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We derive a cohomological formula for the analytic index of t he
Dirac-Ramond operator and we exhibit its modular propertie s.
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The Atiyah-Singer index theorem is important in many different
areas of mathematics and is also at the heart of many problems

in physics. In quantum field theory it comes into play throughthe
Dirac operator. Both the ordinary index [1], and the families index [2]
of the Dirac operator reveal features of quantum field theories. The
Dirac-Ramond operator is the extension to superstring theory of the
ordinary Dirac operator in field theory; it is the Dirac operator on loop
space and its ordinary index [3, 4, 5, 6] is given by the stringgenus,
while the elliptic genus of Ochanine and Landweber and Stong[7, 8]
corresponds to the index of one of its twisted version. Both the string
genus and the elliptic genus have been extensively studied.They have
given rise to an extension of the rigidity theorems of the elliptic genus
to the case of families [9] and to different elliptic cohomology theo-
ries, most notably to the theory of topological modular forms (tmf)
[10]. However, the analytic families index of the Dirac-Ramond op-
erator has not yet been formulated and in this paper we derivefor it
a cohomological formula, with remarkable modular properties, using
methods from field theory and string theory.

Consider a family of Dirac operators parametrized by a spaceX.
The zero modes of the Dirac operator define a virtual vector bundle
Ind overX, called the index bundle. One of the outcomes of the
families index theorem is a cohomological expression for the Chern
character of this bundle. The first two terms in the expansionof
this Chern character in characteristic classes are the dimension of the
vector bundle (i.e. the ordinary index of the Dirac operator) and its
first Chern class respectively. In the Dirac-Ramond case, the analytic
index is not an integer but a modular (or nearly modular) function
whose Fourier coefficients are integers.

For simplicity, the gist of the argument and the exposition of
the methods will be presented in the case of the Dirac operator. Mu-
tatis mutandisthey generalize straightforwardly to the Dirac-Ramond
operator. It obtains,en passant, a novel presentation of the cohomo-
logical Dirac families index theorem that displays its intimate relation
to Berry’s phase [11]. When needed we will revert to a full discussion
of the Dirac-Ramond case, which is our main concern.

Background. The treatment of the Atiyah-Singer index theorem with
quantum field theory techniques has become well known [12, 13, 14].
It rests on a few general principles. Consider a supersymmetric quan-
tum system. The spectrum of its hamiltonian consists of bosonic and
fermionic states. The bosonic and fermionic eigenstates ofnon zero
energy are paired with each other by supersymmetry. The generator
of supersymmetry is a Dirac-like operator which commutes with the
hamiltonian and anticommutes with fermion parity. The analytical
index of this Dirac operator,i.e. the difference between the number
of its bosonic and fermionic zeros modes, is then easily computed as
the supertrace of the quantum evolution operator. The usualcorre-
spondence between the hamiltonian and the lagrangian formulation
of quantum mechanics gives an equality between this trace and a su-
persymmetric path integral that is evaluated by the stationary phase
approximation which is exact and shows that the path integral lo-

calizes. This gives the expression for the topological index. In this
language, twisting the Dirac operator by some vector bundlesim-
ply amounts to coupling the quantum system to additional degrees
of freedom. The canonical quantization of these degrees of free-
dom produces the required vector bundle. In this case, the A-roof
genus is simply replaced by the product of the A-roof genus with the
Chern character of the vector bundle. Similarly, the equivariant cases
corresponds to having additional symmetries in the supersymmetric
quantum system. Any special case of the Atiyah-Singer theorem can
be treated in this manner.

In their paper on the families index theorem, Atiyah and Singer
[2] consider a family of elliptic operators parametrized bya compact
topological space. Consider a smooth family of metrics on a rieman-
nian spin manifoldY parametrized by a spaceX. The manifoldY
with metric parametrized byx ∈ X will be denoted byYx. The idea
is to putX andY together into a fiber bundleZ → X where at
each pointx ∈ X the fiber overx is a manifold isomorphic toY with
metricgY (x, ·). It is well known that the index of/D

Yx is independent
of the metricgY (x, ·). However the Dirac operator/D

Yx and its zero
modes change with the metric. Following Grothendieck, Atiyah and
Singer asked how the space of zero modes changes asx varies over
X. At eachx, the space of zero modes is a finite dimensional vector
space. Roughly speaking, this means that the space of zero modes of
/D

Yx is a finite dimensional vector bundle overX. This is not quite
correct because the dimensionality of the vector space willjump if
the number of solutions to the equation/D

Yxψ = 0 changes withx.
Only the index of the operator is protected from these jumps.If ZYx

±

are the vector spaces of respectively positive and negativechirality
solutions to the Dirac equation/D

Yxψ = 0 with metricgY (x, ·) then
ind( /D

Yx ) = dimZYx
+ − dimZYx

− is independent ofx. Atiyah and
Singer show that the virtual vector spacesZYx

+ ⊖ ZYx
− can be put

together overX to make a virtual vector bundleInd( /D
Y

) overX,
i.e. an element ofK−theory, called the index bundle. Because it is
well suited to the methods of quantum field theory and the study of
the string genus, we consider here a more restrictive familygiven by
a riemannian submersion. A riemannian submersion is a family of
metrics with a special relationship between the geometriesof Z and
X. Pick a pointz ∈ Z that projects tox ∈ X. At z there is an or-
thogonal decomposition of the tangent spaceTzZ = Hz ⊕ Vz . Here
Vz ⊂ TzZ is the “vertical subspace” consisting of vector that are
parallel to the fiber. The “horizontal subspace”Hz is the orthogonal
complement ofVz. A vectorv ∈ TxX has a unique horizontal lift to
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a vectorṽ ∈ Hz. The condition for a riemannian submersion is that
‖v‖X = ‖ṽ‖Z for everyz ∈ π−1(x). Note that the restriction of the
metric onZ to a vertical subspaces gives a metric onZx ≈ Yx. If xi

are local coordinates on the baseX and ifya are local coordinates on
the fiberY then(x, y) are local coordinates onZ. The fibers are the
submanifolds withx fixed. The metric of a submersion is locally of
the “Kaluza-Klein” form

ds2Z = gij(x)dx
i dxi+

gab(x, y)
“

dya +Ca
i(x, y)dx

i
” “

dyb + Cb
j(x, y)dx

j
”

. [1]

The metric above leads to a supersymmetric lagrangian onZ with
the following schematic formLZ(x, y) = LX(x)+LY (x, y) where
LX is the pullback of the supersymmetric lagrangian on the baseand
LY is roughly the lagrangian onY depending parametrically onx.

Outline of the argument. Since the original paper of Atiyah and
Singer there have been a number of different proofs of the fami-
lies index theorem. In what follows we present yet another derivation
which has the remarkable feature that its generalization toloop space
obtains for the first time a families index theorem for the Dirac-
Ramond operator. The multiplicative property of the index [2] is
central to our argument. It states that for a submersionZ → X,
ind /DZ is the index of the Dirac operator onX twisted by the index
bundle of /DY . In our setup this multiplicative property is a reflection
of Fubini’s integration theorem. It is important to keep in mind that
our approach is geometrical rather than topological. This leads to
de Rham cohomology represented by differential forms and thus, in
our final formula, we lose all torsion phenomena that might beof
interest. From now on the expression “index theorem” (and variants
thereof) is shorthand for “cohomological form of the index theorem”
(and respective variants).

The following diagram displays clearly the architecture ofour
arguments:

Z

X

Â(TX) ch
`

Ind /DY

´

Z

LX

eLX

“

e
R

A+
R

F
”

Z

Z

Â(TZ)

Z

LZ

eLZ

ind /DZ

Z

X

Â(TX)

Z

Yx

Â(TY )

Z

LX

eLX

„

Z

“LY ”
eLY

«

localization(a′)

��
�

�

�

Fubini(2)

��

(1)
((RRRRR

(a)

66l
l

l

(3)

{{
families
index

(4)

localization (c′)

��
�

�

�

Fubini

(b)

oo_ _ _ _ _ _

shriek (c)

��
�

�

�

[∗ ]

The dashed arrows refer to path integral operations while the solid
arrows indicate procedures in the hamiltonian or operator descrip-
tion. To prove the families index theorem one usually performs the
following steps in a straightforward manner.

(1) The Atiyah-Singer index theorem tells us that onZ ind /DZ =
R

Z
Â(TZ).

(2) Any connection can be used to compute the integral but the
computation simplifies when the family is described by a rie-
mannian submersion. UsingTzZ = Hz ⊕ Vz , the reduced
structure group and the special connection [15], we see that
Â(TzZ) = Â(Hz)∧ Â(Vz). Moreover the properties of the sub-
mersion connection allows us to identifŷA(Hz) with Â(TxX)
which is intrinsically defined on the baseX. This implies by
Fubini’s theorem that

ind( /DZ) =

Z

X

Â(TX) ∧
Z

Yx

Â
`

T(x,·)Y
´

. [2]

(3) There is a second way of determiningind /DZ . Using our rieman-
nian submersion geometry onZ we can show that solving for the
zero modes of/DZ is the same as the following procedure. First
determine the zero modes of/DY at fixedx ∈ X. Next solve a
modified Dirac equation onX. The corresponding Dirac operator
is coupled to a vector bundle with a connection constructed with
the zero modes of/DY . The Atiyah-Singer index theorem tells
you that the index of this operator is given by the integral inthe
lower left hand corner.

(4) The cohomological formula for the families index theorem of
Atiyah and Singer follows from the identification of these two
ways of computingind /DZ .

This procedure is,mutatis mutandis, the one used by Bismut [16]
and Bismut and Freed [17]. However, as we do not know how to
generalize step (3) in the Dirac-Ramond case, we adopt a different
strategy that bypasses step (3). This new proof relies on thepath inte-
gral computations associated with the dashed arrows of the diagram.
Every step now has a natural extension to the loop space,i.e., string
theory.

We begin withind /DZ at the center of the diagram. The index
is as usual given by the supertraceTr(−1)F in an appropriate field
theory where(−1)F is fermionic parity.

(a) Tr(−1)F = ind /DZ is given by a supersymmetric path inte-
gral over the loop spaceLZ with appropriate boundary conditions
[12, 13, 14]. This is a direct result of the equivalence between the
hamiltonian and the lagrangian formulations of quantum mechan-
ics.

(a’) The path integral calculation localizes on the “constant loops” in
LZ, i.e., the manifoldZ. Steps (a) and (a’) are equivalent to step
(1) above and constitute the standard path integral derivation of
the Atiyah-Singer index formula and we can then continue using
Fubini’s theorem (arrow (2)).

(b) As a result of the submersion geometry, see[1], the lagrangian
LZ splits naturally into two pieces and one of them depends only
on the baseX. The Fubini theorem can be used to factorize the
path integral into two factors. Here “LY ” is the inverse image of
the projectionπ : Z → X of a loop inX.

(c) This is the main and the only delicate step needed to derive the co-
homological formula for the families index in the Dirac-Ramond
case and constitutes one of the main results of this paper. The
path integral over the fiber is the reflection in the path integral
of the shriek map in K-Theory [2]. To compute theY path inte-
gral we notice that it satisfies a time dependent super-Schrödinger
equation. We then prove a new theorem in supersymmetric quan-
tum mechanics that shows that this path integral over the fiber
is exactly given by the supersymmetric parallel transport term in
between the parentheses. The result is the standard path integral
expression of the index for the Dirac operator coupled to a bundle
with connectionA and curvatureF [13]. By construction this
bundle is the index bundle. This is the argument that allows us to
bypass step (3).

(c’) The path integral calculation localizes on “constant loops” in
X, i.e., the manifoldX, and the result of the computation is the
A-roof genus times the Chern character of theInd /DY . This step
is standard and well known.

(4) cf. ibidem

We can now justify the approximations we will be performing.
Our starting point for the derivation of the families index theorem is
the computation of the index of the Dirac operator on the riemannian
submersionZ. The index is an integer and therefore cannot change
as we deform the spaceZ. If we fix a loop in the baseX, theY path
integral (in step (c)) isTr(−1)FUY (T, 0) whereUY (t, τ ) is the time
evolution operator onY andF is fermion number. The time devel-
opment is obtained from a study of the super-Schrödinger equation
and is summarized in[13]. We will show that in the computation of
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the supertrace there is an exact cancellation and the only contribution
comes from zero modes. Since theindZ is an integer we can go to
a parameter regime where the adiabatic approximation is valid and
in this way we clarify the contribution of the zero modes. In the
adiabatic approximation, the travel timeT around a loop is taken to
be very large, and the riemannian submersion metric is blownup in
such a way that the evolution is very slow as one goes fromt = 0
to t = T . The contribution from the zero modes in the adiabatic
approximation is given by super-parallel transport in the index bundle
around the loop inX. Our remarks imply that this is an exact result.

Details of step (c). The proof of step (c) in diagram[∗ ] requires a
discussion of the definition of the super-heat kernel in supersymmetric
quantum mechanics. The standard framework is the following. On a
(1|1) super-manifold with coordinates(t, τ ), whereτ is a Grassmann
variable, the supersymmetry transformation acts ast → t+ iǫτ and
τ → τ + ǫ. The generator of supersymmetry isQ = ∂τ + iτ∂t with
Q2 = i∂t. The superderivative isD = ∂τ − iτ∂t with D2 = −i∂t

and anti-commutator{D,Q} = 0. After quantizationQ becomes an
operator on the Hilbert space and we will interpretQ this way from
now on. The fundamental solution of the super-Schrödinger equation

DΦ(t, τ ) = QΦ(t, τ ) [3]

is the super-heat kernel. This equation was introduced in [13] to study
the index of the Dirac operator in an intrinsically supersymmetric co-
variant manner. We are interested in a generalization of theabove that
is analogous to going from a time independent hamiltonian toa time
dependent one. We are interested in solving[3] where we have(t, τ )
dependence,i.e., Q(t, τ ) = Q0(t) + τQ1(t). Note that in this case
{D,Q} 6= 0. The fundamental solution to the super-Schrödinger
equation with initial valueUY (0, 0) = I is the super-heat kernel
UY (t, τ ). The equivalence of the operator and the path integral for-
mulations of quantum mechanics tells us that with supersymmetric
boundary conditions we have

Tr(−1)FUY (T, 0) =

Z

π−1(γ)

eLY . [4]

Hereπ−1(γ) is the inverse image underπ : Z → X of a superloop
γ on X. One of our key results is that the left hand side of the
equation above is exactly given by the super-holonomy on theindex
bundle around the superloopγ, the generalization of the heat kernel
expression for the index to the families case. We can expand the
wavefunction as

Φ(t, τ ) =
X

n

φn(t, τ )bn(t, τ ) , [5]

where{φn} will be taken to be a complete orthonormal basis with
Q(t, τ )φn(t, τ ) = λn(t)φn(t, τ ). The eigenfunctions ofQ can be
constructed if we know the eigenfunctions ofQ0. Letφ0 be an eigen-
function ofQ0, Q0φ0 = λφ0 thenφ = φ0 − (Q0 − λ)−1τQ1φ0 is
an eigenfunction ofQ with eigenvalueλ. The resolvent is defined to
vanish onker(Q0 − λ). Inserting[5] into [3] and taking the inner
product withφm gives the exact equation

Dbm +
X

n

`

φm,Dφn

´

bn = λmbm . [6]

Notice that the super-Schrödinger equation[3] is very similar to the
equation which defines super-parallel transport. Assume wehave a
(1|1) superparticle moving on a manifoldM where there is a non-
abelian connectionA. The motion of the particle is described by the
superfieldXµ(t, τ ) = xµ(t)+ iτξµ(t). The manifoldX is not to be
confused with the superfieldX(t, τ ) that describes a superloopγ on
X. The super-parallel transport equation,

DΦ(t, τ ) +Aµ(X)DXµ Φ(t, τ ) = 0m [7]

is a multi-component super-Schrödinger equation withQ(t, τ ) =
−Aµ(X)DXµ. If we split the super-parallel transport into bosonic
and fermionic components, withΦ(t, τ ) = Φb(t) + iτΦf (t), we
obtain

Φ̇b +
`

Aµẋ
µ − i

2
Fµνξ

µξν´

Φb = 0 , [8]

Φf + Aµξ
µΦb = 0 , [9]

whereFµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. Super-parallel transport is
ordinary parallel transport with an extra “rotation” givenby a Pauli
~σ · ~B type coupling. Note thatΦ(t, τ ) = (1 − iτAµ(x)ξµ) Φb(t)
and thusΦ(t, τ = 0) = Φb(t). We use this later when we apply the
same methodology to[6].

The key point is that we only have to compute the supertrace
of UY (t, 0)) and not the full operator. The term(φm,Dφn) in
[6] gives a supersymmetric Berry-Simon connection [18]. In the
type of systems we are studying,Q depends on(t, τ ) implicitly
through a bosonic superfieldX(t, τ ), with τX(t, τ ) = X(t, τ )τ
which is apparent from the form of the lagrangianLZ . We have
φn

`

X(t, τ )
´

and Dφn = (∂φn/∂x
µ)(X) DXµ . With this in

mind we conclude that(φm,Dφn) = Amn
µ (X) DXµ where

Amn
µ (X) = (φm(X), (∂φn/∂x

µ)(X)). Thus equation[6] may
be written as

Dbm +
X

n

Amn
µ (X)DXµ bn = λmbm . [10]

Let Λ be the matrix with theλn on the diagonal. Using[8] and[9]
we findb(t, τ ) =

ˆ

1 − τ
`

Aν(x(t))ξν(t) + iΛ(t)
´˜

bb(t) where the
bosonic componentbb of b(t, τ ) = bb(t) + iτbf (t) satisfies

ḃb +
˘

iΛ2 +
`

Aµẋ
µ − i

2
Fµνξ

µξν
´

+ [Aµ,Λ] ξµ
´

}bb = 0 , [11]

and contains all the information necessary to determineUY (T, 0).
We choose positive integersn to label the orthonormal eigenvec-
tors φ0n = ϕn of Q0 with eigenvalueλn > 0. The eigenvector
ϕ−n = (−1)Fϕn has eigenvalue−λn < 0. The zero modes ofQ0

are indexed byz and denoted byϕz . A detailed analysis of[11]
shows thatbbn(t) and bb−n(t) satisfy the same differential equation
when the action of(−1)F is taken into account. Therefore we have
an exact cancellation in the supertraceTr(−1)FUY (T, 0) from the
states orthogonal tokerQ0. Since the evolution is given by a first
order differential equation this argument can be applied ateach in-
stant of time and can be adapted to the case when the kernel jumps.
We still have to compute the contribution of the zero modes tothe
supertrace. This can be done exactly by the adiabatic approximation
that we review shortly.

Applying these ideas to the zero modes we will obtain a refine-
ment to the adiabatic theorem. Within the adiabatic approximation,
the amplitudesbz for the zero modes satisfy the equation

Dbz +
X

z′

Az,z′

µ (X)(DXµ)bz′ = 0 [12]

that is the super-parallel transport equation[7]. This gives the exact
result

Tr(−1)FUY (T, 0) = Tr(−1)F Φb(T ) , [13]

whereΦb is the superholonomy given by the super-parallel transport
equation[8]. This is the refinement of Berry’s phase to supersym-
metric quantum mechanics. This superparallel transport isnow an
additional term that has to be added to supersymmetric lagrangian on
X. It reflects a coupling of the superparticle onX to a gauge field on
the index bundle. Next, we can perform theY path integral in step
(c) and as usual theX path integrals in step (c’) and expressind /DZ

as
Z

LX

eLX

“

e
R

A+
R

F
”

=

Z

X

Â(TX) ch
`

Ind /DY

´

[14]
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If we compare[14] and[2], we get
Z

X

Â(TX)

„

ch(Ind( /D
Y

)) −
Z

Yx

Â
`

T(x,·)Y
´

«

= 0.

Thus we have that as cohomology classes onX

h

ch
“

Ind( /D
Y

)
”i

=

»

Z

Yx

Â
`

T(x,·)Y
´

–

, [15]

where[ · ] denotes the cohomology equivalence class. This is the
cohomological families index formula for the Dirac operator which
ends our discussion of the the Dirac operator case.

Adiabatic approximation with symmetries. We now turn our atten-
tion to the Dirac-Ramond operator. The new feature is thatP (t),
the spatial translation operator along the loop, commutes with the
hamiltonianH(t). Our analysis requires the use of the adiabatic
approximation in the presence of symmetries, a topic that isnot ad-
dressed in textbooks. To simplify the discussion supersymmetry will
be ignored. In the adiabatic approximation we scale the timeso
that the Schr̈odinger equation becomesi ∂ψ/∂t = TH(t)ψ(t) . Let
{ϕr(t)} be an orthonormal basis of eigenvectors ofH(t) with eigen-
valueEr(t). The orthonormal basis expansion for wavefunctions will
be written as

ψ(t) =
X

r

e−iT
R

t
0 Er(t′) dt′ ar(t)ϕr(t) .

Inserting this into the Schrödinger equation and taking the inner prod-
uct withϕs gives the exact equation

ȧs(t) +
X

r

eiT
R

t
0 (Es(t′)−Er(t′)) dt′ 〈ϕs| ϕ̇r〉 ar(t) = 0 . [16]

As T → ∞ an oscillating term contributes very little [19] and the
statesϕs with Es(t) = Er(t) for all t > 0 are the only ones needed.
In general there will only be one such state except in cases inwhich a
symmetry enforces a multiplicity. In these cases one obtains the adi-
abatic approximation resulṫas(t) +

P

r,Er=Es
〈ϕs| ϕ̇r〉 ar(t) ≈ 0

within a degenerate energy level. On the eigenspace with eigen-
valueEs we get a connection along the family of hamiltonians given
byAsr(t) = 〈ϕs| ϕ̇r〉. The holonomy of this connection is the non-
abelian Berry’s phase [20]. This connection is not unitary because the
volume element of the fiberYx can change asx varies [21]. The her-
mitian piece of the connection is associated with the varying volume
element and takes the form:

R

Yx
dy

√
gY Tr(g−1

Y ġY )ϕ∗
sϕr. Stan-

dard perturbation theory computations show that the connection has
an “irreducible” part and a “perturbative” part. The topological infor-
mation is contained in the “irreducible” part while the “perturbative”
part, a differential form of typead, corresponds to a translation in the
affine space of connections. The perturbative parts can be ignored
when discussing topological invariants. Thus we can ignorethe fiber
volume related part of the connection. The parts of the connection
associated to transitions between different eigenvalues of H(t) are
purely “perturbative” because〈ϕs| ϕ̇r〉 = 〈ϕs| Ḣ |ϕr〉 /(Er − Es).
Moreover if we write an orthogonal direct sum for the Hilbertspace
H =

L

E(t) HE(t), in terms of the eigenspaces ofH(t) then the “ir-
reducible” part of the connection is a direct sumA =

L

E(t)AE(t)

where each pieceAE(t) may be taken to be a unitaryU(dimHE(t))
connection.

We can extend this analysis to a theory with additional sym-
metries because we have two commuting symmetries in the study
of the Dirac-Ramond operator. Here we only consider the case
of a maximally commuting algebra of self-adjoint operatorsC(t).
Its basis will be written as{H(t) = H0(t),H1(t), . . . ,Hl(t)}.
We assume that the spectrum of any operator inC(t) is discrete.

SinceC(t) is abelian, its irreducible representations are one dimen-
sional. We can find simultaneously eigenvectors of all the operators
in C(t). A stateψ has weightλ(t) if Hi(t)ψ = λi(t)ψ where
λ(t) = (E(t), λ1(t), . . . , λl(t)). We will express the Hilbert space
as an orthogonal direct sumH =

L

λ(t) Hλ(t). As t varies, the sub-
spacesHλ(t) also vary. Assume thatϕλ(t) andϕµ(t) are normalized
eigenvectors with respective weightsλ(t) andµ(t), andλ(t) 6= µ(t).
It follows that there existsj such thatλj(t) 6= µj(t). Applying the
same analysis as above to the operatorHi(t), one concludes on the
one hand that the connection between the subspacesHλ(t) andHµ(t)

is perturbative and on the other hand that the “irreducible”part of the
connection is a direct sumA =

L

λ(t)Aλ(t) where each pieceAλ(t)

is aU(dimHλ(t)) connection onHλ(t).
For simplicity consider a situation with only two commutingoper-

atorsH(t)andP (t) and where the spectrum ofP (t) takes integer val-
ues. For the adiabatic time evolution by the operatorH(t)+θP (t)/T ,
the contribution from a subspace of the Hilbert space with energyE
and withP eigenvaluen is schematically given bye−iθn Tr e−

R

A,
whereA is the Berry-Simon connection on that subspace.

In the Dirac-Ramond model we have a(0, 1) supersymmetry.
This means that there are operatorsL0, L̄0 that commute with each
other and that the Dirac-Ramond operator satisfiesḠ2

0 = L̄0 − c̄/24.

Its index is given by the supertraceTr(−1)F qL0−c/24q̄Ḡ2
0 . To relate

this to the previous discussion we note that the time development op-
erator isH = (L0 − c/24) + (L̄0 − c̄/24) and the spatial translation
operator isP = (L0 − c/24)− (L̄0 − c̄/24). Applying the previous
analysis we conclude that the result of step (c) in the Dirac-Ramond
scenario is an expression of the form

P∞
n=0 q

n−c/24 Φn whereΦn

is the superholonomy of the index bundle at “n-th level eigenspace”
of L0 − c/24. Step (c’) gives localization and will lead to formula
[18].

The families index for Dirac-Ramond. The existence of a Dirac-
Ramond operator onZ requiresp1(Z) = 0 anddimZ = n = 4n̂
while the submersion structure implies by restriction thatp1 Y = 0.
The family defined byZ has baseX with dimX = p and fiber
isomorphic toY with dimY = m. There will be two distinct cases
to consider. The first case isp = 4p̂ andm = 4 bm wherep̂ ≥ 0 and
bm ≥ 1. The second case isp = 4p̂ + 2 andm = 4 bm − 2 where
p̂ ≥ 0 and bm ≥ 1. Note that in both casesn = 4n̂ = 4(p̂+ bm).

In the Dirac-Ramond case with (0,1) supersymmetry, the right
hand side[15] becomes

Z

Yx

ŝ(ΩY , τ ) =
1

η(τ )m

Z

Yx

â(ΩY , τ ) , [17]

whereYx is the fiber ofZ → X overx ∈ X andΩY is the curva-
ture2-form using the submersion connection of the vertical tangent
bundle. The notations we use for the string genusŝ and for â are
summarized in the appendix. From the path integral point of view,
the Dirac and the Dirac-Ramond case differ by the essential presence
of a full right Virasoro algebra commuting with supersymmetry. In
particular since[L0, G0] = 0, the index bundle for the family defined
by Z → X has an orthogonal direct sum decomposition into repre-
sentations ofL0 given byInd(Z → X) =

L∞
n=0 Indn(Z → X),

wheren denotes the grading with respect toL0. Our adiabatic in-
variance arguments in the presence of an abelian symmetry show that
this leads to a connectionA =

L∞
n=0A

(n) whereA(n) acts only on
Indn(Z → X). There are no off diagonal pieces that connect sub-
spaces labeled by different values ofn. We denote the curvature of
A(n) byF (n). The left hand side of the formula for the family’s index
theorem is given by what we call the graded string Chern character

sch(τ, F ) =

∞
X

n=0

qn−m/24 ch
“

iF (n)/2π
”

, [18]

wherech is the Chern character.
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Given the foregoing, we are in a position to write down our main
result:

sch(τ, F ) =

»

Z

Yx

ŝ(ΩY , τ )

–

. [19]

This formula, the equivalent of[15] for loop space, gives a families
index theorem for the Dirac-Ramond operator. Its right handside can
be rewritten in a more explicit way. Let̂s =

P∞
k=0 ŝ4k(ΩY , τ ), and

â =
P∞

k=0 â4k(ΩY , τ ) whereŝ4k andâ4k are4k-forms onZ. Note
that â4k(ΩY , τ ) = η(τ )m ŝ4k(ΩY , τ ). It is convenient to define
âl = 0 if l 6≡ 0 mod 4 and likewise for̂sl. Integration along the fiber
reduces the4k-form to a4k −m form on the baseX

Z

Yx

â4k(ΩY , τ ) = α4k−m(x, τ )

Z

Yx

ŝ4k(ΩY , τ ) = σ4k−m(x, τ ).

[20]

Note thatαl(x, τ ) = η(τ )m σl(x, τ ), and if l < 0 thenαl = 0,
σl = 0. It then follows from the modular properties ofâ thatα4k−m

transforms as a modular form of weight2k while

σ4k−m(τ + 1) = e−2πim/24 σ4k−m(τ ) , [21]

σ4k−m(−1/τ ) = e2πim/8 τ (4k−m)/2 σ4k−m(τ ) . [22]

More precisely if we take4k −m vectorsX1, . . . ,X4k−m ∈ TxX
thenα4k−m(x, τ )(X1, . . . ,X4k−m) will be a modular form inτ of
weight2k. Observe that0 ≤ 4k −m ≤ p = dimX and therefore
dimY = m ≤ 4k ≤ p + m = dimZ. The range for the weight
of the modular form is1

2
dimY ≤ 2k ≤ 1

2
dimZ. We can make

the weight ofα4k−m as large as possible by making the parameter
spaceX have high dimensionality. All this may be summarized in
the formulae

sch(τ + 1, F ) = e−2πim/24 sch(τ, F ) , [23]

sch(−1/τ, F/τ ) = e2πim/8 sch(τ, F ) . [24]

This extends the modular properties of the index[35] to the full index
bundle. If we writesch(τ, F ) = α(τ, F )/η(τ )m then

α(τ + 1, F ) = α(τ, F ) , [25]

α(−1/τ, F/τ ) = τm/2α(τ, F ) . [26]

If y(n)
j are the formal eigenvalues ofiF (n)/2π thench(iF (n)/2π) =

P

j e
y
(n)
j . The Chern character is formally invariant under the trans-

formationy(n)
j → y

(n)
j + 2πim

(n)
j wherem(n)

j ∈ Z and therefore

α(τ, y
(n)
j ) should be periodic

α(τ, y
(n)
j ) = α(τ, y

(n)
j + 2πim

(n)
j ) [27]

Combining this with[25] and[26] we see that there is an additional
formal periodicity

α(τ, y
(n)
j ) = α(τ, y

(n)
j + 2πil

(n)
j τ ) wherel(n)

j ∈ Z. [28]

These formal transformation properties of theα remind one of the
transformation rules of Jacobi forms. However this formal transfor-
mation cannot be a true invariance. One way to see this is to fixa
positive integerr and considery(n)

j → y
(n)
j − 2πirδnr. This trans-

formation completely eliminates theqr−m/24 term from [18]. We
conclude that they(n)

j are not all independent as can be seen clearly
in the particular cases studied in[32] and[33] below. For example
[32] implies that all the first Chern classes are related and determined
by the single Chern class allowed in the right hand side.

The modular properties ofσk severely constrains the non triv-
ial cohomology classes of the index bundle of the Dirac-Ramond

operator. We rewrite[19] as

∞
X

n=0

qn−m/24 ch
“

iF (n)/2π
”

=

∞
X

k=0

σ4k−m(τ ) [29]

and the classes are described by a universal formula. LetdimY =
m = 4 bm− 2ε whereε = 0, 1 then the4j + 2ε cohomology class of
the index bundle is given by

1

(2j + ε)!

∞
X

n=0

qn−m/24 Tr

„

iF (n)

2π

«2j+ε

= σ4j+2ε(τ ) [30]

where

σ4j+2ε(τ ) =
α4j+2ε(τ )

η(τ )m
=

Z

Yx

ŝ4j+4 bm(ΩY , τ ) [31]

Note thatα4j+2ε is of modular weight2j + 2 bm. An important re-
minder is that with our conventionsbm ≥ 1 and therefore there is a
bound on the modular weight ofα4j+2ε given by2j+2 bm ≥ 2j+2.

Some applications. Two different approaches come to mind when
trying to exploit the cohomological formula[31]. On the one hand
we can use what we know aboutdimMk, the dimensionality of the
space of modular forms of weightk, and in particular look at spaces
of modular form of low dimensionality. This restrictsα4j+2ǫ and can
place strong constraints on the cohomological classes. Alternatively
we can study cohomology of a specified degree.

As a first example we look at the case whereα4j+2ε has modular
weight 4 . There are two possibilities for(j, bm) given by j = 0,
bm = 2; and j = 1, bm = 1. BecausedimM4 = 1 we have that
α4j+2ε(x, τ ) = E4(τ )α̃4j+2ε(x) whereα̃ a closed(4j + 2ε)-form
onX that is independent ofτ andE4 is the Eisenstein series. When
ǫ = 1, dimY = 4 bm − 2. If j = 0, bm = 2 then we are looking
at the second cohomology of the index bundle for the Dirac-Ramond
operator on a manifold of dimensiondimY = 4 bm − 2 = 6 and we
can takeX to be a two dimensional manifold. We see that

∞
X

n=0

qn−1/4 Tr

„

iF (n)

2π

«

=
E4(τ )

η(τ )6
Tr

„

iF (0)

2π

«

. [32]

The first Chern class of the determinant line bundle ofIndn is pro-
portional to the first Chern class of the determinant line bundle of the
Dirac operator. If you eliminate the “anomaly” associated with the
Dirac operator onY then you eliminate the anomaly for the Dirac
operator coupled to appropriate powers ofTY . The other case has
j = 1 with dimY = 4 bm−2 = 2 where we reach the conclusion that
the6-cohomology of the index bundle (needdimX ≥ 6) is given by

∞
X

n=0

qn−1/12 Tr

„

iF (n)

2π

«3

=
E4(τ )

η(τ )2
Tr

„

iF (0)

2π

«3

. [33]

An interesting example of the second type from a physics point
of view is given by two cohomology. This case corresponds to
j = 0, ε = 1 and gives the first Chern class of the determinant
line bundles associated with the various index bundlesIndn. The
manifold Y has dimensionm = 4 bm − 2. We can takeX to be a
2-manifold. The2-form α2 has weight2 bm = dimY/2 + 1 so that
if dimY = 6, 10, 14, 18, 26 (respectively2 bm = 4, 6, 8, 10, 14) then
dimM2 bm = 1 and we conclude that the first Chern classes of the
index bundle are given by

∞
X

n=0

qn−m/24 Tr

„

iF (n)

2π

«

=
E2 bm(τ )

η(τ )m
Tr

„

iF (0)

2π

«

.
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In this range if the determinant line bundle of the Dirac operator has
vanishing first Chern class then so do all the determinant line bun-
dles for the higher operators. In the especially interesting case with
dimY = 10, i.e., 2 bm = 6, the result is

∞
X

n=0

qn−5/12 Tr

„

iF (n)

2π

«

=
E6(τ )

η(τ )10
Tr

„

iF (0)

2π

«

.

Hence you see thatTr(iF (1)/2π) = −494Tr(iF (0)/2π). F (0) is
the curvature of the index bundle of the Dirac operator andF (1) is
the curvature of the index bundle of the Dirac operator coupled to
TY . If you compare this to the calculation of Alvarez-Gaumé and
Witten [22] for the gravitational anomalies in type IIB supergravity in
a manifold withp1(Z) = 0 you find thatA3/2 = −495A1/2 where
A1/2 is the anomaly contribution from the chiral spinor andA3/2 is
the contribution from the chiral gravitino. The differenceof 1 cor-
responds to the longitudinal component of a Rarita-Schwinger field
ψµ that must be accounted for correctly to get the physical gravitino.
Note thatdimZ = 12 andp1(Z) = 0 tell us that things can only
depend onp3 so all the anomalies will be proportional.

Conclusions and outlook. We have shown that the characteristic
classes of the index bundle of the Dirac-Ramond operator have re-
markable modular properties. The discussion was here restricted to
families described by a riemannian submersion. In a forthcoming
longer publication we extend the analysis to the Dirac-Ramond oper-
ator coupled to various infinite dimensional vector bundlesand show
how symmetries constrain the structure by using the representation
theory of Virasoro and chiral algebras. An open important question
is the link of our geometrical methods to tmf.

Appendix. The index of the Dirac-Ramond operator for(0, 1) su-
persymmetry on a manifoldM with p1(M) = 0 is given by
Trker G0

(−1)F qL0−c/24 =
R

M
ŝ(M, τ ), whereG0 is the genera-

tor of the right handed supersymmetry. The integrand is the string
genuŝs(M, τ ) = â(M, τ )/η(τ )d whered = dimM and

â(M, τ ) =

d/2
Y

j=1

ixj/2π

σ(ixj/2π, τ )
. [34]

Hereη is the Dedekind eta functionη(τ ) = q1/24 Q∞
n=1 (1 − qn),

where q = e2πiτ and σ is the Weierstrass function. The mod-
ular transformation properties of the string genus follow from
â(x, τ + 1) = â(x, τ ) and â(x/τ,−1/τ ) = â(x, τ ) This implies
for the string genuŝs(x/τ,−1/τ ) = ŝ(x, τ )/(−iτ )d/2. Since inte-
gration overM picks out the differential form with degreedimM ,
R

M
â(M, τ ) is a modular form of weightd/2 and

Z

M

ŝ(M,−1/τ ) = e2πid/8

Z

M

ŝ(M, τ ) ,

Z

M

ŝ(M, τ + 1) = e−2πid/24

Z

M

ŝ(M, τ ) .

[35]
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