sphere,(ii) a �nite quotient of a warped produt (S1

× Y, dt2 + h2(t)g0), where (Y n−1, g0) isEinstein with positive salar urvature.In partiular, they have harmoni urvature and stritly positive onstant salar urva-ture. 1. IntrodutionA good starting point for this artile is the study of the salar urvature appliation
u : M −→ C∞(M), g 7−→ Scalg ,where M denotes the one of the Riemannian metris on M . If we denote by Ug thedi�erential of u at a metri g ∈ M , then for any h ∈ Γ(S2T ∗M) we have (see [7℄ fordetails)

Ug(h) = ∆(trg(h)) + δ(δh) − 〈Ricg, h〉 ,where ∆ is the positive Laplaian with respet to g, 〈·, ·〉 is the inner produt extended totensors of any type and δ is the g�divergene operator de�ned as
δS(X1, · · · ,Xp) = −

n∑

i=1

∇ei
S(ei,X1, · · · ,Xp) ,for any (p+1)�tensor S (p ≥ 0) and for any loal orthonormal g�basis (ei)

n
i=1. The formaladjoint of Ug is given by

∀f ∈ C∞ U∗
g (f) = Hessg f − f Ricg +(∆f)g .From a geometri point of view, the fat that KerU∗

g 6= {0} is a neessary ondition for thesalar urvature appliation u not to be a submersion at g, and so a neessary ondition forthe level set u−1(Scalg) ⊂ M not to be a submanifold (in the sense of in�nite dimensionalsubmanifolds, see one again [7℄). A natural issue is to study the ompat and onnetedmanifolds (Mn, g) that admit a non trivial funtion solution to the equation
Hessg f − f Ricg +(∆f)g = 0 (∗) ,Date: January 26, 2009.Key words and phrases. Salar urvature, harmoni urvature, Einstein metris, Shwarzshild�de Sittermetris, onstraints appliation, Lafontaine equation.2000 Mathematis Subjet Classi�ation. 53C24, 53C25, 53C80, 83C05, 83C15.The author bene�ts from the ANR grantGéométrie des variétés d'Einstein non ompates ou singulières,n◦ ANR�06�BLAN�0154�02. 1



2 DANIEL MAERTENwhih has been extensively studied (notably by Lafontaine, that is why we will all (∗)the Lafontaine equation). As a matter of fat, Fisher and Marsden [10℄ believed thatthe standard sphere S
n was the unique ompat and onneted Riemannian manifold (ex-ept the Rii �at ompat manifolds) that have non trivial solutions to the Lafontaineequation [10℄. Their onjeture is false, sine Lafontaine listed in [12℄ all the ompat andonformally �at manifolds admitting solutions to (∗), in partiular some non Rii �at, nonspherial warped produt metris appear in that list. However, without the onformally�atness assumption, we do not have to our disposal an exhaustive list of manifolds thathave non trivial solutions of (∗). This question still remains open nowadays. Another inter-esting geometri interpretation of (∗) that is partiularly relevant from General Relativity,deals with the lassi�ation of stati solutions of the Einstein equations. More preisely, if

γ = −f2dt2 + g is a stati Lorentzian warped produt metri on R×M , then the metri γis Einstein (whih is equivalent to be a solution of the Einstein vauum equations) if andonly if f is a solution of (∗). Thus, determining the solutions of (∗) is stritly equivalentto lassify the stati solutions of Einstein vauum equations. This fat is losely related tothe Lorentzian metris obtained thanks to a Killing development (see below for details).An important feature is that (∗) redues (up to a normalization) to Obata's equation
Hessg f = −fg when the metri g is assumed to be Einstein, and therefore it is a general-ization of Obata's equation. It is well known that the existene of a non trivial funtionsolution of Obata's equation haraterizes the geometry of the standard sphere S

n [14℄.When we �x a metri g0 ∈ M and restrit u to the spae V of metris that have the sameRiemannian volume form than g0, namely V = {g ∈ M /dVolg = dVolg0}, then if u is nota submersion at g then Ker
(
U∗

g

)

0
6= {0} with (

U∗
g

)

0
the traeless part of U∗

g namely
∀f ∈ C∞

(
U∗

g (f)
)

0
= Hessg f − f Ricg

0 +
∆f

n
g ,where Ricg

0 denotes the traeless part of the Rii urvature. In [12℄, Lafontaine exhibiteda large family of metris that admit non trivial solutions to Hessg f − f Ricg
0 +∆f

n
g = 0.One an also be interested in the (positive) onstants that ould be the salar urvatureof a metri g among the metris of a ertain �xed volume, let us say Vol(Sn). This isequivalent to restrit u to the spae C = {g ∈ M /d Scalg = 0 and Vol(M,g) = Vol(Sn)}.In that ase, if u is not a submersion at g then there exists a non trivial solution f of

U∗
g (f) = Ricg

0. All these results are summarized in the following statement.1.1. Theorem. Let Mn be a ompat and onneted manifold (n ≥ 3).(i) (Obata [14℄) If u is not a submersion at an Einstein metri g ∈ M then
(Mn, g) is isometri to a standard sphere and KerU∗

g = Span{x1, x2, · · · , xn+1}with (xi)
n+1
i=1 the standard oordinates on S

n.(ii) (Lafontaine [12℄) If u is not a submersion at a onformally �at metri g ∈ Mthen (Mn, g) is isometri to one of the following manifolds:1) A �at ompat manifold and KerU∗
g = R,2) The standard sphere Sn and KerU∗

g = Span{x1, x2, · · · , xn+1}.3) A �nite quotient of (S1 × S
n−1,dt2 + gSn−1) and dim KerU∗

g = 2.4) A �nite quotient of a warped produt (S1×S
n−1,dt2+h2(t)gSn−1) and KerU∗

g = Rh′.(iii) (Lafontaine [12℄) If Y n−1 is a ompat and onneted manifold that arries anEinstein metri of positive salar urvature, then there exists an in�nite dimen-sional set in V (S1 × Y ) = V where u|V is not a submersion.



KID ON TOTALLY UMBILICAL & COMPACT HYPERSURFACES 3(iv) (Lafontaine [12℄) If u|C is not a submersion at a onformally �at metri g ∈ Cthen (Mn, g) is isometri to the standard sphere Sn.(v) (Bessières�Lafontaine�Rozoy [4℄) If n = 3 and u|C is not a submersion at ametri g ∈ C then (M3, g) is isometri to the standard sphere S
3.A natural generalization of these questions is obtained by onsidering the natural ex-tension (due to the General Relativity ontext) of the salar urvature appliation u: theonstraints appliation Φ. More preisely, if we onsider (Mn, g, k) ⊂ (Nn+1, γ) a Rie-mannian submanifold in a Lorentzian manifold, endowed with the indued metri g andthe seond fundamental form k, the onstraints appliation is given by

Φ : (g, k) 7−→

(
Scalg +(trgk)

2 − |k|2g
−2(δk + dtrgk)

)

=

(
Φ1(g, k)
Φ2(g, k)

)

∈ C∞(M) × Γ(T ∗M),where (g, k) ∈ M × Γ(S2T ∗M). When the Lorentzian manifold (Nn+1, γ) is a solution ofthe Einstein equations (it is not neessarily the ase for our problem) that is to say whenthe metri γ satis�es
Ricγ −

1

2
Scalγ γ = T ,where T is the stress�energy tensor, then the Hamiltonian onstraint Φ1(g, k) orrespondsto T (∂t, ∂t) and the moment onstraint Φ2(g, k) orresponds to (up to a multipliativeonstant) T (∂t, ·)|TM (here ∂t denotes a unit normal to M →֒ N). The other piees ofthe tensor T are usually alled the Einstein evolution equations and are haraterized bythe ourrenes of the ∂t derivatives of the metri γ (on the ontrary to the onstraintsequations). The onstraints equations are also the traed Gauss and Codazzi equations ofthe embedding M →֒ N .We denote by L(g,k) (= L in short) the di�erential of Φ at (g, k), and by L∗ its formaladjoint. Analogously to the salar urvature appliation u, Φ is not a submersion at someouple (g, k) if and only if KerL∗

(g,k) 6= {0} . The formal adjoint of L(g,k) is given by thefollowing rather ompliated oupled di�erential operator
{

L∗
1(f, α) = E(f, α) − (trgE(f, α)) g − 1

2

(

〈L∗
2(f, α), k〉 + 〈α,Φ2(g, k)〉 + 2fΦ1(g, k)

)

g

L∗
2(f, α) = −2(δ∗α+ fk) + 2trg(δ

∗α+ fk)g
,where (f, α) ∈ C∞(M) × Γ(T ∗M) and

E(f, α) := Hessg f − f(Ricg +2(trgk)k − 2k ◦ k) + Lαk + (δα)k .Here L stands for the Lie derivative, k ◦ k means (k ◦ k)ij = kirksjg
rs and �nally δ∗αis the symmetri part of the ovariant derivative ∇α i.e. δ∗α(X,Y ) = 1

2

(
∇Xα(Y ) +

∇Y α(X)
). The ondition KerL∗

(g,k) 6= {0} is equivalent to the existene of a non trivialouple (f, α) ∈ C∞(M) × Γ(T ∗M) suh that
{

Hessg f + Lαk = f(Ricg +(trgk)k − 2k ◦ k) − 1
2(n−1)

(

〈α,Φ2(g, k)〉 + 2fΦ1(g, k)
)

g

Lαg + 2fk = 0
.In this ontext we an address the following issue onerning the existene of Killing InitialData (KID, whih are by de�nition [13℄ the non trivial elements of KerL∗

(g,k) or equiva-lently the non trivial solutions of the di�erential system above).



4 DANIEL MAERTENQuestion: Does the existene of a non trivial KID (i.e. an element in KerL∗
(g,k)) hara-terize the geometry of the Riemannian hypersurfae (Mn, g, k) ?This problem is very di�ult in general, however Beig, Chru±iel and Shoen proved in[2℄ that KIDs are non generi for a large lass of slies (Mn, g, k). More expliitly, theyproved that the family {

(g, k) ∈ M × Γ(S2T ∗M)/ KerL∗
(g,k) = {0}

}, was an open anddense set for a Ck,β × Ck,β type topology. Unfortunately, they were not able to give thegeometry of (Mn, g, k) under the exeptional ondition that KerL∗
(g,k) is non zero. Theaim of the present paper is to study a partiular situation that generalizes the Lafontaineequation, namely the KID equations on a ompat and totally umbilial hypersurfae. Inother words, we onsider (Mn, g, k) suh that1) ∃c ∈ C∞(M), c 6≡ 0, k = cg,2) ∃(f, α) 6≡ (0, 0) L∗

(g,k)(f, α) = 0 .It is lear that the standard (onstant mean urvature and totally umbilial) spherial sliesin de Sitter spae�time satisfy all these onditions. Analogously to the Fisher and Marsdenonjeture, one ould think that the onditions 1) and 2) haraterize the spherial slies inde Sitter. This onjeture is false one again beause of a result owed to Lafontaine. To seethat we �rst need to reformulate our problem. In virtue of of the umbiliity ondition 1),the moment onstraints beomes Φ2(g, cg) = −2(n−1)dc. The Hamiltonian one fores thesalar urvature of g to satisfy: Φ1(g, cg) = Scalg +n(n− 1)c2. The seond KID equationis exatly Lαg + 2cfg = 0, whih means that α is a Killing onformal 1�form (it is nonisometri as soon as f 6≡ 0). Finally, the �rst KID equation is equivalent to
Hessg f = f(Ricg +nc2g − 2c2g) − Lα(cg)

−
1

2(n− 1)

(

− 2(n − 1) 〈α,dc〉 + 2f(Scalg +n(n− 1)c2)
)

g

Hessg f = f(Ricg +nc2g − 2c2g) − cLαg −∇α(cg) + 〈α,dc〉 − f

(
Scalg

n− 1

)

g − nfc2g

Hessg f = f Ricg −f

(
Scalg

n− 1

)

g ,whih is equivalent to U∗
g (f) = Hessg f − f Ricg +(∆f)g = 0 where we have used therelation obtained thanks to the traed equation. As a onsequene, the onditions 1) and2) are equivalent to the system

(Σ)

{
Lαg + 2cfg = 0
U∗

g (f) = 0The onjeture à la Fisher and Marsden now reads as: the only metri g (exept theRii �at) that has non trivial solutions to (Σ) is the standard metri on the sphere Sn.This is learly false sine any ompat manifold (Mn, g) having a non zero Killing �eld αprovides a non trivial solution of (Σ) of the form (0, α) and whatever the mean urvature
c is. Consequently, from now on we de�ne as a non trivial KID a solution (f, α) suhthat f 6≡ 0. Even under this new de�nition of non trivial KID, the onjeture à la Fisherand Marsden is false in virtue of the following result (whih is a orollary of lassi�ationresults of Derdzinski about ompat manifolds with harmoni urvature [8, 9℄).



KID ON TOTALLY UMBILICAL & COMPACT HYPERSURFACES 51.2. Proposition (Lafontaine [12℄). Let (Mn, g) be a ompat manifold (n ≥ 3) withharmoni urvature whih arries a losed Killing onformal and non isometri 1-form,then KerU∗
g 6= {0} and (Mn, g) is isometri to one of the following manifolds:(i) S

n the standard sphere,(ii) a �nite quotient of a warped produt (S1 × Y,dt2 + h2(t)g0), where (Y n−1, g0) isEinstein with positive salar urvature.Indeed, under the assumptions of Proposition 1.2, the harmoni urvature and the seondBianhi identity ompel the salar urvature Scalg to be a (positive) onstant. We denoteby α the losed Killing onformal and non isometri 1�form i.e. dα = 0 and Lαg + ϕg = 0(this equation was studied by Tashiro [15℄) for a ertain funtion ϕ 6≡ 0. It is proved in [12℄that U∗
g (ϕ) = 0, and thereby the ouple (α, f := ϕ

2c
) for any onstant c ∈ R∗, is a solutionof (Σ) as soon as (Mn, g) is isometri to one of the manifolds listed in Proposition 1.2.Moreover, the slie (Mn, g, cg) is onstant mean urvature and satis�es the vauum on-straints equations with the positive osmologial onstant Λ = 1

2

(
Scalg +n(n− 1)c2

)
> 0.The �rst main result of this artile is to onsider a system (Σ1) slightly stronger than (Σ),sine we moreover demand the Killing onformal form to be losed, and give the geometryof the manifolds that arry non trivial solutions of this system.1.3. Theorem. Let (Mn, g) be a ompat and onneted manifold (n ≥ 3) with C3 metri,whih has a non trivial solution (f, α) of

(Σ1)

{
∇α+ cfg = 0
U∗

g (f) = 0
,for a ertain c ∈ C∞(M), c 6≡ 0. Then  is a non�zero onstant and (Mn, g) is isometrito one of the following manifolds:(i) Sn the standard sphere,(ii) a �nite quotient of a warped produt (S1 × Y,dt2 + h2(t)g0), where (Y n−1, g0) isEinstein with positive salar urvature.From the KID point of view, the vauum slie (Mn, g, cg) has positive onstant salarurvature and onstant mean urvature  given by Scalg +n(n− 1)c2 = Φ1(g, cg) = const..The original de�nition of the KID is owed to Beig and Chru±iel [3℄ and is the following.Consider a Killing �eld X on the ambient Lorentzian manifold (N, γ) and deompose it interms of a lapse funtion f and a shift 1�form (or vetor) α. Then the Killing equation of Xrestrited to the Riemannian hypersurfae (Mn, g, k) gives birth to a system of equationssatis�ed by the ouple (f, α) whih is by de�nition a Killing Initial Data. Now when theonstraints are vauum (possibly with a osmologial onstant) then being a KID in theoriginal sense of [3℄ is equivalent to belong to KerL∗

(g,k). The existene of a KID allows usto make a Killing development of (Mn, g, k) i.e. to onstrut a Lorentzian manifold withtopology R ×M = Ñ whih is endowed with the metri
γ̃ = (|α|2 − f2)dt2 + 2dt⊙ α+ g ,where the funtions f, αi, gij are trivially extended along the produt R ×M , and dt⊙ αdenotes the symmetri part of dt ⊗ α. By onstrution, the metri γ̃ is stationary andthe spatial slies {t = const.} are isometri to our initial manifold (Mn, g, k). The im-portant fat is that the Lorentzian manifold (Ñ , γ̃) is a solution of the vauum Einsteinequations (possibly with a osmologial onstant) that arries a Killing �eld ∂t. In fat,



6 DANIEL MAERTEN
∂t extends the vetor �eld (fν + αi∂i) ∈ Γ(TÑ|M) (where ν denotes a unit normal to theslie {t = 0} ∼= (Mn, g, k)) along the whole Lorentzian manifold (Ñ , γ̃). As already said,the spae�time (Ñ , γ̃) is stationary by onstrution, but when we assume that the spatialpart α is losed, it fores the Killing development to be loally stati, in the sense of theloal integrability of the orthogonal distribution of ∂t. In partiular, by making a Killingdevelopment of the metris that are lassi�ed in the result above, we obtain a lass ofstati solutions of the vauum Einstein equations with a positive osmologial onstant:the Shwarzshild�de Sitter metris. These metris had been studied in [6℄ with Λ < 0(the Shwarzshild�anti de Sitter metris), but all the omputations of Birmingham anbe arried out with Λ > 0. As a onlusion, we an laim that the Shwarzshild�de Sittersolutions are haraterized by the existene of non trivial solutions of (Σ1), and we willall the metris listed in the theorem above the spatial Shwarzshild�de Sitter metris (Snorresponds to the spatial de Sitter metris).The seond main result onerns the restrition of the onstraints appliation to the set
V × Γ(S2T ∗M) whih gives rise to the problem of �nding some (f, α) suh that

{
Lαg + 2cfg = 0

Hessg f − f Ricg
0 +∆f

n
g = 0

⇐⇒

{
Lαg + 2cfg = 0

U∗
g (f) = 1

n

(

(n− 1)∆f − f Scalg
)

g
.It is pointless to prove that the funtion c is a onstant as in the situation of the system

(Σ1), sine there exist some examples (the standard sphere Sn is one of them) of manifolds
(Mn, g) that have non trivial solutions (f, α) with a non onstant funtions c. We willdisuss this point later on. However, we an lassify the solutions of this system when weassume that c is a non�zero onstant and that the Killing onformal form α is losed. Wesurprisingly obtain the same family of manifolds than for the system (Σ1).1.4. Theorem. Let (Mn, g) be a ompat and onneted manifold (n ≥ 3) with C3 metri,whih has a non trivial solution (f, α) of

(Σ2)

{
∇α+ cfg = 0

U∗
g (f) = 1

n

(

(n − 1)∆f − f Scalg
)

g
,for a ertain c ∈ R

∗. Then (Mn, g) is isometri to one of the following manifolds:(i) Sn the standard sphere,(ii) a �nite quotient of a warped produt (S1 × Y,dt2 + h2(t)g0), where (Y n−1, g0) isEinstein with positive salar urvature.From the KID point of view, the slie (Mn, g, cg) is a spatial Shwarzshild�de Sitter metrii.e. it is vauum and has positive onstant salar urvature and onstant mean urvature given by Scalg +n(n− 1)c2 = Φ1(g, cg) = const..The third main result onerns the restrition of the onstraints appliation to the set
C × Γ(S2T ∗M) whih gives rise to the problem of �nding some (f, α) suh that

{
Lαg + 2cfg = 0
U∗

g (f) = Ricg
0

,whih must be related to the result in dimension 3 of Bessières�Lafontaine�Rozoy evoatedearlier. Here again, we study this system assuming the losed harater of the Killingonformal form α.



KID ON TOTALLY UMBILICAL & COMPACT HYPERSURFACES 71.5. Theorem. Let (Mn, g) be a ompat and onneted manifold (n ≥ 2) with C3 metriand onstant salar urvature. Suppose there exists a non trivial solution (f, α) of
(Σ3)

{
∇α+ cfg = 0
U∗

g (f) = Ricg
0

,

c ∈ C∞(M), c 6≡ 0. Then  is a non�zero onstant and (Mn, g) is isometri to the standardsphere Sn. From the KID point of view, the slie (Mn, g) is a spatial de Sitter metri.This artile is organized as follows: in Setion 2 we give some tehnial preliminaryresults that will be used in Setion 3 in order to prove the main Theorems. Setion 3 alsoontains spei� results in small dimension n = 2 or 3. Finally, Setion 4 is devoted to thestudy of another interesting system of equations.2. Preliminary resultsIn this artile, (Mn, g) is a ompat and onneted n�dimensional manifold with Levi�Civita onnetion ∇. A 1�form α is said to be Killing onformal and non isometri if itsatis�es the equation Lαg = ψg for a ertain funtion ψ 6≡ 0. Suh a form α is not losedin general, but if it is, then α and dψ are losely related.2.1. Proposition. Let (Mn, g) be a ompat and onneted manifold (n ≥ 2). Supposethere exist a non trivial ouple (ψ,α) suh that Lαg = ψg. If the Killing onformal α islosed then α ∧ dψ = 0.Proof. The ovariant derivative ∇α ∈ Γ(⊗2T ∗M) is the sum of a symmetri part and askew symmetri part sine ∇α = 1
2

(
dα+ Lαg

), where
{

dα(X,Y ) = ∇Xα(Y ) −∇Y α(X) = d∇α(X,Y )
Lαg(X,Y ) = ∇Xα(Y ) + ∇Y α(X) = 2δ∗α(X,Y )

,and d∇S(X,Y,X1, · · · ,Xp) := ∇XS(Y,X1, · · · ,Xp)−∇Y S(X,X1, · · · ,Xp) for any (p+ 1)�tensor S. The ondition d2α = 0 implies
∇Zdα(X,Y ) = −d∇dα(X,Y,Z) .We apply the Rii identity to α

R(X,Y,Z, α) = ∇2
X,Y α(Z) −∇2

Y,Xα(Z)

= d∇(∇α)(X,Y,Z)

=
1

2
d∇(dα)(X,Y,Z) + d∇(δ∗α)(X,Y,Z)

= −
1

2
∇Zdα(X,Y ) + d∇(ψg)(X,Y,Z)

= −
1

2
∇Zdα(X,Y ) + dψ ∧ g(X,Y,Z) ,where (ω ∧ S)(X,Y,Z) := ω(X)S(Y,Z) − ω(Y )S(X,Z), for every ω ∈ Γ(T ∗M) and every

S ∈ Γ(S2T ∗M). By plugging Z = α in this relation and assuming that α is losed, weimmediately get dψ ∧ α = 0. �We an wonder if we an do without the losed assumption in the Lafontaine Propo-sition 1.2. The proposition above seems to show that we indeed annot. The followinglemma enumerates equations that will be useful in the sequel.



8 DANIEL MAERTEN2.2. Lemma. Let (Mn, g) be a ompat and onneted manifold (n ≥ 2) that admits alosed Killing onformal and non isometri 1�form α, i.e. ∇α = ψg for a ertain ψ ∈
C∞(M), ψ 6≡ 0.Then the following equations hold:

R(X,Y,Z, α) = dψ ∧ g(X,Y,Z)(2.1)
dψ ∧ α = 0(2.2)

Ricg(Y, α) = −(n− 1)dψ(Y )(2.3)
∇X Ricg(Y, α) = −

(

(n− 1)U∗
g (ψ) + nψRicg −(n− 1)(∆ψ)g

)

(X,Y )(2.4)
∇α Ricg(X,Y ) = −

(

(n− 2)U∗
g (ψ) + nψRicg −(n− 1)(∆ψ)g

)

(X,Y )(2.5)
d∇ Ricg(α,X, Y ) = U∗

g (ψ)(X,Y )(2.6)
d∇ Ricg(X,Y, α) = 0 .(2.7)Proof. Formula (2.1-2.2) were proved in the previous proposition. Equation (2.3) is ob-tained by taking the trae in (2.1). Equation (2.4) is the ovariant derivative of (2.3),namely

∇X Ricg(Y, α) = −(n− 1)Hessg ψ(X,Y ) − ψRicg(X,Y ) ,where we have expressed Hessg ψ in terms of U∗
g (ψ). Equation (2.5) is a orollary of the�rst variation formula of the Rii urvature (f. formula (d) of Theorem 1.174 in [5℄ with

Lαg = 2ψg) i.e.
∇α Ricg(X,Y ) = −(n− 2)Hessg ψ(X,Y ) − 2ψRicg(X,Y ) + (∆ψ)g(X,Y ) ,where we have expressed again Hessg ψ in terms of U∗

g (ψ). Finally, Equation (2.6) is theresult of the di�erene between (2.5) and (2.4), and Equation (2.7) is the skew symmetripart of (2.4). �It is important to notie that we neither need to �x the value of U∗
g (ψ) nor to supposethat the salar urvature is a onstant to have the formulas of Lemma 2.2. The onlyassumption is to have a losed Killing onformal and non isometri 1�form on the manifold.The manifold (Mn, g) is said to have harmoni urvature if d∇ Ricg = 0. In view of (2.7), itseems natural to ask if the existene of a losed Killing onformal and non isometri 1�formimplies that g has harmoni urvature. It is not true in general, but we an nonethelessdedue some interesting information on d∇ Ricg.2.3. Lemma. Let (Mn, g) be a ompat and onneted manifold (n ≥ 2) that admits alosed Killing onformal and non isometri 1�form α, i.e. ∇α = ψg for a ertain ψ ∈

C∞(M), ψ 6≡ 0.Then the following equation holds:(2.8) ψd∇U∗
g (ψ) = dψ ∧ U∗

g (ψ) − ψ2d∇ Ricg +
(

ψd(∆ψ) − (∆ψ)dψ
)

∧ g .Proof. To prove Equation (2.8) we take the ovariant derivative of (2.1)
∇XR(Y,Z, T, α) =

{

Hessg ψ(X,Y )g(Z, T ) − Hessg f(X,Z)g(Y, T )
}(2.9)

−ψR(Y,Z, T,X) .



KID ON TOTALLY UMBILICAL & COMPACT HYPERSURFACES 9We work on the expression U∗
g (ψ), by omputing d∇U∗

g (ψ) i.e.
d∇U∗

g (ψ) = d∇ Hessg ψ + d(∆ψ) ∧ g − ψd∇ Ricg −dψ ∧ Ricg .The Rii identity applied to dψ gives d∇ Hessg ψ(X,Y,Z) = R(X,Y,Z,∇ψ), and therefore(2.10) d∇U∗
g (ψ) = R(·, ·, ·,∇ψ) + d(∆ψ) ∧ g − ψd∇ Ricg −dψ ∧ Ricg .Besides if we set T = α in (2.9) and use ∇α = ψg, we �nd (thanks to the symmetry of theurvature tensor)

∇XR(Y,Z, α, α) = X · R(Y,Z, α, α)
︸ ︷︷ ︸

=0

−R(∇XY,Z, α, α)
︸ ︷︷ ︸

=0

−R(Y,∇XZ,α, α)
︸ ︷︷ ︸

=0

−ψ
(
R(Y,Z,X,α) +R(Y,Z, α,X)
︸ ︷︷ ︸

=0

)
.Thanks to the relation α ∧ dψ = 0, we an use one again (2.9) and the previous formulato get

0 = ∇XR(Y,Z,∇ψ,α) =
{

Hessg ψ(X,Y )g(Z,∇ψ) − Hessg ψ(X,Z)g(Y,∇ψ)
}

−ψR(Y,Z,∇ψ,X)

= −dψ ∧ Hessg ψ(Y,Z,X) + ψR(Y,Z,X,∇ψ) ,that we write in short ψR(·, ·, ·,∇ψ) = dψ ∧ Hessg ψ. Finally, by multiplying (2.10) by ψand using our urvature formula it omes out
ψd∇U∗

g (ψ) = dψ ∧ Hessg ψ + ψd(∆ψ) ∧ g − ψdψ ∧ Ricg −ψ2d∇ Ricg

= dψ ∧ U∗
g (ψ) − ψ2d∇ Ricg +

(

ψd(∆ψ) − (∆ψ)dψ
)

∧ g .

�2.4. Remark . Unfortunately, Formula (2.8) is more ompliated than we ould haveexpeted. Nevertheless, when ψ is an eigenfuntion for the Riemannian Laplaian ∆ i.e.
∆ψ = λψ for a onstant λ ≥ 0 then ψd(∆ψ)− (∆ψ)dψ = 0, whih learly simpli�es (2.8).The following result gives additional information when the salar urvature is supposedto be a onstant.2.5. Theorem. Let (Mn, g) be a ompat and onneted manifold (n ≥ 2) with onstantsalar urvature that admits a losed Killing onformal and non isometri 1�form α, i.e.
∇α = ψg for a ertain ψ ∈ C∞(M), ψ 6≡ 0.Then we have:(i) ∆ψ = Scalg

n−1 ψ ,(ii) Scalg > 0 ,(iii) ψd∇U∗
g (ψ) = dψ ∧ U∗

g (ψ) − ψ2d∇ Ricg.Proof. (i) The trae of Equation (2.5) leads to
d Scalg(α) = 2(n− 1)∆ψ − 2ψ Scalg = 0 ,sine the salar urvature is a onstant and (i) immediately follows.(ii) Thanks to (i) we know that Scalg

n−1 is an eigenvalue for the Riemannian Laplaian on aompat and onneted manifold and onsequently Scalg ≥ 0. In partiular, Scalg = 0 if



10 DANIEL MAERTENand only if the eigenfuntion ψ is a onstant. But it is in fat impossible. By ontradition,suppose dψ = 0 = 1
nc

dδα on M , so dδα = 0. By integrating by parts we �nd
0 =

∫

M

〈dδα, α〉 =

∫

M

|δα|2 ,and thereby δα = 0 on M whih is impossible sine α is non isometri. We dedue that ψannot be a onstant and thus Scalg > 0.(iii) This is a simpli�ation of Equation (2.8) thanks to (i) and the previous remark. �We �nish this setion by realling a lassial result of Bourguignon whih is omnipresentthroughout this artile.2.6.Theorem (Bourguignon [7℄). Let (Mn, g) be a ompat and onneted manifold (n ≥ 2).Suppose that there exists some ψ ∈ KerU∗
g \ {0}, then Scalg is a nonnegative onstant andthe level set ψ−1(0) is either empty (ψ is a onstant) or omposed with embedded hyper-surfaes of M.Proof. Firstly, taking the trae of U∗

g (ψ) = 0 gives ∆ψ = Scalg

n−1 ψ, so that it beomes
Hessg ψ − ψRicg +Scalg

n−1 ψg = 0. Seondly, take x ∈M and t 7→ σ(t) a geodesi urve suhthat σ(0) = x. Consider the funtion F := ψ ◦ σ whih has to satisfy the order 2 ordinarydi�erential equation
F ′′(t) − F (t)

{

Ricg(σ′(t), σ′(t)) −
Scalg

n− 1
g(σ′(t), σ′(t))

}

= 0 ,with the initial onditions F (0) = ψ(x), F ′(0) = dxψ(σ′(0)). Now, if one supposes that
x ∈ ψ−1(0) is ritial for ψ, then the initial onditions vanish and F has to be identiallyzero. Sine we an over a dense part of M with geodesis starting at x, ψ should alsovanish on the whole M , whih is not permitted. We onlude that if ψ is not onstant,
ψ−1(0) ontains no ritial point and so is omposed with embedded hypersurfaes of M .Besides ψ is a non�zero onstant if and only if g is Rii �at, and in that ase ψ−1(0) = ∅.As regards the salar urvature, the trik is to ompute the divergene of U∗

g (ψ) = 0

0 = δU∗
g (ψ) = δHessg ψ + Ricg(∇ψ) − ψδRicg −d(∆ψ) =

1

2
ψd Scalg ,where we have used δRicg = −1

2d Scalg (f. 3.135 i) in [11℄), δHessg f = d(∆f)−Ricg(∇f)(f. the proof of 4.14 in [11℄). In any ase ψ−1(R∗) is dense in M , thereby d Scalg = 0 onthe whole manifold. But Scalg

n−1 is an eigenvalue of the Riemannian Laplaian on a ompatmanifold, whih implies Scalg ≥ 0. �3. Proof of the Theorems3.1. The system (Σ1). We �rst prove a general result stating that the existene of a nontrivial KID on a ompat and totally umbilial hypersurfae, has to be onstant meanurvature in any dimension greater than 2.3.1. Theorem. Let (Mn, g) be a ompat and onneted manifold (n ≥ 2) whih has asolution (f, α), f 6≡ 0, of
{

Lαg + 2cfg = 0
U∗

g (f) = 0
,



KID ON TOTALLY UMBILICAL & COMPACT HYPERSURFACES 11for a ertain c ∈ C∞(M), c 6≡ 0. Then the salar urvature Scalg is a positive onstant and
c is a non zero onstant.Proof. Thanks to Theorem 2.6, we know that Scalg is a nonnegative onstant and that thefuntion f is an eigenfuntion sine ∆f = Scalg

n−1 f . The �rst variation Formula (2.5) of theRii urvature applies sine Lαg = −2cfg:
∇α Ricg(X,Y ) = −(n− 2)Hessg(cf)(X,Y ) − 2cf Ricg(X,Y ) + (∆(cf))g(X,Y ) ,whose trae is zero sine Scalg is onstant. We derive ∆(cf) = Scalg

n−1 cf . Suppose nowthat Scalg = 0 then fc should be onstant and so the Killing onformal form α should beisometri, whih is in ontradition with c 6≡ 0, f 6≡ 0. We have then proved that Scalg > 0,and also that the funtion cf is an eigenfuntion whih lies in the same eigenspae than f .Now onsider a nodal domain of f that we denote by Ω. Using Theorem 2.6, we onludethat ∂Ω is a regular hypersurfae of M , and f is a solution of the usual Dirihlet problemon Ω sine by onstrution we have
{

∆f = Scalg

n−1 f on Ω

f = 0 on ∂Ω
,with positive eigenvalue Scalg

n−1 > 0. But, sine Ω is a nodal domain, f annot vanish andso Scalg

n−1 > 0 has to be the �rst Dirihlet eigenvalue of the domain (Ω, g) whih is alwayssimple. Now, the funtion (cf) also satis�es
{

∆(cf) = Scalg

n−1 cf on Ω
cf = 0 on ∂Ω

,and onsequently, there exists a non zero onstant K ∈ R∗ (otherwise f should be zero onan open set whih is exluded by Theorem 2.6) suh that Kcf = f . But f never vanisheson Ω, so that c = K−1 has to be a non zero onstant on Ω. This argument is true on anynodal domain of f whose union is a dense open set in M , whih means that c has to be anon zero onstant on the whole M . �As a onsequene we an ompletely answer the question of haraterizing the totallyumbilial KID in dimension 2.3.2. Corollary. Let (M2, g) be a ompat and onneted Riemannian surfae whih has asolution (f, α), f 6≡ 0, of
{

Lαg + 2cfg = 0
U∗

g (f) = 0
,for a ertain c ∈ C∞(M), c 6≡ 0. Then c is a non zero onstant and (M2, g) is isometrito the standard sphere S

2. In other words, any totally umbilial and ompat hypersurfaehaving a non trivial KID is isometri to a spatial (spherial and onstant mean urvature)de Sitter metri.Proof. From Theorem 3.1 we know that c is a non zero onstant and Scalg a positive on-stant. Gauss�Bonnet formula laims that M2 is homeomorphi to S2 and Theorem 3.83 in[11℄ says that M2 is in fat isometri to a standard 2�dimensional sphere (sine the salarurvature and the setional urvature are equivalent for surfaes). �



12 DANIEL MAERTENFor manifolds of dimension greater than 3, we need to make an additional assumption(the Killing onformal 1�form α is supposed to be losed) in order to obtain geometri in-formation. We then prove Theorem 3.3 that lassi�es the ompat and onneted manifolds
(Mn, g) that arry non trivial solutions of (Σ1).3.3. Theorem. Let (Mn, g) be a ompat and onneted manifold (n ≥ 3) with C3 metri,whih has a solution (f, α), f 6≡ 0, of

(Σ1)

{
∇α+ cfg = 0
U∗

g (f) = 0
,for a ertain c ∈ C∞(M), c 6≡ 0. Then  is a non�zero onstant and (Mn, g) is isometrito one of the following manifolds:(i) S

n the standard sphere,(ii) a �nite quotient of a warped produt (S1 × Y,dt2 + h2(t)g0), where (Y n−1, g0) isEinstein with positive salar urvature.From the KID point of view, the vauum slie (Mn, g, cg) has positive onstant salarurvature and onstant mean urvature  given by Scalg +n(n− 1)c2 = Φ1(g, cg) = const..Proof. We an use (iii) in Theorem 2.5 with ψ = cf and c a non zero onstant. We obtain
0 = c2fd∇U∗

g (f) = c2df ∧ U∗
g (f) − c2f2d∇ Ricg = −c2f2d∇ Ricg ,sine U∗

g (f) = 0. It omes out d∇ Ricg = 0 on the dense open set f−1(R∗), and by aontinuation argument (d∇ Ricg ∈ C0 sine the metri g is regular enough i.e. C3), we get
d∇ Ricg = 0 on the whole M . We onlude by applying Proposition 1.2 whih gives theannouned lassi�ation.From the KID point of view, (Mn, g, k) is totally umbilial with extrinsi urvature k = cgby onstrution, and the onstant c ∈ R∗ is the mean urvature of the slie. It is learthat it satis�es the vauum onstraint equations with the positive osmologial onstant
Λ = 1

2

(
Scalg +n(n− 1)c2

)
> 0. �3.4. Remark . The funtion h in the warped produt metris of (ii) in Theorem 3.3 hasto satisfy an order 2 di�erential equation whih is given by the relation between Scalg and

Scalg0 the salar urvature of (Y, g0). See [12℄ for further details.In the KID ontext, Theorems 3.3 gives rise to the following natural issue.Question: Let (Mn, g) be a ompat and onneted manifold (n ≥ 3) and c ∈ C∞(M), c 6≡ 0.Does the existene of non trivial solutions (i.e. f 6≡ 0) of
{

Lαg + 2cfg = 0
U∗

g (f) = 0
,haraterize the spatial Shwarzshild�de Sitter metris? In general, it is not lear sinewe a priori lose the important geometri urvature identity (2.1).3.2. The system (Σ2). As already said in the introdution, we an fous on the restritionof the onstraints appliation to V × Γ(S2T ∗M) where V = {g ∈ M /dVolg = dVolg0}.In this ontext, the relevant operator is (

U∗
g

)

0
so that we onsider the problem of �ndingsome (f, α) suh that

{
Lαg + 2cfg = 0

Hessg f − f Ricg
0 +∆f

n
g = 0

,



KID ON TOTALLY UMBILICAL & COMPACT HYPERSURFACES 13where c ∈ C∞(M), c 6≡ 0. This problem is learly equivalent to
{

Lαg + 2cfg = 0

U∗
g (f) = 1

n

(

(n− 1)∆f − f Scalg
)

g
.The main di�erene with the system (Σ) is that there is no hope to prove that the funtion

c (remind that c is the mean urvature of the hypersurfae (Mn, g, k = cg)) is a onstant.Indeed, let (Mn, g) be an Einstein manifold with nonnegative salar urvature that has anon isometri Killing onformal 1�form α (suh manifolds do exist, the standard sphere
Sn is one of them). Then any ouple (f, α) with f any non zero onstant, has to satisfy

Lαg = −2cfg and (
U∗

g (f)
)

0
= 0 ,where we have de�ned the funtion c as c := δα

fn
6≡ 0 sine α is non isometri. Expetingthe non isometri Killing onformal 1�form to be losed does not even guarantee that cshould be a onstant. You just have to onsider on the standard sphere S

n, the non trivialouples (f, fdc) where f is any non zero onstant and c ∈ KerU∗
g = Span {x1, x2, · · · , xn},with (xi)

n+1
i=1 the standard oordinates on Sn. Suh ouples satisfy

∇α = −cfg and (
U∗

g (f)
)

0
= 0 .Now if we give up the losed harater of α, then we an onsider some non trivial ouples

(f, fdc+ β) where f is any non zero onstant, c ∈ KerU∗
g = Span {x1, x2, · · · , xn} and βany Killing form on Sn. Then suh ouples has to verify

Lαg + 2cfg = 0 and (
U∗

g (f)
)

0
= 0 .This spae of solutions is parametrized by R

∗ × R
n+1 × so(n + 1) with the Lie algebra

so(n + 1) ∼= R
n(n+1)

2 . It is the reason why we restrit our study to the ase where c is anon zero onstant. Then we an lassify the solutions of this system when we assume inaddition that the Killing onformal form α is losed, as it is laimed in the following result.3.5. Theorem. Let (Mn, g) be a ompat and onneted manifold (n ≥ 3) with C3 metri,whih has a non trivial solution (f, α), f 6≡ 0, of
(Σ2)

{
∇α+ cfg = 0

U∗
g (f) = 1

n

(

(n − 1)∆f − f Scalg
)

g
,for a ertain onstant c 6= 0. Then (Mn, g) is isometri to one of the following manifolds:(i) S

n the standard sphere,(ii) a �nite quotient of a warped produt (S1 × Y,dt2 + h2(t)g0), where (Y n−1, g0) isEinstein with positive salar urvature.From the KID point of view, the vauum slie (Mn, g, cg) has positive onstant salarurvature and onstant mean urvature  given by Scalg +n(n− 1)c2 = Φ1(g, cg) = const..Proof. Our goal is to show that U∗
g (f) = 0 and then use Theorem 3.3. Equation (2.6)reads as

d∇ Ricg(α,X, Y ) = −cU∗
g (f)(X,Y ) = −

c

n

(

(n− 1)∆f − f Scalg
)

g .Let x ∈M , then there are exatly 2 possibilities1) αx = 0 and then U∗
g (f) = 0 at the point x sine c 6= 0.



14 DANIEL MAERTEN2) Otherwise αx 6= 0 and then
−
c

n

(

(n− 1)∆f(x) − f(x) Scalg(x)
)

αx = d∇ Ricg(α,α, ·)x = 0 ,whih entails (n− 1)∆f(x) − f(x) Scalg(x) = 0 and so U∗
g (f) = 0 at the point x.We an apply Theorem 3.3 to onlude sine U∗

g (f) = 0 on the whole M . �3.6. Remark . In [12℄ Setion E1, Lafontaine gives a family of non trivial solutions ofthe equation Hessg f + ∆f
n
g − f Ricg

0 = 0. These metris are again warped produt metris
dt2 + h2(t)g0 on S

1 × Y , where (Y, g0) is Einstein with positive salar urvature, and h aperiodi funtion. Theorem 3.5 shows that the non trivial solutions of (Σ2) are the metrisin the lass exhibited by Lafontaine in [12℄, that have positive onstant salar urvature.The ase of surfaes is easy to treat sine the omputations of Lemmas 2.2�2.3 andTheorem 2.5 are valid in dimension 2.3.7. Corollary. Let (M2, g) be a ompat and onneted Riemmanian surfae whih has anon trivial solution (f, α) of
{

∇α+ cfg = 0

U∗
g (f) = 1

2

(

∆f − f Scalg
)

g
,for a ertain onstant c 6= 0. Then (M2, g) is isometri to the standard sphere S

2.Proof. The omputations in the proof of Theorem 3.5 are still valid in dimension 2 so that
U∗

g (f) = 0 on the whole M . We an onlude using the surfae version of the lassi�ationresult on the system (Σ1). �In the KID ontext, Theorem 3.5 gives rise to the natural issueQuestion: Let (Mn, g) be a ompat and onneted manifold. Does the existene of nontrivial solutions (i.e. f 6≡ 0) of
{

Lαg + 2cfg = 0

U∗
g (f) = 1

n

(

(n− 1)∆f − f Scalg
)

g
,(with c a non zero onstant) haraterize the spatial Shwarzshild�de Sitter metris for

n ≥ 3 (respetively the spatial de Sitter metris for n = 2)?3.3. The system (Σ3). The next main result deals with the restrition of the onstraintsappliation to C × Γ(S2T ∗M) where C = {g ∈ M /d Scalg = 0 and Volg = Vol(Sn)}. Inthis ontext, U∗
g has to be equal to the traeless Rii urvature, so that we need to onsiderthe problem of �nding some (f, α) suh that

{
Lαg + 2cfg = 0
U∗

g (f) = Ricg
0

.We ould assume without loss of generality that Scalg is a onstant, but it is in fatnot neessary in virtue of the following general result (whih is the analogous version ofTheorem 3.1 for the restrition to C × Γ(S2T ∗M)).



KID ON TOTALLY UMBILICAL & COMPACT HYPERSURFACES 153.8. Theorem. Let (Mn, g) be a ompat and onneted manifold (n ≥ 2) with C3 metri,whih has a solution (f, α), f 6≡ 0, of
{

Lαg + 2cfg = 0
U∗

g (f) = Ricg
0

,for a ertain c ∈ C∞(M), c 6≡ 0. Then the salar urvature Scalg is a positive onstant and
c is a non zero onstant.Proof. We �rst prove that Scalg is a positive onstant. By omputing the divergene of
U∗

g (f) = Ricg
0 we get 1

2fd Scalg = δU∗
g (f) = δRicg

0 =
(

1
n
− 1

2

)
d Scalg, whih leads tothe identity (

f − 2−n
n

)
d Scalg = 0. Let us de�ne F a losed subset as F := f−1

(
2−n

n

),and prove by ontradition that its interior Int(F ) is empty. If Int(F ) 6= ∅ then, on
Int(F ) we have U∗

g (f) = −
(

2−n
n

)
Ricg = Ricg

0 whose trae gives Scalg = 0. But on itsomplement M r Int(F ), we have d Scalg = 0 and so Scalg = 0 on the whole M by aontinuation argument. The �rst variation Formula (2.5) of the Rii urvature appliessine Lαg = −2cfg:
∇α Ricg(X,Y ) = −(n− 2)Hessg(cf)(X,Y ) − 2cf Ricg(X,Y ) + (∆(cf))g(X,Y ) ,whose trae is zero sine Scalg ≡ 0 is a onstant. We derive ∆(cf) = Scalg

n−1 cf = 0, whihimplies that the funtion cf is a onstant. This is in ontradition with the fat that α isnon isometri and f 6≡ 0, c 6≡ 0. Therefore, Int(F ) = ∅ and so M rF is an open and densesubset of M where d Scalg = 0. We �nally obtain that Scalg is a nonnegative onstant(sine ∆(cf) = Scalg

n−1 cf) whih annot be zero (α is non isometri).The trae of U∗
g (f) = Ricg

0 gives ∆f = Scalg

n−1 f so the funtions f and cf belong to thesame eigenspae of positive eigenvalue Scalg

n−1 . Unfortunately, f−1(0) the nodal set of f haspossibly a singular (or degenerate) part sine the argument of Theorem 2.6 does not workanymore. We need to use a ruial result on nodal sets owed to Bär, namely Corollary 2in [1℄. It states that the nodal set of f is the disjoint union f−1(0) = Nreg ∪ Nsingwith Nreg :=
{
x ∈ f−1(0)/dxf 6= 0

} and Nsing :=
{
x ∈ f−1(0)/dxf = 0

} that have thefollowing properties:(i) Nreg is omposed with smooth embedded hypersurfaes (by the impliit funtiontheorem),(ii) Nsing is a ountably (n−2)�reti�able set and thus has Hausdor� dimension n−2at most.We notie that Nreg annot be empty. Indeed (by ontradition) if it was empty then thereshould be a unique nodal domain M rNsing (sine Nsing has Hausdor� dimension n−2 atmost, M rNsing is onneted). But f has a vanishing integral on M and has a onstantsign on the dense open set M rNsing, thereby f ≡ 0 whih is not possible. Now onsider
Ω any onneted omponent of the open set M rNreg. By onstrution the boundary ∂Ωis smooth and f is a solution of the usual Dirihlet problem on Ω sine by onstrution wehave

{
∆f = Scalg

n−1 f on Ω

f = 0 on ∂Ω
,with positive eigenvalue Scalg

n−1 > 0. But f has a onstant sign on Ω (f an possibly vanishbut only on a set of Hausdor� dimension less or equal to n − 2) and so Scalg

n−1 > 0 has tobe the �rst Dirihlet eigenvalue of the domain (Ω, g) whih is always simple. Now, the



16 DANIEL MAERTENfuntion cf also satis�es
{

∆(cf) = Scalg

n−1 cf on Ω

cf = 0 on ∂Ω
,and onsequently, there exists a non zero (sine both f and cf annot vanish on the whole

Ω) onstant λ suh that cf = λf . We have then proved that c has to be a non zero onstanton (a dense open subset of) Ω. This argument is true on any onneted omponent of theopen set M rNreg whose union is a dense open set in M , whih means that c has to be anon zero onstant on the whole M by a ontinuation argument. �As a onsequene we an ompletely answer the question of haraterizing the manifoldsthat have non trivial solutions of
{

Lαg + 2cfg = 0
U∗

g (f) = Ricg
0

,in dimension 2 and 3.3.9. Corollary. Let (Mn, g) be a ompat and onneted Riemannian manifold of dimen-sion n = 2 or 3, whih has a solution (f, α), f 6≡ 0, of
{

Lαg + 2cfg = 0
U∗

g (f) = Ricg
0

,for a ertain c ∈ C∞(M), c 6≡ 0. Then c is a non zero onstant and (Mn, g) is isometrito the standard sphere Sn. From the KID point of view, the slie (Mn, g, cg) is a spatial deSitter metri.Proof. From Theorem 3.8 we know that c is a non zero onstant and Scalg a positive on-stant.For the ase of Riemannian surfaes i.e. n = 2, Gauss�Bonnet formula laims that M2is homeomorphi to S
2 and Theorem 3.83 in [11℄ says that M2 is in fat isometri to astandard 2�dimensional sphere (sine the salar urvature and the setional urvature areequivalent for surfaes). The volume normalization says that it is exatly S

2.When the dimension is n = 3, then the theorem of Bessières�Lafontaine�Rozoy appliesand so M3 is isometri to S
3. �For dimension greater or equal to 4, the problem is quite harder to solve. Here again,we study this system assuming the losed harater of the Killing onformal form α.3.10. Theorem. Let (Mn, g) be a ompat and onneted manifold (n ≥ 2) with C3 metri.Suppose there exists a solution (f, α), f 6≡ 0, of

(Σ3)

{
∇α+ cfg = 0
U∗

g (f) = Ricg
0

,

c ∈ C∞(M), c 6≡ 0. Then  is a non�zero onstant and (Mn, g) is isometri to the standardsphere Sn. From the KID point of view, the slie (Mn, g, cg) is a spatial de Sitter metri.Proof. Thanks to Theorem 3.8 we know that c is a non zero onstant and that Scalg is apositive onstant. Thus we an use Theorem 2.5 so as to get
fd∇U∗

g (f) = df ∧ U∗
g (f) − f2d∇ Ricg

= df ∧ Ricg
0 −f

2d∇ Ricg
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g (f) = fd∇ Ricg

0 = fd∇ Ricg sine the salarurvature is a onstant. We identify both terms to obtain the ruial formula
f(f + 1)d∇ Ricg = df ∧ Ricg

0 .Writing down Equation (2.6) with ψ = cf and taking our new information into aount
−cf(f + 1)Ricg

0 = df(α)Ricg
0 −df ⊗ Ricg

0(α)

= df(α)Ricg
0 −c(n− 1)df ⊗ df +

Scalg

n
df ⊗ α ,the trae of whih gives df(α) Scalg = cn(n − 1) |∇f |2. Then we deompose M in thedisjoint union M = Ω

∐
C, where we de�ne the open set Ω = {x ∈M/dxf 6= 0} and

C = Ωc is the set of the ritial points of f . The losed set C possibly has a non emptyinterior, and then we write M = Ω
∐
∂C

∐ ◦
C. By onstrution the open set Ω

∐ ◦
C is densein M . For any x ∈ Ω

∐ ◦
C we have the 2 possibilities:(i) x ∈

◦
C. We are going to see that f = 0 on the open set ◦

C. Indeed, by de�nition
df = 0 on ◦

C whih means that f is loally onstant and we have ∆f = 0 = Scalg

n−1 f ,with Scalg > 0 and thereby f = 0 (we have also Hessg f = 0). Thus, the equation
U∗

g (f) = Ricg
0 along ◦

C gives Ricg
0 = 0 (in partiular (Ricg

0)x = 0).(ii) x ∈ Ω and in that ase we denote by Ωx the onneted omponent of Ω thatontains x. Thanks to Equation (2.2), there exists an open ball B(x, r) ⊂ Ωx

(r > 0) where we an write α = a(f)df for a ertain funtion a ∈ C∞(R). Thisimplies a(f) Scalg = cn(n − 1) and so a(f) is a non zero onstant on B(x, r).Sine this argument is valid on a neighborhood of eah point of Ωx, we get that
a(f) is a non zero onstant on Ωx. We now use the �rst equation of (Σ3) (all theomputations are arried out on the open set Ωx)

∇α = −cfg = ∇

(
cn(n− 1)

Scalg
df

)

=
cn(n− 1)

Scalg
Hessg f ,that we plug in the seond equation of (Σ3)

Ricg
0 = Hessg f − f Ricg +

Scalg

n− 1
g

= −f Ricg +

(
Scalg

n− 1
−

Scalg

n(n− 1)

)

g

= −f Ricg
0 ,that is to say (1 + f)Ricg

0 = 0 on Ωx. Partiularly,
0 = −f(1 + f)Ricg

0 =
cn(n− 1)

Scalg
|∇f |2 Ricg

0 −c(n− 1)df ⊗ df +
a(f) Scalg

n
df ⊗ df

=
cn(n− 1)

Scalg
|∇f |2

︸ ︷︷ ︸

6=0

Ricg
0 ,that allows us to onlude Ricg

0 = 0 on Ωx (⇒ (Ricg
0)x = 0).



18 DANIEL MAERTENWe have proved that Ricg
0 ∈ C1 (sine g ∈ C3) is identially zero on the dense open set

Ω
∐ ◦

C, whih indues Ricg
0 = 0, namely g is Einstein. But, it is well known thanks toObata [14℄, that (Mn, g) is isometri to the standard sphere Sn. �Theorem 3.10 must be related to the result in dimension 3 of Bessières�Lafontaine�Rozoy [4℄ evoated in the introdution. Their proof whih is spei� to the dimension 3,onsists on proving that any metri g of onstant salar urvature having a solution f of

U∗
g (f) = Ricg

0, is onformally �at. They an onlude, by using a result of Lafontaine ononformally �at manifolds ([12℄ Setion E2), that g is the standard metri of the sphere
S3. It is not obvious that their result ould be extended to higher dimensions, and this isthe reason why Theorem 3.10 an be onsidered as a generalization of their theorem forany dimension n ≥ 3.It is also of great interest that the existene of non trivial solutions of (Σ3) haraterizesthe standard spherial slies of de Sitter spae�time. We then address the followingQuestion: Let (Mn, g) be a ompat and onneted manifold, n ≥ 4. Does the existeneof non trivial solutions (i.e. f 6≡ 0) of

{
Lαg + 2cfg = 0
U∗

g (f) = Ricg
0

,haraterize the geometry of the standard sphere S
n?4. Another EquationA slightly di�erent point of view is to onsider U∗

g as a linear order 2 di�erential operatoron funtions. Naturally, one ould think of modifying this operator thanks to a potentiali.e. onsidering an equation of the kind U∗
g (f) = fτ where τ is a symmetri 2�tensor on

M (τ is the potential). Of ourse, the motivation of suh an equation vanishes (the hoieof τ is not learly suggested by a geometri formulation) exept the origin of the operator
U∗

g itself via the salar urvature appliation. However, the situation that is the losest tothe equation à la Bessières�Lafontaine�Rozoy is to take τ = Ricg
0, leading to the modi�edequation U∗

g (f) = f Ricg
0. In the ontinuation of the previous results of this artile weonsider the problem of �nding some ouple (f, α) suh that

(Σ′
4)

{
Lαg + 2cfg = 0
U∗

g (f) = f Ricg
0

,where c ∈ C∞(M). The problem is that too many manifolds do have no trivial solutionsof (Σ′
4):1) Examples with c = 0:(a) A manifold (Mn, g) that has a Killing form α. Then the ouple (f = 0, α) isa solution of (Σ′

4). The salar urvature of g is not neessarily a onstant andnote that this lass of manifolds is quite (in fat too) large.(b) A Rii �at manifold (Mn, g) that has a Killing form α. Then any ouple
(f = const. 6= 0, α) is a solution of (Σ′

4). The salar urvature of g is zero byonstrution and this lass of manifolds is also quite large, sine it ontainsthe �at tori.() The standard sphere Sn. Then any ouple (f, α) where f ∈ KerU∗
g and α aKilling form, is a solution of (Σ′

4).2) Examples with c 6≡ 0:



KID ON TOTALLY UMBILICAL & COMPACT HYPERSURFACES 19(a) A manifold (Mn, g) that has a Killing form α. Then the ouple (f = 0, α)is a solution of (Σ′
4) for any funtion c ∈ C∞(M) (the non zero onstantfuntions c are obviously admissible). One again the salar urvature is notneessarily a onstant and this lass of manifolds is very large.(b) The standard sphere Sn. Then any ouple (f, cdf) where f ∈ KerU∗

g et and
c a nonzero onstant, is a solution of (Σ′

4).These examples explain why we hoose to restrit our problem to the ase where c isa nonzero onstant and the Killing onformal form α is losed. Under these onditions,Theorem 4.1 laims that the standard sphere S
n is the only manifold arrying non trivialsolutions of our new system that we all (Σ4). For sake of simpliity, we normalize the nonzero onstant c = 1 till the end of this setion.4.1. Theorem. Let (Mn, g) be a ompat and onneted manifold with C3 metri (n ≥ 2),whih has a non trivial solution (f, α) of

(Σ4)

{
∇α+ fg = 0
U∗

g (f) = f Ricg
0Then (Mn, g) is isometri to the standard sphere Sn.Proof. The aim is to prove that g is Einstein. We still have ∆f = Scalg

n−1 f by traing
U∗

g (f) = f Ricg
0. On the one hand, Equation (2.8) of Lemma 2.3 entails

fd∇U∗
g (f) = df ∧ U∗

g (f) − f2d∇ Ricg +
(

fd(∆f)− (∆f)df
)

∧ g

= fdf ∧ Ricg
0 −f

2d∇ Ricg +

(

fd

(
Scalg

n− 1
f

)

−
Scalg

n− 1
fdf

)

∧ g

= fdf ∧ Ricg
0 −f

2d∇ Ricg +
f2

n− 1
d Scalg ∧g ,and on the other hand, we straightly ompute

fd∇U∗
g (f) = fdf ∧ Ricg

0 +f2d∇ Ricg −
f2

n
d Scalg ∧g .We identify both expressions and get

2f2d∇ Ricg = f2

(
2n− 1

n(n− 1)

)

d Scalg ∧g .Thanks to Equation (2.7) it omes f2d Scalg ∧α = 0, but sine the open set f−1(R∗) isdense (the argument of Bourguignon in [7℄ works in our situation, see also Theorem 2.6),we have d Scalg ∧α = 0 on the whole M , beause this 2�form is C0 (g ∈ C3). The trae ofEquation (2.5) gives
d Scalg(α) = 2f Scalg −2(n− 1)∆f = 0 .Consider Equation (2.6)

−2f3 Ricg
0 = 2f2d∇ Ricg(α,X, Y ) = −f2

(
2n− 1

n(n− 1)

)

d Scalg ⊗α(X,Y ) ,that we shortly write
2f3 Ricg

0 = f2

(
2n− 1

n(n− 1)

)

d Scalg ⊗α .If one takes x ∈ f−1(R∗), then there are 2 possibilities:
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dx Scalg(αx) = 0, so that dx Scalg = 0 and onsequently (Ricg
0)x = 0.We obtain Ricg

0 = 0 on M (by a ontinuation argument), namely g is Einstein. But it iswell known thanks to Obata [14℄, that (Mn, g) is isometri to the standard sphere S
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