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Abstract

The issue of quantum size effects of interactive electron-hole systems in spherical semiconductor

quantum dots is put to question. A sharper theoretical approach is suggested based on a new

pseudo-potential method. In this new setting, analytical computations can be performed in most

intermediate steps lending stronger support to the adopted physical assumptions. The resulting

numerical values for physical quantities are found to be much closer to the experimental values

than those existing so far in the literature.
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I. INTRODUCTION

For about three decades, nanostructures — produced by many techniques such as etching,

local inter-diffusion, particle suspension in dielectric media, or by self-assembly in matrices

of a host material — are known as confined electronic systems because they are designed

to restrict particle motion to a space region with a restricted number of dimensions. De-

pending on their dimensionality, these structures are called quantum dots (0D), quantum

wires (1D) or quantum wells (2D). The principal property of interest resides in their ad-

justable quantized energy spectrum. The corresponding wave functions are localized within

the confined region, but may extend over many periods of its boundary crystal lattice. A

quantum dot (QD) is therefore a giant artificial atom which enjoys prospects for an increas-

ing range of future applications: e.g. as a semiconductor laser [1], as qubits for quantum

information processing, as single-electron transistors in electronics, as artificial fluorophores

for intra-operative detection of tumors, biological imaging or cell studies, etc.

QD properties depend on their electronic structure. In fact, they contain a finite number

of elementary charge carriers (from a few to a hundred), which may be conduction band

electrons, valence band holes or excitons of the host substrate. There exists a vast number

of aspects related to their own interactions as well as with the ambient electromagnetic field.

Correlation effects [2, 3], interactions with boundary electromagnetic modes [4], phonon in-

teractions [5], magnetic field effects [6], just to cite only a few topics, are currently vigorously

investigated.

In the early eighties, quantum size effects (QSE) occurred experimentally in spherical

semiconductor QDs in the exploration of the optical properties of semiconductor microcrys-

tals in an insulating matrix [7, 8]. This phenomena has been observed in a large range of

other confined structures: e.g. in quantum ribbons or in quantum disks [9], in quantum

wires [10] and, indeed, in quantum wells [11]. It emerges in a widening of the semiconductor

optical band gap. This is due to the increase of confinement energy for decreasing QD size.

The valence band drops and the conduction band rises. Both effects constitute the leading

contribution to the characteristic blue-shift in the semiconductors optical spectra of such

strongly quantum-confined systems [12, 13]. So, the confinement of oppositely charged car-

riers does have significant effects on the electron-hole Coulomb interaction and, therefore,

on exciton formation.
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In order to apprehend correctly the origin of these quantum size effects, a first theoretical

attempt to describe electronic properties dependent semiconductor QDs has been elaborated

upon a particle-in-a-sphere model in the effective-mass approximation (EMA) [12, 13, 14],

in which both electron and hole behave as non-interacting electrons and holes, trapped in

a spherical infinite potential well but with different masses. Since 1973, the QD spherical

shape has been used [15] and continues to be very popular over the years [2, 12, 14, 16,

17]. Because of the usual assumption of parabolic band structure, their effective mass is

commonly defined through the inverse of the second derivative of their kinetic energy with

respect to their momentum. Except for a pioneering work [12], the Coulomb interaction

between electron and hole has been included and the excitonic contribution to the ground

state energy has been taking into account by the Ritz variational principle. Some other

authors have developed their own EMA model based on finite potential wells and improved

agreement with experimental data for a significant range of QD sizes [14, 18, 19]. We

should also quote some other variational calculations, e.g. [20, 21, 22]. In addition to

spherical clusters, the case of cylindrical shaped microcrystallites has been carefully treated

and experimentally studied [18, 23, 24], as well as the case of quantum wires [25, 26]. Later

on, more sophisticated models have been conceived. Some of them, called empirical tight-

binding method (ETBM), have considered non-parabolic valence and/or conduction band(s)

[27, 28]. Others have used a reformulation of the so-called k·p perturbation theory including

non-parabolic bands [29, 30, 31] based upon the Baldereschi-Lipari Hamiltonian [15].

However, despite the existence of numerous theoretical and/or empirical models, to the

best of our knowledge, there exists actually no simple and comprehensive one, which offers

a significant analytical treatment of the problem. This is the reason why this paper propose

an alternative single EMA model for spherical semiconductor microcrystals, which allows

us to clarify some tricky points. Moreover, we are able to exhibit the existence of an

effective potential, whose presence significantly changes the QD ground state at small QD

radius. Furthermore, in this formalism, it finally becomes possible, as an achievement, to

analytically calculate some important quantities, such as e.g. the function η introduced by

Kayanuma in [14], with a good agreement with experimental results. To this end, we shall

introduce our model and recall some general properties in Sec. II. Then, the two next Secs.

III and IV are devoted to the analysis of the two limiting regimes of semiconductor QDs

which we shall explicitely describe and in which we carry out analytic computations in some
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details. Finally, in Sec. V, the new effective potential mentioned above is introduced and

we show how it leads to improve numerical results, much closer to experimental data. In

the concluding section, we summarize our main results and indicate possible future research

perspectives.

II. QUANTUM DOT MODEL AND SOME GENERAL RESULTS

Since our aim is to understand the semiconductor optical bands blue-shift as a main

effect, we shall discard spin effects (electron-hole spin coupling or external applied magnetic

field) and consider non-relativistic spinless electron or hole, trapped in a confining infinite

spherical potential well. There exist other models with parabolic confinement [3, 16] or

parabolic potential superimposed to an infinite potential well [17], which are used to explain

certain spectroscopic data; but the concept of a QD size is then not so well defined. Here,

we adopt the EMA model previously introduced.

A. Intrinsic limitations

First, the EMA assumption breaks down when a significant number of carriers wave

functions inside the QD overlap. Thus, our results are expected to fail for very small

nanocrystals. As matter of fact, at typical sizes of less than a hundred lattice spacings

appear, in a semiconductor, magic numbers of clusters of which only some remain stable:

e.g. nanocrystalline silicon stay solely coherent as clusters of Si12, Si33, Si39 and Si45, if

they contain less than 60 silicon atoms [32]. When such size is reached, their band structure

should be very deformed and, therefore, cannot satisfy the parabolic spectrum assumption

on which the EMA is based.

Second, by assuming spherical symmetry for the QD, we justify the splitting of the

Schrödinger equation into a sum of a radial part and an angular part. This manipula-

tion appreciably reduces the computation of the eigenstate wave functions and the energy

eigenvalues. This approximation turns out often to be quite good since most synthesized

nanocrystals possess an aspect ratio (defined as the ratio between the longest and shortest

axes of the QD) smaller than 1.1. But, for high aspect ratio microcrystals, this spherical

assumption becomes no longer valid.
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Third, the real potential at the boundary of the QD is, of course, not infinite. Actually,

there is a potential step with a standard height of magnitude from 1 to 3eV [21]. This value

is generally quite large compared to typical electron and hole energies and, therefore, their

tunnel conductivity from the nanocrystal to its surrounding should be neglected, except for

very small QD sizes. Furthermore, the infinite potential well approximation implies that the

charge carrier behavior inside a QD is totally insensitive to any externally applied potential

or to the surrounding of the cluster. Although the surrounding effects may be sufficiently

small to be neglected, the presence of a large external potential can in fact significantly

modify the inside behavior of the microcrystallites. Thus, in order to test the validity of this

approximation, we have to consider charged carriers isolated from the outside neighboring

semiconductor.

B. A free Quantum Dot model

Let V (r) be the confining potential well, defined in spherical coordinates as

V (r) = V (r) =





0 if 0 ≤ r ≤ R, Region I;

∞ if r > R, Region II.

Neglecting, for the moment, the electron-hole Coulomb interaction, in single parabolic band

approximation, the Hamiltonian operator is (with ~ = 1)

H0 =He +Hh + Eg

=− ∇2
e

2m∗
e

− ∇2
h

2m∗
h

+ V (re) + V (rh) + Eg, (1)

where m∗
e,h and He,h denote the effective mass and the confined Hamiltonian respectively

of the electron and of the hole, and Eg is the semiconductor energy band gap. The semi-

conductor QD wave function can now be written as a product of its electronic and hole

parts

Ψ(re, rh) = ψ(re)ψ(rh).

The orthonormal eigenfunctions ψlnm are labelled by three quantum numbers: l ∈ N, n ∈
N

∗ = N − {0} and m∈ [[−l, l]].

ψlnm(r)=ψlnm(r, θ, ϕ)

=
χ[0,R[(r)

RJ′
νl
(kln)

√
2

r
Jνl

(
kln

R
r

)
Ym

l (θ, ϕ),
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where

• Ym
l (θ, ϕ) is the spherical harmonic of orbital quantum number l and azimuthal quan-

tum number m,

• Jνl
(x) is the Bessel function of the first kind of index νl = l +

1
2

and variable x,

• χ[0,R[(r) is the characteristic function of radial interval,

• {kln}ln are the wave numbers in Region I, defined as the nth non-zero root of the Bessel

function Jνl
(x), thanks to the continuity condition at r = R.

The respective energy eigenvalues for electron and hole are expressed in terms of the same

family of wave numbers {kln}ln

Ee,h
ln =

k2
ln

2m∗
e,hR

2
.

This clearly indicates that the continuum density of states of the semiconductor bulk should

show atomic-like discrete energy levels with increasing energy separation as the QD radius

decreases.

C. Electron-hole pair Quantum Dot model

From now on, we add the Coulomb interaction VC between electron and hole to the

Hamiltonian H0, given by Eq. (1) and define the usual spherical shape semiconductor QD

Hamiltonian H in the effective-mass approximation [13, 14, 18, 19] as

H =H0 + VC(reh)

=− ∇2
e

2m∗
e

− ∇2
h

2m∗
h

+ V (re) + V (rh) −
e2

κreh
+ Eg, (2)

where κ = 4πε and ε is the semiconductor dielectric constant.

In order to simplify notations, we shall assume that Eg = 0. Deriving an exact analytical

solution is arduous because of the Coulomb potential dependence in the electron-hole relative

distance reh = |reh|= |re − rh|, which explicitly breaks the spherical symmetry of the system.

The common approach to this problem is to treat differently the interplay of the Coulomb

interaction, which scales as ∝R−1, and the quantum confinement, which scales as ∝ R−2.

To handle these competing contributions, two regimes of electron-hole pair should be singled
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out by comparing the order of magnitude of the QD radius R to the Bohr radius of the bulk

Mott-Wannier exciton a∗ =
κ

e2µ
, µ being the reduced mass of the exciton. These are

• the strong confinement regime, valid for a size R ≤ 2a∗ [14], in which the potential

well strongly affects the relative electron-hole motion, the exciton states consist then

of uncorrelated electron and hole states;

• the weak confinement regime, valid for a size R ≥ 4a∗ [14], in which the electron-hole

relative motion and its binding energy are quasi left unchanged. The exciton could be

treated as a confined quasi-particle of total mass M = m∗
e +m∗

h and its center-of-mass

motion should be quantized.

In any case, the Coulomb potential should be treated as a perturbation of the infinite

confinement potential well. So, in order to evaluate the ground state energy of the exciton

state using a variational procedure, we shall use the following wave function

φ(re, rh) = ψ010(re)ψ010(rh)φrel(reh), (3)

where φrel(reh) = φrel(reh) = e−
σ
2
reh , σ denotes a variational parameter, re,h = |re,h|, and

ψ010(re,h) = ψ010(re,h) = −χ[0,R](re,h)

re,h
√

2πR
sin

( π
R
re,h

)
.

The variational wave function (3) is the most natural choice we can make. The wave function

ψ010(re)ψ010(rh) is simply the free Hamiltonian H0 ground state. Its presence in the trial

function φ(re, rh) insures the validity of the perturbation result to which the variational

principle leads. Furthermore, in relative coordinates, the perturbation function φrel(reh)

exhibits the exciton behavior, which is that of a hydrogen-like atom with a charge carrier

mass µ. Because of this analogy, we expect the variational parameter σ to depend on the

Bohr radius as σ ∝ a∗−1. Notably, in the weak confinement regime, the exciton ground state,

which is a bound state, should mean that σ ≈ 2a∗−1, so that φrel(reh) = e−
reh
a∗ — which is,

up to a normalization constant, the ground state wave function of an hydrogen-like atom

with its appropriate Bohr radius.

Let us make a trivial remark which will be the basic argument for our later purpose:

the spherical shape of the QD explicitly breaks the translation invariance of the Coulomb

interaction. This remark on translation invariance and spherical symmetry breakdown, as a

whole, suggests the use of a Fourier transform formalism in relative coordinates. Let F [f ]
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stands for the Fourier transform of the function f . Therefore, important matrix elements,

such as the square of the variational wave function norm, the diagonal matrix element of the

Coulomb electron-hole potential and the mean value of the electron-hole free Hamiltonian

H0 in this variational state, may be advantageously computed with Fourier transforms of

functions.

The square of the norm of φ is then given by

〈φ|φ〉

=

∫
d3red

3rhψ
2
010(re)ψ

2
010(rh)φ

2
rel(reh)

=

∫
d3k

(2π)3
F

[
φ2

rel

]
(k)F

[
ψ2

010

]
(k)2

=
−8

R2
∂σ

1

σ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy) sinh(σRx)e−σRy ,

(4)

where D = {(x, y) ∈ R
2/0 ≤ x ≤ y ≤ 1}, while the different Fourier transforms are






F
[
φ2

rel

]
(k) =−4π∂σ

1

σ2 + k2
,

F
[
ψ2

010

]
(k) =

2

kR

∫ 1

0

dx

x
sin2(πx) sin(kRx).

Moreover, the diagonal matrix element of the electron-hole Coulomb potential is

〈φ|VC(reh)|φ〉

=−e
2

κ

∫
d3k

(2π)3
F [ϕrel](k)F

[
ψ2

010

]
(k)2

=
−e2
κR

8

σ

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy) sinh(σRx)e−σRy ,

(5)

with ϕrel(reh) =
|φrel(reh)|2

reh
. Lastly, the mean value of the electron-hole Hamiltonian H0 can

be exactly evaluated as

〈φ|H0|φ〉
〈φ|φ〉 =

π2

2µR2
+
σ2

8µ
=

π2

2µR2
+
E∗

4
σ′2, (6)

where the dimensionless variational parameter σ′ is defined by σ =
σ′

a∗
and the exciton

Rydberg energy by E∗ =
1

2µa∗2
.
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As Eqs. (3), (4), (5) and (6) are obtained without any further approximations — except

the ones upon which the model was built —, they have to be valid everywhere whether it is,

by construction, in the strong confinement regime or, by extension, in the weak confinement

regime. Indeed, the Coulomb interaction itself should be always treated as a perturbation

with respect to the infinite potential well, although its energetic contribution should not be

maintained as a perturbation to the exciton confinement energy. Thus, the trial function

global form (3) will remain acceptable in the weak confinement regime, but we will have to

correct it by adding a further phase factor, which will depends only on the center-of-mass

coordinates.

We now study the behavior of these quantities and describe some of their consequences

in different ranges of QD radii for which σR ≪ 1 or σR ≫ 1, (corresponding respectively

to the strong and the weak confinement regimes) and for which we can analytically and

explicitly compute numerical values.

III. STRONG CONFINEMENT REGIME

In this regime, where σR ≪ 1, the assumed form of the variational wave function (3)

shall be used and it is appropriate to perform Taylor expansions in Eqs. (4) and (5) in the

neighborhood of the dimensionless parameter σR = 0. Because of the analyticity of the

Taylor expansion of the functions exp(x) and sinh(x), this expansion will remain valid up

to σR . 1. Thus, we obtain




〈φ|VC(reh)|φ〉 =− e2

κR

{
A− σR+

B

2
σ2R2 + O(σ3R3)

}
,

〈φ|φ〉 =1 − BσR+ Cσ2R2 + O(σ3R3),

(7)

where the constants A,B and C are given in closed form by

A=2 − 2Si(2π) − Si(4π)

2π
≈ 1.786,

B=
2

3

{
10

9
− 2

3π2
+

2Si(2π) − Si(4π)

8π3

}
≈ 0.699,

C =
1

3
− 1

2π2
≈ 0.283.

Here, Si(x) denotes the sine integral

Si(x) =

∫ x

0

dt

t
sin(t), ∀x ∈ R.
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Consequently, we can deduce an expression of the mean value of the total Hamiltonian H in

the strong confinement regime as an expansion in powers of σ′, which is the dimensionless

variational parameter first introduced in Eq. (6)

〈φ|H|φ〉
〈φ|φ〉 =

π2

2µR2
− A

e2

κR
− 2(AB − 1)E∗σ′ +

E∗

4
σ′2 + . . .

where the correction terms “. . . ” go to zero at least as fast as ∝ R

a∗
. The variational

parameter σ′ is now determined by minimizing the expectation value of the energy. Thus,

we find σ′
0 = 4(AB − 1) ≈ 0.996 and the corresponding energy value is

Estrong
eh =

π2

2µR2
−A

e2

κR
− 4(AB − 1)2E∗

≈ π2

2µR2
− 1.786

e2

κR
− 0.248E∗. (8)

In the strong confinement regime, this formula has been already analytically obtained [14, 33]

with trial functions showing the same global form as the previously presented one (3) but

with an interactive part chosen, instead of φrel(reh), equal to

φ̃rel(reh) = 1 − σ

2
reh.

This choice corresponds in fact to the two first terms of the Taylor expansion of Eq. (3) in

the neighborhood of σ
2
reh ≤ σR ≪ 1. In the meantime, we have succeeded in finding an

approximate value of its upper bound for R . a∗. This bound, as we already mentioned in

Subsec. IIC, can be in turn numerically extend to the commonly accepted region of validity

of QD radii, i.e. R . 2a∗.

IV. WEAK CONFINEMENT REGIME

As previously explained, in this regime σR ≫ 1, we can retain the global form of the trial

function used in the strong confinement regime because of the presence of the confinement

potential. But, as said before, the physical situation requires a modification, before applying

the variational procedure.

A. Considerations on the trial function

Here, the electron-hole pair states consist in binding exciton states, which globally act like

quasi-particles of total mass M . As matter of fact, in a translation invariant space region,
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the quasi-particle point of view emphasizes the possibility for the exciton to show a global

translational motion in terms of its center-of-mass coordinates. In the weak confinement

regime, the exciton typical size ∝ a∗ is sufficiently smaller than the QD typical radius

R. So, we can reasonably assume that excitons should exhibit a quasi-particle behavior

and possess a global translational motion. In order to account for a partial restoration of

translation invariance, in the weak confinement regime, we have to introduce a center-of-

mass coordinates plane wave, because the physical behavior of the confined exciton should

show a reminiscence of the free exciton one, i.e. the wave function of the ground state of the

exciton shall be considered as the wave function of quasi-particle describing the electron-hole

pair. Thus, it should have the form

ψ(re, rh) = ψ010(re)ψ010(rh)φrel(reh)φe(re)φh(rh), (9)

where φe,h(re,h) = e
i π

R
σe,h·re,h. The vectors σe,h are dimensionless quantities which facilitate

the computation in practice but are not directly physically interpretable. In fact, in order to

understand properly the meaning of these parameters, we have to define the wave numbers

vectors respectively in the center-of-mass and in the relative coordinates as



σG =σe + σh,

σeh =
m∗

hσe −m∗
eσh

M
.

Since σe · re + σh · rh = σG · rG + σeh · reh, the functions φe,h(re,h) should contribute to

the exciton total energy by an additional kinetic term, corresponding to the fundamental

energy of a plane wave in a space region of size R in the center-of-mass coordinates rG,

∝ |σe|2
m∗

e

+
|σh|2
m∗

h

=
|σG|2
M

+
|σeh|2
µ

, which is assumed to be of the form
π2

2MR2
. This

constraint is consistent with the conditions




|σG|2 =1

σeh =0
=⇒





|σe|2 =
1

(1 + λ)2

|σh|2 =
λ2

(1 + λ)2

where λ =
m∗

h

m∗
e

. The previous expressions reinforce the cogency of the trial wave function

ψ(re, rh). Taking σeh = 0 does not provide an extra kinetic energy term to the total exciton

energy in the relative coordinates, except the ones due to the electron and hole confinement.

But taking |σG|2 = 1 adds to the electron-hole pair total energy the correct energetic

contribution in the center-of-mass coordinates, corresponding to the fundamental energy of

a confined particle of mass M .
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B. Variational principle

The trial function (9) leaves unchanged the exciton density of probability or the Coulomb

potential matrix element

〈ψ|ψ〉 = 〈φ|φ〉 and 〈ψ|VC(reh)|ψ〉 = 〈φ|VC(reh)|φ〉,

whereas the free Hamiltonian matrix element gets further contributions, i.e.

〈ψ|H0|ψ〉
〈ψ|ψ〉 =

π2

2µR2
+

π2

2R2

{ |σe|2
m∗

e

+
|σh|2
m∗

h

}
+
E∗

4
σ′2

=
π2

2µR2
+

π2

2MR2
+
E∗

4
σ′2.

In order to evaluate the mean value of the Coulomb potential in the quantum state

defined by the wave function ψ, we have to compute the following double integral in the

weak confinement regime for σR & 2π. Since for such QD radii, the convergence of all

occurring series is insured, we can write

∫∫

D

dx

x

dy

y
sin2(πx) sin2(πy) sinh(σRx)e−σRy

=

∫∫

0≤x≤y≤σR

dx

x

dy

y
sin2

( π

σR
x
)
sin2

( π

σR
y
)
sinh(x)e−y

=
π2

2σ2R2

∑

k≥0

1

k + 1

(
− 4π2

σ2R2

)k∫ σR

0

dy

y
sin2

( π

σR
y
){

e−2y

2k+1∑

n=0

yn

n!
−

2k+1∑

n=0

(−y)n

n!

}

=
2π2

σR

∑

n≥0

(−4π2)n

(2(n+ 1))!
2F1

(
n+ 1, 1;n+ 2;− 4π2

σ2R2

)

×
{∫ 1

0

dy

y
sin2(πy)y2n+1 cosh(σRy) − 2n+ 1

σR

∫ 1

0

dy y2n sinh(σRy)

}
, (10)

where 2F1(a, b; c; z) =
∑

n≥0

(a)n(b)n

(c)n

zn

n!
is the usual Gauss hypergeometric function. In Eq.

(10), we take terms up to the fourth order in the variable
π

σR
in the neighborhood of 0.

Therefore, for the terms in Eq. (10) whose integrand is not exponentially decreasing for

y → σR ≫ 1, we get

− π2

2σR

∫ σR

0

dy

y
sin2

( π

σR
y
)∑

k≥0

1

k + 1

(
− 4π2

σ2R2

)k 2k+1∑

n=0

(−y)n

n!

=A′ − B′

σR
+ C ′ π2

σ2R2
−D′ π3

σ3R3
+ E ′ π4

σ4R4
+ O

(
π5

σ5R5

)
; (11)
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with

A′ =
π

2

{
Si(2π) − Si(4π)

2

}
≈ 1.056, B′ = 0,

C ′ =−4

3
A′, D′ =

π

4
and E ′ =

4

5

(
A′ − 1

8

)
.

Furthermore, for terms in Eq. (10) whose integrand is exponentially decreasing for y →
σR ≫ 1, we apply Laplace method (cf. Appendix A) to get an answer in the limit of

σR → ∞. Hence,

π2
∑

n≥0

(−4π2)n

(2(n+ 1))!
2F1

(
n+ 1, 1;n+ 2;− 4π2

σ2R2

)∫ 1

0

dy

y
e−2σRy sin2(πy)

{
y2n+1 +

2n + 1

σR
y2n

}

=
π3

σ3R3

{
π

4
+ O

(
π2

σ2R2

)}
. (12)

In the QD radii range, where the third order actually contributes to Eq. (11), i.e. for radii

near the lower bound of the possible radii in the weak confinement regime σR ≈ 2π —

which, as we will see later, corresponds to a size R ≈ πa∗ —, the third and fourth order

terms contribute to the exciton energy with terms of the same order of magnitude. But for

radii larger than 4a∗ [14], the third and also the fourth order terms are in fact irrelevant.

So, we can stop the expansion in Eq. (11) at the second order term. Thus, the Coulomb

interaction diagonal matrix element and the square of the norm become





〈ψ|VC(reh)|ψ〉 =− e2

κR

8A′

σ2R2

{
1 − 4

3

π2

σ2R2
+
D′′

A′

π3

σ3R3
+ O

(
π4

σ4R4

)}
,

〈ψ|ψ〉 =
16A′

σ3R3

{
1 − 8

3

π2

σ2R2
+

5

2

D′′

A′

π3

σ3R3
+ O

(
π4

σ4R4

)}
,

(13)

where by definition D′′ =
E ′

2
≈ 0.372. Finally, we obtain in this regime the following

σ′-expansion of the variational energy

〈ψ|H|ψ〉
〈ψ|ψ〉 =

π2

2µR2
+

π2

2MR2
+
E∗

4
σ′2 − E∗σ′ − 2

3

π2

µR2

1

σ′

+
3

4

D′′

A′
π
π2

µR2

1

σ′2

a∗

R
+ . . .

Applying now the variational principle, we get the value of the dimensionless variational

parameter σ′

σ′
0 = 2 − 2

3
π2

(
a∗

R

)2

+
3

4

D′′

A′
π3

(
a∗

R

)3

.

13



Because the second and the third terms in the previous expression do not contribute to the

total electron-hole pair energy, we conclude that σ′
0 ≈ 2 and

Eweak
eh =−E∗ +

π2

6µR2
+

π2

2MR2
+ δ

π2

µR2

a∗

R

=−E∗ +
π2

6µR2
+

π2

2M(R− η(λ)a∗)2
, (14)

from which we are able to extract an explicit expression for the Kayanuma-function as

η(λ) = δ
(1 + λ)2

λ
with δ =

3

16

D′′

A′
π =

3π

40

(
1 − 1

8A′

)
≈ 0.208 and λ =

m∗
h

m∗
e

. As we have

already specified, let us observe that σ′
0 ≈ 2 implies that R & πa∗, which is surprisingly

consistent with the usually accepted numerical region of validity. Moreover, we see that the

interaction part φrel(reh) of the wave function coincides with the ground state wave function

of a reduced mass µ hydrogen-like atom up to a normalization factor and contributes to

the excitonic total energy with the leading binding fundamental energetic term −E∗, as we

expect.

The η-function was first introduced phenomenologically by Eq. (28) in [14] to get a better

fit between numerical and empirical results; but no analytic derivation of it is available so far.

First, here, we manage to give an expression for this function, which satisfies the electron-

hole exchange symmetry: λ −→ λ−1. Second, as was already depicted by Kayanuma, the

QD size renormalization term η(λ)a∗ is interpretable as the so-called dead layer [34]: this

is the physical reminiscence of the fact that, although it could be successfully described as

a quasi-particle, the exciton is not actually itself an indivisible particle. In fact, its center-

of-mass motion, the one on which the quantization is really performed, could not reach

the infinite potential well surface unless the exciton undergoes a strong deformation in the

relative motion of the electron and the hole. This implies that the picture of a point-like

exciton is no longer appropriate in this region of space. The most convenient way to study

this exciton consists in thinking of it as a rigid sphere of radius ∝ a∗, where the proportional

factor must not exceed 3
2

too much, because l∗ = 3
2
a∗ is the mean value of the relative

distance between the electron and the hole in the non-confined exciton ground state. We

have to get the largest possible radius l∗ for the sphere picture, when λ → ∞, i.e. in

the limit of infinite hole mass because the hole stays motionless at the center-of-mass of

the electron-hole system. Furthermore, the smallest possible radius must be obtained in

the symmetrical case λ = 1 and must be held at 1
2
l∗ = 3

4
a∗, which imposes η(1) ≈ 0.75.

This matches quite well with both experimental and theoretical results as shown in Tab. I.
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Finally, regarding the different values of η(λ) around 3
2

at λ = 5, we can safely conclude

that the picture of infinite hole mass becomes valid as soon as λ ≈ 5.

Table I: Comparison between numerical and analytical values for the η-function.

λ 1 3 5

ηnum(λ) 0.73 1.1 1.4

ηtheo(λ) 0.83 1.1 1.5

relative error 14% <1% 7%

In Tab. I, we compare numerical values computed from numerical simulations taken by

this function η(λ) for λ = 1, 3, 5 to those theoretically predicted by the previous relation

and note that there exists a reasonable agreement between both results. We even succeed

to enlarge the region, in which the weak confinement regime is satisfactory.

V. A PSEUDO-POTENTIAL-LIKE METHOD

The problem, that we still have to deal with, consists in finding a physical way to substract

off the term reminiscent of the kinetic energy term in Eq. (14). As matter of fact, because of

the presence of the reduced mass, it is interpretable as a kinetic energy term in the relative

coordinates. However, this type of exciton kinetic energy has to be already contained in the

Rydberg energy term, because of the validity of the Virial theorem in the relative coordinates.

Besides, in this assumption, the higher order contributions to the electron-hole energy must

be interpreted as higher order contributions to the kinetic energy of the exciton, viewed as

a quasi-particle of mass M , which physically justifies the intuitive idea that for very large

radius R only the quasi-particle point of view should be responsible for the exciton kinetic

energy.

A. Weak confinement regime

In analogy with the pseudo-potential method for metals, we propose to introduce an

additional potential term W in the Hamiltonian H , which shall depend only on the electron-
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hole relative distance reh, so that it contributes to the second order of the exciton total energy

but not to the third order — i.e. the one which allows us to determine the expectation value

of the η-function. Furthermore, we assume that W must

• be attractive at distances in the range of a∗ in order to promote excitonic state with

typical size around his Bohr radius;

• be repulsive at short distances in order to penalize excitonic state with small size and

to remind that the exciton typical size should not be smaller that the typical size of

the surrounding lattice spacing;

• be exponentially small for large distances, in order to not perturb the long range

Coulomb interaction.

Consequently a natural choice of such potential should be of the form

W (reh) = −32π2

9
E∗ r

2
eh

R2
e−2

reh
a∗ . (15)

Inspection shows that it satisfies all of the previous constraints; and, in the weak confinement

regime, it exactly provides us what we ask for

〈ψ|W (reh)|ψ〉
〈ψ|ψ〉 = − π2

6µR2

{
1 + O

(
a∗2

R2

)}
.

Remark. The potential amplitude in Eq. (15) is fixed ad hoc in order to get the previ-

ous correct kinetic energy contribution. Consequently, the pseudo-potential form we choose

seems to be arbitrary. However, the form of W (reh) ∝ r2
ehe

−2
reh
a∗ is the only one which

straightforwardly first contributes to the second order term in both weak and strong con-

finement regimes and which does not change the exciton energy behavior to zeroth and first

order terms.

B. Strong confinement regime

As we have introduced a new term in the exciton total Hamiltonian H , we have to check

its consequences in the strong confinement regime. The most important one is the significant

decrease of the expected value of the exciton energy because of the exciton total Hamiltonian
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redefinition: H ′ = H +W . In fact, the pseudo-potential W contributes to the second order

as

〈φ|W (reh)|φ〉
〈φ|φ〉 =−64π2

9
CE∗

{
1 + O

(
R

a∗

)}

≈−19.9E∗ + . . .

This expression is deduced by a reasoning similar to that of Sec. III. Therefore, we must

keep in mind that it is only valid when 2R . a∗ because of the pseudo-potential exponential

dependence, which changes the validity conditions of the Taylor expansion we made.

Figure 1: Behavior of the excitonic ground state energy as a function of the QD radius computed for

a confining infinite potential well with (––) or without (—) the presence of the pseudo-potential W

and for a confining finite potential step of height V0 ≈ 1eV (–·–) [21] and compared to experimental

results for CdS [35] microcrystallites with material parameters: ε = 11.6, m∗
e = 0.235me, m∗

h =

1.35me, Eg = 2.583eV, E∗ = 27meV and a∗ = 30.1Å, where me is the electron bare mass.
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As we can see from Fig. 1, the excitonic energy computed in the presence of the pseudo-

potential gets a significant better fit to experimental results, in the validity domain 2R . a∗,

than the one calculated without this tool. Nevertheless, the divergence for very small QD

size still holds as a consequence of the infinite potential well assumption. In order to extend

the validity domain upper bound, it would be efficient to carry on the energy expansion
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to one or maybe to two further orders. But, at this point, the computation become quite

involved and we cannot insure the success or even the relevance of this approach.

VI. CONCLUSION

By using an improved EMA model, we are able to obtain well known results in the

strong confinement regime, to correctly apprehend the weak confinement regime by adding

a pseudo-potential term to the total Hamiltonian describing the electron-hole dynamics and

to find an nice analytical expression for the phenomenological function η of Kayanuma.

As we have shown, the introduction of the pseudo-potential W allows to reduce in part

the overestimation due to the infinite potential well observed in [21], particularly near the

upper boundary 2R ≈ a∗, even if it still does not accurately approximate the total energy

for much smaller QDs. For such QD sizes, the best approach would probably require a finite

confinement potential. Thus, a future research work might focus on applying this pseudo-

potential method, in the presence of a confining finite potential step, in order to obtain a

hopefully better behavior for excitons in very small QDs.

Appendix A: THE LAPLACE METHOD

The purpose of this method is to study asymptotic behavior of integrals like I(t) =∫ a

0

dxg(x)eth(x) and rigorously determine a mathematical equivalent for such quantities when

t→ ∞.

One can prove the following theorem [36]: Let a > 0 and g, h : [0, a] −→ R two continuous

mappings such that

i.

∫ a

0

dx |g(x)|eh(x) <∞;

ii. ∃δ0 > 0 / ∀δ ∈ [0, δ0] and ∀x ∈ [δ, a[, h(x) ≤ h(δ);

iii. g(x)∼
x0+

Axα and h(x) = b− cxβ + o(xβ), where α > −1 and c, β > 0.
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Then, I(t)∼
t∞

A

β
Γ

(
α + 1

β

)
ebt(ct)−

α+1
β .
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