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Abstract

At the heart of distributed computing lies the fundamental result that the level of agreement
that can be obtained in an asynchronous shared memory model where t processes can crash is
exactly t + 1. In other words, an adversary that can crash any subset of size at most t can
prevent the processes from agreeing on t values. But what about the rest (22

n

− n) adversaries
that might crash certain combination of processes and not others? Given any adversary, what
is its disagreement power? i.e., the biggest k for which it can prevent processes from agreeing
on k values.

This paper answers this question. We present a general characterization of adversaries that
enables to directly derive their disagreement power. We use our characterization to also close
the question of the weakest failure detector for k-set agreement. So far, the result has been
obtained for two extreme cases: consensus and n − 1-set agreement. We answer this question
for any k and any adversary.
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1 Introduction

The theory of distributed computing is largely related to determining what can be computed against
a specific adversary. Most results so far have been devoted to one specific form of adversaries: those
that can control any subset of size t of the processes, i.e., the t-failures adversary. In particular, a
seminal result in distributed computing says that the level of agreement that can be obtained in a
shared memory model where t processes can crash is exactly t + 1 [11, 1, 16]. In other words, an
adversary that can crash any subset of size at most t can prevent the processes from agreeing on t

values. In the case of consensus for instance (t = 1), this translates into FLP [8].
In a sense, these results are very incomplete, for the t-failures assumption covers only n cases

in a system of size n. What about the rest (22n

− n) adversaries? i.e., adversaries that can crash
certain subsets of processes of a certain size but not others of the same size. Given any adversary
A, we seek to compute its power by determining the biggest k for which k-set-agreement [7] cannot
be solved, which we call here the disagreement power of A. Beyond intellectual curiosity, this
question might even be practically motivated by modern multicore architectures where the failures
of processes in the same core might all be correlated [14, 9].

The answer is trivial for some adversaries. For others, it is not. Consider, in a system of 3
processes, {1, 2, 3}, an adversary A that can fail either no process, both processes 2 and 3, or
process 1. It is easy to show that A can prevent consensus but not 2-set agreement. In this sense,
adversary A has the same disagreement power as the 1-failure adversary, i.e., 1. Consider now a
more involved scenario: a system of 4 processes and an adversary A’ that can fail any element of
{∅, 4, 23, 14, 12, 134, 124, 123}. What is the disagreement power of A’? We prove in this paper that
it is also 1.

The first contribution of this work is a general characterization of adversaries that enables to
directly derive their disagreement power. Namely, we introduce a structure predicate, parameterized
by an integer k, and which, intuitively, ensures that for any set of faulty processes of size less or equal
k, there is some adequate matching set of those that can be crashed by the adversary. We exploit
this through a new simulation of adversaries, which we call the conservative back-off simulation.
This basically shows that if k-set agreement can be solved with some adversary that satisfies the
predicate for some k, then k-set agreement can be solved with the k-failure adversary. Hence,
an adversary that satisfies the predicate has disagreement power at least k. In our simulation,
a process backs-off and skips its simulation step if it thinks that it is faulty in some set where
the simulated algorithm is known to work. Conversely, we show how to solve k-set agreement
with any adversary A that does not satify the predicate for some k. We do this by showing how
to implement failure detector k-anti-Ω [17], known in turn to implement k-set-agreement. (Each
query to k-anti-Ω returns n− k process ids; the specification ensures that there is a correct process
whose id is eventually never output.)

Our characterization hence splits the set of all adversaries into n disjoint (equivalence) classes,
one for every level of disagreement. It contributes to the idea that a very small subset of results
and ad-hoc proofs in distributed computing should suffice to derive all others. In particular, if
indeed needed to reason about set-agreement for the “wait-free” adversary (n − 1-set agreement),
topology is not needed for all the other ones. Results concerning other k-fault adversaries can
be deduced by [3, 4], whereas results for all other (22n

− n) adversaries can be deduced from our
characterization.

The second contribution of our paper, also obtained from our characterization, is to close the
question of the weakest failure detector for k-set agreement. So far, the result has been obtained
for two extreme cases: consensus [5, 15] and n − 1-set agreement [10, 17]. We close this long
lasting question for any k and any adversary. More specifically, we show that k-anti-Ω is the
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weakest failure detector to solve a decision problem that is impossible with the k-adversary. In
this sense, k-set agreement is the weakest impossible decision problem for any adversary that has
disagreement power k. We give a general proof that reuses some of the ideas of [5, 10, 17] together
with a fundamental observation: the fact that a breath search extraction technique is enough to
extract the weakest failure detector because, even if we can extract only a specific adversary, we
can compute its disagreement power using our characterization technique. In short, we proceed
as follows: (1) we locally simulate a graph of block runs of some shape; (2) we conduct a breath
search and extract a set of adversaries that contain the actual set of faulty processes; (3) we show
that such an adversary cannot satisfy our structure predicate; (4) finally we extract k-anti-Ω from
it.

The rest of the paper is structured as follows. We first define our structural predicate in Section
2. We then introduce our conservative back-off simulation and use it in Section 3.1 to show that
any adversary that satisfies the predicate for k can be reduced to the k-failure adversary. We then
show in Section 3.2 how to implement k-set agreement with any adversary that does not satisfy
the predicate, In Section 4, we determine the weakest failure detector for k-set agreement for any
adversary A.

2 Model and Definitions

We consider the standard shared-memory model [12, 13]. In Section 4, this model is augmented
with failure detectors [6]. We recall below the necessary elements to describe our and introduce
the notion of adversary.

Processes and objects. The system consists of n processes Π = {p1, p2, ..., pn} which communi-
cate using read-write atomic registers. Processes might crash. In this case we say that the process
is faulty. A process that never crashes is said to be correct.

Failure pattern and adversary. We assume the existence of a global discrete clock T that is,
however, inaccessible to the processes. A failure pattern F [6] is a function from a global time range
T to 2Π, where F (t) denotes the set of processes that have crashed by time t. The set of correct
processes is Correct(F ) = Π \ ∪t∈T F (t).

Intuitively, an adversary chooses which sets of processes may crash. More precisely, an adversary
can be represented by a set of sets of processes (we call these sets faulty-sets). Given an adversary
A, FP (A), the set of failure patterns associated with A, is the set of all failure patterns F such
that Π \ Correct(F ) is one of the faulty-sets of A. Here we consider only adversaries A for which
there is always at least one correct process, namely such that Π 6∈ A. The k-adversary, denoted Bk,
is the adversary for which at most k (0 ≤ k ≤ n − 1) processes may crash: Bk = {b ⊆ Π | |b| ≤ k}.
For a set S of sets of processes, we define adversary A(S) to be the set {a ⊆ Π | ∃B ∈ S, a = Π\B}.

To define how we compare adversaries, we first discuss how their faulty-sets are compared:

Definition 1. Let A and B be any two adversaries. We say that a faulty-set a ∈ A dominates a
faulty-set b ∈ B for A and B, if and only if

a ⊇ b

and ∀b′ ∈ B, b′ ) b,∃a′ ∈ A, a′ ⊇ a, a′ dominates b′ for A and B

Definition 2. Adversary A is stronger than adversary B, if and only if the following property P

is satisfied:
P(A,B) : ∀b ∈ B,∃a ∈ A and a dominates b for A and B
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When we compare an adversary to the k-adversary Bk, we simply write Pk(A) instead of
P(A,Bk).

Algorithms. An algorithm A consists of a set of n deterministic automata, (A(p1), . . . , A(pn))
one for each process pi in the system. Computation proceeds in atomic steps and each atomic step
is a step of one of the A(pi)’s. A process executes the algorithm assigned to it, until the process
crashes and stops executing any action.

Configuration and runs. A configuration of algorithm A defines the state of each process and
each shared register in the system. In an initial configuration I of A, every process pi is in an initial
state of A(pi) and every register is in an initial state. A run of algorithm A with adversary A is a
tuple R = (F, I, S, T ) where F is a failure pattern belonging to FP (A), I is an initial configuration
of A, S is an infinite sequence of steps of A, T is an infinite list of non-decreasing time values
indicating when each step of S has occurred such that if T (t) is a step of pi then pi does not belong
to F (t) and every pi belonging to Correct(F ) makes an infinity of steps in S.

Problems and k-set agreement. Generally, we say that algorithm A solves problem P for
adversary A if and only if every run R = (F, I, S, T ) of A with F ∈ FP (A) satisfies the specification
of P (we say also A implements P for adversary A).

In the following we restrict ourselves to specific decision problems for which the termination
condition depends only on global configurations (the states of each process and shared memory) of
the system. These clearly include k-set agreement. We give a specification for the k-set agreement
task specification. k-set agreement is a decision task in which processes decide by writing their
decision value in shared registers (one register by process) that satisfies the following properties:
1.Agreement: At most k different values are decided; 2. Termination: At least one process even-
tually decides ; 3. Validity: If any process decides a value v, then v is the initial value of some
process.

It is easy to verify that the termination condition depends only on the global configuration of
the system and that the given specification is equivalent to the classical one [7] in which all correct
processes have to decide.

Recall that k-set agreement can be solved in Bx if 0 ≤ x ≤ k−1. But not in Bx if k ≤ x ≤ n−1
[11, 1, 16].

Failure detectors. In addition to performing read and write operations, a process can query a
failure detector object [6]. We say that algorithm A with failure detector D solves a problem P for
adversary A, if every run R = (F,H, I, S, T ) as classically defined of A with F ∈ FP (A) satisfies
the specification of P (when the context is clear we also say D implements P ).

Note that from an algorithm with failure detector D that solves problem P for adversary A
and an algorithm that implements failure detector D for adversary A, we obtain an algorithm that
solves the problem for adversary A.

Recall that failure detectors can be partially ordered: failure detector D is said to be stronger
than failure detector D′ if there exists an algorithm with D that implements D′. Failure detector
D is said to be weakest to solve a problem P if (1) D implements P and, (2) D is stronger that any
failure detector D′ that implements P .

In this paper, we consider failure detector k-anti-Ω [17]: each query to k-anti-Ω returns n − k

process ids, with the guarantee that there is a correct process whose id is returned only a finite
number of times. If k = 1, k-anti-Ω is equivalent to the eventual leader Ω failure detector, the
weakest failure detector for consensus [5, 15]. If k = n − 1, k-anti-Ω is anti-Ω, the weakest failure
detector to solve the n − 1-set agreement [17]. Zielinsky in [17] conjectured that k-anti-Ω is the
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weakest failure detector to solve k -set agreement. Our paper proves this conjecture in Section 4.

3 Disagreement Power of an Adversary

3.1 The Conservative Back-off Simulation

Assume property P(A,B) is fulfilled for some adversaries A and B. Let Alg be any algorithm which
solves a decision problem P in A. Then, the conservative back-off simulation with Alg in Figure 1
solves P in B.

The goal of the simulation is to identify, in every possible run with a set of faulty processes
b ∈ B, a set of faulty processes a ∈ A with b ⊆ a (i.e. more failures in a than in b). Hence, the
processes outside a can use the given algorithm which is known to work for every a ∈ A. The
processes in a that are outside b can then just back-off and omit to take simulation steps, since the
others are enough to ensure termination.

To determine a, we first estimate possible b’s in the run. This is achieved by simply using
step-counters. The current estimations are stored in variables b1, . . . bl. Then, beginning with the
smallest set b1, every process tries to stepwise narrow down the possibilities for a. In these steps,
our structural predicate P(A,B) is needed. It is guaranteed that there is always an a ∈ A that is a
superset of all a’s considered so far. This sequence of a’s is stored in faulty. Therefore, even if the
estimations of b oscillate, the minimal a is such that b ⊆ a is stable (with b beeing the actual set of
faulty processes). Therefore, it is safe for the processes to take steps if they do not belong to some
a ∈ faulty and have reason to believe that all other processes that are not in a are alive.

initially:

1 Stepci := 0; (∗ a SWMR register ∗)
2 faultyi := ∅; (∗ estimates for faulty ∗)
3 alivei := ∅; (∗ estimate of non-faulty ∗)
4 lastsimstepsi := [0, . . . , 0]; (∗ the state at the last simulated step ∗)

forever do:

5 let pi1 , . . . , pin
be the processes ordered by increasing Stepc (ties broken deterministically);

6 l := 1; faultyi := ∅;
7 if ∅ ∈ B then b1 := ∅; inc(l);
8 for j = 1, . . . , n do if {pi1 , . . . , pij

} ∈ B then bl := {pi1 , . . . , pij
}; inc(l);

9 for j = 1, . . . , l do

10 add smallest a ∈ A to faultyi s.t. a domin. bj and ∀a′ ∈ faultyi, a ⊇ a′;

11 alivei := {pj | Stepcj > lastsimstepsi[j]};

12 if ∃a ∈ faultyi, alivei ∪ a = Π and pi 6∈ a then

13 execute a step of Alg;
14 lastsimstepsi := [Stepc1, . . . ,Stepcn];

15 Stepci := Stepci + 1;

Figure 1: The conservative back-off simulation for process pi and P (A,B).

Theorem 1. If P(A,B), every decision problem which can be solved with A can also be solved with
B.

Proof. We show that the simulation algorithm in Figure 1 decides for any algorithm Alg and any
problem P in all runs in B, i.e. that the simulation of Alg decides.
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Let b∗ ∈ B be the actual set of faulty processes in some run. Then, there exists some j∗ > 0 such
that b∗ is eventually always bj∗ at all correct processes, because all the step counters at processes
in sets bj with j ≤ j∗ change only finitely often and the step counters of some of the processes in
all other sets increase infinitely often. Furthermore, all bj with j < j∗ are eventually also always
the same at all processes.

Let a∗ ∈ A be the smallest set with a∗ ⊇ b∗ that is eventually always added to faultyi. By
property P (A,B) such a set has to exist (e.g. the one that is added in step j∗).

Then, eventually, and at all correct processes, for all sets a ∈ faultyi where a∪ alivei = Π, a is a
superset of a∗, because for all strict subsets a′ there is at least one process p 6∈ a′ that makes only
finitely many steps. Since eventually only processes that are not in such an a take steps, processes
in a∗ simulate only finitely many steps of Alg.

Assume some process pj that is not in a∗ simulates only finitely many steps of Alg. Since
a∗ ⊇ b∗, all these processes take infinitely many steps. Therefore, eventually, alivej ⊇ Π \ a∗. But
then, alivej ∪a∗ = Π. A contradiction to the fact that pj simulates only finitely many steps of Alg.

Therefore, exactly the processes not in a∗ simulate infinitely many steps. Since a∗ ∈ A, Alg has
to terminate.

3.2 k-Set Agreement

In this Section, we compare an adversary A with the adversary that contains all sets of size less
or equal k. We show that if Pk(A) does not hold for some adversary A then it is possible to
implement k-set agreement for A. For this, it is sufficient to show how to implement k-anti-Ω,
since this is sufficient to implement k-set agreement for any adversary [17]. Basically, k-anti-Ω
outputs, whenever queried, at least n− k processes, s.t. at least one correct process is output only
finitely often. The algorithm in Figure 2 implements k-anti-Ω.

As in the previous section, we first estimate possible sets of faulty processes in the run. This
is achieved by using step-counters. The current estimations are stored in variables a1, . . . al. Then,
we take the smallest set binit ∈ Bk that is not dominated by any a ∈ A (by predicate ¬Pk(A),
there exists one). Although this set is not dominated by any a, it may contain no correct process
(in particular, binit may be the empty set). However, if so, then by the recursive nature of the
domination property, there has to exist a strict superset of binit which is not dominated by all
a ∈ A with a ⊇ binit (if binit = ∅, then this applies to all a ∈ A). By an iterated use of this property
for every possible aj , eventually we end up with an element of b ∈ Bk which contains a correct
process (because ¬(a ⊇ b)). Although this output may differ in each round, it will eventually
always contain at least one common correct process, because some prefix of a1, . . . al is stable.

Theorem 2. If Pk(A) does not hold for A, then it is possible to implement k-anti-Ω in A.

Proof. If Pk(A) does not hold, then

∃b ∈ Bk,∀a ∈ A, a does not dominate b for A and Bk

and if a does not dominate b for A and Bk, then

¬(a ⊇ b)

∨ ∃b′ ∈ B, b′ ) b,∀a′ ∈ A, a′ ⊇ a, a′ doesn’t dominate b′ for A and B

Let a∗ ∈ A be the actual set of faulty processes in some run. There exists some j∗ > 0 such
that a∗ is eventually always aj∗ at all processes, because all the step counters at processes in sets
aj with j ≤ j∗ change only finitely often and the step counters of some of the processes in all other
sets increase infinitely often.

6



initially:

1 Stepci := 0; (∗ a SWMR register ∗)
2 Si := ∅;

forever do:

3 let pi1 , . . . , pin
be the processes ordered by increasing Stepc (ties broken deterministically);

4 l := 1; if ∅ ∈ A then a1 := ∅; inc(l);
5 for j = 1, . . . , n do if {pi1 , . . . , pij

} ∈ A then al := {pi1 , . . . , pij
}; inc(l);

6 Si := the smallest binit ∈ Bk s.t. no a ∈ A does dominate it;
7 for j = 1, . . . , l do

8 while aj ⊇ Si do

9 Si := the smallest b ∈ Bk, b ) Si s.t. ∀a ⊇ aj : ¬(a dom. b);

10 if |Si| < k then add some processes to Si until |Si| = k;
11 output Π \ Si;

12 Stepci := Stepci + 1;

Figure 2: Implementation of k-anti-Ω

By property ¬Pk(A), there exists some good binit. Let b∗ ⊇ binit be the maximal set such
that b∗ is eventually always a subset of Si at the end of the for-loop and assume a∗ ⊇ b∗. Then,
in step j∗ of the for-loop, there is no b ) b∗ with which Si = b∗ can be replaced. Therefore,
∀b ∈ Bk, b ) b∗,∃a ⊇ aj∗ , a dom. b. Thus, aj∗ dom. b∗ and we have a contradiction to the
conditions under which a set is added to Si or to the initial condition of binit.

Therefore, ¬(a∗ ⊇ b∗) and there exists a process p ∈ b∗ which is not in a∗ and the properties of
k-anti-Ω are fulfilled.

4 Weakest Failure Detector

4.1 Preliminaries

We present our results in the same framework as Zielinski [17]. We only recall here the main points.
We consider the immediate atomic snapshot model [2], which is equivalent to the shared memory
model, but allows a higher level of abstraction. Specifically, in this model a run can be represented
as a block run: a sequence of sets (called blocks) in which the snapshot operations of the processes
in one block appear to take take effect at the same time.

We use several building blocks, developed in [17]. In particular, we consider means to collect
failure detector values in a causal precedence relation in order to simulate steps of processes in a
block run such that a run composed by such steps is indistinguishable from some real run.

An immediate atomic snapshot register is divided into n fields, one for each process. The process
computation is specified by a function localcomp. This function gets passed the current state of all
fields in the immediate atomic snapshot register, together with an optional failure detector value.
A process can perform its computation using these values and then return a value which it wants
to be written into its corresponding field in the register. Then, for some block B in a block run,
every process p ∈ B sees the same state of the register where all operations of all previous blocks
have taken place and the value returned by the last invocation of localcomp at p is written to the
register.

Note that if the parameters of localcomp contain also failure detector outputs, a run is not
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anymore solely determined by the block run, it furthermore depends also on the failure detector
history.

A process cannot determine exactly in which blocks it appears in some run. Nevertheless, by
using a simple step-counter, a process can detect which processes took steps between two steps of
the same process. But it cannot immediately determine if the steps of these processes belong to
the same block or to some sequence of blocks. To reflect this uncertainty, we – in the following
definition – do not distinguish between sequences of blocks of the same processes where no process
appears twice.

Definition 3. A block sequence B1, B2, . . . is built upon a set of blocks S, iff for every Bi, i ≥ 1
there exists a B ∈ S such that:

Bi = B (1)

∨ ∃l1, l2, l1, l2 > 0 : (∪1≤i−l1≤i≤i+l2Bi = B

∧ ∩1≤i−l1≤i≤i+l2 Bi = ∅) (2)

4.2 Outline

Let A be some adversary with Pk(A). Since k-anti-Ω is impossible to implement in Bk, it is also
impossible in A. To extract the weakest failure detector for any decision problem that cannot
be solved for adversaries with disagreement power k, we assume that we have given an algorithm
Algorithm∆ with some failure detector ∆ that solves such a decision problem in A that is impossible
without ∆.

We start by collecting failure detector samples from the current run and storing their causal
relations in some graph (exactly as in [17]). With this graph, steps of Algorithm∆ can be emulated.
To get approximations of the failure pattern of the current run, we seek to simulate all possible
runs for all possible adversaries in Figure 3 to see which runs terminate.

By using a similar approach as in Figure 1, we show that if the approximations of the extracted
adversaries do not have certain good properties, this would contradict the impossibility of the
problem in Bk (which follows from the impossibility of the problem in A). Therefore, we exploit
these properties, using a similar approach as in Figure 2 to implement k-anti-Ω. Thereby showing
that k-anti-Ω is the weakest failure detector to solve the problem with A.

4.3 Construction

All runs in which only correct processes take infinitely many steps have to terminate. However,
enumerating all these runs may never terminate, since there may be no bound on the number
of steps taken in these runs. To circumvent this problem, we simulate only runs where every
block B corresponds to some set a in the currently investigated adversary (i.e. B = Π \ a). With
this approach, for adversary Ac = {{Π \ correct}}, only finitely many runs have to be generated
(Lemma 4). The approach does allow to derive conclusions about an adversary only for a subset
of all possible runs. For example, processes that are not correct can take finitely many steps in
some run and even after all faulty processes have crashed, the blocks in the run may be composed
of subsets of the set of correct processes, as long as every correct process appears infinitely often
in some of these subsets.

Fortunately, the latter problem can be dealt with by exploiting some knowledge about the
adversary to force processes to “wait” for appropriate blocks (this is done in Figure 5). To cover
also the steps of faulty processes in some run, the block runs for some adversary are not only
explored for one initial state, but for a permanently updated set I of initial states. However, this
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initially:
1 s0 := the initial state of Algorithm∆;
2 ∀b ∈ Bk, blockc[b] := 0;
3 I := {s0};
4 Sets := {S ⊆ 2Π | (S 6= ∅) ∧ (∅ 6∈ S) ∧ (∀B,B′ ∈ S, B ∪ B′ ∈ S)};
5 ∀S ∈ Sets, suspc[S] := 0;
6 ∀S ⊆ 2Π, IS := I;

function explore(S, sj):
7 visited := ∅;
8 if no decision in state sj then

9 for all B ∈ S do
10 for every permutation of every partitioning B1, . . . , Bm of B do
11 simulate the steps for B1, . . . , Bm from state sj and record the new state as sj+1

(if some step aborts, then aborted := true; return {sj});
12 visited := {si} ∪ return value of explore(S, sj+1);
13 return visited;

forever do:

14 permanently keep updating the causal precedence relation of the failure detector values;
15 changed := processes which made a step since the last round;
16 I := explore(2Π \ {∅}, so);
17 suspected := ∅;

18 for all S ∈ Sets do:
19 aborted := false;
20 if ∃p ∈ changed,∃B ∈ S, p 6∈ B then IS := I;
21 for all so ∈ IS do: explore(S, so);
22 if aborted = true then add S to suspected;

23 ∀S ∈ suspected: inc(suspc(S));
24 C = {S | S 6∈ suspected};
25 ∀b ∈ Bk: if ∀S ∈ C,∀a ∈ A(S),¬(a dom. b) in A(S),Bk then inc(blockc[b]);
26 k-anti-Ω output := output of alg. in Figure 4 with C and binit as the

b ∈ Bk with the maximal block-counter;

Figure 3: Extraction of the sub-adversaries and emulation of k-anti-Ω.

again may cause problems for adversary Ac. The tree of all runs for one initial state is finite for
Ac, but the set of initial states may grow faster than all these trees can be explored. Therefore,
we take advantage of one difference between Ac and most other adversaries. We update the set I

of initial states only for adversaries, if we observe that some process which is faulty in one set of
such an adversary has made a step. In this way, the set of initial states for Ac is updated only
finitely often. Again, this does not come for free. The set of initial states of some adversaries which
contain only supersets of the set of correct processes are also updated only finitely often. However,
fortunately these adversaries do not impact the correctness of the algorithm in Figure 4 (because
they do not impact the “good property” we spoke about above).

This property is that we have some set of possible adversaries where the algorithm terminates.
If there is one set of the k-failure adversary Bk which is not dominated by any set of some extracted
adversary, then, using a similar approach as in Figure 2, we can extract k-anti-Ω with the algorithm
in Figure 4.

To prove that this property indeed holds, we reduce it to an impossible problem. If every set of
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the k-failure adversary Bk is dominated by some set of some extracted adversary, then, by using a
similar approach as in Figure 1, in Figure 5 an algorithm that solves the impossible problem with
Bk is constructed. Therefore, Figure 4 implements k-anti-Ω.

4.4 Proof

Let F be the failure pattern of some run and O = {S1, . . . Sm} be the set of all sets that are
infinitely often not suspected in the run and let O′ be the maximal subset of O such that for all
S ∈ O′,∀B ∈ S, B ⊆ correct(F).

Lemma 1. ∀S ∈ O \ O′,∀B ∈ S, correct(F) ⊆ B.

Proof. Assume S ∈ O\O′ and assume there exists a set B′ ∈ S that is not a superset of correct(F).
Thus, IS gets infinitely often updated, because there is some process p, p not in B′ that takes
infinitely many steps.

Since S ∈ O \ O′, there exists some B ∈ S that contains a faulty process q. Eventually, the
simulation runs out of failure detector samples for q, because p generates infinitely many initial
states in IS . A contradiction to S ∈ O.

Lemma 2. Every run in which the set of processes that take infinitely many steps is correct(F),
terminates.

Proof. Follows directly by the assumption about Algorithm∆.

Lemma 3. Every run in which only processes in correct(F) take steps, which is eventually built
upon some S ∈ O′ terminates.

Proof. If S = {correct(F)}, then this follows directly from Lemma 2. Otherwise, IS is updated
infinitely often, because S contains a set in which some correct process is missing. Therefore, every
prefix in which only processes in correct(F) take steps is eventually generated.

Assume for one such a prefix that there exists a non-terminating run which is eventually built
upon some S ∈ O′. Then, “explore” will eventually always abort for set S. A contradiction to
S ∈ O′.

Lemma 4. The set {correct(F)} is only finitely often suspected.

Proof. Since processes that are not in correct(F) take only finitely many steps, I{correct(F)} is only
finitely often updated. Consider the tree of all non-terminating runs that start from one state in
I{correct(F)} and are built upon {correct(F)}. In this tree, all nodes have a finite degree.

Assume by contradiction that this tree has infinitely many nodes. Then, by Königs Lemma,
the tree contains an infinite path. This means there exists an infinite path in which the set of
all processes that take infinitely many steps is exactly correct(F). A contradiction to Lemma
2. Therefore, the tree has only finitely many nodes and “explore” eventually does not abort for
S = {correct(F)}.

For all S ∈ O′, let A(S) be {a ⊆ Π | ∃B ∈ S, a = Π \ b} and A(O′) := ∪S∈O′A(S).

Theorem 3. Let c be a set of processes and assume that

1. for all b ∈ Bk, b 6= ∅,∃S ∈ O′,∃B ∈ S : (Π \ B) dom. b in A(S),Bk.

2. every run in which only processes in c take steps, which is eventually built upon some S ∈ O′

terminates.
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initially:

1 Stepci := 0; (∗ a SWMR register ∗)
2 Si := ∅;

forever do:

3 let pi1 , . . . , pin
be the processes ordered by increasing Stepc (ties broken deterministically);

4 l := 1; Si := binit; if ∅ ∈ A then a1 := ∅; inc(l);
5 for j = 1, . . . , n do if {pi1 , . . . , pij

} ∈ A then al := {pi1 , . . . , pij
}; inc(l);

6 for j = 1, . . . , l do

7 while aj ⊇ Si do

8 Si := some b ∈ Bk, b ) Si s.t. for the S with aj ∈ A(S) with minimal suspc[S],
∀a ∈ S with a ⊇ aj , ¬(a dom. b)

9 if |Si| < k then add some processes to Si until |Si| = k;
10 output Π \ Si;
11 Stepci := Stepci + 1;

Figure 4: Implementation of k-anti-Ω for a non-stable set C

3. every run in which the set of processes that take infinitely many steps is c terminates.

Then, the algorithm in Figure 5 terminates in all runs of adversary Bk.

Proof. The proof is analogous to the proof of Theorem 1. If no process is faulty in some run,
then by property 3, the algorithm terminates. If some process is faulty, then by property 1, S is
eventually stable and by property 2, the algorithm terminates also.

Lemma 5. If there exists some b ∈ Bk, b 6= ∅,∀S ∈ O′,∀B ∈ S : (Π\B)does not dom. b in A(S),Bk,
then the algorithm in Figure 4 emulates k-anti-Ω.

Proof. The proof is analogous to the proof of Theorem 2. Since there exists a b ∈ Bk, b 6= ∅,
∀S ∈ O′, ∀B ∈ S: (Π \ B) does not dom. b in A(S),Bk, this b is also not dominated by the sets in
O \ O′, because it is not by {correct(F)}. Furthermore, for all supersets of correct(F), the order
in suspc is stable. Therefore, for aj = Π \ correct(F), b is still available and eventually always the
same b is selected.

Theorem 4. The algorithm in Figure 3 emulates k-anti-Ω.

Proof. If there exists some b ∈ Bk, b 6= ∅, ∀S ∈ O′, ∀B ∈ S: (Π \ B)does not dom. b in A(S),Bk,
then the algorithm in Figure 4 emulates k-anti-Ω (Lemma 5).

Assume for every b ∈ Bk with b 6= ∅ there exists some S ∈ O′, and some B ∈ S such that
(Π \ B) dom. b in A(S),Bk. Then, with Lemma 3 and 2 and c = correct(F), the preconditions for
Theorem 3 are fulfilled. But this contradicts the impossibility of the problem in Bk. Therefore,
k-anti-Ω is correctly emulated.
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