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émanant des établissements d’enseignement et de
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Abstract

Assume that individuals alive at time t in some population can be ranked in such a way
that the coalescence times between consecutive individuals are i.i.d. The ranked sequence
of these branches is called a coalescent point process. We have shown in a previous work
[14] that splitting trees are important instances of such populations.

Here, individuals are given DNA sequences, and for a sample of n DNA sequences
belonging to distinct individuals, we consider the number Sn of polymorphic sites (sites at
which at least two sequences differ), and the number An of distinct haplotypes (sequences
differing at one site at least).

It is standard to assume that mutations arrive at constant rate (on germ lines), and
never hit the same site on the DNA sequence. We study the mutation pattern associated
with coalescent point processes under this assumption. Here, Sn and An grow linearly as n
grows, with explicit rate. However, when the branch lengths have infinite expectation, Sn

grows more rapidly, e.g. as n ln(n) for critical birth–death processes.

Then, we study the frequency spectrum of the sample, that is, the numbers of poly-
morphic sites/haplotypes carried by k individuals in the sample. These numbers are shown
to grow also linearly with sample size, and we provide simple explicit formulae for muta-
tion frequencies and haplotype frequencies. For critical birth–death processes, mutation
frequencies are given by the harmonic series and haplotype frequencies by Fisher’s logarith-
mic series.

Running head. The allelic partition for coalescent point processes.
MSC Subject Classification (2000). Primary 92D10; secondary 60-06, 60G10, 60G51, 60G55,
60G70, 60J10, 60J80, 60J85.
Key words and phrases. coalescent point process – splitting tree – Crump–Mode–Jagers process
– linear birth–death process – Yule process – allelic partition – infinite site model – infinite
allele model – Poisson point process – Lévy process – scale function – law of large numbers –
Kingman coalescent – Fisher logarithmic series.
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1 Introduction

1.1 The coalescent point process

Splitting trees are those random trees where individuals give birth at constant rate b during
a lifetime with general distribution Λ(·)/b, to i.i.d. copies of themselves (see [12]), where Λ is
a positive measure on (0,∞] with total mass b called the lifespan measure. In [14], we have
shown that if the splitting tree is started from one individual with known birth time, say 0,
and known death time, then individuals alive at time t can be ranked in such a way that the
coalescence times between consecutive individuals are i.i.d.

0 1 2 3 4 5 6 7 8 9 10 12 13 14 15

Figure 1: A coalescent point process for n = 16 individuals.

Specifically, let Nt be the number of individuals alive at time t. The process (Nt; t ≥ 0) is
a (homogeneous, binary) Crump–Mode–Jagers process, and is not Markovian unless Λ has an
exponential density or is a point mass at ∞. To these Nt individuals, give labels 0, 1, . . . , Nt−1
according to the (unique) order complying with the following rule : ‘any individual comes before
her own descendants, but after her younger siblings and their descendants’. For any integers i, k
such that 0 ≤ i < i+k < Nt, we let Ci,i+k be the coalescence time (or divergence time) between
individual i and individual i+ k, that is, the time elapsed since the lineages of individual i and
i + k have diverged. Also define Hi+1 := Ci,i+1. Then recall from [14] that for a splitting tree,

Ci,i+k = max{Hi+1, . . . ,Hi+k} (1)

and conditional on {Nt 6= 0}, the sequence (Hi; 1 ≤ i ≤ Nt −1) has the same law as a sequence
of i.i.d. r.v. killed at its first value ≥ t. As a by-product, we get that the law of Nt conditional
on {Nt 6= 0} is geometric.

The aforementioned property comes from the fact that the jumping contour process of the
splitting tree is a Lévy process X = (Xs; s ≥ 0) with Lévy measure Λ and drift coefficient −1.
Then the excursions of the contour process between consecutive visits of points at height t are
i.i.d. excursions of X. As a consequence, the (Hi) are also i.i.d., and their common distribution
is that of H ′ := t− infs Xs, where X is started at t and killed upon hitting {0}∪ (t,+∞). Note
that all branch lengths but the last one are distributed as some r.v. H which is H ′ conditioned
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to be smaller than t. The distribution of H ′ can be expressed in terms of a nonnegative,
nondecreasing, differentiable function W , called the scale function of X, such that W (0) = 1

P(H ′ > x) =
1

W (x)
x ≥ 0. (2)

The scale function W is characterised by its Laplace transform (see e.g. [6])

∫ ∞

0
dx e−λx W (x) =

(

λ −
∫ ∞

0
Λ(dx)(1 − e−λx)

)−1

. (3)

From now on, with no need to refer to the framework of splitting trees, we will consider the
genealogy of what we call a coalescent point process (originating from [17] where Λ(dx) =
b2 exp(−bx)dx) :

1. let H1,H2, . . . be a sequence of independent random variables called branch lengths all
distributed as some positive r.v. H, and set H0 to equal +∞.

2. the genealogy of the population {0, 1, 2, . . .} is given by (1).

We will stick to the notation

W (x) :=
1

P(H > x)
x ≥ 0.

It will always be implicit that a sample of n individuals refers to the first n individuals
{0, 1, . . . , n − 1}.
Remark 1 In the case of splitting trees, conditional on {Nt 6= 0}, Nt is geometric with success
probability P(H ′ > t), and conditional on {Nt = n}, the branch lengths (Hi; 1 ≤ i ≤ n − 1)
are i.i.d. with distribution P(H ′ ∈ · | H ′ < t). In what follows, we will repeatedly refer to
the genealogy of a splitting tree with n leaves by setting the r.v. H to equal H ′, without the
conditioning (i.e. t → ∞). In the subcritical case, this amounts to considering quasi-stationary
populations, which are those populations conditioned to be still alive at time t, as t → ∞ (see
e.g. [15]). Another possibility would be, as in [2], to give a prior distribution to the time t of
origin, and condition the whole tree on {Nt = n}. Then as n → ∞, the posterior distribution
of t goes to ∞, and we would be left with a (possibly different) distribution of H charging the
whole half-line.

Remark 2 No distribution of edge lengths can make the coalescent point process coincide with
the Kingman coalescent [13]. Indeed, here, the smallest branch length in a sample of n individ-
uals is the minimum of n− 1 i.i.d. random variables, whereas in the Kingman coalescent, it is
the minimum of n(n − 1)/2 i.i.d. random variables (with exponential distribution).

Our goal is to characterise the mutation pattern for samples of n individuals, mainly as n
gets large. We specify the mutation scheme in the next subsection.

Works studying mutation patterns arising from random genealogies are numerous. Muta-
tion patterns related to populations with fixed size (Wright–Fisher model, Kingman coalescent)
are well-known and culminate in Ewens’ sampling formula (see [9] for a comprehensive account
on that subject). More recent works concern mutation patterns related to more general coa-
lescents [4, 16], to branching populations [1, 7], or to both [5].
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1.2 Mutation scheme

We adopt two classical assumptions on mutation schemes from population genetics (see e.g.
[10])

1. mutations occur at constant rate θ on germ lines,

2. mutations are neutral, that is, they have no effect on birth rates and lifetimes.

As is usual, we assume that mutations are point substitutions occurring at a single site on the
DNA sequence, and that each site can be hit at most once by a mutation. This last assumption
is known as the infinitely-many sites model (ISM). Instances of DNA sequence are called alleles
or haplotypes, so that under the ISM, each mutation yields a new allele. Without reference
to DNA sequences, this last assumption by itself is known as the infinitely-many alleles model
(IAM).

Specifically, we let (Pi; i = 0, 1, 2 . . .) be independent Poisson measures on (0,∞) with in-
tensity θ (cf. assumption 1). For each i we denote the atoms of Pi by ℓi1 < ℓi2 < · · · and call
them mutations. Now let H1,H2, . . . be an independent coalescent point process (cf. assump-
tion 2). In agreement with the genealogical structure of a coalescent point process explained
in the beginning of this section, we will say that individual i + k carries (or bears) mutation
ℓij if k ≥ 0 and

max{Hi+1, . . . Hi+k} < ℓij < Hi,

where we agree that max ∅ = 0 and H0 = +∞. The second inequality is trivially due to the fact
that we throw away all atoms ℓij such that Hi ≤ ℓij . The set of mutations that an individual
bears is her allele or her haplotype, or merely her type.

For a sample of n individuals, we call Sn the number of polymorphic sites, that is, the number
of mutations (ℓij ; 0 ≤ i ≤ n − 1, j ≥ 1) that are carried by at least one individual and at most
n − 1. Formally, this yields

Sn = Card{ℓij < Hi, 1 ≤ i ≤ n − 1, j ≥ 1} + Card{ℓ0j < max{H1, . . . ,Hn−1}, j ≥ 1}.
Further, we define Sn(k) as the number of mutations carried by k individuals in the sample.
In particular,

Sn =
n−1
∑

k=1

Sn(k).

The sequence (Sn(1), . . . , Sn(n − 1)) is called the site frequency spectrum of the sample.
Similarly, we call An the number of distinct haplotypes in a sample of n individuals, that

is, the number of alleles that are carried by at least one individual, and An(k) as the number
of alleles carried by k individuals. In particular, we have

An =

n
∑

k=1

An(k) and

n
∑

k=1

kAn(k) = n.

The sequence (An(1), . . . , An(n)) is called the allele frequency spectrum of the sample.

Remark 3 One always has the inequality Sn ≥ An − 1. Indeed, apart from the ancestral
haplotype, each new haplotype independent of at least one new mutation.

4



u

u

u

u

u

u

u

c

g

h

e

f

b

d

gc gc gch gche gch gch gbf gbfd gbfd

0 1 2 3 4 5 6 7 8

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

Haplotype of individual 3

Haplotype of individual 6

Figure 2: A coalescent point process with mutations for a sample of n = 9 individuals. Site a
is not polymorphic because no individual in the sample carries a mutation at that site; site g
is not polymorphic because all individuals in the sample carry the mutation at that site. The
number of polymorphic sites is Sn = 6. The number of distinct haplotypes is An = 5.

1.3 Examples of coalescent point processes

Before going into the main part of this work, we provide a few simple examples of coalescent
point processes derived from splitting trees, in part for application purposes.

Yule tree. When Λ is a point mass at ∞, the splitting tree is a Yule tree, and (Nt; t ≥ 0) is a
pure-birth binary process with birth rate, say a. Then W (x) = eax, and H has an exponential
distribution with parameter a (see [17]).

Birth–death process. When Λ has an exponential density, (Nt; t ≥ 0) is a Markovian birth–
death process with (birth rate b and) death rate, say d. Then it is known (see [14] for example)
that if b 6= d, then

W (x) =
d − be(b−d)x

d − b
x ≥ 0,

whereas if b = d =: a,

W (x) = 1 + ax x ≥ 0.

Notice that in the subcritical case (b < d), H can take the value ∞ with probability 1− (b/d),
which is due to the constrained size of quasi-stationary populations (see Remark 1). Elementary
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calculations show that H conditioned to be finite has the same law as the branch length of a
supercritical birth–death process with birth rate d and death rate b.

Consistency and sampling. The genealogy associated with a coalescent point process is
consistent in the sense that the genealogy of a sample of n individuals has the same law as
that of a sample of n + 1 individuals from which the last individual has been withdrawn (in
the splitting tree framework, the last individual is the individual who has no descendants in
the sample, and whose ancestors have no elder sibling with descendants in the sample). This
property would not hold any longer if the withdrawn individual was chosen at random.

On the other hand, if all individuals in the population are censused independently with
probability c, then the genealogy of the census is still that of a coalescent point process.
Indeed, the typical branch length is H ′′, where

H ′′ L
= max{H1, . . . ,HK},

and K is an independent (modified) geometric r.v., that is, P(K = j) = c(1 − c)j−1. As a
consequence,

1

Wc(x)
:= P(H ′′ > x) = 1 −

∑

j≥1

c(1 − c)j−1
P(H ≤ x)j x ≥ 0.

This last equation also reads
Wc = 1 − c + cW.

Applying this Bernoulli sampling procedure with intensity c to the previous examples yields
the following elementary results.

– the census of a Yule population has the genealogy of a birth–death process population, with
birth rate ac and death rate a(1 − c)

– the census of a birth–death process population has the genealogy of another birth–death
process population with birth rate bc and death rate d− b(1− c). In particular, censusing
a critical birth–death process population with rate b = d =: a amounts to replacing a
with ac.

Infinite lifespan measure. Actually, everything that was stated about splitting trees still
holds if the lifespan measure is infinite, provided the lifespans of children remain summable,
that is

∫∞
0 (1 ∧ r)Λ(dr) < ∞. In particular, one still has W (0) = 1, and the number of

individuals alive at a fixed time remains a.s. finite.
On the contrary, it is a completely different task to define the real tree whose jumping

contour process is a Lévy process with no negative jumps but infinite variation (see [6]).
However, in our setting, this only requires replacing the coalescent point process H1,H2, . . .
with a true Poisson point process with intensity measure ds ν(dx), where ν is a σ-finite positive
measure defined as the push forward of the excursion measure of X away from {t} by the
function which maps an excursion ǫ into t − infs ǫs. Similarly as in the finite variation case,

W (x) :=
1

ν((x,∞))
x ≥ 0.
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In the Brownian case, for example ν(dx) = x−2dx (again, see [17]), that is, W (x) = x.
Here, the analogue of Bernoulli sampling with intensity c consists in taking the maximum

H ′′ of the point process on an interval with exponential length of parameter c (instead of a
geometric length). Now c can take any positive value. Standard calculations then yield

1

Wc(x)
:= P(H ′′ > x) = 1 − c

c + ν((x,∞))
x ≥ 0,

so that

Wc = 1 + cW.

As far as splitting trees with infinite variation are concerned, we will only focus on the stable
case, where W (x) = xα−1 for some α ∈ (1, 2], the Brownian case corresponding to α = 2. In
particular, we see that the Brownian coalescent point process censused with intensity c has the
same law as the coalescent point process associated with a critical birth–death process with
rate c.

1.4 Statements, outline, examples

Our results regarding polymorphic sites are stated in Section 2.

In the first two subsections of Section 2, we assume that E(H) is finite. Theorem 2.1
provides a law of large numbers and a central limit theorem (if H has a second moment) on
the number Sn of polymorphic sites. In particular,

lim
n→∞

Sn

n
= θ E(H) a.s. (4)

We also give exact explicit formulae for the expectation of the number Sn(k) of mutations
carried by k individuals in a sample of n.

In the third subsection, we make the less stringent assumption that E(min(H1,H2)) is
finite. Theorem 2.3 then gives the asymptotic behaviour of the site frequency spectrum of
large samples via the following a.s. convergence

lim
n→∞

Sn(k)

n
= θ

∫ ∞

0

dx

W (x)2

(

1 − 1

W (x)

)k−1

. (5)

In the fourth subsection, we treat the case of stable laws with parameter α, that is, W is
given by W (x) = 1 + cxα−1, where α ∈ (1, 2] and c is some positive parameter that can be
interpreted as a sampling intensity. Since here E(H) = ∞, the only result holding in the stable
case is (5), and only for α > 3/2. Theorems 2.4 and 2.5 give the asymptotic behaviour of Sn.
When α = 2, Sn/n ln(n) converges in probability (to θ/c), and when α 6= 2, Sn/nβ converges
in distribution, with β = 1/(α − 1).

Section 3 displays our results regarding distinct haplotypes. The trick is to characterise the law
of the branch length Hθ of the next individual bearing no mutation other than those carried
by, say, individual 0. Proposition 3.1 does this as follows

1

P(Hθ > x)
=: Wθ(x) = 1 +

∫ x

0
W ′(u)e−θu du x ≥ 0.
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Theorem 3.2 states a.s. convergences without moment existence assumptions. Specifically,

lim
n→∞

An

n
= E

(

1 − e−θHθ
)

a.s., (6)

and the allele frequency spectrum for large samples is given by the following a.s. convergence

lim
n→∞

An(k)

n
=

∫ ∞

0
dx θ e−θx 1

Wθ(x)2

(

1 − 1

Wθ(x)

)k−1

. (7)

Before ending this last subsection, we want to point out that in some cases, more explicit
formulae can be computed. First, for the Yule process with birth rate 1, (or with parameter a,
but after replacing θ with aθ), that is, when W (x) = ex, one gets easily

lim
n→∞

Sn

n
= θ and lim

n→∞
Sn(k)

n
=

θ

k(k + 1)
.

Computations are not as straightforward for the number of haplotypes. Second, for the critical
birth–death process with birth rate 1 (or with parameter a, but after replacing θ with aθ), that
is, when W (x) = 1 + x, one gets

lim
n→∞

Sn

n ln(n)
= θ and lim

n→∞
Sn(k)

n
=

θ

k
.

In addition,

lim
n→∞

An

n
= θ ln

(

1 + θ−1
)

and lim
n→∞

An(k)

n
=

θ

k
(1 + θ)−k .

Remark 4 It is amusing to notice that the rescaled number An(k) of haplotypes with k rep-
resentatives is also the probability that a species has k representatives in Fisher’s log-series of
species abundance [11]. In Fisher’s model, a given species has an unknown density which is
assumed to be drawn from a Gamma distribution with parameter a. As a result of Bernoulli
sampling in a large population, it is then assumed that given the value d of this density, the
number X of individuals spotted from this species is Poisson with parameter ρd, where ρ is the
sampling intensity. It can then be shown that as a ↓ 0, conditional on {X ≥ 1} (since at least
one individual must be spotted for the species to be recorded), P(X = k) goes to C(1+1/ρ)−k/k,
for some normalising constant C.

Remark 5 In a coalescent point process, divergence times are on average deeper than in the
Kingman coalescent (our trees are more ‘star-like’). This forbids convergence of our statistics
without rescaling (by the sample size n or by n ln(n)). In particular, notice that the asymptotic
proportion of individuals in a cluster of size greater than K, i.e. limn n−1

∑

k≥K An(k), van-
ishes as K grows to ∞. This shows that the largest cluster in a sample of n has neglectable
size w.r.t. n, which contrasts with the Kingman coalescent, where the allele frequency spectrum
is given by Ewens’ sampling formula (see [9, 10]). As n → ∞, the numbers of haplotypes
An(k) carried by k individuals [3] converge to independent Poisson r.v. with parameter θ/k,
and the i-th eldest haplotype [8] is carried by approximately Pin individuals, where (Pi; i ≥ 1)
is a Poisson–Dirichlet r.v.
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2 Number of polymorphic sites

Results for polymorphic sites depend on integrability assumptions on H. Of course these are
always fulfilled if the time t when the population was founded is known, since then H ≤ t a.s.
We will see that the critical assumptions are either E(min(H1,H2)) < ∞, or the more stringent
E(H) < ∞. Notice that the first assumption is equivalent to the integrability of 1/W 2, and
the second one to the integrability of 1/W .

2.1 Law of large numbers and central limit theorem

Recall that Sn is the number of polymorphic sites in the sample of n individuals.

Theorem 2.1 If E(H) < ∞, then

lim
n→∞

n−1Sn = θ E(H) a.s. and in L1.

If in addition E(H2) < ∞, then

√
n
(

n−1Sn − θ E(H)
)

converges in distribution to a centered normal variable with variance θ E(H) + θ2Var(H).

Proof. Set Yn := max{H1, . . . ,Hn−1}. Recall from the Introduction that

Sn =

n−1
∑

i=1

Qi + Rn,

where Qi is the number of points of the Poisson point process Pi in (0,Hi), and Rn is the number
of points of the Poisson point process P0 in (0, Yn). By the strong law of large numbers, we
know that

lim
n→∞

n−1
n−1
∑

i=1

Qi = θ E(H) a.s. and in L1,

so we need to prove that
lim

n→∞
n−1Rn = 0 a.s. and in L1.

Now because Rn/Yn converges to θ a.s. and in L1, it is sufficient to prove that

lim
n→∞

n−1Yn = 0 a.s. and in L1.

Because Yn <
∑n−1

i=1 Hi,
lim sup

n→∞
n−1Yn =: Y < ∞ a.s.

By the 0-1 law, Y is not random. To prove that Y = 0, we let Y
(1)
n (resp. Y

(2)
n ) be the maximum

of the Hi’s indexed by odd (resp. even) numbers. Then it is clear that Yn = max(Y
(1)
n , Y

(2)
n ),

and that n−1Y
(1)
n as well as n−1Y

(2)
n both converge to Y/2. This shows that Y = Y/2, so that

Y = 0.
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For convergence in L1, pick any x > 0, and notice that

n−1
E(Yn) = n−1

E(Yn, Yn ≤ x) + n−1
E(Yn, Yn > x)

≤ n−1x + n−1
E

(

n−1
∑

i=1

Hi1{Hi>x}

)

≤ n−1x + E(H,H > x).

Since E(H) < ∞, this last inequality shows that n−1
E(Yn) vanishes as n → ∞.

Now we prove the central limit theorem for Sn. It is elementary to compute Var(Q1) as
θ E(H) + θ2Var(H), so by the classical central limit theorem applied to the sum of Qi’s, we
only have to prove that Rn/

√
n converges to 0 in probability. For any λ > 0,

E
(

exp
(

−λRn/
√

n
))

= E

(

exp
(

−θYn

(

1 − e−λ/
√

n
)))

,

which shows it is sufficient to prove that Yn/
√

n converges to 0 in probability. As previously,
we write

n−1
E
(

Y 2
n

)

= n−1
E
(

Y 2
n , Yn ≤ x

)

+ n−1
E
(

Y 2
n , Yn > x

)

≤ n−1x2 + n−1
E

(

n−1
∑

i=1

H2
i 1{Hi>x}

)

≤ n−1x2 + E
(

H2,H > x
)

.

Thus, convergence of Yn/
√

n to 0 holds in L2, and subsequently, it holds in probability. 2

2.2 Explicit formulae for the expected frequency spectrum

Recall that Sn(k) denotes the number of mutant sites that are carried by exactly k individuals
in the sample of n individuals (and since we only count polymorphic sites, Sn(n) = 0).

Theorem 2.2 For all 1 ≤ k ≤ n − 1,

E(Sn(k)) = θ

∫ ∞

0
dx

(

1 − 1

W (x)

)k−1(n − k − 1

W (x)2
+

2

W (x)

)

,

which is finite if and only if E(H) < ∞. Then in particular,

lim
n→∞

n−1
E(Sn(k)) = θ

∫ ∞

0

dx

W (x)2

(

1 − 1

W (x)

)k−1

.

Remark 6 Taking the sum over k in the r.h.s. of the last equality of the theorem, one gets
θ E(H), so that, thanks to the L1 convergence in Theorem 2.1,

lim
n→∞

n−1
n−1
∑

k=1

E(Sn(k)) = θ E(H) =
∑

k≥1

lim
n→∞

n−1
E(Sn(k)).
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Before giving a proof of the previous theorem, we want to make a point that will also be
useful in the next subsection. For any tree with point mutations, a mutation is carried by k
individuals if and only of it is in the part of the tree subtending k leaves. Then in any given
tree with edge lengths and Poisson point process of mutations (with rate θ) independent of
the genealogy (as in our situation), the expectation of the number of mutations carried by k
individuals is θLk, where Lk is the Lebesgue measure of the part of the tree subtending k leaves
(i.e., tips). In our setting, we will call Lk(n), for k ≤ n − 1, the Lebesgue measure of the part
of the tree subtending k tips among individuals {0, 1, . . . , n − 1}, so that

E(Sn(k)) = θ E(Lk(n)) 1 ≤ k ≤ n − 1.

Remark 7 The last equality along with more specific considerations given in the next sub-
section provide a less analytic and more transparent proof than the proof we give hereafter.
However, we stick to it for the interest of the method itself.

Proof of Theorem 2.2 We set N(x) to be the smallest i ≥ 1 such that Hi > x. The proof
relies on the fact that

E(Sn(k)) = lim
x→∞

θ E(Lk(N(x)) | N(x) = n) 1 ≤ k ≤ n − 1.

On the event {N(x) = n}, we will need to extend the definition of Lk(N(x)) to k = n, as being
the Lebesgue measure of the part of the tree up to time −x subtending all tips {0, 1, . . . , n−1},
that is, Ln(N(x)) = x − maxi=1,...,n−1 Hi.

For editing reasons, we will prefer to write F (x) = P(H > x), instead of 1/W (x). Since F
is a.e. differentiable and our goal is to let x → ∞, we can set f(x) := −F ′(x) without loss of
generality. We let H̃ denote the branch length HN(x), and we set

Ñ := min{k ≥ 1 : HN(x)+k > x + dx},

as well as L̃k the Lebesgue measure of the part of the tree subtending k leaves among individuals
{N(x), N(x)+1, . . . , N(x+dx)−1}. Note that (Ñ , L̃k, H̃) are independent of (N(x), Lk(N(x)));
that H̃ is distributed as H conditional on {H > x}; and that (Ñ , L̃k) is independent of
H̃ and distributed as (N(x + dx), Lk(N(x + dx)). Next observe that if H̃ > x + dx, then
N(x + dx) = N(x) and Lk(N(x + dx)) = Lk(N(x)), except if k = n, where by definition
Ln(N(x + dx)) = Ln(N(x)) + dx. On the other hand, if H̃ ∈ dx, Lk(N(x + dx)) is the sum of
measures of edges subtending k tips in {0, 1, . . . , N(x)− 1} with measures of edges subtending
k tips in {N(x), . . . , N(x) + Ñ − 1}. This reads

Lk(N(x + dx))1{N(x+dx)=n} = 1{H̃>x+dx}1{N(x)=n} (Lk(N(x)) + dx1k=n)

+ 1{H̃≤x+dx}

n−1
∑

j=1

1{N(x)=j}1{Ñ=n−j}

(

Lk(N(x)) + L̃k(Ñ)
)

,

where we have used the extension of the definition of Lk specified earlier (cases when k = j or
k = n − j in the sum). Now set

Uk,n(x) := E(Lk(N(x)), N(x) = n).

11



By the independences stated previously, taking expectations, we get

U ′
k,n(x+) = −Uk,n(x)

f

F
(x) + 1k=nP(N(x) = k) + 2

n−1
∑

j=1

Uk,j(x)P(N(x) = n − j)
f

F
(x).

Setting

Vk(x; s) :=
∑

n≥k

Uk,n(x)sn s ∈ [0, 1),

and observing that |Uk,n(x)| ≤ nx, and (so) that |U ′
k,n(x)| ≤ c(x)n2 for some positive c(x)

independent of k and n, we get

∂Vk

∂x
(x; s) = − f

F
(x)Vk(x; s) + P(N(x) = k)sk + 2

f

F
(x)
∑

n≥k

sn
n−1
∑

j=1

Uk,j(x)P(N(x) = n − j).

Since Uk,j(x) = 0 when j ≤ k − 1, the last term equals

2
f

F
(x)

∑

n≥k+1

sn
n−1
∑

j=k

Uk,j(x)P(N(x) = n − j) = 2
f

F
(x)
∑

j≥k

Uk,j(x)sj
∑

n≥j+1

sn−j
P(N(x) = n − j)

= 2
f

F
(x)Vk(x; s)

∑

n≥1

sn
P(N(x) = n).

As a consequence, we get the following differential equation

∂Vk

∂x
(x; s) = Gk(x; s)Vk(x; s) + P(N(x) = k)sk,

where we have put

Gk(x; s) :=
(

2E

(

sN(x)
)

− 1
) f

F
(x).

Now since P(N(x) = k) = F (x)(1 − F (x))k−1, we easily get

∫ x

0
Gk(y; s) dy = ln

[

F (x)

(1 − s + sF (x))2

]

.

This allows us to integrate the differential equation in Vk(.; s) to finally arrive at

Vk(x; s) =
skF (x)

(1 − s + sF (x))2

∫ x

0
(1 − F (y))k−1(1 − s + sF (y))2 dy.

With the shortcuts u := 1−F (x) and v := 1−F (y), and using the series expansion of (1−us)−2,
we get

Vk(x; s) = sk(1 − u)

∫ x

0
vk−1(1 − vs)2

∑

j≥1

juj−1sj−1 dy.

It is elementary algebra to compute the following equality

(1 − vs)2
∑

j≥1

juj−1sj−1 = 1 +
∑

j≥1

sjuj−2
(

j(u − v)2 + u2 − v2
)

,

12



which yields

Vk(x; s) = sk(1 − u)

∫ x

0
vk−1 dy + (1 − u)

∑

j≥1

∫ x

0
vk−1sk+juj−2

(

j(u − v)2 + u2 − v2
)

dy.

Identifying this entire series with the definition of Vk, we get for all 1 ≤ k ≤ n − 1,

Uk,n(x) = F (x)(1 − F (x))n−k−2

∫ x

0
(1 − F (y))k−1×

×
(

(n − k)(F (y) − F (x))2 + (1 − F (x))2 − (1 − F (y))2
)

dy.

As a consequence,

E(Lk(N(x)) | N(x) = n) = (1 − F (x))−k−1

∫ x

0
(1 − F (y))k−1×

×
(

(n − k)(F (y) − F (x))2 + (1 − F (x))2 − (1 − F (y))2
)

dy.

which, by Beppo Levi’s theorem, converges, as x → ∞, to

θ−1
E(Sn(k)) =

∫ ∞

0
(1 − F (y))k−1

(

(n − k)F (y)2 + 1 − (1 − F (y))2
)

dy,

and this finishes the proof. 2

2.3 Site frequency spectrum of large samples

Here, we assume that E(min(H1,H2)) < ∞, that is, 1/W 2 is integrable.

Theorem 2.3 For all 1 ≤ k ≤ n − 1, the following convergence holds a.s. (and in L1 as well
if E(H) < ∞)

lim
n→∞

n−1Sn(k) = θ E
(

(min{H1,Hk+1} − max{H2, . . . ,Hk})+
)

= θ

∫ ∞

0

dx

W (x)2

(

1 − 1

W (x)

)k−1

.

Proof. Reasoning similarly as in the previous subsection, we see that a point mutation
occurring on branch i is carried by k individuals if and only if it is carried by individuals
i, i+1, . . . , i+k−1, and by no one else. This happens if and only if this mutation, correspond-
ing to the atom ℓij , say, of Pi, has

max{Hi+1, . . . ,Hi+k−1} < ℓij < Hi,

for the mutation to be carried by individuals i, i + 1, . . . , i + k − 1, along with

ℓij < Hi+k,

for the mutation not to be carried by others. More formally, we set F the space of point
processes on (0,∞), and Fk the set of (k + 1)-dimensional arrays with values in F × (0,∞).
Next, for any Ξ ∈ Fk, written as Ξ = ((p0, x0), . . . , (pk, xk)) we define

G(Ξ) := Card (p0 ∩ (max{x1, . . . , xk−1},min{x0, xk})) ,

13



where it is understood that the interval (a, b) is empty if a ≥ b. Then the number of mutations
carried by k individuals among the first n can be written as

Sn(k) =

n−k
∑

i=0

G(Ξi),

where

Ξi := ((Pi,Hi), . . . , (Pi+k,Hi+k))

and, for the last term of the sum to be correctly written, Hn is set to +∞ (as H0). Next,
observe that

E(G(Ξ1)) = θ E
(

(min{H1,Hk+1} − max{H2, . . . ,Hk})+
)

,

so that G(Ξ1) is integrable (assumption stated before the theorem). Now for any 0 ≤ r ≤ k,
the random values G(Ξi), for i such that i = r [k + 1] (standing for mod (k + 1)), are i.i.d. and
integrable, so by the strong law of large numbers, we have the following a.s. convergence

lim
n→∞

n−1
∑

0≤i=r[k+1]≤n−k

G(Ξi) =
1

k + 1
E(G(Ξ1)).

Actually, the convergence would also hold in L1 if we had discarded mutations carried by
individual 0 and individual n− k, which involve terms that are not integrable if E(H) = ∞. If
E(H) < ∞, then convergence holds in L1. Summing over r these k + 1 equalities, we get the
convergence of n−1Sn(k) to E(G(Ξ1)), and

E(G(Ξ1)) = θ E
(

(min{H1,Hk+1} − max{H2, . . . ,Hk})+
)

= θ E

∫ ∞

0
dx1x<min{H1,Hk+1} 1x>max{H2,...,Hk}

= θ

∫ ∞

0
dx P(H > x)2 P(H < x)k−1,

which ends the proof. 2

2.4 Stable laws

Here, we tackle the case when H is in the domain of attraction of a stable law, which happens
in particular for a splitting tree whose contour process is a stable Lévy process with no negative
jumps with index α ∈ (1, 2]. If such a population is censused with intensity c > 0 then the
corresponding function W (see Introduction) is

W (x) = 1 + cxα−1 x ≥ 0.

From now on, we will assume that W has the form given in the foregoing display. Recall that
1/W (x) is the probability that a branch has length greater than x. Observe that here H is not
integrable, so that Theorems 2.1 and 2.2 do not apply. However, asymptotic results for the site
frequency spectrum of large samples given in Theorem 2.3 apply for α > 3/2.
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2.4.1 Brownian case

Here, we assume that α = 2, which corresponds both to a (censused) Brownian population and
to the (censused or not) population of a critical birth–death process.

Theorem 2.4 When W (x) = 1 + cx, we have the following convergence in probability

lim
n→∞

Sn

n ln(n)
= θ/c.

Proof. Recall that Sn is to be written as

Sn =
n−1
∑

i=1

Qi + Rn,

where Qi is the number of points of the Poisson point process Pi in (0,Hi), and Rn is the
number of points of the Poisson point process P0 in (0, Yn), where Yn = max{H1, . . . ,Hn−1}.
Now observe that

P(Yn > εn ln(n)) = 1 −
(

1 − 1

1 + cεn ln(n)

)n−1

,

which vanishes as n → ∞, so that Yn/n ln(n) converges to 0 in probability. This implies in
turn that Rn/n ln(n) also converges to 0 in probability. As a consequence, we can focus on the
sum of Qi’s. Pick any λ > 0 and check that

E

(

exp− λ

n ln(n)

n−1
∑

i=1

Qi

)

=
(

E

(

exp−θH
(

1 − e−λ/n ln(n)
)))n−1

,

We are bound to study the behaviour of E(exp−yH) as y → 0.

E(exp−yH) = 1 − y

∫ ∞

0

e−yx

W (x)
dx

= 1 − y

∫ ∞

0

e−u

y + cu
du

= 1 − y

∫ ∞

1

e−u

y + cu
du + y

∫ 1

0

1 − e−u

y + cu
du − yc−1 ln((y + c)/y)

= 1 + c−1y ln(y) + O(y),

where O(y)/y is bounded near 0. Setting un := θ
(

1 − e−λ/n ln(n)
)

, there is a vanishing sequence
vn such that

E

(

exp−λ
Sn

n ln(n)

)

=
(

1 + c−1un ln(un) + O(un)
)n

(1 + vn)

= exp
(

c−1nun ln(un) + O(nun)
)

(1 + vn),

which converges to exp(−λθ/c). 2
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2.4.2 Stable case α 6= 2

Here, we assume that W (x) = 1 + cxα−1, for some α ∈ (1, 2).

Theorem 2.5 When W (x) = 1 + cxα−1, we have the following convergence in distribution

lim
n→∞

Sn

n1/(α−1)
= Zϕ(e),

where (Zt; t ≥ 0) is the stable subordinator with Laplace exponent λ 7→ c−1θα−1λα−1, e is an
independent exponential r.v. with parameter 1, and ϕ is defined by

ϕ(x) = x1−α e−x +

∫ x

0
ds s1−α e−s x > 0.

Remark 8 Observe that ϕ decreases on (0,∞) from +∞ to a positive limit, equal to Γ(2−α).
Also, recall that Sn =

∑n−1
i=1 Qi + Rn, where Rn is the extra contribution from the maximum

branch length. Then it is possible to see by the same kind of proof as that of the theorem, that
∑n−1

i=1 Qi converges in distribution to ZΓ(2−α). This indicates that, opposite to the Brownian
case, the (double) contribution of the maximum branch length is not negligible here.

Proof. Let us compute the limiting distribution of n−1/(α−1)(Yn +
∑n−1

i=1 Hi), where Yn =
max{H1, . . . ,Hn−1}. Set β := 1/(α − 1), as well as

In(λ) := E

(

exp−λn−β

(

Yn +
n−1
∑

i=1

Hi

))

.

Then

In(λ) =

∫ ∞

0
P(Yn ∈ dz)e−2λn−βz

(

E

(

e−λn−βH′

z

))n−2
,

where H ′
z has the law of H conditioned on being smaller than z. Next, we have

P(Yn ∈ dz) =

(

czα−1

1 + czα−1

)n−2
c(n − 1)(α − 1)zα−2

(1 + czα−1)2
dz z > 0

and

P(H ′
z ∈ dx) =

c(α − 1)xα−2

(1 + cxα−1)2
1 + czα−1

czα−1
dx 0 < x < z,

so we get

In(λ) =

∫ ∞

0
dz

c(n − 1)(α − 1)zα−2

(1 + czα−1)2
e−2λn−βz

(
∫ z

0
dx

c(α − 1)xα−2

(1 + cxα−1)2
e−λn−βx

)n−2

Changing variables, this also reads

In(λ) = c−1(1 − n−1)(α − 1)λα−1

∫ ∞

0
dv

v−α e−2v

(1 + n−1c−1λα−1v1−α)2
Jn(v;λ)n−2
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where

Jn(v;λ) = (α − 1)cnλ1−α

∫ v

0
du

uα−2 e−u

(1 + cnλ1−αuα−1)2

=

[ −e−u

1 + cnλ1−αuα−1

]v

0

−
∫ v

0
du

e−u

1 + cnλ1−αuα−1

= 1 − e−v

1 + cnλ1−αvα−1
−
∫ v

0
du

e−u

1 + cnλ1−αuα−1

= 1 − n−1Kn(v;λ),

where Kn(v;λ) is positive and converges to c−1λα−1ϕ(v) as n → ∞. By the Lebesgue conver-
gence theorem, we get the convergence of In(λ) to

c−1(α − 1)λα−1

∫ ∞

0
dv v−α e−2v exp(−c−1λα−1ϕ(v)).

Integrating by parts with ϕ′(v) = (1 − α)v−αe−v, we finally get

lim
n→∞

In(λ) =

∫ ∞

0
dv e−v exp(−c−1λα−1ϕ(v)).

The last step is the same as in the foregoing proof, that is

lim
n→∞

E

(

exp−λn−1/(α−1)Sn

)

= lim
n→∞

E

(

exp−θ
(

1 − e−λn−1/(α−1)
)

(

Yn +
n−1
∑

i=1

Hi

))

= lim
n→∞

In(θλ)

=

∫ ∞

0
dv e−v exp(−c−1θα−1λα−1ϕ(v)),

which is the desired result. 2

3 Number of distinct haplotypes

3.1 The next branch with no extra mutation

We let Eθ denote the set of individuals who carry no more mutations than individual 0 (some
of and at most exactly the mutations carried by 0, but no other mutation). Set Kθ

0 := 0 and
for i ≥ 1, define Kθ

i as the i-th individual in Eθ, and Hθ
i := HKθ

i
the associated branch length.

We write Hθ in lieu of Hθ
1 and we define the function Wθ by

P(Hθ > x) =
1

Wθ(x)
x ≥ 0.

Proposition 3.1 The bivariate sequence ((Kθ
i − Kθ

i−1,H
θ
i ); i ≥ 1) is a sequence of i.i.d. ran-

dom pairs. The function Wθ is given by

Wθ(x) = 1 +

∫ x

0
W ′(u)e−θu du x ≥ 0.
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Remark 9 In the case when the coalescent process is derived from a splitting tree with lifespan
measure Λ, the calculation of Wθ is straightforward. Indeed, it can be seen in that case that
the point process (Hθ

i ; i ≥ 1) is the coalescent point process of the splitting tree obtained from
the initial splitting tree with mutations after throwing away all points above a mutation. But
this new tree is again a splitting tree, since lifespans are i.i.d. and terminate either at death
time or at the first point mutation, so the lifespan measure is now Λθ(dx) = e−θx Λ(dx) +
θe−θxΛ((x,∞)) dx. As a consequence, Wθ is here the scale function characterised as in (3) by
its Laplace transform

∫ ∞

0
dx e−λx Wθ(x) =

(

λ −
∫ ∞

0
Λθ(dx)(1 − e−λx)

)−1

=
λ + θ

λ

(

λ + θ −
∫ ∞

0
Λ(dx)(1 − e−(λ+θ)x)

)−1

=
λ + θ

λ

∫ ∞

0
dx e−(λ+θ)x W (x),

which yields the equality given in the statement.

Proof. First observe that the pair (Kθ
1 ,Hθ

1 ) does not depend on the haplotype of individual
0, and that the i-th individual with no mutation other than those carried by individual 0 is
also the next individual after Kθ

i−1 with no mutation other than those carried by individual
Kθ

i−1. This ensures that (Kθ
i −Kθ

i−1,H
θ
i ) has the same law as (Kθ

1 ,Hθ
1 ), and the independence

between (Kθ
i −Kθ

i−1,H
θ
i ) and previous pairs is due to the independence of branch lengths and

the fact that new mutations can only occur on branches with labels strictly greater than Kθ
i−1.

Now the event {Hθ ∈ dx} can be decomposed according to: the value of H1; conditional
on H1 = z, the value of the age Vz of the oldest mutation on H1; conditional on Vz = y, the
value H ′

y of the branch length associated with the first individual in Eθ
1 with branch length

greater than y. Indeed, Hθ ∈ dx if: H1 ∈ dx and there is no mutation in H1 (then Kθ
0 = 1); or

H1 ∈ dx, the age of the oldest mutation on H1 = x is Vx = y < x and the next individual with
no mutation other than those carried by individual 1 and branch length H ′

y > y has H ′
y < x;

or H1 = z < x, the age of the oldest mutation on H1 = z is Vz = y < z and the next individual
with no mutation other than those carried by individual 1 and branch length H ′

y > y has
H ′

y ∈ dx.

P(Hθ ∈ dx) = P(H1 ∈ dx)e−θx + P(H1 ∈ dx)

∫ x

0
P(Vx ∈ dy)P(H ′

y < x)

+

∫ x

0
P(H1 ∈ dz)

∫ z

0
P(Vz ∈ dy)P(H ′

y ∈ dx).

Thanks to the first statement of the proposition, H ′
y has the same law as Hθ conditioned on

being greater than y. Then since P(Vz ∈ dy) = θ e−θ(z−y) dy, we get

P(Hθ ∈ dx) = P(H1 ∈ dx)(1 − P(Hθ > x)f(x)) + P(Hθ ∈ dx)

∫ x

0
P(H1 ∈ dz)f(z),

where we have set

f(x) :=

∫ x

0
dy θ e−θ(x−y) Wθ(y) x ≥ 0.
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We can drop the index 1 of H1, since only its law now matters. We can rewrite the last result
as

P(H ∈ dx) = P(Hθ ∈ dx)(1 −
∫ x

0
P(H ∈ dz)f(z)) + P(H ∈ dx)P(Hθ > x)f(x),

which can be integrated as

P(H > x) = P(Hθ > x)(1 −
∫ x

0
P(H ∈ dz)f(z)).

Defining now the function G as

G(x) := P(H > x)(Wθ(x) − f(x)),

we get, thanks to the last integration,

G(x) = 1 −
∫ x

0
P(H ∈ dz)f(z) − P(H > x)f(x).

Integrating by parts yields

G(x) = 1−
∫ x

0
dz P(H > z)f ′(z) = 1−

∫ x

0
dz P(H > z)(−θf(z)+ θWθ(z)) = 1− θ

∫ x

0
dz G(z),

which shows that G(x) = e−θx. This reads

W (x) = eθxWθ(x) − θ

∫ x

0
dy eθy Wθ(y).

One differentiation and one integration provide the result. 2

3.2 Main result

3.2.1 Statement

Recall that An(k) denotes the number of haplotypes carried by k individuals in a sample of n.

Theorem 3.2 For all k ≥ 1, the following convergence holds a.s.

lim
n→∞

n−1An(k) =

∫ ∞

0
dx θ e−θx 1

Wθ(x)2

(

1 − 1

Wθ(x)

)k−1

.

In addition,

lim
n→∞

n−1An =

∫ ∞

0
dx θ e−θx 1

Wθ(x)
= E

(

1 − e−θHθ
)

.

Before proving this statement, we insert a (sub)subsection in which we state and prove a
preliminary key result.
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3.2.2 The key lemma

Recall that ℓ1i denotes the (time elapsed since the) i-th (most recent) mutation on the first
branch length. In particular, the mutations carried by individual 1 and not by individual 0 are
exactly those ℓ1i such that ℓ1i < H1 (the other points of the process are thrown away). Let Ni

denote the number of individuals whose most recent mutation is ℓ1i.

Lemma 3.3 In an infinite sample, for any integer k ≥ 1,

∑

i≥1

P(Ni = k) =

∫ ∞

0
θ e−θz dz

1

Wθ(z)2

(

1 − 1

Wθ(z)

)k−1

Proof. In the first place, not to care for the fact that only mutations with ℓ1i < H1 contribute,
we consider the number N ′

i of individuals whose most recent mutation is ℓ0i, and we condition
on ℓ0j = vj , j ≥ 1. We will use later the fact that the law of Ni conditional on ℓ1j = vj, j ≥ 1,
is that of N ′

i1vi<H , where H is independent of N ′
i and the point process (ℓ0i; i ≥ 1).

Recall from the previous subsection that Eθ is the set of individuals who carry no more
mutations than individual 0, that Kθ

i is the i-th individual in Eθ, and Hθ
i := HKθ

i
. Then set

D0 := 0 and
Di := inf{j ≥ 1 : Hθ

j > vi−1} i ≥ 1.

Now observe that N ′
i = Di − Di−1 for all i ≥ 1 (for N ′

1, the count includes individual 0). As
an application of Proposition 3.1, we get that conditional on ℓ0j = vj , j ≥ 1,

P(N ′
1 = k) = P(Hθ < v1)

k−1
P(Hθ > v1),

whereas for any i ≥ 2,

P(N ′
i 6= 0) = P(Hθ < vi | Hθ > vi−1) and P(N ′

i = k | N ′
i 6= 0) = P(Hθ < vi)

k−1
P(Hθ > vi).

Recalling the relation between the laws of Ni and N ′
i mentioned in the beginning of the proof,

we get that conditional on ℓ1j = vj , j ≥ 1,

P(N1 = k) = P(Hθ < v1)
k−1

P(Hθ > v1)P(H > v1).

whereas for any i ≥ 2,

P(Ni 6= 0) = P(Hθ < vi | Hθ > vi−1)P(H > vi).

Now P(N ′
i = k | N ′

i 6= 0) = P(Ni = k | Ni 6= 0), so we finally get (for i ≥ 2)

P(Ni = k) = P(Hθ < vi)
k−1

P(Hθ < vi | Hθ > vi−1)P(Hθ > vi)P(H > vi)

=

(

1 − 1

Wθ(vi)

)k−1(

1 − Wθ(vi−1)

Wθ(vi)

)

1

W (vi)Wθ(vi)
.

It is well-known that for the Poisson point process of mutations,

P(ℓ1,i−1 ∈ dx, ℓ1i ∈ dz) =
θixi−2

(i − 2)!
e−θz dx dz 0 < x < z, i ≥ 2,
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so that

∑

i≥2

P(Ni = k) =
∑

i≥2

∫ ∞

0
dz

∫ z

0
dx

θixi−2

(i − 2)!
e−θz

(

1 − 1

Wθ(z)

)k−1(

1 − Wθ(x)

Wθ(z)

)

1

W (z)Wθ(z)

=

∫ ∞

0
dz θ e−θz

(

1 − 1

Wθ(z)

)k−1 1

W (z)Wθ(z)

∫ z

0
dx θ eθx

(

1 − Wθ(x)

Wθ(z)

)

.

Now thanks to Proposition 3.1, we can perform the following integration by parts on the last
integral in the last display

∫ z

0
dx θ eθx

(

1 − Wθ(x)

Wθ(z)

)

=

[

eθx

(

1 − Wθ(x)

Wθ(z)

)]z

0

+
1

Wθ(z)

∫ z

0
dx eθxW ′

θ(x)

= −1 +
1

Wθ(z)
+

1

Wθ(z)

∫ z

0
dxW ′(x)

=
W (z)

Wθ(z)
− 1.

This entails

∑

i≥2

P(Ni = k) =

∫ ∞

0
dz θ e−θz

(

1 − 1

Wθ(z)

)k−1 1

W (z)Wθ(z)

(

W (z)

Wθ(z)
− 1

)

.

But since

P(N1 = k) =

∫ ∞

0
dz θ e−θz

(

1 − 1

Wθ(z)

)k−1 1

W (z)Wθ(z)
,

the result follows. 2

3.2.3 Proof of Theorem 3.2

For each individual i ≥ 0, we denote by Aij the set of individuals bearing the unique haplotype
whose most recent mutation is ℓij. In particular, it is understood that Aij = ∅ whenever
ℓij > Hi (because no such haplotype exists).

Now fix M ≥ 1. Similarly as in the proof of Theorem 2.3, we can define

GM (Ξi) := Card {j ≥ 1 : Card Aij ∩ {i, . . . , i + M} ≥ k},

where

Ξi := ((Pi,Hi), . . . , (Pi+M ,Hi+M )).

Observe that GM is bounded from above, so that GM (Ξi) is integrable for all i ≥ 0. Now for
any 0 ≤ r ≤ M , the random variables GM (Ξi), for i such that i = r [M + 1] (standing for mod
(M +1)), are i.i.d. and integrable, so by the strong law of large numbers, we have the following
convergence a.s. (and in L1)

lim
n→∞

n−1
∑

0≤i=r[M+1]≤n−M

GM (Ξi) =
1

M + 1
E(GM (Ξ1)).
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Summing over r these M + 1 equalities, we get the following convergence a.s. (and in L1)

lim
n→∞

n−1
n−M
∑

i=0

GM (Ξi) = E(GM (Ξ1)).

Our goal is now to let M → ∞. First define

A′
n(k) :=

n
∑

i=0

Card {j ≥ 1 : Card Aij ∩ {i, . . . , n} ≥ k}.

Notice that
A′

n(k) =
∑

h≥k

An(h).

Then for any i = 0, . . . , n − M , for any j ≥ 1, if Card Aij ∩ {i, . . . , i + M} ≥ k, then

Card Aij ∩ {i, . . . , n} ≥ k, so that A′
n(k) ≥∑n−M

i=1 GM (Ξi), and

lim inf
n→∞

n−1A′
n(k) ≥ lim inf

n→∞
n−1

n−M
∑

i=1

GM (Ξi) = E(GM (Ξ1)).

Letting M → ∞, Beppo Levi’s theorem yields

lim inf
n→∞

n−1A′
n(k) ≥ E

[

Card {j ≥ 1 : Card A1j ≥ k}
]

=
∑

j≥1

P(Card A1j ≥ k) =: yk.

In the notation of the previous subsection Card A1j = Nj , so by Fubini–Tonelli’s theorem,

yk =
∑

j≥1

P(Nj ≥ k) =
∑

j≥1

∑

h≥k

P(Nj = h) =
∑

h≥k

xh,

where xk :=
∑

j≥1 P(Nj = k). Thanks to Lemma 3.3 we have the following explicit expression
for xk

xk =

∫ ∞

0
θ e−θz dz

1

Wθ(z)2

(

1 − 1

Wθ(z)

)k−1

.

Now recall that
∑

k≥1 A′
n(k) =

∑

h≥1 hAn(h) = n. Since it is easily seen that
∑

k≥1 yk =
∑

h≥1 hxh = 1, by Fatou’s lemma

1 =
∑

k≥1

yk ≤
∑

k≥1

lim inf
n

n−1A′
n(k) ≤ lim inf

n
n−1

∑

k≥1

A′
n(k) = 1.

Then we would get a contradiction if there was k0 such that lim infn n−1A′
n(k0) > yk0, so that

for all k ≥ 1 a.s.,
lim

n→∞
n−1A′

n(k) = yk.

The first equation of the theorem stems from the fact that An(k) = A′
n(k)−A′

n(k + 1) and the
second one by taking k = 1 in the last display. It takes an elementary integration by parts to
check that

y1 =

∫ ∞

0
dx θ e−θx 1

Wθ(x)
= E

(

1 − e−θHθ
)

.
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Lévy processes. Cambridge University Press, Cambridge.

[7] Bertoin, J. (2008)
The structure of the allelic partition of the total population for Galton-Watson processes
with neutral mutations. Preprint arXiv:0711.3852

[8] Donnelly, P., Tavaré, S. (1986)
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